
Ng()- 22996

A Nearly-Linear Computational-Cost Scheme

for the Forward Dynamics of an N-Body Pendulum

Jack C. K. Chou

Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas, P. O. Box 830688, MP 32

Richardson, Texas 75083-0688, USA
Tel: (214)690-2132

Abstract

The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system
of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and
preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution
point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative
method. For each iteration, a linear system of the form ,lAX = E has to be solved. The computational cost for
solving this linear system directly by LU factorization is O(n8), and it can be reduced signii_cantly by exploring
the structure of J. This paper shows that by recognising the recursive patterns and exploiting the sparsity
of the system the multiplicative and additive computational costs for solving JAX = E are O(n) and O(n2),
respecEvely. The formulation and solution method for an n-body pendulum is presented. The computational
cost is shown to be nearly linearly proportional to the number of bodies.

1 INTRODUCTION.

The general modeling and formulation of an open-chain multi-body system with spherical joints was presented
by Chou, Singhal, and Kesavan in 1986 [1]. In this paper, we are interested in a single open kinematic chain
without branching which is a special configuration of a general open-chain system. Much attention was paid to
this open-chain system by researchers, such as Armstrong [2], because the system is simple and its configuration
is similar to robot arms. In Armstrong's work, he presented an O(n) algorithm for the computation of robot
forward dynamics. However, in the conclusion of his paper he stated that his program worked only for the

joints with three degrees of freedom (i.e., spherical joints). He also claimed that his algorithm can be enhanced
to include prismatic and revolute joints. In the author's opinion, once we have joints which possess less than
three rotational degrees of freedom connecting two bodies, the bodies are rotationally dependent. In this case,
the equations of motion can not be decoupled easily, and we may not be able to find an O(n) algorithm for the
complete calculation of robot forward dynamics unless we use very simple and primitive integration methods
or other techniques such as parallel computing. In other words, if we use an unreliable integration routine we
may get invalid solutions.

A series of n rigid bodies joined sequentially by spherical joints form an n-body pendulum. The bodies are
allowed to rotate freely in space, but the motion of translation between adjacent bodies is constrained by the

joint. This sequence of bodies can swing in any direction with one end flied at the ceiling through a spherical
joint. Here, we derive the equations of motion of this pendulum in the form of a mixed set of differential and

algebraic equations (DAE's) and solve the equations using the robust implicit integration method developed by
Petzold [3,4]. The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system.
At each solution point, the predicted solution is corrected to its exact solution within the given tolerance using
Newton's iterative method. For each iteration, a linear system of the form JAX = E has to be solved. The
computational cost for solving this linear system directly by LU factorisation is O(nS). In order to reduce
computations, we explore the structure of J and take advantage of the system sparsity. This paper shows that
by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive

and O(n), respectively.computational costs for solving JAX = E are O(n) 2

88

https://ntrs.nasa.gov/search.jsp?R=19900013680 2020-03-19T22:06:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

References

[1] S. Y. Oh and D. E. Orin, "Dynamic Computer Simulation of Multiple Closed-Chain Robotic
Mechanisms," in Proceedings of the 1986 IEEE International Conference on Robotics and Au-
tomation, pp. 15-20, San Francisco, CA, April 1986.

[2] R. H. Lathrop, "Constrained (Closed-Loop) Robot Simulation by Local Constraint Propaga-
tion," in Proceedings of the 1986 IEEE International Conference on Robotics and Automation,

pp. 689-694, San Francisco, CA, April 1986.

[3] H. Brandl, R. Johanni, and M. Otter, "An Algorithm for the Simulation of Multibody Systems

with Kinematic Loops," in Proceedings of the IFToMM Seventh World Congress on the Theory
of Machines and Mechanisms, Sevilla, Spain, September 1987.

[4] G. Rodriguez and K. Kreutz, "Recursive Mass Matrix Factorization and Inversion: An Opera-

tor Approach to Open- and Closed-Chain Multibody Dynamics," Technical Report 88-11, Jet

Propulsion Laboratory, Pasadena, CA, March 1988.

[5] H. Brandl, R. Johanni, and M. Otter, "A Very Efficient Algorithm for the Simulation of Robots

and Similar Multibody Systems Without Inversion of the Mass Matrix," in Proceedings of

IFAC/IFIP/IMACS International Symposium on the Theory of Robots, Vienna, Austria, De-
cember 1986.

[6] R. E. Roberson and R. F. Schwertassek, Introduction to the Dynamics of Multibody Systems.
Springer-Verlag, Berlin, 1987.

[7] O. Khatib, "A Unified Approach for Motion and Force Control of Robot Manipulators: The

Operational Space Formulation," IEEE Journal of Robotics and Automation, vol. RA-3, no. 1,
pp. 43-53, 1987.

[8] K.W. Lilly and D. E. Orin, "O(N) Recursive Algorithm for the Operational Space Inertia Matrix

of a Robot Manipulator," submitted to llth IFAC World Congress, August 1990.

[9] R. Featherstone, Robot Dynamics Algorithms. Boston: Kluwer Academic Publishers, 1987.

[10] R. Featherstone, "The Calculation of Robot Dynamics Using Articulated-Body Inertias," The

International Journal of Robotics Research, vol. 2, no. 1, pp. 13-30, Spring 1983.

[11] K. W. Lilly, "Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms," Ph.D.

Thesis, The Ohio State University, 1989.

[12] M. Amin-Javaheri and D. E. Orin, "Parallel Algorithms for Computation of the Manipula-

tor Inertia Matrix," in Proceedings of NASA Conference on Space Telerobotics, Pasadena, CA,

Jam/Feb. 1989.

87

2 MATHEMATICAL MODEL

An n-body pendulum was modeled with graphs by Chou and was presented in [5]. Based on this graph-theoretic
model, the mathematical model was derived as a set of DAE's and was written symbolically as

where the vector of unknown variables is

X=

[z(x,±,z) = o] (1)

[a: _ v_ sf]T (2)
The vectors Rb and Vb are the collection of displacements and velocities of all the bodies, and the vectors Pb
and Sb are the orientation parameters (we use Elder parameters here) and their derivatives. The superscripts
"u" and "v" indicate the dependent set and the independent set, respectively. The equations include the
following six sets of equations:

'G(l_, Pb, *)

'e.(q,, P_, s_, 0
E- "IZ(P_, t)

"I2(Pb, as, t)

"Ig(f'_, sz, *)

and they are a total of 14n scalar equations in 14n

= o (3)

unknown variables.

3 SOLVING THE FULL SYSTEM

At each solution point, we can solve the system equations g directly, using the implicit integration method
[3,4] where the predicted solution is corrected to its exact solution within a given tolerance using Newton's
iterative method. For each iteration, a liner system

[JAX=E[

has to be solved by LU factorization. The matrix J is the system Jacobian matrix which is specified by the
formula given by Petzold [4]. The vectors AX and g are the vectors of corrections and residuals, respectively.
Letting the Jacobian of an implicit function F with respect to the variable V be gg, we can write the Jacobian
matrix J and the vectors AX and E of the full system symbolically as follows:

I I rt°],, o
0 t&v tGs- tbs- td_P- td_J,- AVb
o o "x].. o o "z'. / AS_' / "I2

, s "_, /_s_ / = /'x_/

o o o o,'0 0 0 0 "I_. "I_. APU
o "Fv "ts. "Fs. "Fp. "Fp. [-rg-FJ

(4)

Solving the full system means that the system is solved by implicit integration in which the full linear system,
JAX = E, is solved by LU factorization without reducing its size. However, some structural information in J
and g can be utilized to reduce computations when they are evaluated.

3.1 Recursiveness and Special Structures

Some equations in E possess recursive properties which can be further utilized to reduce computational cost.
This recursive nature also causes the sub-matrices in .Jr to have special structures which can be exploited to
minimize the computational cost.

3.1.1 Translational Kinematic Constraints tG

In [5], the translational kinematic equations were derived as

tGi -- Rb, -- R,p, - Airi + _Aha_ = 0
k=l

(5)

89

Let

I o

= EI=IAh-h
x_ -- A_a_
_=0

then, (5) becomes tGi - Rb, - R,pl - Airi ÷ _ -- 0, or recursively

tGi = Rb, - R.pl - A_r, + (A__I +x_) = 0 (6)

When we evaluate the residual vector tG, we only have to compute Rb_, R,pl, Airi, and xl for i -- 1,...,n
once. Instead of computing A_ for each equation, we only compute x/ and add the previous Ai-1; that is,
A, = A___+ x,.

The Jacobian entries corresponding to the equation tG ate tGR and tGp. The Jacobian of t G correspond-
ing to Rb can be shown to be a unit matrix easily. Here we show that tGp has a special structure. It is written
as

@tG
tGp -

@Ps

• p.1 o

0 p._ • P'2 o p..

. •

0 P'a """ o p,.

Since CGi is a function of pb_, pb_, ..., and pb,, for each row i (i -- 1, ...,n) we have

The matrix in (7) becomes

-- 0; k=i+l,...,n

t(_rp =

0 0 ... 0

_ o ... o
o Pta o P'2

• * • • •

o'G. o'G.
op.l _ _ "'" op..

(7)

(8)

(9)

and it is a blocked lower-triangular matrix. Each blocked entry is a 3 x 4 matrix. The entries in each column
i (i -- 1, ..., n) in (9) are derived, in Appendix V.1 in [5], as

(10)
{ o_____ 2Ei a, - 2El rl: 2Eia_; k:i+l, ..,n

o p.,

Hence, (9) becomes

t(_p =

2Ex(Ttx - rx) 0 0 ..- 0

2Ex 7.x 2E2(;2 - _3) 0 ... o

2EI ax 2E2 i_ 2Es(aa - rs) "'" 0

: : : ".. :

2E1 at 2E2 a2 2Es aa ... 2E,(a, - 3,)

(11)

To compute tGp, we only have to evaluate 2Ei a,, 2Ei rl, and 2Ei(al - ri) once for i : 1,..., n.
The matrix tGp can be further partitioned into tG/,. and tGp. as in (4). This involves permuting selected

columns; however, the special structure is retained for these matrices after they are partitioned.

9O

3.1.2 Translational Velocity Kinematic Constraints t_

Translational velocity constraints are written as

k=l

(12)

Let

then, (12) becomes tG i - Vb,

Aia_

0
Airl + _" = O, or recursively

t_, _ Vs, -- _.r, ÷ (_'-1+_) = 0 (13)

Similar to (6), we only have to compute Vb,, _.ri, and _ once. Instead of computing A_, we compute ._-z +_r_
recursively to save computations.

The Jacobian matrices correspond to t_ ate tGv, tGs, and t_p in which t_v can be shown to be a unit

matrix easily, and tG s and t_p will be shown to possess special structures. The 3acobian matrix of t_ with
respect to Sb is defined as

0'4
t G5 -----

0 Sb

0 St= 0 St,.

0 Sb_ 0 Sb,,

: • ... •

(14)

Since tG i is a function of Sb,, sb2, ..., and sb,, for each row i (i = 1, ...,n) we have

0 'Gi

Osz,_ = O; k=i+l,...,n
(15)

Hence, (14) becomes

t_ s =

I °'s_b, 0 0 ... 0

o ... o
0 Sb z 0 Sh=

• .. • ... •

The entries in each column i (i = 1, ..., n) in (16) ate derived, in Appendix D.1 in [5], as

(16)

= 2E, - 2E,
a s:,

-- 2Ei- k i+1,..,n
0 Sb i -- as ' ---_ "

(17)

Comparing (17) with (10), we find that

0 '_ 0 tG _

'Gs- Oat = OPb-_GP (18)

Computing t_ s is not required. Once we compute cGp, we get t_s.

91

TheJacobian,t_p, is different.
lower-triangular matrix like tGs and is written as

op.h

tUp Z = °Ph
Op b

op,_

Since tGi is a function of Pbl, Pba, "", and Pb_,

0 0 ... 0

0 ... 0

op,, "'" opt..

The entries in each column i (i = 1, ..., n) in (19) are derived, in Appendix D.1 in [5], as

o'_, = 2%, _., - 2%, ;,
o p.,

o p., """

Hence, (19) becomes

t_p =

2%_(_ - _) 0 o -.. 0

2%_ _ 2%2(i2- i2) 0 ... 0

2%_ _ 2%2 _2 2%a(_3- _8) -.- 0

: : : ".. :

2EI al 2_72 a, 2Ea as .-- 2E.(a. -- r.)

tGv is a blocked

(19)

(2o)

(21)

To compute t_p, we only have to evaluate 2]_i as, 2El r,, and 2Ei(al - rl) once for i = 1,..., n.

The matrices tGs and t_j, can be further partitioned into tGs., tGs., tGpu, and t_p. as in (4). This

involves permuting selected columns. However, after permuting columns the special structures axe retained for
these paxtitioned matrices.

3.1.3 Torque-Balance Equations "F

The torque-balance equations for an n-body pendulum were derived as

It

"r, -- T_, - },ATM,(*b ,-g) + _AT_-_M_,(_rb,- g) = O
k=i

(22)

Let

', = - g),, M,(_r_, - g)
1"n+ 1 ---- 0

then, we can write (22) as "V, _= T_, - _iA/Ts, + &/A/T'ri = O, or recursively

"r, - Tib, - }iAT,,i + _AT(zl +'ri+l) ---- 0 (23)

When we compute the residual of'F, we only have to evaluate T_,, zi, _iATzi, and _A_'i once for i : 1, ..., n.
Instead of computing _'_ for each equation, we compute s/and accumulate it recursively to save computations.
The recursive term, sl + _'_+_, runs in backward sequence; that is, i : n, ..., 1.

The Jacobian of" F has three pa_ts: "Fv, "Fs, and "Fp. They also possess special structures. First, the
3acobian of "F with respect to Vb is written as

+
O'F O'F

0""""7"-- ---: O"--"T'-- = 0"

0 Vb 0 Vb

0 V._ o V.a o V..
..

0 V h o V_ o V_.

. •

V h o V._ 0 V_.

(24)
0"F

"Fv =
Vb

92

Since "Fi is a function of _rb,, _rb,+_, ..., and _rb., for each column i (i = 1, ...,n) we have

a'Fk
_r---w-- = 0; /= = i + 1, ..., n

O Vb,
(25)

The matrix (24) becomes a blocked upper-triangular matrix and is written as

"Fv = o"

OV._ o V. 2 o V..
0 _

0 7, 3 0 V..

." : ".. •

0 0 ...
OV..

(26)

The entries of each row i (i = 1, ..., n) in "Fv are derived as

a V.(

• V._

= -_M,_,A_ + _M,S, AT

= o'MI_A_T; k = i+ 1, ..., n
(27)

Hence, (26) becomes

"Fv =

MI(_, - _,)ATx Mz[t, ATx Ms&,A_ ... M, IxA;
0 M=(Kz - _2)A_ Mar'_A_ ... M,_xA_.
0 0 Ms(_ - _s)A_ --. M._,sA_

: : : ".. •

0 0 0 ... M.(S. - _.)A_

(28)

To compute "Fv, we only have to evaluate _rMi(_ - _)A_ T and _M_A T once for i = 1, ...,..
The :lacobian of "F with respect to Ps is similar to (24). However, since "Fi is a function of Pb,, the

off-diagonal entries become zero:

O'Fi 0"Fi

8 Pb, 8 Pb_
= O; k=i+l,...,. (29)

for i = 1, ..., n. Hence, "Fp becomes a diagonally blocked matrix and is written as

,_ 0 ... 0

0 _ ... 0
a p,,.

: : ".. :

o 0 ...
a p,,.

(30)

where

a'F_

a Pb_

8T_.• (_,,,) 8 (_T,-,)_ _8 + i.,
8 p_, 8 p_, 8 p_,

- a %' 2_,_ +, + 2_, +,
Pb,

- 2_,_, +, + 2_u, +, (31)

where _bl - Iiw_ : 2I, G,_s, and _ - _b x are defined in Appendix D.2 in [5].

93

"Fs has a structure identical to that in "Fp. The off-diagonal entries are zero:

a'Fh a'F_ 8"FiO'Fh +o'-- +o'-- 0; k i+l,...,n
0 Sb, O ib, O sb_ O ib_

for i = 1, ...,n. The Jacobian "Fs is diagonally blocked and is written as

+ 0 ...
4_ Sbl _ Sb l

O'F O'F o + ...
0 Sb3 8 Sb=

"Fs -- + o'---r- ----
0 Sb 0 Sb : : "..

where

0 "Fi

0 Sb,

0 0

0

0

• " " 0 Sb. 0 S#.

0 "Fi 8 "Tb, 8 "Tb,
+ o'-- -- +o'--

0 ib, 0 Sb, 0 ib,

The dezivation of (31) and (34) is given in Appendix D.2 in [5].

(32)

(33)

(34)

3.1.4 Equations Concerning Euler Parameters: "I z, "I 2, and "I 3

When we compute the residuals of "I 1, "I 2, and "I 8, there is no applicable ,ecursive structure that can be
utilized. However, their Jacobians do have some special structures because these equations are derived for each
body. Matrices with diagonally blocked structures are to be expected.

First, the normality constraint for each set of Euler paxameters is written as

"I] - pT, p,, _ 1 = 0 (35)

Since "I_ is a function of Pb, only, we have

o'zl o,#,
= O; k:i+l,...,n (36)

0 Pb_ O pb,

From (36), the Jacobian matrix of "I t with respect to and must be a diagonally blocked
matrix. The same argument can be applied to "I 2 and _' Pb=, ..., Pb.such that theiz Jacobians with respect to Pb and

Sb are diagonally blocked.
Since the blocks concerning these three sets of equations axe locally processed, as shown in [5], the Jacobian

matrices "I_., "I_., and "I_. possess a similar structure which is illustrated as follows:

where

are defined in Appendix B.1 in [5].

• 1 0 -.. 0
0 _= ... 0

: : ".. :

0 0 ... e.
o'x 0 ... 0
0 0"2 ... 0

: : ".. :

0 0 ... _.

vx 0 ... 0
0 v2 ... 0

: : ".. :

0 0 ... z,.

oo]o'(= 0 --o" 0
0 0 -o"

,,, = b,

(37)

94

4 SOLVING THE REDUCED SYSTEM

Solving the reduced system means to solve the linear system using the technique of dimension reduction.
Partitioning the linear system, JAX = E, according to the partition in (4) gives

E2AX2

Since .llx is a unit upper-triangular matrix and is non-singular, we cm_ obtain

1ER0 JR

For the independent corrections AX2, we solve

by LU faetorization where

[.1R_x,_= sR[(3s)

{ "1a = .I22 - "121"1tt'1t2ER E2 - ('12t'1{_)Et

The dependent corrections AXt are obtained by backward substitutions:

AXx = "1{_(Et - "1nAX,)

(39)

(40)

4.1 Solving for Independent Corrections

The independent corrections AX2 are obtained by solving the linear system .1RAX2 = ER. The evaluation
of "1R and ER is accomplished by developing a set of formulae such that the sparsity of the linear system is
completely utilized. From (4), we derive the following formulae for JR and ER:

.1R = "re'j,.- ('rv)('_.,,.) - ('_,)('x_,.)
- ("_'s)("I_,-) - ('_e)('I._,-) (41)

and

ga = "F -- ('Fv)tG - ('_4)'I 2 - ('_s)'I s - ('@6)'I t (42)

where

{ "_4 = "Fs. - ('rv)('_.)"ff's = "_iF'S, - ('Fv)(tGs.) (43)

•_ = "rp. - ('rv)('_p.)
When we compute JR and ER using the above formulae, several matrix multiplications will be performed.

The special structures discussed in the previous section can be exploited to reduce computation cost.

4.2 Solving for Dependent Corrections

Once we obtain the independent corrections, AX2, the dependent corrections, AX1, can be computed by

Ji-x t (Ez --'1t2AX2). However, using this formula directly is not practical since "in has a very simple structure
with many zeros. In order to utilize the sparsity completely, a set of formulae are derived symbolically for the
dependent corrections. They are as follows:

AP_ = "I t - ('X_,)AP_

AS_ = "I a - ('I_,.)AP_

As_ = "I2 - ('l_,,)Ae_

Av, = '_ - ('_s.)AS_ - ('_s,)AS_

- ('Gp.)AP_ - ('Gpo)AP;

(44)

(45)

(46)

(47)
(48)

Again, when we compute the dependent corrections using the above formulae, the special structures discussed
in the previous section can be exploited.

95

5 LINEAR COMPUTATIONAL-COST SCHEME

Rewriting the full system (4) by

• combining S_ and S_ to form S in the original order

• combining P_' and P_ to form P in the original order

• combining "I 1 and "I s to form I

• combining -2_ rI2 (scaled by -2_) and rF to form F

• re-arranging the columns and rows

• dropping the subscripts and superscripts for clarity and simplicity

gives

or

E° []0 Fp F$ AS -- F

o Ge Gs Gr AV

[o0 Fp Fs Fv AS = F

o _p _s u AV

(49)

(so)

where GR and Gv were shown to be unit matrices. In order to make Ip a unit matrix, Gaussian elimination
has to be applied to Ip, Is, and I locally. An example for one body is given in Appendix B.2 in [5]. We intend
to solve this linear system with a computational cost which is linearly proportional to the number of bodies in
the system.

5.1 Basic Theory

Applying the technique of dimension reduction to (50) gives

u0o i°00j[,.l,. EG]0 0_o _ - _,
AV En0 0

(sl)

where

and

.llt = U - (GS- GI'I$)'I_ x Fv (52)ER G (Gp) I - (G$ - GpIs) .I_X(F - Fp I)

3F = F$ - FpIsEF F - (Fp) l - (Fv) AV

Instead of solving (50) directly by LU factorisation, we solve

(53)

to obtain AV; then we solve

[.I_AV= E_] (54)

JFAS = El, J

to obtain AS. The rest of corrections can be computed by

AP = I - (Is)ASAR G - (G.p) AP

(ss)

(56)

96

5.2 Invertibility

In [6], we have shown that JR is non-singular if .jr is non-singular. From (52), we have to find JF in order to
evaluate JR. We would like to show that XF is invertible when _ ---, co.

The matrix JF is diagonally blocked because it is computed by Ps - Pp Is where Fs, Fp, and Is are
all diagonally blocked matrices. Each block at the diagonal position in JF is computed by its corresponding
block in Fs, Fp, and Is. Hence, we write

3p, = gs, - gp, Is, (57)

for each diagonal block.
Hence, we may write

From (B.12) in Appendix B given in [5], we find that Is, is a matrix scaled by I

Fp, Is, = 1-T_
ff

Also, from (34) we find that Ps, may be written as

rs, = + r,

Hence, we can write

If _e --, oo, we have
JF, - (59)

However, we have added one more equation into the F block as mentioned previously. This increases the
number of equations in each block in P from three to four. The equation is "_ scaled by -2_; that is,

--2o"][_ _= -2GrpTs _ = 0

The 3acobian corresponding to s is
-- 2_ p_

+T

3_,, _, -_(21_P_)

(60)

(61)
Combining it with (59) gives

(62)
Adding equation (60) into block F is equivalent to using Euler's equations in quaternion space [7]. We

have proved that the coefficient matrix with respect to i in Euler's equations for inertial torque in 4-space is

a non-singular matrix [7]. This matrix is exactly the same as 2I_(_i) T in (62). Therefore, J_, as well as J_
are invertible if ¢r --, co.

5.3 Summary of Computational Cost

The detailed discussion of the linear-cost scheme was presented in [5]. In terms ofmultiplicative(×) and additive
(-t-) operations, the computational cost required for solving the reduced linear system for the linear-cost scheme
is summarized also in detail in [5] as Tables 2 to 6. Adding up the totals in the tables gives the grand total of
operations required for the linear-cost scheme:

x: 657n - 324 (63)+: 1Sn2 + 574n - 321

This cost is not for obtaining one solution point; it is the cost of solving the reduced linear system for one
Newton's iteration. The computational cost for reaching s solution point depends on output step size and the
number of iterations.

6 IMPLEMENTATION AND RESULTS

A program, called LINPEN (LINear-cost scheme for simulating an n-body PENdulum), was coded to sim-
ulate a pendulum. The program is equipped with modules for reporting various physical quantities such as
displacement, velocity, and acceleration and was run on a VAX 750 computer. The motion of a user-specified

pendulum can be displayed on a GRINNELL display terminal.
Each body is drawn as a standardized 3-D polygon and is projected in perspective, on the terminal screen

according to its simulated position and orientation. An example of simulating a 3-body pendulum for ten
continuous positions is illustrated in Figure 1. The figure looks exactly the same as displayed on the display
terminal.

97

Figure1: Simulationof a 3-body pendulum.

6.1 Comparative Study in Computational Cost

For each solution point, a linear system, J AX = E, may have to be solved by LU factorization several times.
There are four schemes available to accomplish this:

• solving the full linear system by LU factorization where J is approximated by numerical difference

• solving the full linear system by LU factorization where J is evaluated by the exact Jacobian matrix of
E

• solving the reduced linear system by LU factorization where J is evaluated by the exact Jacobian and
is further reduced to its optimal size using the technique of dimension reduction

• solving the reduced linear system by LU factori_.ation where J is evaluated by the exact Jacobian and
is further reduced to its optimal size using the linear-cost scheme

For each iteration, the analytical count of operations required to solve the full system, reduced system, and
the linear-cost system with exact 3acobian is tabulated in Table 1. Although the additive operations for the
linear-cost system is O(n2), we may consider the cost linear because the amount of time required to perform a
multiplication or division on a computer is about the same and is considerably greater than that required to

perform an addition or subtraction.
The simulation of an n-body pendulum was run for the four systems. For each system, the program was

run ten times from one body to ten bodies. One hundred solution points were generated, for each run, with an
output time-step of 0.01 seconds and a tolerance of 10 -7. Total CPU time for solving four systems is calculated
in terms of CPU time per residual-call or CPU time per Jacobian-call. Total CPU time per residual-call versus

the number of bodies is plotted in Figure 2.

98

CPL"'Res.

(see. x tO-I)

20 Full System (N.D.)

18

16

[4

12

10 Full Syatem

8 Sy,_tem

6

0 1 "_ 3 4 5 6 7 8 lb 5
Number of Bodies

Figure 2: Computational cost in terms of CPU time for four systems.

An N-Body Pendulum
Grand Total of Operations for Three Systems

with Exact Jaeobian Matrix

System
Full System

Reduced System

Linear-Cost System

x

915n _ + 196n _ - 5n
33n _ + 129n z + 50n

657n - 324

+
915n _ + 196n _ - lOn

25n _ + 51n z + 25n
15n z + 574n - 321

Table 1: Analytical count of operations required for solving three systems with analytical Jacobian
matrices.

7 REMARKS

The mathematical model of an n-body pendulum with spherical joints and its solution method have been
presented. The mathematical model derived here is a mixed system of differential and algebraic equations

(DAE's) in implicit form. A model of state-space equations can be derived if we do further complex substitu-
tions. However, in the form of DAE's the equations of motion provide more sparsity, and this sparsity can be
exploited when numerical solution methods are applied. The modeling and formulation of an n-body pendulum
is the first study, for its similarity to a robotic manipulator in structure and for its simplicity in equations.

We also present four solution methods for solving the equations of motion of this n-body pendulum. The
first method solves the linear system, J AX = E, directly by LU factorization where J is approximated
by numerical difference. The second method solves the linear system directly by LU factorization, but J is
evaluated by its analytical Jacobian matrix with some structural consideration.

The third method employs the technique of dimension reduction to transform the full system to its reduced
system, JR AV = E2, such that LU factorization is performed on the reduced system only. This technique
utilizes the spaxsity of the system completely and saves a considerable number of computations. The four
methods also employ the technique of dimension reduction to reduce the size of the system. However, they
further exploit the structure of the system such that the reduced Jacobian generated possesses a very special
structure which can be utilized to solve the system in a nearly-linear computational cost.

The comparative study in computational cost for these four systems in the paper gives strong evidence of
the success of the theory developed.

100

References

[I] J. C. K. Chou, K. Singhal, and H. K. Kesavan. Multi-body systems with open chains: Graph-theoretic
model. Mechanism and Machine Theory, 21(3):273-284, 1986.

[2] W. W. Armstrong. Recursive solution to the equations of motion of an n-link manipulator. Proceeding of
5th World Congress on Theory of Machines and Mechanisms, 2:1343-1346, July 1979.

[3] L. R. Petzold. Differential/algebraic equations are not ODE's. SIAM J. Sci. Star. Comput., 3(3):367-384,
September 1982.

[4] L. R. Petzold. A description of DASSL: A differential/algebraic system solver. Scientific Computing, pages
65--68, North-Holland, 1983.

[5] Jack C. K. Chou. Modeling, Formulation, and Solution Scheme for an N-Body Pendulum. Technical Report
No. TR-89008, Program in Engineering Science, Erik Jonsson School of Engineering and Computer Science,
University of Texas at Dallas, Richardson, Texas, 1989.

[6] Jack C. K. Chou. Computer-Aided Design Methods for Three-Dimensional Constrained Mechanical Sys-
tems. Ph.D. Dissertation, Department of Systems Design Engineering, University of Waterloo, Waterloo,
Ontario, Canada, 1988.

[7] Jack C. K. Chou. Quaternions, Finite Rotation, and Dynamics. Technical Report No. TR-89007, Program
in Engineering Science, Erik Jonsson School of Engineering and Computer Science, University of Texas at
Dallas, Richardson, Texas, 1989.

101

