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Stability Margin
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Abstract

Stability margin for multiloop flight control systems has become a critical

issue, especially in highly maneuverable aircraft designs where there are in-

herent strong cross-couplings between the various feedback control loops. To

cope with this issue,we have developed computer algorithms based on non-

differentiable optimization theory. These algorithms have been developed for

computing the Multivariable Stability Margin (MSM). The MSM of a dynam-

ical system is the "size" of the smallest structured perturbation in component

dynamics that will destabilize the sytem. These algorithms have been coded

and appear to be reliable. As illustrated by examples, they provide the basis

for evaluating the robustness and performance of flight control systems.

1 Introduction

Accurate knowledge of the dynamical model associated with the design of modern

flight control system is becoming more difficult to obtain. This is especially true for

the design of the next generation fighters where many of the performance specifica-

tions go beyond the capability of the aircraft currently in service. Robust control

analysis methods have received considerable attention in recent years as a possible

solution to the problem of controlling systems for which the given model contains

significant uncertainty [Saf 1] [Doyle2]. The central feature of these methods is their

effectiveness in handling an unknown-but-bounded class of plants, instead of the nom-

inal plant only.
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The uncertainty in the nominal plant arises from severs] different sources: For

gain-scheduled aerospace vehicle control systems, typical uncertainties in the plant at

each design point consist mainly of modeling errors due to uncertain aerodynamic co-

emcients, linearization, model reduction, neglected dynamics, time-delays, etc. Aero-

dynamic coefficients developed from wind tunnel testing or computations] fluid dy-

namics usually are different from those obtained from actual flight data. Linearization

will also affect the nominal plant behavior. Nonlinear effects such as actuator satura-

tion and rate limits are neglected altogether when a model is llnearized. Parameter

drift will also affect the nominal plant. There may be dynamics] modes which are

intentionally or unknowingly neglected. In addition phase loss which results from

time delay also leads to an uncertainty bound.

The uncertainty may be loosely classified as falling into two categories, structured

and unstructured. Structured uncertainty arises from specific component or parame-

ter variations. Two examples of structured uncertainty are variations in weight and

drifting aerodynamic parameters. Unstructured uncertainty is any other sort of uncer-

tainty which can be regarded as a frequency-dependent norm bounded perturbation

matrix. High frequency modeling errors are one type of unstructured uncertainty.

The linearization of the nonlinear equations of motion c_ntribute to both classes of

uncertainty. Actuator rate and position limits have a distinctive signature which can

easily be isolated, so that they fall into the class of structured uncertainties. On the

other hand, the effects of nonlinear kinematic terms can only be bounded, therefore

necessitating an unstructured uncertainty representation.

2 Robustness Measure

Safonov [Saf 2], who built upon different, but related, conic-sector nonlinear stability

theory work of Zames [Zames], reinterpreted the conic-sector stability concepts in

order to des] with uncertainty and robustness issues. Safonov, Doyle and Fan, to

name a few, have contributed to the continuing development in this area [Saf 3]

[Saf 4] [Doyle2] [Fan].

Basically the robustness measure is done by lumping uncertain deviations from a

nominal system M(a) into an uncertain matrix A(s) resulting in an uncertain feedback

system with loop transfer function A(a)M(8) as shown in figure 1.

Then, the Multivariable Stability Margin (MSM), "K,,", is defined as the smallest

stable, norm-bounded perturbation A(s) that can destabilize the system. While K,,,

is in general difficult to compute, a reasonably tight lower bound K,,, theoretically

can be computed using diagonally scaled singular values [Saf 3] [Doyle2] [Fan]. The

plot of K,,,(_v) vs. frequency identifies tolerable levels of parameter uncertainty as a

function of frequency.
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I A(s) 1M(s)

A=diag[A_,A_, .... ,AL,..,A,]

Figure I: Robustness analysis model.

For unstructured uncertainty, the maximum singular value has been shown to be

useful in bounding the multivariable stability margin. However, the bound can be

very conservative in the case of structured uncertainty. The singular value analysis

will attempt to find the worst direction of the uncertainty that in reality impossible to

exist. To deal with the case of diagonally structured A, Safonov [Saf 4] introduced the

two-sided structured Multivariable Stability Margin (MSM), denoted K,_, and Doyle

[Doyle2] introduced the term Structured Singular Value (SSV), denoted p, to describe

the reciprocal, #(M(s)) = 1/K,,,(M(8)). Diagonal perturbations are quite general

and flexible if one considers parametric uncertainties (e.g. aerodynamic coefficients).

Traditionally one defines K,,, and # for "two-sided" magnitude-bounded uncertainties

which may be either positive or negative; but in cases where the sign of the uncertain

A i is known a priori one may modify the definitions of Km and/z accordingly.

When the uncertainties are known to cover both positive and negative pertur-

bations, the SSV of Doyle and MSM of Safonov provide a "tight" (to within 15%)

condition for robust stability. This condition is measured by representing directly the

individual sources of uncertainties in the form of block diagonal perturbations.

Definition: Given transfer functions G(s),a(s) and b(s), we write

G(, ) • ,ecto,[a,b]

if

where

and

IG(jw)- C(j_,)I _<I_(Jw)l V_

,(_) = (_(_)- b(_))/2

Assuming M(s) and A(s) to be stable then the one-sided MSM, "K,,,I" and, the

two-sided MSM, "Kin3" are defined by the following (see figure 2 and 3):
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Figure 2: One-sided K,,,

Km 2

Figure 3: Two-sided K.,

• One-sided K,_ :

The system is stable for all A with

Ai E sector[O, K,,,,] Vi = 1,...,n. (1)

• Two-sided K,,_ :

The system is stable for all A with

Aie sector[-K,,,,,K,,,] Vi = 1,...,n. (2)

For any diagonal matrix D, a practical upper bound on # = 1/K, n2 is o'_,.,,(DMD -1 ).

Further, it is known that for 3 or fewer Ai's that the minimum over D of this

upper bound is actually equal to # [Doyle2]. Safonov and Doyle proved that the

minimization problem of a_,,,(DMD -1) is convex in D' = log(D), so that every local

minimum is a global minimum. Furthermore, computational experience has shown

that minimum of tr,,,,_(DMD -1) over D is within 15% of/z. So, we choose to work

with this upper bound, K___,I.,to calculate the reciprocal of two-sided MSM. Practical

upper bound for the reciprocal of one-sided MSM can be easily derived by using conic
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Figure 4: _[_,

sector property of Zames [Zames]; viz. K,_ is bounded above by

K_, -- maz[lminvA,,,o,,(DMD -' + (DMD-')'),O] (3)
-- 2

By modifying the former equation to include the permutation matrix ¢i, a less

conservative bound for the two-sided real MSM, K,,,,, is given by

K ",.', 1 x= maz[_maz÷,minv,_,,,°,,(DMd_iD- + (DMddiD-1)'),O] (4)

Here

_bl E 4,, i = 1,...,2"

and 4, is the set of all permutation n× n diagonal matrices.

4, -- diag[( + l ), ........ ,(+I)]

The bound (4) is similar to the one proposed by Jones [Jones]:

lrninDmaz_,)_,,_°,,(DMq_iD -1 + (DM¢,D-_) ") (5)

Although, equation (5) will lead to more conservative bounds. Geometrically equation

(4) is shown in figure 4.

It should be mentioned at this point that several software packages are available

to compute the two-sided MSM ,however, they are not accessible to the authors to
be evaluated.

3 Km Computation

The computation of a,_offi is straight forward using available numerical software (Lin-

pack). For both one-sided, real and two-sided cases, we have to solve an optimization
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problem. However for all of these problems, the analytical gradient is available, so

accurate solution can be obtained. However, when several eigenvalues or singular

values coalesce (i.e., have multiplicity greater than one) the function is nonditferen-

tiable ("creases" produce direction-dependent derivatives), so that a more complex

algorithm of computing a descent direction is required. Before actually solving either

case, one can approximately prescale the system matrix M by substituting for M the

matrix DMD -1 where D minimizes the Frobenius norm of DMD -1 [Osborne].

The monotonic transformation of D --, D', with D = Ezp(D'), transforms the

problem into a weU behaved convex optimization [Saf 5]. The initial guess for D was

taken to be equal to the identity. This initial guess was used only for the first frequency

value in the given range. The solution obtained for a particular frequency point was

then used as an initial guess for the next value. Suppose that the largest eigenvalue

is simple, then a descent direction is calculated directly using the Davidon-Fletcher-

Powell technique. In the case that the largest eigenvalue has multiplicity greater than

1 and the function is not continuously differentiable, a generalized gradient is used

to determine a descent direction. Once this is done, the minimal point can be found

in the specified descent direction by using a well known "binary search" algorithm

of Bolzano. These steps are repeated until the global minimum is located (i.e. gra-

dient is zero). Convexity of ¢r_of(eV'Me -v') and _,,_o_(eV'Me -v' + (eV'Me-V') ")

ensures that this procedure is convergent to the global minimum.These steps can be
summarized as follows:

1. Initialize MI = M; D_ = 0; k = 1.

2. Scale Mh+l = eV'_Mke-D'_; set D'h+ 1 = 0

3. Find the search direction

- Davidon Fletcher PoweU (DFP) deflected gradient.

- DFP generalized gradient for multiplicity _> 2

4. Unidirectional search.

- Method of Bolzano (Fig. 5).

5. D_,+I _ D_,+I+ stepsize * search direction.

6. k = k + l; go to step 2.

Step 5. of the algorithm involves varying the diagonal scaling matrix D _ along a line

by adjusting the scalar parameter stepsize. The size of eD_'+1 could approach the

value of c¢. To prevent this, as the stepsize grows, Mk+l, is repeatedly updated to
DI s,_l

Mk+l_e _+lMe-Ut+ _ and stepsize and D_,+I are reset to zero. This is done as often

as needed to prevent numerical overflow when eDg+l is evaluated.
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Figure 5: Method of Bolzano.

3.1 Generalized Gradient.

This discussionis not at all self contained and only key results will be stated. An

excellent reference for this algorithm is [Polak]. In the case where the greatest eigen-

value/singular value has multiplicity greater than one, the function ceases to be dif-

ferentiable. In this case the gradient is not defined and more complicated "generalized

gradient" methods must be used to compute the descent direction. The generalized

gradient at a nondifferentiable point is defined as the nearest point to the origin

in the convex-hull of the set of directional derivatives at neighboring points; thus

the computation of the generalized gradient at any point is itself a convex nonlinear

programming problem. We employ an algorithm similar to that of [Doyle2, Polakl]

to compute the generalized gradients of t,,,,a=_-___D'_vI_,_-D'_) and A,_a=_(_z_D'_vjR,_-D'_ +

(eO'Me-D')*). Geometrically the algorithm is shown in figure 6 and summarized as
follows:

• Generalized Gradient is defined as:

V.,. _ N,(Co{V(z)J

where

II,II= z})

Co(.) - the convex hull of the set (.).

Nr(.) - the nearest point to the origin of the set (.).

{V(*)l Ilztl = 1)- the set of directional derivatives.

• Iterative algorithm for computing _,,,:

1. Initialize k = 1.

2. Guess z_ and set Vk = V(zk).
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Figure 6: Generalized gradient.

3. Find zh+t by minimizing (VZ V(zh+t)) subject to II=h+lll= 1.

4. Find Vk+l = Nr( Co(vh, V(zh+l)).

5. Increment k ¢-- k + 1, go to step 3.

3.2 Davidon-Fletcher-Powell Scaling.

The unmodified generMized gradient determines a steepest descent direction. The

steepest descent direction is simply minus the generalized gradient. Steepest descent

usuMly works quite well during early stages of the optimization process but if the

Hessian (second derivative) matrix has a large condition number, the method usually

behaves poorly, and smM1 zig-zagging steps, cMled "stitching", take place (see fig.

7). Stitching problems also occur when the multiplicity of _,,_a= or A=o= is 3 or

more. Therefore we use the Davidon-Fletcher-Powell (DFP) method to modify the

generalized gradient in order to handle this phenomenon. This technique uses the

previously calculated generalized gradient to estimate the Hessian and effectively

rescMe the function to make its Hessian better conditioned. This quadratic fit method

requires fewer gradient evMuations and tends to converge faster. It should Mso be

noted that the likelihood of stitching-induced premature termination of the algorithm

(as can occur in the unscaled steepest descent technique) can be greatly reduced with

the DFP scaling.

4

4.1

Lateral Directional Flight Control Example

Example 1
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Figure 8: Axis systems and sign convention
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Figure 9: Two-sided actuator uncertainty model.
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Figure I0: One-sided actuator uncertainty model.

Nonlinear elements of actuators can be treated as linear conic-sector elements with

structured uncertainty. This uncertainty can be modeled as one-sided or two-sided

uncertain gains within the actuator model. This can be shown through an example.

Consider a saturation curve below. If the input size is always less than C, then the

saturation element is equivalent to a gain element with a magnitude of one, however,

if u exceeds C, one may model the saturation element as a two-sided uncertain gain

in parallel with a nominal gain of one as shown in figure 9. A better approach is to

mode] the saturation element by a gain with a nominal value of one and a one-sided

negative uncertainty as shown in figure I0. Clearly, the one-sided model will produce

less conservative margins than the two-sided model.

A design example is presented below in which MSM algorithm is asked to check the

robustness of a typical lateral/directional flight control systems with respect to the

actuator uncertainty (e.g. position saturation) and the reduction in the effectiveness

of all control surfaces. The state-space matrices are given in figure 11. The controller

uses roll rate, P, yaw rate, R, and the lateral acceleration, N_, for feedback (see figure

12). By putting "extender wires" on the uncertainty blocks Ai and pulling them out

into a separate "block", one can check the system robustness.

The plot of __K,,,, K_K__ and try..= are in figure 13. Note that the _r,,,.., and K,,,_

which have the minimum values of .015 and .42 respectively are equal or less than

K,,, 1 for all frequency, and therefore shown to be more conservative than one-sided
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Figure 11: State-space matrices.

A
•J"l I I I _.

. . ..

: : : : : l : :

. . _ . ........................................ ....,...:..-
" : i !:" : ................................... ;-"'-'....

FL

IIIollstk Compensation. t

Rpedal

: . ." -..:...._...
: - : ..... "...:.-- ................

i ! ,

/ i . 'c'u"°' l

-'--"--I

i
I

lircrifl [

dlnlIIcs I

FL ...... " .................. .FII

,.°,.o,.,,0.t/.,,.,.,t
y-rll-Dg I

i II =
lI

Cempensetlon

_ NI

ll

rliIlllllllII

Figure 12: Lateral directional flight control with uncertainties at the controller output

and plant input.
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structured stability margin K,, 1. This results from the one-sided structured mul-

tiplicative uncertainty that is not accounted for in the computation (i.e. nonlinear

elements of actuators and gain reduction tolerance at the controller outputs). To

properly account for the sign of the uncertainty and its structural information, the

one-sided MSM was computed and it is shown to have a better robustness measure.

K,_, has the minimum value of 0.077, indicating that the system can simultaneously

tolerate at least a 67.7 percent reduction in the effectiveness of all control surfaces and

the actuator inputs up to at least three times the saturation value without instability.

4.2 Example 2

The MSM's minimal value .K,,=,,., also can be used to quantify a control systems

tolerance of simultaneous gain and phase variations at all the plant inputs and out-

puts. This is done so the system has good stability robustness with respect to the

uncertainties at the two actuator commands and the three sensor outputs (see figure

14). These uncertainties come from various sources. Model accuracy deteriorates at

higher frequencies due to unmodeled aeroservoelastic effect. Several potential error

sources exist within the assumed perfect sensors. Model reduction of the actuators

can also be considered as one of the effects at the plant inputs•

Shown in figure 15 is the Bode plot of the MSM vs. frequency. The minimal

value, denoted K,_,.._ = .4196, gives an indication of the minimal size of structured

perturbations required to destabilize the system or equivalently diagonal perturbation
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as large as 41.96 percent can be tolerated at any frequency; at higher frequencies,

perturbation magnitude as large as w/10 can be tolerated.

5 Conclusion

Computer algorithms for determining the multivariable stability margin "Am" have

been developed. The algorithms provide a reliable tool for evaluating the robust-

ness of control systems with significant gain and/or parameter uncertainties. The

computation for the one-sided and two-sided structured stability margin were done

using nondifferentiable optimization theory. Robustness analysis was performed on a

typical lateral directional flight control system problem with large uncertainty.
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