
1 90-23 004

Using Deflation in the Pole Assignment Problem

with Output Feedback

George Miminis

Department of Computer Science, Memorial University of Newfoundland

St. John's, Newfoundland, Canada A1C 5S7

Abstract

A direct algorithm is suggested for the computation of a linear output feedback for a multi

input, multi output system such that the resultant closed-loop matrix has eigenwlues that include

a specified set of eigenvalues. The Mgorithm uses deflation based on unitary similarity transfor-

mations. Thus we hope the algorithm is numerically stable, however, this has not been proven as

yet.

1 Introduction

Deflation is a technique that has been efficiently used in the solution of the standard eigenvalue

problem of a matrix A as well as other eigenvalue related problems. According to this technique once

an eigenpair ()_1,xl) of A is computed, we continue the process with a matrix that possesses only

the remaining eigenvalues of A, and possibly a zero eigenx_lue in the place of _1. In this way we are

left to solve a smaller problem. Deflation can be accomplished by a variety of algorithms. Some of

them are, Hoteling's deflation, Wielandt's deflation, deflation based on similarity transformations,

deflation by restriction, etc. An excellent review of the first three methods can be found in [7, pp.

584-600], whereas deflation by restriction can be found in [5, p. 84]. Lately, deflation has been

used in the solution of eigenassignment problems. For example, Wielandt's deflation is used in [6]

to solve the partial eigenvalue allocation problem with state feedback for continuous time systems.

In this paper we will be concerned with deflation based on unitary similarity transformations, and

how it can be used in the pole assignment problem with output feedback, or as it is often known,

the eigenvalue allocation problem with output feedback (MEVAO).

In section 2 we define the MEVAO. In section 3 we define transmission zeros and discuss how

they affect the MEVAO. In section 4 we give an algorithm for the solution of the MEVAO. Finally

in section 5 give some numerical examples to demonstrate the performance of our algorithm.

140

https://ntrs.nasa.gov/search.jsp?R=19900013688 2020-03-19T22:05:25+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1600(I [ al_

- - = / x 10 s
Z x 10 _ 210at

1 It)()() I,, _ 5 x I0 s
f \ soooI

X

/

.D 000o • \ v "_

_ r _;OO 0 I _XX X..__ ' " ' '. " "" " _ -- . ....

4000 \,' -- -o 3847 g

Otl T i T i t i T r Tt i rvlvl r I IJ11 fl_rrl
0 50 1O0 150 200 250 300

ILeralion

I i[4me I: Gmwrgence histories fnr padicular cases from Table 6

1;2000

10000

";,]".ooo
A3
_4

c__4
DI)

co

1000

E000

I\ z

= 1 × I0 5
- c_2o 3 _ 10 -5

t_v :: F, )¢ 10 s

X

\

::"-Z_- - _ - " " "...... O 3255 6

-- --'-L_"4 ..... o is649
_-_-o 1450 0

HIIIITHUITII_,TIIIIUHHIIHIM?TIIIIHTII_IIUITfI1TTIIIIIIIHTIHrlI1

0 10 20 30 40 50 00 70

(;lobal ILerat.ion

I igure 5: ('mwc_geuce hish)ries for particular cases from 1'able 7

7000

0500

6000
.O

5500

b_ 5000:

45oo

"_ 4000

._I a5oo

o 3000

2500

2000

/

I /

/
/

/

p/
/

f

/
¢

0.40 0.e0 0.50 1.o0 t 2o 14o 18o

Disturbance inLensity (x.)

I'i_,,.. 6: [)t>l.imal weight f,:)r varying exlernal dist,rbance intensity

\ ,r = ,%1 _vilh o _ = I x 10 -s and f12 = 50

Table lO:

F- ,_(xlO:_], --I , I  -r -rTrTI
129,000 90.000 90,000 90,000 90.000!Initial DV

Final DV

1 92.172

2 72.274

3 71,334

4 41.867

5 47.282

6 41.794

7 41.341

8 41.314

9 2.795

I0 9.518

II 9.511

12 2.795

55,944 41,010 44,107

55.967 52,340 40.128

62.487 41938 38.878

2_.830 21.475 24.192

33.755 24,3'27 19,986

33,553 26.973 23.608

2.365 5.462 17.750

20.562 1.604 17.277

20,742 23.982 1,761

2.424 24.159 12,659

24,020 1.570 14.006

23.903 5.612 1.667

aI(xlO-_)
_ I s I 9

60.000_60.000_0._

36.632

32.776

31.848

17.445

t8.412

20.363

8.363

1.317

10.880

17.091

20.089

1.458

6 10

Initial DV 90.000 60,000

FinM DV

1 28,739 34,922 25.632 30.032 23.272

2 39.315 26.729 32,700 23.857 28.426

3 128.871 26.916 24.976 24.192 2"2.333

4 17.154 16.238 1.1_880 14.139 13.401

5 17.249 17.279 15.037 15.367 13.472

6 19.143 16.109 16.386 14.174 14.662

7 4.076 15.734 3.447 14.073 3.130

8 1.143 15.739 0.996 13,904 0.850

9 16.803 1.039 14.683 0.896 13.294

10 16.869 3.867 14.621 3.215 13.149

11 1.2_1 3.627 1.013 3.291 0,849

12 3.803 1.0_8 3.38_ o8____3.06_____99

Optimal defign variables _r fl_ = 50 ,a_es flon_'[al)h. 9

- cr I initial dv's opt'--_;_al wright 3 .... it'--et"_fion_---!

1

2

3

4

5

6

7

8

9

12o.o _,;_- -_] --_ ..... _iT
i

90.0 2620.3 2434.5 4110" 400"

90.0 2161.2 [ 1975.4 4_)" 400"

90,0 1917,l i 1732.4 277 400"

90.0 1747.7 1544.5 _08 400"

90.0 1603A 1541.1 199 189

60.0 1880,4 1365.0 160 281

60.0 1383.7 1234.0 187 400"

60.0 1252.3 11569 400" _ 400"

10 i 60.0 1206.3 1112.2 311 [ 400"
• indicat_ no convergence in specil ed number f global iterations

Table 11: Optimal weight usi.g sequential appln,)xi,natio.s soh,tl,n)

algorithm with a physical slate space realization, for direct ontpnl [_.d

back with H = G T, plus node I displaren]ents and velocities

i _- trial dv's I /_a'--_

|(xlO-hI(aructural}l 60 I 60 I

120.0 3232.6

90.0 /2402"412213"0 II

I 3 I 90.0 l 1935.5 ' 1790.2 I

4 I 90.0 I 1671.5 I 1543.3 II

I 5 90.0 I 1492.9 I 1379.2 U
90.0 I 1364.6 , 1261.6 !

60.0 I 14.59.5 I 1166.3 it

[ 8 I 60.0 I 1184.0 I 1093.4 II

9 i 60.0 t u16.8,1186.1 ,t
I lO 1 60.0 I 1063.4 I 983.3 n

Table 12: Optimal weigh! usi,,g conlin,,alion gohfllo,, aigorith,,_ wilh

a physical state space rcalization, for (li_ecl output feedback with II =

(fl plus node 1 displacements and v,:h)(ilies

139 ORIOINAL PAGe' !$

OF POOR QUALITY



Lower case Greek letters represent scalars, upper case Roman represent matrices, while lower

case Roman represent column vectors and indices. Superscripts T, H indicate transpose and con-

jugate transpose respectively. The notation k = i(r)j means that k takes all the values starting

from i until j with step r. ei represents the ith column of the identity matrix I, and h(.) the set of

eigenvalues of a matrix, counting multiplicities. It(.), N(.) will represent the space spanned by the

columns of a matrix, and the null space of a matrix respectively, l_, C will represent the set of real

and complex numbers respectively.

2 The Problem

The MEVAO problem that we will attack in this paper may be defined as follows:

We are given a controllable and observable system

= Ax(t) + Bu(t) (1)

y(t) = C (t) (2)

where A E 1_n×n, B E /_,_×m, C E //pxn, rank (B)=m, rank(C)=p, x(t) E 1_n is the state

of the system at time t and u(t) the input at time t. We are also given a self conjugate set

of eigenvalues hi, i = l(1)r with r=min{n,m+p-1}, we need to compute K E /_,n×p such that

h(A - BKC) _D {hi [ i = l(1)r}. As a result, a linear output feedback u(t) = -gy(t) may be

computed that will make (1) become

&(t) = (A- BKC)x(t).

The resulting system will have desirable properties for the contror engineer.

3 Transmission Zeros

In the remaining of the paper unless otherwise stated, we will assume without loss of generality

that m _<p.

Transmission zeros (trzs) play an important role in the MEVAO, thus it is vital that they are

well understood. Our experience with the literature on trzs has been rather disappointing. In our

search for a definition we have found several; some of them even contracting one another. Thus we

141



decidedto resort to the physical motivation of trzs, and from that to derive a sensible definition.

Some observations that may give some physical motivation to the concept of a transmission zero

(of a controllable-observable system in our case) were found in [2], p.41. From this we concluded

that, physically, a transmission zero (trz) of a system is a specific frequency of the system for which

there exists a nonzero input that will yield a zero output. This basically is definition 1 below. In

the following we will present three definitions of trzs, and we will prove their equivalence. The

reason we present these three defintions is because the first is directly derived from the physical

motivation of trzs, the second is very useful in matrix computations, and the third is frequently

encountered in the literature.

Definition 1: A number ( E C is a trz of (1),(2) if and only if there exists nonzero input u that

can yield a zero output y -- G(()u -- 0, where

G(s) = C(sI- A)-IB ,with s 6 C

is the transfer function of (1),(2). 0

The number of trzs of (1),(2) can be at most n- max{re, p} (see for example [2], p.65). The set of

all trzs of (1),(2) will be denoted by Ztr. Often it is helpful to use the following definition of a trz.

Definition 2: ( • C is a trz of (1),(2) if and only if

3u ¢ O : =0 with
C 0 u

x = ((I- A)-IBu •

[2

Frequently we encounter in the literature

Definition 3: Let L-I(()G(()R-I(() =

the following definition of trzs.

°.

¢m-110

0

be the Smith-McMillan (S-M) form of a((), where L((), R(() are polynomial matrices and we have

assumed that G(s) has normal rank m. Then ( is a trz of (1) if and only if there exists i = 1,..-, m

such that El(() = 0. []

In the S-M form of G(() the following properties hold

142



Because of the above properties we see that there cannot be trz _ that will also be a root of cm(_).

Since, if it were then _m(_) = 0 and _ would have been cancelled in Em(_) I cm(_). Hence _ would

not he a trz, which is a contradiction. The roots of ¢i(_), i = l(1)m are the poles of (1),(2),

counting multiplicities. In our attempt to prove the equivalence of the above definitions we will

be using the expression G(_)u with _ E Ztr. One then may wonder about the existance of G(_)u

when _ is also a pole of (1),(2). The following lemma will help us clarify this point.

Lemma 1: Let _ E C be a trz as well as a pole of (1),(2), then there exists u _ 0 such that

lim G(s)u exists.
s--*_

Proof: Let ¢"be a pole as well as a trz of (1), then from the S-M form of G(_) we have that

q(i,j) with i<j : _bi(_)=_j(()=O.

Let us now for illustration assume p = m = 3 and _31(¢) = _2(_) = 0.

(0, rt, 0) _ 0 we have the following from the S-M form of G(s).

Then by taking fiT =

._< _l(s) 0

lim L-l(s)G(s)R-l(s)fi = lim

lim _ 0
___.<,1,3(_)

(° /= 0

Olim
s_( w3 (sj

which is defined since _3(() ¢ O. Since L(s), R(s) are nonsingular (they have determinants inde-

pendent of s, see for example [7], p.21), lim L-l(s), lira R-l(s) are defined.
s--.( s--,<

Hence if we take u = limR-1(s)fi then limG(s)u is defined for every ¢ E Zt, that is also a pole of
s---.C s-..,<

(1),(2). []

143



In the following when we write G(¢)u with _ E Ztr also being a pole of (1), we will mean

lira G(s)u. Similarly when we write x = (¢I - A)-I Bu we will mean x = lsLn_ (sI - A)-1Bu, when
I"_C

E Ztr is Mso a pole of (1),(2).

Theorem 1: Definitions 1,2 and 3 are equivalent.

Proof: To prove that definition 1 is equivalent to definition 2 we proceed as follows:

_'E Zt_ {3 #0 :

¢=:> {3u#O : Cx=O with x=(_I-A)-'Bu}

e=* 3 u # 0 : =0 with x = ((_I- A)-lBu
C" 0 u

To prove the equivalence of definitions 1 and 3 we proceed as follows:

(3)

Since L(s), R(s) are nonsingular for Vs E C, M(() must not have full column rank in (2). Hence

(3) ¢==v {3i E {1,2,.-.,m} : ¢i(¢) = 0}

!"1

In the last theorem we silently assumed that the normal rank q of G(s) is m, or equivalently

the normal rank n + q of P(8) = is n + m. However, theorem 1 holds even for
C 0

the degenerate case where q < rain{re, p} (= m according to our assumption). To show this we

proceed as follows:

144



First we prove Zt_ = C using definition 1. Since q < m the following is true

{re e c 3u ¢ 0 : G(¢)u = 0} d¢_ Z,, = C. (4)

To prove the equivalence of definitions 1 and 2 we see

( ,}Zt_=C (¢_ ¥_EC 3u#O : =0 with z=((I-A)-IBu
C 0 u

To prove the equivalence of definitions 1 and 3 we see

Ztr = C (_ V_ C C 3u # O : L(_) i=1 R(_)u = O

0

{VffEC 3iE{1,...,m} : 'i(_)=O}.

ttence another definition of trzs that is often found in literature, and according to which ( E Zt_

if and only if G(_') and P(_) go below their normal rank, does not agree in the degenerate case

with definitions 1, 2 and 3. This is so because not V( E t2 will make G(() and P((_) go below their

normal rank, hence Ztz _t 12 , according to this definition. In what follows we will assume that

trzs are defined by definitions 1, 2 or 3.

Definition 4:

G(_) -- 0, or equivalently el(_) -- 0 (in the S - M form of G(()), or equivalently

Vu_O, =0 , with x=((I-A)-1Bu .
C 0 u

A number (_ E C is a strong transmission zero (strz) of (1),(2) if and only if

r-1

Theorem 2: ( E C cannot be assigned by output feedback if and only if ( is a strong transmission

zero.

Proof: Let G((_) ¢ 0, then if _"E _(A) we take K = 0 and _ is placed. If ¢" _ )_(A) then there

exists u # 0 such that

y =v(¢)u # 0
x = ((I-A)-IBu }

=_
y=Cz#O

145



u TIf we take K = -_ then we see that
y-y

[_I-(A- BKC)]x = (_I- A)x + BKCx

B uyT
Bu- _T-_ y =0

Thus the eigenpair (_, x) has been placed, which proves the necessity of the propositionn given by

the theorem. To prove its sufficiency assume G(¢') = 0, but nevertheless _ has been placed. Then

there exists x _t 0 such that for some K

(A-(I)x-BKCx=O _ x-(A-(I)-IBKCx=O

=> Cx- C(A- (I)-IBKCx = 0

:::v Cx + G(_)KCx = 0

Cx=O .

Hence from (A - _I)x - BKCx = 0 _ (A - _I)x = 0 =_ _ E A(A). This is a contradiction, since

if ( E A(A) the G(() is not defined, however it is assumed that G(() = 0. []

4 The Algorithm

We give an algorithm based on deflation by unitary similarity transformations.

Step 1: Compute a feasible eigenvector xl of A1 - B1K1C1 - A - BKC corresponding to, say

A1 with I1xl 112- 1. We will show in the sequel how we may compute such an xl.

Step 2: Allocate the eigenpair (Al,Xl) to A1 - B1K1C1 as follows: Let V1 be a unitary transfor-

mationsuchthatV_ClXl=_flelandBl (Uo, U1)( Ri )
= a QR decomposition of B1, then

0

(A1 --BIKICI)Xl = AlXl +==> A,x, - BI(K, VI)(vHcIxl) = Alx,

¢==V Blkl_,el ---- (A1 - AII)Xl , with [(1 -- K1V1

Blkl$l = (A1 - AII)Xl , with kl = klel

¢=_ kiwi1 =
0 U_(A, A,I)xl

(5)

146



From (5) we see that if xl was computed in step 1 so that xl E N[UT(A1 -)hi)I, and kx is computed

by solving

Rlkl = _llUoH(A1 -- AII)Xl (6)

then (5) is satisfied and the eigenpair (/_1, Xl) is allocated. An eigenvector xl that satisfies

Xl E N[UT(AI - )_1I)] will be called feasible.

Step 3: Compute unitary Q1 = (x1,(_1). Hence from Qlei = xl _ QHxI = el we see that Q1 can

be a Householder transformation or a sequence of rotations.

Step 4: Perform the unitary similarity transformation

QH(A1-B1KIC1)Q1 = ( xH )[A1-BI[(I(VHC1)](xl'(_I)_H

= (xH)[(AlXl-BIkl_I),(AI(_I-BI[fl(VHC1)Q1)]Q,H (7)

From step 3, kl has been computed so that Alxl - Bikini1 = Alzl. If we now set/(1 = (kl,K2)

and

v1H c I O1

(7)

cH ) thenC2

, A O,- B,( ,cg + K C )I

= (')_11 xH[A'O''-BI(k'cH+K2C2)] )Q, H1AIQ,1 Q,H1BlklC_ll -OH1BIK2C2

)A2 - B2K2C2

where A2 = OnAxO1 -OnBlk, C{11 , B2 = QHB2 .

Step 5: Continue the allocations with As - B2K2C_. []

There are two points that need to be clarified for the allocation of A1 in the above algorithm. One

is, how to identify whether ,_1 is a strz or not, and the other is the computation of zl.

147



Lemma 2: If {X1 is a strz of (1) } =:, 61 = 0.

Proof." Let )_1 be a strz of (1) then

[ (A1_ 1, }Vul _ O 3zl : = 0 =_ Clzl = O _ if1 =0.
C1 0 ul

We may note however that the above lemma on its own is not adequate to identify strz. In the

sequel we will compute our feasible eigenvector xl in such a way that if/fl = 0 then A1 will be a

strz. As we will show, computing xl in this way will also improve the numerical stability of our

algorithm. To accomplish the above we proceed as follows:

We know that

Thus if we compute xl so that

when

Xl E N[UH(A1 - A,l)]- N(CI)

N[uIH(A, - AII)]- N(C1) _ {}

then we may safelyconclude that61 = 0 :v {At isa strz}. Ifthe dimension of

N[uH( A, - A,I)]-N(C,)

is greater than one, we have some freedom in choosing our x 1. To see how we may exploit this

freedom, we observe from (6) that if I 61 { is unreasonably small then we may unnecessarily lose

accuracy when we solve (6). To avoid this, let

cT=(H°'H')( Z')0

be a QR decomposition of C T, then R(Ho) = R(C T) and R.(H1) = N(C1). Assuming now

[[ zl [[2= 1 we get

16, I=11c,_, 112=11zT1HToXl I1_<11z, 11211HoT_, 112.

But IIHorx, 11_= am,,x(HTox,) = cosO, amax(')is the maximum singular value of a matrix, and

0 is the smallest angle between R(C T) and R(xl) (see[l]). Hence from

148



I 11z 115co e

in order to make [ Sx I as large as possible we need to make O as small as possible. Thus we will

choose xl E N[UH(AI - )qI)] that forms an angle O with R(H0) as close to zero as possible. The

following theorem taken from [1,p.582] and modified to meet our requirements, will give us a way

to compute 0 as it was required above.

Theorem 3: Let H0 and WI form unitary bases of two subspaces. Let also

Ho"W,= Yr X"

be the singularvalue decompositionof I[oHWI,then the smallestangle between R(H0 and R(WI)

takesplacebetween vectorsHoYel and WIXel .

Proof: See [I]

Theorem 3 suggeststhe followingalgorithmforthe computation of Zl:

C°mputetheQRdec°mp°siti°n°fCT'Bl'and[UIH(A1-All)]H = (W°'W1)(T I0

Compute the singular value decomposition of VoHW1 = YEX g.

Take Zl = WIXel.

Finally to eliminate any doubt that _1 = 0 when A1 is a strz we prove the following lemma.

Lemma 3: N[UH(A, - AII)] C_N(C,) ¢=_ {A1 is a strz of (1),(2)}

Proof: First we prove

N[U1H(A1 - All)] = {(AII- A1)-IBlUl l ul e 1_'*} .

To do so, we see that, given Ul _ 0 and computing xl to satisfy

(8)

Thus

(A1 - All)z1 = -BlUl ¢=:0. _ -- I/1

o
x, e N[UH(A,- )qI)].

{V_I E __m, (/_11 -- A,)-'B,u, e N[UH(A, - ._11)]}

149



{(A,I- A,)-'B,u, [u, E/_m} C N[U_(A,- A,I)] .

Let xl : U_(A1 - AlI)xl = 0, then, since we can always compute

UE-I_ m : RlUl = UoH(A1-)tll)Xl ,

from which we get

ul =_ xl =(AII- AI)-IBlul ,

(9)

N[uH(A1 - AII)] C {(A,I- A,)-'B, ul l ul • Ilm} .

From (9), (10) we may derive (8).

Suppose now that

(10)

a  trz of (1), (2)} {Vul • It 'n CI(All- A1)-IBlUl = 0}

¢=_ C1N[UH(A, - A,I)] = 0

N[uH(A, - A,I)] C N(C,).

F1

The algorithm that has been described so far in this section, can be used to allocate only one

eigenvalue. We will show however that we may use it to allocate min(n,m+p- 1} eigenvalues. To

do so we need to observe that only the first column of the current Ki is needed for the allocation

of one eigenvalue. We also need to consider the fact that A(Ai - BiKiCi) = A(A T - CTKTBT) •

Given these two points then we may use the following algorithm, which for illustration we describe

form=2andp=3, thus

KI= ( x xx/x x x

We allocate eigenvalues until the number of rows of the current Ki become greater than the number

of columns. In our example this happens after the allocation of two eigenv'aulues, hence

150



At this point we continue working with the transposed system AT - f, TI,'TI_T"-'3-3 _3 • Since K T has

two columns we are able to allocate two more eigenvalues instead of just one that we would have

allocated if we had continued with/(3. In the general case we keep transposing until we run out

of eigenvalues or columns. Thus the total number of eigenvalues that we manage to allocate using

this algorithm is

re+p-l=4 .

Note that by following this algorithm we also satisfy the condition m _< p at the beginning of each

allocation. This condition has been assumed throughout this paper. Note that m, p are associated

with the columns of the matrix on the left of Ki or K T and the rows of the matrix on the right of

Ki or K T respectively, rather than with Bi and Ci.

5 Numerical Examples

In this section we give two numerical examples to demonstrate the performance of our algorithm.

The computation was performed on double precision (56-bit mantissa) using PC-MATLAB on a

Toshiba T5100 which uses an 80387 coprocessor equipped with the IEEE floating point standard

of arithmetic. In the computation below we show, up to 12 decimal digits of accuracy.

Example 1:

A

0.581314086914

0.166717529296

0.353500366210

0.836242675781

0.244094848632

0.504058837890

0.157394409179

0.441650390625

0.200820922851

0.936126708984

0.559921264648

0.665222167968

0.373367309570

0.072296142578

0.607955932617

0.741333007812

0.933609008789

0.771942138671

0.598373413085

0.154357910156

0.303421020507

0.144439697265

0.078048706054

0.638671875000

0.154678344726

B T =

0.549163818359

0.942672729492

0.613098144531

0.843856811523

0.008666992187

0.065872192382

0.178649902343

0.239028930664

0.300445556640

0.409255981445

0.142791748046

0.576828002929
0.595489501953 )
0.671371459960

0.726318359375

151



0.561660766601

C = 0.427825927734

0.455917358398

The eigenv_ues to be allocated are

0.332702636718

0.648269653320

0.134307861328

0.355514526367

0.666625976562

0.497573852539

0.279266357421

0.572494506835

0.212463378906
0.531448364257 1

0.972076416015

0.653732299804

{0.704589843750, 0.421768188476, 0.572113037109, 0.396102905273, 0.127380371093}.

The K computed by our algorithm was found to be

g

--9.415631257941

--36.155174309311

33.590525809043

-1.520241736469

-4.515055559417

4.071903303950
11.520696978251 1

41.184483490595

--36.923138190434

The eigenvalues of A - BKC were computed and they were A(A - BKC) = {0.704589843749,

0.421768188479, 0.572113037109, 0.396102905270, 0.127380371093}.

Example 2: In the above example we had n = re+p- 1, thus all n eigenvalues were allocated.

However, if m + p - 1 < n then n - (ra + p - 1) eigenvalues of A - BKC will take values that our

algorithm has absolutely no control over. The following example demonstrates this point.

A _.

I 0.356336616284

-0.210549376245

-0.355939324751

-0.356626507847

2.165165719183

-0.506195941988
--1.198870998736 1

-0.882324378697

0.721098719251

B

I 1.606955436561

0.062823512419

-1.611627967397
-0.407338058168 1

-0.595038063525

0.616657720777

C= (-1.182820557312 0.343687857622 -0.357421120340)

The eigenvalues to be allocated are {-0.406648486670, -0.366406484747, 0.853280016421}.

152



The K computed by our algorithm was found to be

-6.466096811958

The eigenvalues of A - BKC were computed and they were A(A - BKC) = {-0.406648486670,

-0.366406484747, 1.707616832510}.

Our algorithm allocates one eigevalue at a time, thus complex eigenvalues need complex arith-

metic. As a result, K may be complex. Investigation is under way to derive an algorithm that

will allocate two eigenvalues at a time in a double step. In this way we will allocate a complex

conjugate pair of eigenvalues in one double step using only real arithmetic. Hence K will be real.

6 Conclusion

We presented an algorithm for the pole assignment problem for multi-input, multi-output systems

using output feedback. The algorithm uses deflation based on unitary similarity transformations

and it allocates rain{n, m T p- 1} eigenvalues. The same kind of deflation has been used in [3] to

solve the corresponding pole assignment problem using state feedback. Since the algorithm in [3]

has been proven to be numerically stable we hope the algorithm in this paper has the same property

too. However, this needs to be proven by doing a rounding error analysis of the algorithm, and we

plan to do this in the near future.

References

[1]

[2]

[3]

Bjorck, A. & Golub, G.H., "Numerical Methods for Computing Angles Between Linear Sub-

spaces", Mathematics of Computation, v.27, No.123, pp. 579-594, 1973.

Macfarlane, A.G.J. & Karcanias, N., "Poles and Zeros of Linear Multivariable Systems: A

Survey of the Algebraic, Geometric and Complex-Variable Theory", Int. J. Control, v.24,

No.l, pp. 33-74, 1976.

Miminis, G.S. & Paige, C.C., "A Direct Algorithm for Pole Assignment of Time Invariant

multi-input Linear Systems using State Feedback", Automatica, v.24, No.3, pp. 343-356, 1988.

153



[4] Miminis, G.S., "The use of Deflation in Eigenassignment Problems", To appear in the Pro-

ceedings of the MTNS89 conference, Amsterdam, June 1989.

[5] Parlett, B., "The Symmetric Eigenvalue Problem", Prentice-Hall, 1980.

[6] Saad, Y., "Projection and Deflation Methods for Partial Pole Assignment in Liner State Feed-

back", IEEE Trans. Autom. Control, v.33, No.3, pp. 290-297, 1988.

[7] Wilkinson, J., "The Algebraic Eigenvalue Problem", Oxford, 1965.

154


