Using Deflation in the Pole Assignment Problem with Output Feedback

George Miminis
Department of Computer Science, Memorial University of Newfoundland
St. John's, Newfoundland, Canada A1C 5S7

Abstract

A direct algorithm is suggested for the computation of a linear output feedback for a multi input, multi output system such that the resultant closed-loop matrix has eigenvalues that include a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transformations. Thus we hope the algorithm is numerically stable, however, this has not been proven as yet.

1 Introduction

Deflation is a technique that has been efficiently used in the solution of the standard eigenvalue problem of a matrix A as well as other eigenvalue related problems. According to this technique once an eigenpair (λ_{1}, x_{1}) of A is computed, we continue the process with a matrix that possesses only the remaining eigenvalues of A, and possibly a zero eigenvalue in the place of λ_{1}. In this way we are left to solve a smaller problem. Deflation can be accomplished by a variety of algorithms. Some of them are, Hoteling's deflation, Wielandt's deflation, deffation based on similarity transformations, deflation by restriction, etc. An excellent review of the first three methods can be found in [7, pp. 584-600], whereas deflation by restriction can be found in [5, p. 84]. Lately, deflation has been used in the solution of eigenassignment problems. For example, Wielandt's deflation is used in [6] to solve the partial eigenvalue allocation problem with state feedback for continuous time systems. In this paper we will be concerned with deflation based on unitary similarity transformations, and how it can be used in the pole assignment problem with output feedback, or as it is often known, the eigenvalue allocation problem with output feedback (MEVAO).

In section 2 we define the MEVAO. In section 3 we define transmission zeros and discuss how they affect the MEVAO. In section 4 we give an algorithm for the solution of the MEVAO. Finally in section 5 give some numerical examples to demonstrate the performance of our algorithm.

	$a^{2}\left(\times 10^{-5}\right)$				
	1	2	3	4	5
Initial DV	120.000	90.000	90.000	90.000	90.000
Final DV					
1	92.172	55.944	41.010	44.107	36.632
2	72.274	55.967	52.340	40.128	32.776
3	71.334	62.487	41.978	38.878	31.848
4	41.867	27.830	24.475	24.192	17.445
5	47.282	33.755	24.327	19.986	18.412
6	41.794	33.553	26.973	23.608	20.363
7	41.341	2.365	5.462	17.750	8.363
8	41.314	20.562	1.604	17.277	1.317
9	2.795	20.742	23.982	1.761	10.880
10	9.518	2.424	24.159	12.659	17.091
11	9.541	24.020	1.570	14.006	20.089
12	2.795	23.903	5.612	1.667	1.458
$\alpha^{2}\left(\times 10^{-5}\right)$					
	6	7	8	9	10
Initial DV	90.000	60.000	60.000	60.000	60.000
Final DV					
1	28.739	34.922	25.632	30.032	23.272
2	39.315	26.729	32.700	23.857	28.426
3	28.871	26.916	24.976	24.192	22.333
4	17.154	16.2:38	14.880	14.139	13.401
5	17.249	17.279	15.037	15.367	13.472
6	19.143	16.109	16.386	14.174	14.662
7	4.076	15.734	3.447	14.073	3.130
8	1.143	15.739	0.996	13.904	0.850
9	16.803	1.039	14.68.	0.896	13.294
10	16.869	3.667	14.621	3.215	13.149
11	1.20)	3.627	1.013	3.291	0.849
12	3.803	1.038	3.387	0.899	3.069

Table 10: Optimal design variahles for $\beta^{2}=50$ ases from Table 9

$\begin{gathered} \alpha^{2} \\ \left(\times 10^{-5}\right) \\ \hline \end{gathered}$	initial dv's (structural)	optinal weight		iterations	
		$\beta^{2}=50$	$\beta^{2}=60$	$\beta^{2}=50$	$B^{2}=60$
1	120.0	3889,6	36.30 .7	221	247
2	90.0	2620.3	2434.5	400°	400*
3	90.0	2161.2	1975.4	400*	400*
4	90.0	1917.1	1732.4	277	400^{*}
5	90.0	1747.7	1544.5	208	400^{*}
6	90.0	1603.4	1541.1	199	189
7	60.0	1680.4	1365.0	160	281
8	60.0	1383.7	1234.0	187	400°
9	60.0	1252.3	1156.9	400°	400°
10	60.0	1206.3	1112.2	311	400*

Table 11: Optimal weight using seyuential appuroximations solution algorithm witle a physical state-space realization, for direct onfut ferdback with $I I=G^{T}$, plus node 1 displacments and velocities
ligne f: Oplimal weight for varying external disturbance intensity
$\Lambda_{\mid r}=r_{u t} \prime$ with $\alpha^{2}=1 \times 10^{-5}$ and $\beta^{2}=50$

$\begin{gathered} \alpha^{2} \\ \left(\times 10^{-5}\right) \end{gathered}$	initial dv's (structural)	β^{2}	
		50	60
1	120.0	3516.5	3232.6
2	90.0	2402.4	2213.0
3	90.0	1935.5	1790.2
4	90.0	1671.5	154.3 .3
5	90.0	1492.9	1379.2
6	90.0	1364.6	1261.6
7	60.0	14.59 .5	1166.3
8	60.0	1184.0	1093.4
9	60.0	1116.8	1186.1
10	60.0	1063.4	983.3

Table 12: Oplimal wright using contintation solntion aigorithn wilh a physical state-space tealization, for direct output fertback with $/ I=$ (i^{\prime} plus node 1 displacements and velorities

Lower case Greek letters represent scalars, upper case Roman represent matrices, while lower case Roman represent column vectors and indices. Superscripts T, H indicate transpose and conjugate transpose respectively. The notation $k=i(r) j$ means that k takes all the values starting from i until j with step r . e_{i} represents the ith column of the identity matrix I , and $\lambda(\cdot)$ the set of eigenvalues of a matrix, counting multiplicities. $\mathbf{R}(\cdot), \mathbf{N}(\cdot)$ will represent the space spanned by the columns of a matrix, and the null space of a matrix respectively. $\boldsymbol{R}, \mathbf{C}$ will represent the set of real and complex numbers respectively.

2 The Problem

The MEVAO problem that we will attack in this paper may be defined as follows:
We are given a controllable and observable system

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \tag{1}\\
& y(t)=C x(t) \tag{2}
\end{align*}
$$

where $A \in \boldsymbol{R}^{n \times n}, B \in \boldsymbol{R}^{n \times m}, C \in \boldsymbol{R}^{p \times n}, \operatorname{rank}(\mathrm{~B})=\mathrm{m}, \operatorname{rank}(\mathrm{C})=\mathrm{p}, x(t) \in \boldsymbol{R}^{n}$ is the state of the system at time t and $u(t)$ the input at time t. We are also given a self conjugate set of eigenvalues $\lambda_{i}, i=1(1) r$ with $\mathrm{r}=\min \{\mathrm{n}, \mathrm{m}+\mathrm{p}-1\}$, we need to compute $K \in \boldsymbol{R}^{m \times p}$ such that $\lambda(A-B K C) \supseteq\left\{\lambda_{i} \mid i=1(1) r\right\}$. As a result, a linear output feedback $u(t)=-K y(t)$ may be computed that will make (1) become

$$
\dot{x}(t)=(A-B K C) x(t) .
$$

The resulting system will have desirable properties for the contror engineer.

3 Transmission Zeros

In the remaining of the paper unless otherwise stated, we will assume without loss of generality that $m \leq p$.

Transmission zeros (trzs) play an important role in the MEVAO, thus it is vital that they are well understood. Our experience with the literature on $\operatorname{tr} z s$ has been rather disappointing. In our search for a definition we have found several; some of them even contracting one another. Thus we
decided to resort to the physical motivation of trzs, and from that to derive a sensible definition. Some observations that may give some physical motivation to the concept of a transmission zero (of a controllable-observable system in our case) were found in [2], p.41. From this we concluded that, physically, a transmission zero (trz) of a system is a specific frequency of the system for which there exists a nonzero input that will yield a zero output. This basically is definition 1 below. In the following we will present three definitions of trzs, and we will prove their equivalence. The reason we present these three defintions is because the first is directly derived from the physical motivation of $t r z s$, the second is very useful in matrix computations, and the third is frequently encountered in the literature.
Definition 1: A number $\zeta \in \mathrm{C}$ is a $\operatorname{tr} z$ of (1),(2) if and only if there exists nonzero input u that can yield a zero output $y=G(\zeta) u=0$, where

$$
G(s)=C(s I-A)^{-1} B, \text { with } \quad s \in \mathbf{C}
$$

is the transfer function of (1),(2).
The number of $t r z s$ of (1),(2) can be at most $n-\max \{m, p\}$ (see for example [2], p.65). The set of all trzs of (1),(2) will be denoted by $Z_{t r}$. Often it is helpful to use the following definition of a trz. Definition 2: $\zeta \in \mathbf{C}$ is a $\operatorname{tr} z$ of (1),(2) if and only if

$$
\exists u \neq 0:\left(\begin{array}{cc}
A-\zeta I & B \\
C & 0
\end{array}\right)\binom{x}{u}=0 \quad \text { with } \quad x=(\zeta I-A)^{-1} B u
$$

Frequently we encounter in the literature the following definition of trzs.
Definition 3: Let $L^{-1}(\zeta) G(\zeta) R^{-1}(\zeta)=\left(\begin{array}{cccc}\frac{c_{1}(\zeta)}{\psi_{1}(\zeta)} & & & \\ & \ddots & & \\ & & \frac{\epsilon_{m-1}(\zeta)}{\psi_{m-1}(\zeta)} & \\ & & & \frac{\epsilon_{m}(\zeta)}{\psi_{m}(\zeta)}\end{array}\right)$
be the Smith-McMillan (S-M) form of $G(\zeta)$, where $L(\zeta), R(\zeta)$ are polynomial matrices and we have assumed that $\mathrm{G}(\mathrm{s})$ has normal rank m. Then ζ is a $\operatorname{tr} z$ of (1) if and only if there exists $i=1, \cdots, m$ such that $\epsilon_{1}(\zeta)=0$.
In the S-M form of $G(\zeta)$ the following properties hold

$$
\epsilon_{1}(\zeta)\left|\epsilon_{2}(\zeta)\right| \cdots \mid \epsilon_{m}(\zeta) \quad \text { and } \quad \psi_{m}(\zeta)\left|\psi_{m-1}(\zeta)\right| \cdots \mid \psi_{1}(\zeta)
$$

Because of the above properties we see that there cannot be $\operatorname{trz} \zeta$ that will also be a root of $\psi_{m}(\zeta)$. Since, if it were then $\epsilon_{m}(\zeta)=0$ and ζ would have been cancelled in $\epsilon_{m}(\zeta) \mid \psi_{m}(\zeta)$. Hence ζ would not be a $\operatorname{tr} z$, which is a contradiction. The roots of $\psi_{i}(\zeta), i=1(1) m$ are the poles of (1),(2), counting multiplicities. In our attempt to prove the equivalence of the above definitions we will be using the expression $G(\zeta) u$ with $\zeta \in Z_{t r}$. One then may wonder about the existance of $G(\zeta) u$ when ζ is also a pole of (1),(2). The following lemma will help us clarify this point.
Lemma 1: Let $\zeta \in \mathbf{C}$ be a $\operatorname{tr} z$ as well as a pole of (1),(2), then there exists $u \neq 0$ such that $\lim _{s \rightarrow \zeta} G(s) u$ exists.
Proof: Let ζ be a pole as well as a $\operatorname{tr} z$ of (1), then from the S-M form of $G(\zeta)$ we have that

$$
\exists(i, j) \text { with } i<j: \psi_{i}(\zeta)=\epsilon_{j}(\zeta)=0
$$

Let us now for illustration assume $p=m=3$ and $\psi_{1}(\zeta)=\epsilon_{2}(\zeta)=0$. Then by taking $\tilde{u}^{T}=$ $(0, \eta, \theta) \neq 0$ we have the following from the S-M form of $G(s)$.

$$
\begin{aligned}
\lim _{s \rightarrow \zeta} L^{-1}(s) G(s) R^{-1}(s) \tilde{u} & =\left(\begin{array}{lll}
\lim _{s \rightarrow \zeta} \frac{\epsilon_{1}(s)}{\psi_{1}(s)} & & \\
& \lim _{s \rightarrow \zeta} \frac{\epsilon_{2}(s)}{\psi_{2}(s)} & \\
& & \lim _{s \rightarrow \zeta} \frac{\epsilon_{3}(s)}{\psi_{3}(s)}
\end{array}\right)\left(\begin{array}{l}
0 \\
\eta \\
\theta
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
\theta \lim _{s \rightarrow \zeta} \frac{\epsilon_{3}(s)}{\psi_{3}(s)}
\end{array}\right)
\end{aligned}
$$

which is defined since $\psi_{3}(\zeta) \neq 0$. Since $L(s), R(s)$ are nonsingular (they have determinants independent of s, see for example [7], p.21), $\lim _{s \rightarrow \zeta} L^{-1}(s), \lim _{s \rightarrow \zeta} R^{-1}(s)$ are defined.
Hence if we take $u=\lim _{s \rightarrow \zeta} R^{-1}(s) \tilde{u}$ then $\lim _{\mathrm{s} \rightarrow \zeta} G(s) u$ is defined for every $\zeta \in Z_{t r}$ that is also a pole of (1),(2).

In the following when we write $G(\zeta) u$ with $\zeta \in Z_{\text {tr }}$ also being a pole of (1), we will mean $\lim _{s \rightarrow \zeta} G(s) u$. Similarly when we write $x=(\zeta I-A)^{-1} B u$ we will mean $x=\lim _{s \rightarrow \zeta}(s I-A)^{-1} B u$, when $\zeta \in Z_{t r}$ is also a pole of (1),(2).

Theorem 1: Definitions 1,2 and 3 are equivalent.
Proof: To prove that definition 1 is equivalent to definition 2 we proceed as follows:

$$
\begin{aligned}
\zeta \in Z_{t r} & \stackrel{\text { def }_{1}}{\Longleftrightarrow}\left\{\exists u \neq 0: C(\zeta I-A)^{-1} B u=0\right\} \\
& \Longleftrightarrow\left\{\exists u \neq 0: C x=0 \quad \text { with } x=(\zeta I-A)^{-1} B u\right\} \\
& \Longleftrightarrow\left\{\exists u \neq 0:\left(\begin{array}{cc}
A-\zeta I & B \\
C & 0
\end{array}\right)\binom{x}{u}=0 \begin{array}{lll}
=0 & \text { with } & x=(\zeta I-A)^{-1} B u
\end{array}\right.
\end{aligned}
$$

$$
\stackrel{\text { def }_{3}}{\Longleftrightarrow} \zeta \in Z_{t r} .
$$

To prove the equivalence of definitions 1 and 3 we proceed as follows:

$$
\begin{align*}
\zeta \in Z_{t r} & \stackrel{\text { def }_{1}}{\Longleftrightarrow}\{\exists u \neq 0: G(\zeta) u=0\} \\
& \Longleftrightarrow\{\exists u \neq 0: L(\zeta) \underbrace{\binom{\operatorname{diag}_{i=1(1) m} \frac{c_{i}(\zeta)}{\psi_{i}(\zeta)}}{0}}_{M(\zeta)} R(\zeta) u=0\} \tag{3}
\end{align*}
$$

Since $L(s), R(s)$ are nonsingular for $\forall s \in \mathbf{C}, M(\zeta)$ must not have full column rank in (2). Hence

$$
\text { (3) } \begin{aligned}
& \Longleftrightarrow\left\{\exists i \in\{1,2, \cdots, m\}: \epsilon_{i}(\zeta)=0\right\} \\
& \Longleftrightarrow \operatorname{def}_{3} \\
\Longleftrightarrow & \in Z_{t r} .
\end{aligned}
$$

In the last theorem we silently assumed that the normal rank q of $G(s)$ is m, or equivalently the normal rank $n+q$ of $P(s)=\left(\begin{array}{cc}A-s I & B \\ C & 0\end{array}\right)$ is $n+m$. However, theorem 1 holds even for the degenerate case where $q<\min \{m, p\}$ ($=m$ according to our assumption). To show this we proceed as follows:

First we prove $Z_{t r}=\mathrm{C}$ using definition 1. Since $q<m$ the following is true

$$
\begin{equation*}
\{\forall \zeta \in \mathbf{C} \quad \exists u \neq 0 \quad: \quad G(\zeta) u=0\} \stackrel{\text { def }_{3}}{\Longleftrightarrow} Z_{t r}=\mathbf{C} . \tag{4}
\end{equation*}
$$

To prove the equivalence of definitions 1 and 2 we see

$$
\left.Z_{t r}=\mathbf{C} \stackrel{(4)}{\Longleftrightarrow}\left\{\forall \zeta \in \mathbf{C} \quad \exists u \neq 0 \quad:\left(\begin{array}{cc}
A-\zeta I & B \\
C & 0
\end{array}\right)\binom{x}{u}=0 \quad \text { with } \quad x=(\zeta I-A)^{-1} B u\right\}\right\}
$$

To prove the equivalence of definitions 1 and 3 we see

$$
\left.\left.\begin{array}{rl}
Z_{t r}=\mathbf{C} & \Longleftrightarrow \Longleftrightarrow\left\{\forall \zeta \in \mathbf{C} \exists u \neq 0: L(\zeta)\left(\begin{array}{c}
\operatorname{diag} \\
i=1(1) m \\
0
\end{array}\right) \quad \frac{\epsilon_{i}(\zeta)}{\psi_{i}(\zeta)}\right. \\
0
\end{array}\right) R(\zeta) u=0\right\}
$$

Hence another definition of $\operatorname{tr} z s$ that is often found in literature, and according to which $\zeta \in Z_{t r}$ if and only if $G(\zeta)$ and $P(\zeta)$ go below their normal rank, does not agree in the degenerate case with definitions 1,2 and 3. This is so because not $\forall \zeta \in \mathbf{C}$ will make $G(\zeta)$ and $P(\zeta)$ go below their normal rank, hence $Z_{t z} \neq C$, according to this definition. In what follows we will assume that trzs are defined by definitions 1,2 or 3.

Definition 4: A number $\zeta \in \mathbf{C}$ is a strong transmission zero (strz) of (1),(2) if and only if $G(\zeta)=0$, or equivalently $\epsilon_{1}(\zeta)=0$ (in the $S-M$ form of $G(\zeta)$), or equivalently

$$
\left\{\forall u \neq 0,\left(\begin{array}{cc}
A-\zeta I & B \\
C & 0
\end{array}\right)\binom{x}{u}=0, \text { with } x=(\zeta I-A)^{-1} B u\right\}
$$

Theorem 2: $\zeta \in \mathbf{C}$ cannot be assigned by output feedback if and only if ζ is a strong transmission zero.

Proof: Let $G(\zeta) \neq 0$, then if $\zeta \in \lambda(A)$ we take $K=0$ and ζ is placed. If $\zeta \notin \lambda(A)$ then there exists $u \neq 0$ such that

$$
y=G(\zeta) u \neq 0 \Rightarrow\left\{\begin{array}{l}
x=(\zeta I-A)^{-1} B u \\
y=C x \neq 0
\end{array}\right\}
$$

If we take $K=-\frac{u Y^{T}}{y^{-} y}$ then we see that

$$
\begin{aligned}
{[\zeta I-(A-B K C)] x } & =(\zeta I-A) x+B K C x \\
& =B u-B \frac{u y^{T}}{y^{T} y} y=0
\end{aligned}
$$

Thus the eigenpair (ζ, x) has been placed, which proves the necessity of the propositionn given by the theorem. To prove its sufficiency assume $G(\zeta)=0$, but nevertheless ζ has been placed. Then there exists $x \neq 0$ such that for some K

$$
\begin{aligned}
(A-\zeta I) x-B K C x=0 & \Rightarrow x-(A-\zeta I)^{-1} B K C x=0 \\
& \Rightarrow C x-C(A-\zeta I)^{-1} B K C x=0 \\
& \Rightarrow C x+G(\zeta) K C x=0 \\
& \Rightarrow C x=0 .
\end{aligned}
$$

Hence from $(A-\zeta I) x-B K C x=0 \Rightarrow(A-\zeta I) x=0 \Rightarrow \zeta \in \lambda(A)$. This is a contradiction, since if $\zeta \in \lambda(A)$ the $G(\zeta)$ is not defined, however it is assumed that $G(\zeta)=0$.

4 The Algorithm

We give an algorithm based on deflation by unitary similarity transformations.
Step 1: Compute a feasible eigenvector x_{1} of $A_{1}-B_{1} K_{1} C_{1} \equiv A-B K C$ corresponding to, say λ_{1} with $\left\|x_{1}\right\|_{2}=1$. We will show in the sequel how we may compute such an x_{1}.
Step 2: Allocate the eigenpair $\left(\lambda_{1}, x_{1}\right)$ to $A_{1}-B_{1} K_{1} C_{1}$ as follows: Let V_{1} be a unitary transformation such that $V_{1}^{H} C_{1} x_{1}=\delta_{1} e_{1}$ and $B_{1}=\left(U_{0}, U_{1}\right)\binom{R_{1}}{0}$ a QR decomposition of B_{1}, then

$$
\begin{align*}
\left(A_{1}-B_{1} K_{1} C_{1}\right) x_{1}=\lambda_{1} x_{1} & \Longleftrightarrow A_{1} x_{1}-B_{1}\left(K_{1} V_{1}\right)\left(V_{1}^{H} C_{1} x_{1}\right)=\lambda_{1} x_{1} \\
& \Leftrightarrow B_{1} \tilde{K}_{1} \delta_{1} e_{1}=\left(A_{1}-\lambda_{1} I\right) x_{1}, \text { with } \tilde{K}_{1}=K_{1} V_{1} \\
& \Longleftrightarrow B_{1} k_{1} \delta_{1}=\left(A_{1}-\lambda_{1} I\right) x_{1}, \text { with } k_{1}=\tilde{k}_{1} e_{1} \\
& \Longleftrightarrow\binom{R_{1}}{0} k_{1} \delta_{1}=\binom{U_{0}^{H}\left(A_{1}-\lambda_{1} I\right) x_{1}}{U_{1}^{H}\left(A_{1}-\lambda_{1} I\right) x_{1}} \tag{5}
\end{align*}
$$

From (5) we see that if x_{1} was computed in step 1 so that $x_{1} \in \mathrm{~N}\left[U_{1}^{T}\left(A_{1}-\lambda_{1} I\right)\right]$, and k_{1} is computed by solving

$$
\begin{equation*}
R_{1} k_{1}=\delta_{1}^{-1} U_{0}^{H}\left(A_{1}-\lambda_{1} I\right) x_{1} \tag{6}
\end{equation*}
$$

then (5) is satisfied and the eigenpair $\left(\lambda_{1}, x_{1}\right)$ is allocated. An eigenvector x_{1} that satisfies $x_{1} \in \mathbf{N}\left[U_{1}^{T}\left(A_{1}-\lambda_{1} I\right)\right]$ will be called feasible.
Step 3: Compute unitary $Q_{1}=\left(x_{1}, \tilde{Q}_{1}\right)$. Hence from $Q_{1} e_{1}=x_{1} \Rightarrow Q_{1}^{H} x_{1}=e_{1}$ we see that Q_{1} can be a Householder transformation or a sequence of rotations.

Step 4: Perform the unitary similarity transformation

$$
\begin{align*}
Q_{1}^{H}\left(A_{1}-B_{1} K_{1} C_{1}\right) Q_{1} & =\binom{x_{1}^{H}}{\tilde{Q}_{1}^{H}}\left[A_{1}-B_{1} \tilde{K}_{1}\left(V_{1}^{H} C_{1}\right)\right]\left(x_{1}, \tilde{Q}_{1}\right) \\
& =\binom{x_{1}^{H}}{\tilde{Q}_{1}^{H}}\left[\left(A_{1} x_{1}-B_{1} k_{1} \delta_{1}\right),\left(A_{1} \tilde{Q}_{1}-B_{1} \tilde{K}_{1}\left(V_{1}^{H} C_{1}\right) \tilde{Q}_{1}\right)\right] \tag{7}
\end{align*}
$$

From step $3, k_{1}$ has been computed so that $A_{1} x_{1}-B_{1} k_{1} \delta_{1}=\lambda_{1} x_{1}$. If we now set $\tilde{K}_{1}=\left(k_{1}, K_{2}\right)$ and

$$
\begin{aligned}
V_{1}^{H} C_{1} \tilde{Q}_{1} & =\binom{c_{1}^{H}}{C_{2}} \text { then } \\
(7) & =\binom{x_{1}^{H}}{\tilde{Q_{1}^{H}}}\left[\lambda_{1} x_{1}, A_{1} \tilde{Q}_{1}-B_{1}\left(k_{1} c_{1}^{H}+K_{2} C_{2}\right)\right] \\
& =\left(\begin{array}{l|l}
\lambda_{1} & x_{1}^{H}\left[A_{1} \tilde{Q}_{1}-B_{1}\left(k_{1} c_{1}^{H}+K_{2} C_{2}\right)\right] \\
\hline & \tilde{Q}_{1}^{H} A_{1} \tilde{Q}_{1}-\tilde{Q}_{1}^{H} B_{1} k_{1} c_{1}^{H}-\tilde{Q}_{1}^{H} B_{1} K_{2} C_{2}
\end{array}\right) \\
& =\left(\begin{array}{l|c}
\lambda_{1} & * \\
\hline & A_{2}-B_{2} K_{2} C_{2}
\end{array}\right)
\end{aligned}
$$

where $A_{2}=\tilde{Q}_{1}^{H} A_{1} \tilde{Q}_{1}-\tilde{Q}_{1}^{H} B_{1} k_{1} c_{1}^{H}, \quad B_{2}=\tilde{Q}_{1}^{H} B_{2}$.
Step 5: Continue the allocations with $A_{2}-B_{2} K_{2} C_{2}$.
There are two points that need to be clarified for the allocation of λ_{1} in the above algorithm. One is, how to identify whether λ_{1} is a $\operatorname{str} z$ or not, and the other is the computation of x_{1}.

Lemma 2: If $\left\{\lambda_{1}\right.$ is a $\operatorname{str} z$ of (1) $\} \Rightarrow \delta_{1}=0$.
Proof: Let λ_{1} be a strz of (1) then

$$
\left\{\forall u_{1} \neq 0 \exists x_{1}:\left(\begin{array}{ll}
A_{1}-\lambda_{1} I & B_{1} \\
C_{1} & 0
\end{array}\right)\binom{x_{1}}{u_{1}}=0\right\} \Rightarrow C_{1} x_{1}=0 \Rightarrow \delta_{1}=0 .
$$

We may note however that the above lemma on its own is not adequate to identify strz. In the sequel we will compute our feasible eigenvector x_{1} in such a way that if $\delta_{1}=0$ then λ_{1} will be a strz. As we will show, computing x_{1} in this way will also improve the numerical stability of our algorithm. To accomplish the above we proceed as follows:

We know that

$$
\left|\delta_{1}\right|=\left\|C_{1} x_{1}\right\|_{2} \Rightarrow\left\{\delta_{1}=0 \Longleftrightarrow x_{1} \in \mathbf{N}\left(C_{1}\right)\right\}
$$

Thus if we compute x_{1} so that

$$
x_{1} \in \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]-\mathbf{N}\left(C_{1}\right)
$$

when

$$
\mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]-\mathbf{N}\left(C_{1}\right) \neq\{ \}
$$

then we may safely conclude that $\delta_{1}=0 \Rightarrow\left\{\lambda_{1}\right.$ is a strz $\}$. If the dimension of

$$
\mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]-\mathbf{N}\left(C_{1}\right)
$$

is greater than one, we have some freedom in choosing our x_{1}. To see how we may exploit this freedom, we observe from (6) that if $\left|\delta_{1}\right|$ is unreasonably small then we may unnecessarily lose accuracy when we solve (6). To avoid this, let

$$
C_{1}^{T}=\left(H_{0}, H_{1}\right)\binom{Z_{1}}{0}
$$

be a QR decomposition of C_{1}^{T}, then $\mathbf{R}\left(H_{0}\right)=\mathbf{R}\left(C_{1}^{T}\right)$ and $\mathbf{R}\left(H_{1}\right)=\mathbf{N}\left(C_{1}\right)$. Assuming now $\left\|x_{1}\right\|_{2}=1$ we get

$$
\left|\delta_{1}\right|=\left\|C_{1} x_{1}\right\|_{2}=\left\|Z_{1}^{T} H_{0}^{T} x_{1}\right\|_{2} \leq\left\|Z_{1}\right\|_{2}\left\|H_{0}^{T} x_{1}\right\|_{2}
$$

But \| $H_{0}^{T} x_{1} \|_{2}=\sigma_{\max }\left(H_{0}^{T} x_{1}\right)=\cos \theta, \sigma_{\max }(\cdot)$ is the maximum singular value of a matrix, and $\boldsymbol{\theta}$ is the smallest angle between $\mathbf{R}\left(C_{1}^{\boldsymbol{T}}\right)$ and $\mathbf{R}\left(x_{1}\right)$ (see[1]). Hence from

$$
\left|\delta_{1}\right| \leq\|z\|_{2} \cos \theta
$$

in order to make $\left|\delta_{1}\right|$ as large as possible we need to make θ as small as possible. Thus we will choose $x_{1} \in \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]$ that forms an angle θ with $\mathbf{R}\left(H_{0}\right)$ as close to zero as possible. The following theorem taken from [1,p.582] and modified to meet our requirements, will give us a way to compute θ as it was required above.
Theorem 3: Let H_{0} and W_{1} form unitary bases of two subspaces. Let also

$$
H_{0}^{H} W_{1}=Y \Sigma X^{H}
$$

be the singular value decomposition of $H_{0}^{H} W_{1}$, then the smallest angle between $\mathbf{R}\left(H_{0}\right.$ and $\mathbf{R}\left(W_{1}\right)$ takes place between vectors $H_{0} Y e_{1}$ and $W_{1} X e_{1}$.

Proof: See [1]
Theorem 3 suggests the following algorithm for the computation of x_{1} :
Compute the QR decomposition of C_{1}^{T}, B_{1}, and $\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]^{H}=\left(W_{0}, W_{1}\right)\binom{T}{0}$.
Compute the singular value decomposition of $V_{0}^{H} W_{1}=Y \Sigma X^{H}$.
Take $x_{1}=W_{1} X e_{1}$.
Finally to eliminate any doubt that $\delta_{1}=0$ when λ_{1} is a $\operatorname{str} z$ we prove the following lemma.
Lemma 3: $\mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right] \subseteq \mathbf{N}\left(C_{1}\right) \Longleftrightarrow\left\{\lambda_{1}\right.$ is a strz of (1),(2)\}
Proof: First we prove

$$
\begin{equation*}
\mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]=\left\{\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1} \mid u_{1} \in \boldsymbol{R}^{m}\right\} \tag{8}
\end{equation*}
$$

To do so, we see that, given $u_{1} \neq 0$ and computing x_{1} to satisfy

$$
\begin{aligned}
\left(A_{1}-\lambda_{1} I\right) x_{1}=-B_{1} u_{1} & \Longleftrightarrow\binom{U_{0}^{H}}{U_{1}^{H}}\left(A_{1}-\lambda_{1} I\right) x_{1}=\binom{-R_{1}}{0} u_{1} \\
& \Rightarrow x_{1} \in \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right] .
\end{aligned}
$$

Thus

$$
\left\{\forall u_{1} \in \boldsymbol{R}^{m},\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1} \in \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]\right\} \Longrightarrow
$$

$$
\begin{equation*}
\left\{\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1} \mid u_{1} \in \boldsymbol{R}^{m}\right\} \subset \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right] \tag{9}
\end{equation*}
$$

Let $x_{1}: U_{1}^{H}\left(A_{1}-\lambda_{1} I\right) x_{1}=0$, then, since we can always compute

$$
u \in \boldsymbol{R}^{m}: R_{1} u_{1}=U_{0}^{H}\left(A_{1}-\lambda_{1} I\right) x_{1}
$$

we have $\binom{U_{0}^{H}}{U_{1}^{H}}\left(A_{1}-\lambda_{1} I\right) x_{1}=\binom{-R_{1}}{0} u_{1} \Rightarrow x_{1}=\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1}$, from which we get

$$
\begin{equation*}
\mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right] \subset\left\{\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1} \mid u_{1} \in \boldsymbol{R}^{m}\right\} \tag{10}
\end{equation*}
$$

From (9), (10) we may derive (8).
Suppose now that

$$
\begin{aligned}
\left\{\lambda_{1} \text { is a strz of }(1),(2)\right\} & \Longleftrightarrow\left\{\forall u_{1} \in \boldsymbol{R}^{m} C_{1}\left(\lambda_{1} I-A_{1}\right)^{-1} B_{1} u_{1}=0\right\} \\
& \Longleftrightarrow C_{1} \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right]=0 \\
& \Longleftrightarrow \mathbf{N}\left[U_{1}^{H}\left(A_{1}-\lambda_{1} I\right)\right] \subset \mathbf{N}\left(C_{1}\right) .
\end{aligned}
$$

The algorithm that has been described so far in this section, can be used to allocate only one eigenvalue. We will show however that we may use it to allocate $\min \{n, m+p-1\}$ eigenvalues. To do so we need to observe that only the first column of the current K_{i} is needed for the allocation of one eigenvalue. We also need to consider the fact that $\lambda\left(A_{i}-B_{i} K_{i} C_{i}\right)=\lambda\left(A_{i}^{T}-C_{i}^{T} K_{i}^{T} B_{i}^{T}\right)$. Given these two points then we may use the following algorithm, which for illustration we describe for $m=2$ and $p=3$, thus

$$
K_{1}=\left(\begin{array}{ccc}
x & x & x \\
\times & x & x
\end{array}\right)
$$

We allocate eigenvalues until the number of rows of the current K_{i} become greater than the number of columns. In our example this happens after the allocation of two eigenvalues, hence

$$
K_{3}=\binom{x}{x}
$$

At this point we continue working with the transposed system $A_{3}^{T}-C_{3}^{T} K_{3}^{T} B_{3}^{T}$. Since K_{3}^{T} has two columns we are able to allocate two more eigenvalues instead of just one that we would have allocated if we had continued with K_{3}. In the general case we keep transposing until we run out of eigenvalues or columns. Thus the total number of eigenvalues that we manage to allocate using this algorithm is

$$
m+p-1=4 .
$$

Note that by following this algorithm we also satisfy the condition $m \leq p$ at the beginning of each allocation. This condition has been assumed throughout this paper. Note that m, p are associated with the columns of the matrix on the left of K_{i} or K_{i}^{T} and the rows of the matrix on the right of K_{i} or K_{i}^{T} respectively, rather than with B_{i} and C_{i}.

5 Numerical Examples

In this section we give two numerical examples to demonstrate the performance of our algorithm. The computation was performed on double precision (56-bit mantissa) using PC-MATLAB on a Toshiba T5100 which uses an 80387 coprocessor equipped with the IEEE floating point standard of arithmetic. In the computation below we show, up to 12 decimal digits of accuracy.

$$
\begin{aligned}
& \text { Example 1: } \\
& A=\left(\begin{array}{lllll}
0.581314086914 & 0.504058837890 & 0.559921264648 & 0.741333007812 & 0.303421020507 \\
0.166717529296 & 0.157394409179 & 0.665222167968 & 0.933609008789 & 0.144439697265 \\
0.353500366210 & 0.441650390625 & 0.373367309570 & 0.771942138671 & 0.078048706054 \\
0.836242675781 & 0.200820922851 & 0.072296142578 & 0.598373413085 & 0.638671875000 \\
0.244094848632 & 0.936126708984 & 0.607955932617 & 0.154357910156 & 0.154678344726
\end{array}\right) \\
& B^{T}=\left(\begin{array}{lllll}
0.549163818359 & 0.843856811523 & 0.178649902343 & 0.409255981445 & 0.595489501953 \\
0.942672729492 & 0.008666992187 & 0.239028930664 & 0.142791748046 & 0.671371459960 \\
0.613098144531 & 0.065872192382 & 0.300445556640 & 0.576828002929 & 0.726318359375
\end{array}\right)
\end{aligned}
$$

$$
C=\left(\begin{array}{lllll}
0.561660766601 & 0.332702636718 & 0.355514526367 & 0.279266357421 & 0.531448364257 \\
0.427825927734 & 0.648269653320 & 0.666625976562 & 0.572494506835 & 0.972076416015 \\
0.455917358398 & 0.134307861328 & 0.497573852539 & 0.212463378906 & 0.653732299804
\end{array}\right)
$$

The eigenvalues to be allocated are

$$
\{0.704589843750,0.421768188476,0.572113037109,0.396102905273,0.127380371093\} .
$$

The K computed by our algorithm was found to be

$$
K=\left(\begin{array}{ccc}
-9.415631257941 & -1.520241736469 & 11.520696978251 \\
-36.155174309311 & -4.515055559417 & 41.184483490595 \\
33.590525809043 & 4.071903303950 & -36.923138190434
\end{array}\right)
$$

The eigenvalues of $A-B K C$ were computed and they were $\lambda(A-B K C)=\{0.704589843749$, $0.421768188479,0.572113037109,0.396102905270,0.127380371093\}$.

Example 2: In the above example we had $n=m+p-1$, thus all n eigenvalues were allocated. However, if $m+p-1<n$ then $n-(m+p-1)$ eigenvalues of $A-B K C$ will take values that our algorithm has absolutely no control over. The following example demonstrates this point.

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
0.356336616284 & -0.356626507847 & -1.198870998736 \\
-0.210549376245 & 2.165165719183 & -0.882324378697 \\
-0.355939324751 & -0.506195941988 & 0.721098719251
\end{array}\right) \\
B=\left(\begin{array}{ccc}
1.606955436561 & -0.407338058168 \\
0.062823512419 & -0.595038063525 \\
-1.611627967397 & 0.616657720777
\end{array}\right) \\
C=\left(\begin{array}{lll}
-1.182820557312 & 0.343687857622 & -0.357421120340
\end{array}\right)
\end{gathered}
$$

The eigenvalues to be allocated are $\{-0.406648486670,-0.366406484747,0.853280016421\}$.

The K computed by our algorithm was found to be

$$
K=\binom{-2.053475126112}{-6.466096811958}
$$

The eigenvalues of $A-B K C$ were computed and they were $\lambda(A-B K C)=\{-0.406648486670$, -0.366406484747, 1.707616832510\}.

Our algorithm allocates one eigevalue at a time, thus complex eigenvalues need complex arithmetic. As a result, K may be complex. Investigation is under way to derive an algorithm that will allocate two eigenvalues at a time in a double step. In this way we will allocate a complex conjugate pair of eigenvalues in one double step using only real arithmetic. Hence K will be real.

6 Conclusion

We presented an algorithm for the pole assignment problem for multi-input, multi-output systems using output feedback. The algorithm uses deflation based on unitary similarity transformations and it allocates $\min \{n, m+p-1\}$ eigenvalues. The same kind of deflation has been used in [3] to solve the corresponding pole assignment problem using state feedback. Since the algorithm in [3] has been proven to be numerically stable we hope the algorithm in this paper has the same property too. However, this needs to be proven by doing a rounding error analysis of the algorithm, and we plan to do this in the near future.

References

[1] Bjorck, A. \& Golub, G.H., "Numerical Methods for Computing Angles Between Linear Subspaces", Mathematics of Computation, v.27, No.123, pp. 579-594, 1973.
[2] Macfarlane, A.G.J. \& Karcanias, N., "Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric and Complex-Variable Theory", Int. J. Control, v.24, No.1, pp. 33-74, 1976.
[3] Miminis, G.S. \& Paige, C.C., "A Direct Algorithm for Pole Assignment of Time Invariant multi-input Linear Systems using State Feedback", Automatica, v.24, No.3, pp. 343-356, 1988.
[4] Miminis, G.S., "The use of Deflation in Eigenassignment Problems", To appear in the Proceedings of the MTNS89 conference, Amsterdam, June 1989.
[5] Parlett, B., "The Symmetric Eigenvalue Problem", Prentice-Hall, 1980.
[6] Saad, Y., "Projection and Deflation Methods for Partial Pole Assignment in Liner State Feedback", IEEE Trans. Autom. Control, v.33, No.3, pp. 290-297, 1988.
[7] Wilkinson, J., "The Algebraic Eigenvalue Problem", Oxford, 1965.

