-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by NASA Technical Reports Server
» LJ v -

Using Deflation in the Pole Assignment Problem
with Output Feedback

George Miminis
Department of Computer Science, Memorial University of Newfoundland

St. John’s, Newfoundland, Canada A1C 5S7
Abstract

A direct algorithm is suggested for the computation of a linear output feedback for a multi
input, multi output system such that the resultant closed-loop matrix has eigenvalues that include
a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transfor-
mations. Thus we hope the algorithm is numerically stable, however, this has not been proven as

yet.

1 Introduction

Deflation is a technique that has been efficiently used in the solution of the standard eigenvalue
problem of a matrix A as well as other eigenvalue related problems. According to this technique once
an eigenpair (A;,z;) of A is computed, we continue the process with a matrix that possesses only
the remaining eigenvalues of A, and possibly a zero eigenvalue in the place of A;. In this way we are
left to solve a smaller problem. Deflation can be accomplished by a variety of algorithms. Some of
them are, Hoteling’s deflation, Wielandt’s deflation, deflation based on similarity transformations,
deflation by restriction, etc. An excellent review of the first three methods can be found in 7, pp.
584-600], whereas deflation by restriction can be found in [5, p. 84]. Lately, deflation has been
used in the solution of eigenassignment problems. For example, Wielandt’s deflation is used in [6]
to solve the partial eigenvalue allocation problem with state feedback for continuous time systems.
In this paper we will be concerned with deflation based on unitary similarity transformations, and
how it can be used in the pole assignment problem with output feedback, or as it is often known,
the eigenvalue allocation problem with output feedback (MEVAO).

In section 2 we define the MEVAO. In section 3 we define transmission zeros and discuss how
they affect the MEVAO. In section 4 we give an algorithm for the solution of the MEVAO. Finally

in section 5 give some numerical examples to demonstrate the performance of our algorithm.

140

https://core.ac.uk/display/42823593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

o o’ (x10°°
200 . eztet 1 L 3 4 3
1RO00 - =1 x 107 Tnitial DV [120.000 [90.600 | 90.000 | 90.000 | 90.000
BRI S moe Final DV
LN N D 2000 1 92.172 | 55.944 | 41.010 | 44.107 | 36.632
[\ 1on0 2 72.274 | 55.967 | 52.340 | 4n.128 | 32.776
12000 N 3 71.334 | 62.487 | 41.938 | 38.878 | 31.848
n b \ 1800 4 41.867 | 27.830 | 24.475 | 24.192 | 17.445
£ 10000 \ 1700 [eI o2 5 47.282 | 33.755 | 24.327 } 19.986 | 18.412
~- \ 6 41.794 | 33.553 | 26.973 | 23.608 | 20.363
o A000 K \ B T > DR Y R I VI 7 41.341 | 2365 5.462{17.750 | 8.363
"En] \ 8 41.314 | 20.562 | 1.604 | 17.277] 1.317
@ Booo \\\ \\ . - T T 9 2.795 { 20.742 | 23.982 | 1.761 | 10.880
e “\\\ 10 9.518 | 2.424 | 24.159 | 12.659 | 17.091
4000 AN 11 9.541 | 24.020 | 1.570 | 14.006 | 20.089
\‘\\;- . 12 2.795 [23.903 | 5612 | 1.667 | 1.458
2000 o of (x107°
6 7 8 9 10
L R R R "o In.ilial DV || 90.000 | 60.000 | 60.000 | 60.000 | 60.000
Iteralion Final DV
1 28.739 | 34.922 | 25.632 | 30.032 | 23.272
Figure 1: Convergence histories for parlicular cases from Table 6 2 39.315 | 26.729 | 32.700 | 23.857 | 28.426
3 28.871 | 26.916 | 24.976 | 24.192 | 22.333
12000 4 17.154 | 16.238 | 14.880 | 14.139 | 13.401
©] 5 17.249 | 17.279 | 15.037 | 15.367 | 13.472
q - - x 1072 6 19.143 | 16.109 | 16.386 | 14.174 | 14.662
. Y x 10, 7 4.076 [15.734 | 3.447 | 14073 | 3.130
10000 8 1.143 | 15.739 [0.996 | 13.904 | 0.850
i° 9 16.803 | 1.039 | 14.683 | 0.896 | 13.294
N F \ 10 16.869 | 3.667 | 14.621 [3.215 | 13.149
‘. BOOO \ 11 1.200 [3.6271 1.013) 3.291 [0.849
'O‘ 1 \ 12 3.803| 1.038| 3.387{ 0.899 | 3.069
- . : \ N Talle 10: Optimal design variables for A% = 50 < ases [rom ‘Table 9
s BODG N
L \ N
on AN -
© 1 s T
A 4000 N - -
=] S e L 532558 o? initial dv's § optimal weight iterations
‘:;-Z: -l (x107%) | (structural) | # = 50 B2 =60 | §* =50]A =60
2000 Tl o 18649 1 120.0 38896 | 3630.7 | 221 247
— 2
| © 14500 2 90.0 26203 | 24345 | 400° | 400°
E 3 90.0 2161.2 | 1975.4 400" 400°
O bt o T D PR T e e 4 90.0 1917.1 1732.4 277 400°
0 ; . . 32.
Global lteration 5 900 1747.7 | 15445 4 208 | 400°
6 90.0 1603.4 | 1541.1 199 189
l'ignre 5: Convergence histories for particular cases from Table 7 7 60.0 1680.4 | 1365.0 160 281
8 60.0 1383.7 | 1234.0 187 400°
9 60.0 1252.3 | 1156.9 400° 400"
7000 10 60.0 1206.3 | 1112.2 311 400"
/0 “Indicates no convergence in apecified number of global iterations
500
¢ /’5 Table 11: Optimal weight using seguential appproximations solution
6000] Vi algorithm with a physical state-space realization, for direct ontput feed-
= g back with /1 = G7, plus node 1 displacements and velocities
" 5500
2 b / o? initial dv’s g
&0 5000 / {x107%) | (structural) | 50 60
£ 4500 - s 1 1200 | 3516.5 | 32326
—_ a 2 90.0 2402.4 | 2213.0
g / 3 90.0 | 1935.5 | 17902
T3 3500 % 4 90.0 1671.5 | 1543.3
5 5 90.0 | 1492.9 | 1379.2
© 3000
o 6 90.0 1364.6 [1261.6
2500 7 60.0 1459.5 | 1166.3
2000 R — 8 60.0 | 1184.0 | 1093.4
040 060 080 100 1 20 1540 160 9 600 | 1116.8 | 1186.1
Disturbance intensity (x, 10 60.0 1063.4 | 9833
Vignre 6 Oplimal weight for varying exlernal disturbance intensity Table 12: Optimal weight using continuation sotution aigorithm with
\,. = 5ol with o? =1 x 107> and A =50 a physical state-space rcalization, for direct output feedback with # =

139

G plus node 1 displacements and velocitios

ORIGINAL pag
E I
OF POOR QuaLTy

Lower case Greek letters represent scalars, upper case Roman represent matrices, while lower
case Roman represent column vectors and indices. Superscripts T, H indicate transpose and con-
jugate transpose respectively. The notation k = i(r)j means that k takes all the values starting
from i until j with step r. e; represents the ith column of the identity matrix I, and A(-) the set of
eigenvalues of a matrix, counting multiplicities. R(-), N(-) will represent the space spanned by the
columns of a matrix, and the null space of a matrix respectively. R, C will represent the set of real

and complex numbers respectively.

2 The Problem

The MEVAO problem that we will attack in this paper may be defined as follows:

We are given a controllable and observable system

i(t) = Az(t)+ Bu(t) (1)

y(t) = Cz(t) (2

where A € R**", B € R**™, C € RP*", rank (B)=m, rank(C)=p, z(t) € R" is the state
of the system at time t and u(t) the input at time t. We are also given a self conjugate set
of eigenvalues A;, i = 1(1)r with r=min{n,m+p-1}, we need to compute K € R™*P such that
AMA - BKC) D {X | i = 1(1)r}. As a result, a linear output feedback u(t) = —Ky(t) may be

computed that will make (1) become
z(t) = (A - BKC)z(t).

The resulting system will have desirable properties for the contror engineer.

3 Transmission Zeros

In the remaining of the paper unless otherwise stated, we will assume without loss of generality
that m < p.

Transmission zeros (¢rzs) play an important role in the MEVAO, thus it is vital that they are
well understood. Our experience with the literature on trzs has been rather disappointing. In our

search for a definition we have found several; some of them even contracting one another. Thus we

141

decided to resort to the physical motivation of trzs, and from that to derive a sensible definition.
Some observations that may give some physical motivation to the concept of a transmission zero
(of a controllable-observable system in our case) were found in [2], p-41. From this we concluded
that, physically, a transmission zero (trz) of a system is a specific frequency of the system for which
there exists a nonzero input that will yield a zero output. This basically is definition 1 below. In
the following we will present three definitions of trzs, and we will prove their equivalence. The
reason we present these three defintions is because the first is directly derived from the physical
motivation of trzs, the second is very useful in matrix computations, and the third is frequently
encountered in the literature.

Definition 1: A number ¢ € C is a trz of (1),(2) if and only if there exists nonzero input u that

can yield a zero output y = G({)u = 0, where
G(s)=C(sI - A)'B ,with seC

is the transfer function of (1),(2). o
The number of trzs of (1),(2) can be at most n — maz{m, p} (see for example (2], p.65). The set of
all trzs of (1),(2) will be denoted by Z;,. Often it is helpful to use the following definition of a trz.
Definition 2: (€ C is a trz of (1),(2) if and only if

A-(I B z

Ju#0 : =0 with z=(CI—A)'1Bu.
C 0 u

Frequently we encounter in the literature the following definition of trzs.

[ag))

Definition 3: Let L~1(()G({)R™Y(¢) = ';Im_xl((gcg
Il
0

be the Smith-McMillan (S-M) form of G(¢), where L(¢), R(¢) are polynomial matrices and we have
assumed that G(s) has normal rank m. Then (is a trz of (1) if and only if there exists ¢ = 1,---,m
such that € ({) = 0. 0
In the S-M form of G(() the following properties hold

142

a(Q)]e(Q)] em(() and $Pm(() | Pma({) |- 1(() -

Because of the above properties we see that there cannot be ¢rz ¢ that will also be a root of ¥,,(¢).
Since, if it were then €,(¢) = 0 and (would have been cancelled in €,({) | ¥m((). Hence ¢ would
not be a trz, which is a contradiction. The roots of ¥;(¢), ¢ = 1(1)m are the poles of (1),(2),
counting multiplicities. In our attempt to prove the equivalence of the above definitions we will
be using the expression G({)u with {(€ Z;,. One then may wonder about the existance of G({)u
when (is also a pole of (1),(2). The following lemma will help us clarify this point.

Lemma 1: Let (€ C be a trz as well as a pole of (1),(2), then there exists u # 0 such that
};i_‘rrEG(s)u exists.

Proof: Let (be a pole as well as a trz of (1), then from the S-M form of G({) we have that

A(i,7) with i<j @ $(()=¢€;(()=0.

Let us now for illustration assume p = m = 3 and ¥1({) = €(¢{) = 0. Then by taking @l =

(0,7,8) # 0 we have the following from the S-M form of G(s).

(1m 505 0
lim L™ (s)G() R ()i = lim 26
\ lim 5265
[o
= 0
\ flim 565

which is defined since ¢3(¢) # 0. Since L(s), R(s) are nonsingular (they have determinants inde-
pendent of s, see for example [7], p.21), limCL"l(s), Iim(R'l(s) are defined.
88— 85—
Hence if we take u = lin}R“(s)ﬁ then lirrzG(s)u is defined for every { € Z,, that is also a pole of
8—+ 8—

(1),(2)- O

143

In the following when we write G({)u with { € Z; also being a pole of (1), we will mean
{i_'m(G(s)u. Similarly when we write z = ((I — A)"!Bu we will mean z = leré(sI — A)"1Bu, when
(€ Z;, is also a pole of (1),(2).

Theorem 1: Definitions 1,2 and 3 are equivalent.

Proof: To prove that definition 1 is equivalent to definition 2 we proceed as follows:

(€ 2y g—if} {3u#0 : C{I-A)'Bu=0}
> {3u#£0 : Cz=0 with z=((I- A)'Bu}
A-(I B z

< {Ju#0 : =0 with z=((I-A)"'Bu
c] u
& ez, .

To prove the equivalence of definitions 1 and 3 we proceed as follows:

(€ Zyy ﬂléf} {3u#0 : G(()u=0}

diag afb‘-(
< {Ju#o0 : LK)| =10)m™ R(Qu=0
0

(3)

-~

k M(Q))

Since L(s), R(s) are nonsingular for Vs € C, M(¢) must not have full column rank in (2). Hence

(3) A {316{1»2,,"1} : (,-(C):O}
ge=f§ (€ Zy .

o

In the last theorem we silently assumed that the normal rank g of G(s) is m, or equivalently

A-sl B
the normal rank n + ¢ of P(s) = is n + m. However, theorem 1 holds even for

C 0

the degenerate case where ¢ < min{m,p} (= m according to our assumption). To show this we

proceed as follows:

144

First we prove Z;, = C using definition 1. Since ¢ < m the following is true

{V(eC 3u#0 : G(C)u:O}gthC. (4)
To prove the equivalence of definitions 1 and 2 we see

A-¢I B
Zy=C & lvcec uso : ¢ "] =0 with «=(cI-A)"Bu}
C 0 u

To prove the equivalence of definitions 1 and 3 we see

diag &
Zo=C & Jvcec 3uzo : L(o)| =% | rioyu=o0
0

<= {¥(eC Jie{l,---,m} : (¢)=0}.

Hence another definition of ¢rzs that is often found in literature, and according to which ¢ € Z,,
if and only if G(¢) and P({) go below their normal rank, does not agree in the degenerate case
with definitions 1, 2 and 3. This is so because not ¥{ € C will make G({) and P(¢) go below their
normal rank, hence Z;, # C , according to this definition. In what follows we will assume that

trzs are defined by definitions 1, 2 or 3.

Definition 4: A number { € C is a strong transmission zero (strz) of (1),(2) if and only if

G(¢) = 0, or equivalently €;(¢{) = 0 (in the S — M form of G(()), or equivalently

A-¢I B\ [= _ .
Vu#0, =0, with z=({(I-A)" Bu
C 0 u

a
Theorem 2: (€ C cannot be assigned by output feedback if and only if (is a strong transmission
zero.
Proof: Let G(() # 0, then if { € A\(A) we take K = 0 and (is placed. If { & A(A) then there
exists u # 0 such that

z=(¢(I - A)"'Bu
y=Cz #£0

y=Gu#0 =

145

If we take K = —% then we see that

[(I-(A-BKC)jz = ({(I-A)z+BKCz
T
uy
= Bu-B——y =0
yTy
Thus the eigenpair ({,z) has been placed, which proves the necessity of the propositionn given by
the theorem. To prove its sufficiency assume G({) = 0, but nevertheless { has been placed. Then

there exists z # 0 such that for some K

(A-(Nz—BKCz=0 = z—(A-(I)"'BKCz=0
=»> Cr-C(A-(I)'BKCz=0
= Cz+ G(()KCz =0
= Cz=0.

Hence from (A—(I)z— BKCz =0 = (A—-(I)z =0 = (€ MA). This is a contradiction, since
if (€ A(A) the G({) is not defined, however it is assumed that G({) = 0. o

4 The Algorithm

We give an algorithm based on deflation by unitary similarity transformations.

Step 1: Compute a feasible eigenvector 1 of 4; — BiK1Ci = A — BKC corresponding to, say
Ay with || z; ||o= 1. We will show in the sequel how we may compute such an z;.

Step 2: Allocate the eigenpair (A,z1) to A4; — B1K1C; as follows: Let V; be a unitary transfor-

R
mation such that VfCiz; = 6,€; and By = (Up, U)) "1a QR decomposition of By, then
0

(A1 - BiK1C)zy = Mty <= Arzy — Bi(KaV) (VI Ciz1) = My
& BiKibiey = (A - Mz, with K= KW
< Biki6y = (A — MD)zy, with k= ke
Ry UH(A; — M Dz

P—3 k151 = (5)
0 UIH(Al — A]I).’L‘l

146

From (5) we see that if z; was computed in step 1 so that z; € N{UT (A, —A,])}, and k, is computed
by solving
Riky = 67U (A — M D)2y (6)

then (5) is satisfied and the eigenpair (A1, z;) is allocated. An eigenvector z; that satisfies

z, € N[UT(A; = A\ 1)] will be called feasible.

Step 3: Compute unitary @ = (ml,Ql). Hence from Q1e1 = 21 = Q{’xl = e1 we see that @, can
be a Householder transformation or a sequence of rotations.

Step 4: Perform the unitary similarity transformation

)

Qi'(41 - BIK1C1)Q1 = ot | [41 = B Ky (V7 C1))(21, Q1)
1
28) o
= o | [(Arz1 = Bik161) , (A1Q1 — BiK1(Vy"C1)Q1)] ()
1

From step 3, k; has been computed so that A z; — B1k18; = Azq. If we now set K; = (k1, K2)

and

[H
Ho 4 !
Vi@, = then
¢
zf - -
(1) = [Miz1 , A1Q1 ~ Bi(kiey + K2C2))

QY
A1 I{’[A]Q.1 - B](klc{{ + K2C2)]
Q¥ A1Q1 - Q¥ Bikr el — QY B K,Cy

(/\1 *

\ Az — B2K2Cy

where A2 = QY 4,Q1 — Qf Bikicfl |, By = QY B, .

Step 5: Continue the allocations with A3 — By KoCj. a
There are two points that need to be clarified for the allocation of A; in the above algorithm. One

is, how to identify whether A, is a strz or not, and the other is the computation of z;.

147

Lemma 2: If {}\; isa strzof (1) } = 6, =0.
Proof: Let A; be a strz of (1) then

Al-—All Bl Iy
Vu; #0 3z, =0 => Ciz;=0 = 6, =0.

Cl 0 Uy

We may note however that the above lemma on its own is not adequate to identify strz. In the
sequel we will compute our feasible eigenvector z; in such a way that if §; = 0 then A; will be a
strz. As we will show, computing z; in this way will also improve the numerical stability of our
algorithm. To accomplish the above we proceed as follows:
We know that

|01 |=|| Chz1 |2 = {61 =0 <= z; € N((,)} .

Thus if we compute z, so that
z, € N[UF(A; — M D)) - N(Cy)

when

N[U{ (A1 - MD)] = N(C1) # {}
then we may safely conclude that §; = 0 = {); is a strz }. If the dimension of
N[Uf (A1 - WD) - N(C1)

is greater than one, we have some freedom in choosing our z,. To see how we may exploit this
freedom, we observe from (6) that if | §; | is unreasonably small then we may unnecessarily lose

accuracy when we solve (6). To avoid this, let

2y
CT = (Ho, H1)

be a QR decomposition of CT, then R(Ho) = R(CT) and R(H;) = N(C;). Assuming now

| 21 |l2= 1 we get

| 81 |=ll Crz1 ll2=Il Z{ H 21 ||2<]| Z3 |lall HS 21 |l -

But || Hz, Il = amax(Hg'zl) = c088 , Opmqz(+) is the maximum singular value of a matrix, and

8 is the smallest angle between R{C7) and R(z) (see[1]). Hence from

148

| 81 || 2 {2 cost

in order to make | §; | as large as possible we need to make # as small as possible. Thus we will
choose z; € N[UfI(A; — A I)] that forms an angle § with R(Ho) as close to zero as possible. The
following theorem taken from [1,p.582] and modified to meet our requirements, will give us a way
to compute 8 as it was required above.

Theorem 3: Let Hy and W; form unitary bases of two subspaces. Let also
HiwW, = Yox¥

be the singular value decomposition of HF W, then the smallest angle between R(Hp and R(W);)
takes place between vectors HgY e; and Wi Xe; .
Proof: See [1]

Theorem 3 suggests the following algorithm for the computation of z;:
Compute the QR decomposition of CT, By, and [UF(A; — D7 = (W, W)

Compute the singular value decomposition of VW, = YEXH.

Take z; = W Xe;.
Finally to eliminate any doubt that §; = 0 when A, is a strz we prove the following lemma.
Lemma 3: N[Uf (A, - MI)]C N(C)) < {\ is a strz of (1),(2)}

Proof: First we prove

N[UH (A1 = MD) = {(MI - A1) 'Biuy | ug € R™} . (8)

To do so, we see that, given u; # 0 and computing z; to satisfy

vl -R,
(A1 - /\11)31 =—-Biu; <= (A1 - /\1[):51 = Uy
v 0

= T € N[UIH(Al - AII)].
Thus
{Yu; € R™, (MI — A1) ' Byuy € N[UH (4, - M D))} =

149

{(Oul = A1) 'Byuy | w; € R™} C N[UF (4, - \I)). (9)
Let z; : Uf{(A; — M1 I)z1 = 0, then, since we can always compute

ue R™ : Rju, = Ug’(Al - AII)II ,

i/l R,

we have (A1 - /\1[)1‘1 = U => 1 = (A]I - A;)"‘Blul s
UH 0

from which we get

N[UH(A; = M D] € {(MI—-41) ' Biuy | u1 € R™}. (10)

From (9), (10) we may derive (8).

Suppose now that

{A\isastrzof (1),(2)} <+ {Vui € R™ Cy(MI- A" 1By, = 0}
< CIN[Uf (A1 -D))=0
< N[Uf(4; - M) CN(Cy).

o
The algorithm that has been described so far in this section, can be used to allocate only one
eigenvalue. We will show however that we may use it to allocate min{n,m+ p— 1} eigenvalues. To
do so we need to observe that only the first column of the current K; is needed for the allocation
of one eigenvalue. We also need to consider the fact that A(A4; — B;K;C;) = MAT — cT KT BY).
Given these two points then we may use the following algorithm, which for illustration we describe

for m = 2 and p = 3, thus

X X X
K1=
X X X

We allocate eigenvalues until the number of rows of the current K; become greater than the number

of columns. In our example this happens after the allocation of two eigenvalues, hence

X
K3=
: X

150

At this point we continue working with the transposed system Al — CTKTBY . Since KT has
two columns we are able to allocate two more eigenvalues instead of just one that we would have
allocated if we had continued with K3. In the general case we keep transposing until we run out
of eigenvalues or columns. Thus the total number of eigenvalues that we manage to allocate using

this algorithm is
m+p—-—1=4 .

Note that by following this algorithm we also satisfy the condition m < p at the beginning of each
allocation. This condition has been assumed throughout this paper. Note that m, p are associated
with the columns of the matrix on the left of K; or K7 and the rows of the matrix on the right of

K; or KiT respectively, rather than with B; and C;.

5 Numerical Examples

In this section we give two numerical examples to demonstrate the performance of our algorithm.
The computation was performed on double precision (56-bit mantissa) using PC-MATLAB on a
Toshiba T5100 which uses an 80387 coprocessor equipped with the IEEE floating point standard

of arithmetic. In the computation below we show, up to 12 decimal digits of accuracy.

Example 1:

(0.581314086914
0.166717529296

0.504058837890
0.157394409179

0.559921264648
0.665222167968

0.741333007812
0.933609008789

0.303421020507 \
0.144439697265

A =] 0.353500366210 0.441650390625 0.373367309570 0.771942138671 0.078048706054
0.836242675781 0.200820922851 0.072296142578 0.598373413085 0.638671875000
\ 0.244094848632 0.936126708984 0.607955932617 0.154357910156 0.154678344726 }
0.549163818359 0.843856811523 0.178649902343 0.409255981445 0.595489501953
BT = 0.942672729492 0.008666992187 0.239028930664 0.142791748046 0.671371459960

0.613098144531 0.065872192382 0.300445556640 0.576828002929 0.726318359375

151

0.561660766601 0.332702636718 0.355514526367 0.279266357421 0.531448364257
C = | 0.427825927734 0.648269653320 0.666625976562 0.572494506835 0.972076416015
0.455917358398 0.134307861328 0.497573852539 0.212463378906 0.653732299804

The eigenvalues to be allocated are

{0.704589843750, 0.421768188476, 0.572113037109, 0.396102905273, 0.127380371093}.

The K computed by our algorithm was found to be

—9.415631257941 —1.520241736469 11.520696978251
K =] -36.155174309311 -4.515055559417 41.184483490595
33.590525809043 4.071903303950 —36.923138190434

The eigenvalues of A — BKC were computed and they were M(A — BKC) = {0.704589843749,
0.421768188479, 0.572113037109, 0.396102905270, 0.127380371093}.

Example 2: In the above example we had n = m4p—1,thusalln eigenvalues were allocated.
However, if m+ p—1 < n then n — (m + p — 1) eigenvalues of A~ BKC will take values that our

algorithm has absolutely no control over. The following example demonstrates this point.

0.356336616284 —0.356626507847 —1.198870998736

A —0.210549376245 2.165165719183 —0.882324378697

—0.355939324751 —0.506195941988 0.721098719251

1.606955436561 —0.407338058168
B = 0.062823512419 —0.595038063525
—1.611627967397 0.616657720777

c =»(—1.182820557312 0.343687857622 —0.357421120340)

The eigenvalues to be allocated are {-0.406648486670, -0.366406484747, 0.853280016421}.

152

The K computed by our algorithm was found to be

—2.053475126112
—6.466096811958

The eigenvalues of A — BKC were computed and they were A(A — BKC) = {-0.406648486670,
-0.366406484747, 1.707616832510}.

Our algorithm allocates one eigevalue at a time, thus complex eigenvalues need complex arith-
metic. As a result, K may be complex. Investigation is under way to derive an algorithm that
will allocate two eigenvalues at a time in a double step. In this way we will allocate a complex

conjugate pair of eigenvalues in one double step using only real arithmetic. Hence K will be real.

6 Conclusion

We presented an algorithm for the pole assignment problem for multi-input, multi-output systems
using output feedback. The algorithm uses deflation based on unitary similarity transformations
and it allocates min{n, m 4 p — 1} eigenvalues. The same kind of deflation has been used in [3] to
solve the corresponding pole assignment problem using state feedback. Since the algorithm in (3]
has been proven to be numerically stable we hope the algorithm in this paper has the same property
too. However, this needs to be proven by doing a rounding error analysis of the algorithm, and we

plan to do this in the near future.

References

[1] Bjorck, A. & Golub, G.H., “Numerical Methods for Computing Angles Between Linear Sub-
spaces”, Mathematics of Computation, v.27, No.123, pp. 579-594, 1973.

[2] Macfarlane, A.G.J. & Karcanias, N., “Poles and Zeros of Linear Multivariable Systems: A
Survey of the Algebraic, Geometric and Complex-Variable Theory”, Int. J. Control, v.24,
No.1, pp. 33-74, 1976.

[3] Miminis, G.S. & Paige, C.C., “A Direct Algorithm for Pole Assignment of Time Invariant
multi-input Linear Systems using State Feedback”, Automatica, v.24, No.3, pp. 343-356, 1988.

153

[4) Miminis, G.S., “The use of Deflation in Eigenassignment Problems”, To appear in the Pro-

ceedings of the MTNS89 conference, Amsterdam, June 1989.
[5] Parlett, B., “The Symmetric Eigenvalue Problem”, Prentice-Hall, 1980.

[6] Saad, Y., “Projection and Deflation Methods for Partial Pole Assignment in Liner State Feed-
back”, IEEE Trans. Autom. Control, v.33, No.3, pp. 290-297, 1988.

[7] Wilkinson, J., “The Algebraic Eigenvalue Problem”, Oxford, 1965.

154

