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ABSTRACT

Conventionally kinematical constraints in multibody systems are treated

similar to geometrical constraints and are modeled by constraint reaction
forces which are perpendicular to constraint surfaces. However, in

reality, one may want to achieve the desired kinematical conditions by
control forces having different directions in relation to the constraint

surfaces. In this paper the conventional equations of motion for multibody

systems subject to kinematical constraints are generalized by introducing

general direction control forces. Conditions for the selections of the

control force directions are also discussed. A redundant robotic system

subject to prescribed end-effector motion is analyzed to illustrate the

methods proposed.

I. I_ION

In many applications of multibody systems certain points are desired to

follow prescribed paths, such as the end-effector in a robotic system.
Such kinematical conditions are treated constraint equations to

determine the system motion and the control forces.
In this paper those constraints which arise from geometrical

restrictions such as closed loops and physical guides are termed

geometrical constraints. On the other hand, kinematical constraints are
defined as those conditions which represent desired motions or desired

paths of certain points or bodies.

In the conventional methods of analysis, regardless of the

fundamental dynamic equations (Newton-Euler, Lagrange, Kane, etc.) used,

the constraints are modeled by constraint reaction forces which are

perpendicular to the constraint surfaces. (See Arnold [I], Hemami and

Weimer [2], Kamman and Huston [3], Wehage and Haug [4], Nikravesh [5],
Kim and Vanderploeg [13], Amirouche and Jia [6].)

However kinematical constraints do not have to be satisfied by
constraint reaction forces, and usually have to be realized by control
forces applied by the actuators in the system. Hence the conventional
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solution procedure imposes an arbitrary restriction to the directions of

the control forces. Depending on the places of the actuators in the system

one may want to achieve the desired kinematical conditions by control
forces having different directions in relation to the constraint surfaces.

In this paper the conventional equations of motion are generalized by

inroducing general direction control forces for kinematical constraints,

that replaces the constraint force representation. And the dynamic
equations for multibody systems subject to geometrical and kinematical

constraints are developed. By the proposed method of solution the control

forces and the system motion are solved simultaneously.

This paper is divided into five sections. After the introduction, the

second section outlines the conventional equations of motion for

constrained multibody systems. In the third section the general direction
control forces for kinematical constraints are introduced and the

conditions for the control force directions are discussed. In section four

simulations of a redundant manipulator by the conventional and the

proposed methods are presented.Conclusions form the last section.

2. COI_IONAL EQUATIONS OF NOTION

Consider a mechanical system where q1,...,qn are a set of generalized

coordinates chosen for convenience to specify the configuration of the

system. Let the system be subject to c constraints. Kane's equations for

an arbitrary system of particles and rigid bodies can be expressed as
(Kamman and Huston [3], Baumgarte [7]),

where

F* + F + Fc = 0 (I)

F_ = Xi a_---JL i=l,...,c , p=1,...,n (Z)
ayp

F*, F and Fc are the vectors of generalized inertia, external and

constraint forces respectively. In equation (2) fi=O, i=1,...,c are the
constraint equations in the acceleration level, Ai are undetermined

multipliers, and y1,...,yn are the generalized speeds of the system chosen

for convenience as independent linear combinations of _p. The
tranformation between _p and yp, e.g. Euler angle derivatives and relative
angular velocity components can be expressed as

qh = Thp yp h,p=l,...,n (3)

where Thp are functions of qp (Kane and Levinson [8]).

The generalized inertia forces can be expressed in the following form
(Huston and Passarello [9]),
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F* =M_+Q (4)

where M is the generalized mass matrix of the unconstrained system being

functions of qp, and Q contains the quadratic velocity terms.

The holonomic and nonholonomic constraint equations can be expressed
in the acceleration level as below

Bip yp - hi i=l,...,c (5)

In eq. (5) B is cxn constraint matrix, and Bip and hi are

functions of qp and yp.

Note that for holonomic constraints _i(qp,t)=O,

- _i Thp
Bip - a_ h

and for velocity level nonholonomic constraints_i(qp,yp,t)=O,

_i
Bip = --

ayp

Then, using eq. (2), the generalized constraint forces are

in general

Fc = BT X (6)

The undetermined multipliers _i represent the restraining constraint

forces and moments generated by the constraints at the points of
application (Ider and Amirouche [11]).

Equations (I) and (5) represent the governing dynamical equations.

Combining these and making use of equations (4) and (6), we have

M
B

(T)

The accelerations obtained from eq. (7) are then used for numerical

integration for the time history of yp and, through the use of eq. (3),

the generalized coordinates qp.
Lagrange multipliers could be eliminated to reduce the equations for

computational efficiency. To this end let C represent a nx(n-c) matrix

which is orthogonal complement to B, obtained either by Singular value

decomposition (Singh and Likins [12]), Zero eigenvalue method (Kamman and

Huston [3]), Q-R decomposition (Kim and Vanderploeg [13], Amirouche and

Jia [6]), or row equivalence transformation (Ider and Amirouche [10]).

Premultiplying eq. (I) by CT yields

CT(F*-F) = 0 (8)

Combining equations (8) and (5) and utilizing eq. (4), we obtain the

reduced equations
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[CTM]B[CTFQ]h (9)

Equations (9) and (3) form a set of 2n first order ordinary differential

equations that can be numerically integrated to obtain the time history of
yp and qp.

When relative joint coordinates are selected as the generalized

coordinates and the corresponding partial velocity vectors are developed

using recursive multibody kinematics (Huston and Passarello [9], Ider and
Amirouche [10]), constraint equations for joint connections are

automatically eliminated. Hence, in this paper an open tree-like system
represents an unconstrained system where n is the total number ofthe free
joint degrees of freedom.

3. CONTROL FORCES FOR KINENATICkL CONSTRAINTS

Now consider that a tree-like multobody system is subject to geometrical

and kinematical constraints. Kinematica] constraints represent desired

motions or desired paths of certain points or bodies. They are the

conditions that have to be realized by the actuators in the system. The

desired motions could be specified at position, velocity or acceleration
levels and could be holonomic or nonholonomic.

Whether one uses Newton-Euler, Lagrange or Kane's equations or other

variations of these, in the conventional approach the constraints in the

system are modeled by constraint reaction forces which are perpendicular
to the constraint surfaces. In the case of geometrical constraints

perpendicular reaction forces at the application points are generated,
hence the above approach is necessary. On the other hand kinematical

constraints could be achieved by a number of alternative control forces

whose directions in the generalized space can be be selected by physical
considerations. Therefore the conventional equations of motion should be

generalized by considering general direction control forces for
kinematical constraints.

Consider c constraint equations (5), and let cI of the constraints in

the system be geometrical and the remaining c2 (c2=c-ci) be kinematical.

The constraint matrix B and the vector of constraint force magnitudes X
can be partitioned such that

B = [ BGT BKT] T (10)

and

X = [XGT _KT] T (11)

where BG is a clxn matrix, BK is a c2 matrix, XG is a c_ dimensional
vector and XK is a c2 dimensional vector.
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Addition of control forces to the equations of motion yields

M # + Q + BGTX G + BKrX K + ArM - F (12)

where A is a czxn control force matrix where each row represents the

direction of the control force for each kinematical constraint in the

generalized space, and _ is c2 dimensional vector of control force

magnitudes. Now assume that the control force directions and magnitudes
are selected such that the restraining constraint forces _G become zero.

This leads to

M _ + Q + BG'r XG + A'rp = F (13)

Eq. (13) can be written in the following form

M _ + Q + ZTu = F (14)

where Z is the augmented matrix of constraint and control force directions

Z = [B GT AT] T (15)

and is the vector of constraint and control force magnitudes,

v = [_G T _T]T (16)

Once the control force directions A are selected by physical
considerations eq. (14) needs to be solved together with eq. (5) to
determine the control force magnitudes simultaneously with the generalized
accelerations• Hence the augmented equations of motion are

(17)

Alternatively the equations could be reduced in a manner similar to

Section 2. To this end, let O be a nx(n-c) matrix orthogonal complement to

Z. Premultiplying eq. (14) by _T and augmenting with eq. (5) leads to

CT (F-Q)

h

(18)

In the case when the reduced equations are used v can be obtained from eq.

(14) utilizing the computed accelerations, as

v = (Z ZT) -I Z (F-My-Q) (19)
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Note that A should be selected such that rank Z=c, because otherwise there
will be less than cz control forces to control cz kinematical conditions.

The augmented equations have a solution if and only if the augmented

mass matrix is nonsingular, in which case the prescribed conditions are
achieved with the corresponding control forces. On the other hand if it is

not physically possible to realize the kinematical constraints with the

selected control force directions, this reveals itself as a singular ( or

near singular) augmented mass matrix. Therefore the condition for the
existence of solution could be expressed as follows: Directions A should
be chosen such that a linear combination of the rows of OTM should not be

a linear combination of the rows of B. In other words the vector space

spanned by the rows of _TM and the vector space spanned by the rows of B

should be nonintersectin9 (except the zero vector). Since the dimension of
the vector space spanned by the rows of B is c, and that of _TM is n-c,

the possibilities for CTM are infinitely many (provided that n-c>O). Hence

one can construct various vector spaces for OTM by different selections of

the control force directions A. CTM that correspond to directions B is

only one of them.

For redundant systems, i.e. when c<n, it has been observed that one
usually has several physically meaningful control force directions to

satisfy the given kinematical conditions.

In the special case when A is selected such that its rows are linear

combinations of the rows of BK, then since _ is the same as C in the

conventional model, y becomes the same as the conventional case and ZTv

becomes equal to BT_. However vi may be different than _i depending on A.

Similarly for nonredundant systems, i.e. n=c, B is nxn, and rows of Z
are necessarily linear combinations of the rows of B. In this case C is

null matrix and the above procedure reduces to the conventional method

where ZTv is equal to BTX.

It should be noted that OTM and B may form nonintersecting vector

spaces even if CT and B do not. Hence realization of the prescribed
motions is possible even in the extreme case when a control force

direction is tangent to the corresponding constraint surface. This is due
to the inertia coupling between the generalized coordinates.

4. SIIIU.ATIONSOF A REDUNDANT ROBOTIC SYSTEM

In the three link manipulator shown in Figure I, the configuration of the

system can be described by three generalized coordinates el, 82, es. The
generalized speeds yp are defined as

yl : el , y2 : ()2 , y3 : (_s

The data used are LI=L2=Ls=I.0m, ml=3Okg, m2=m3=18kg, I1=10 kg.m 2,
I2=I3=8.64 kg.m 2.

The end-effector (point A) is desired to move in the horizontal
direction with a constant velocity vA. Hence the constraint equations in
the system are
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y

L2

1.0 m

Figure 1. Three link manipulator

Lie1 + L2clz + L3c13 = vat + 1.9088

Llsl + Lzs12 + L3s13 = 0.9893
(20)

where cl=cosel, c12=cos(el+ez), c_3=cos(el+e2+e3), and similarly sl=sinel,
s_2=sin(e,+e2), s_3=sin(e_+ez+e3). At the acceleration level the
constraint equations are given by eq. (5) where B and h are

r L1 Sl+L2s12+L3s1 3

B = |
[ L1 c_ +L2c1 2+L3 cl 3

L2s12+L3s13 L3s13 ]
L2cl 2+L3c13 L3c13

(21)

and

h =[ -Lls_y12-Lzslz(yl+yz)2-L3s13(yl+y2+y_)2]
-L1 cl yl 2-L2 cl 2 (yl +y2 )2-L3cl 3 (yl +yz+y3 )2

(22)

Initially the system is at the configuration 81=60 ° , e2=-I0 °,

e3=-90 o. The initial generalized speeds are yi=0.386 rad/sec, yz=O,

y3=-0.9618 rad/sec, which correspond to vA= -I m/sec.
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First the system is simulated using the conventional method. The

generalized constraint forces can be expressed from equations (6) and (21)

as,

F_

F_

F_

,_1 (Llsl+Lzslz+L3s13) + >_2 (Llcl+L2Clz+L3c13)

_,1 (L2Slz+L3s13) + 42 (L2c12+L3c13)

>_1 L3s13 + )_z L3c13

(23)

In particular we wish to determine joint moments denoted as Mi, i=1,2,3
that would achieve the desired kinematica] conditions. F_, i=1,2,3

represent the required joint moments. It is seen from eq. (23) that all

three joint moments are nonzero, i.e. motors are required at all three

joints.

_e 4
(do_)

20 _ l

2

5

-40 _

t

Figure 2. Displacements.

Conventional method : I. A01, 2. z_e2, 3. z_03

control force method- 4. AB1, 5. A(_2, 6. z_03
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Figure 3. Velocities.
Conventional method : 1. 91, 2. Oz, 3. 03
Control force method: 4. B1, 5. B2, 6. es

The simulation is performed for I sec., until the end effector moves
Im in -x direction. Ael and 9i, i=1,2,3 are plotted in Figures 2 and 3

respectively. The joint moments Mi required to obtain the desired motion
of the end effector as obtained by the conventional method are shown in

Figure 4.
Second the system is resimulated by the proposed control force

approach. As an illustration the control force directions are selected
such that no moments are needed at the lower joint of link I. The

corresponding control force directions are

A=IO 1 O]0 0 1
(24)

Note that since there are no geometrical constraints in this system, the
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Figure 4. Joint moments.

Conventional method : I. MI, 2. Mz, 3. M3

Control force method: 4. Mz, 5. M3

matrix Z is identical to A, and the vector v is identica] to H. The
control forces ZTv are

ZTv

0
-- Vl 1

0

0

V1

¥2

(25)

Hence, in this case, the required joint moments for the prescribed end

effector motion are MI=O, Mz=vl, Ma=vz.

The augmented mass matrix was observed to be full rank as expected.

ei and Oi, i=1,2,3 for a simulation of I sec. are plotted in Figures 2 and

3. The joint moments are plotted in Figure 4. Note that in this case a

motor is not needed at the lower joint of link I.
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Initial configu_atlon

Figure 5. Final configurations: I. Conventional

method; 2. Control force method.

The system's motion differ in the above two approaches although in

both cases the end effector performs the same motion. The configurations

at t=1 sec. corresponding to the conventional model and the control force

model are shown in Figure 5.

5. CONCLUSIONS

This paper presented a general procedure for the dynamic modeling of

multibody systems subject to kinematical constraints. General direction

control forces have been introduced that replace the conventional

constraint reaction forces, hence increasing the ways of realization of

the prescribed motions. It is shown that the possible conrol force
directions are more than one, and the criteria for the existence of

solution have been presented.
The method proposed in this paper involves selecting the control

force directions in the generalized space by physical considerations, and

then solving their magnitudes simultaneously with the corresponding system
motion. As a result one can design alternative control forces that can be

applied by the actuators in the system. The method is expected to be

especially useful to control the extra degrees of freedom in systems that

have joint flexibility or joint clearance.
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