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Abstract

An algorithm for parallel computation of transient response for structures is presented in which
responses of substructures are computed independently for dozens of time steps at a time, and these
substructure responses are then corrected to obtain the response of the overall coupled structure.
The correction of the uncoupled substructure responses only requires the responses computed for
interfaces at occasional points in time, and is done independently for different substructures in a
very efficient procedure. A numerical example is presented to demonstrate the method and show the
accuracy of the method.

Introduction

A significant amount of effort has been directed recently toward the development of methods for
subdividing the computational effort associated with the solution of large transient response problems.
The general approach of subdividing the computation associated with a given problem on the basis of
a subdivision of the problem domain into subdomains has come to be known as domain decomposition
in the last few years.l*? For transient response problems in structural dynamics, some efforts in this
direction have been motivated by the need to solve problems for systems consisting of two or more
well-defined subsystems, such as the Shuttle orbiter and its payloads, using modal data that have
already been obtained for each of the subsystems rather than computing new modal data for the
combined system.3~5 Other work has been done in the context of the element-by-element approach
to finite element analysis.®7 More recently, Ortiz et al. have proposed methods specifically intended
for concurrent computation of transient response based on a subdivision of the problem domain into
subdomains.®® In their approach, an implicit integration scheme is used to obtain response for each
subdomain for a given time step, and the results of these computations are averaged at interfaces
to yield an approximation of the response of the overall system. Hajjar and Abel have investigated
the accuracy of these methods for certain structural dynamics transient response problems, and have
concluded that their accuracy is inadequate for these problems when practical time step sizes are
used.!®

In all of the transient response methods mentioned above, computation of response on the sub-
structure level can only be done independently for one time step at a time. In contrast to this, an
algorithm was presented recently by these authors which allows independent computation of sub-
structure response for an arbitrary number of time steps at a time.11 After independent substructure
responses have been computed, they are corrected based on the interface motion computed for sub-
structures at each time step, to obtain the response of the combined structure. Allowing the response
to be computed independently for a number of time steps at a time reduces the interdependence be-
tween processors assigned to different substructures significantly, which can be important when the
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amount of computation required for different substructures is unequal. Also, if there are more sub-
structures than processors, the cost of swapping different substructures in and out of processors will
be reduced if it can be done less frequently.

In the present paper, an extension of the algorithm presented in Ref. 11 is presented in which
independent substructure response computation can proceed for much longer periods of time. Inde-
pendent substructure responses are corrected on the basis of computed interface motion sampled at
occasional points in time. The correction procedure for obtaining the response of the structure from
the computed substructure responses is extremely efficient once the transient response computation
is under way, although there is some computational overhead required to set up the correction capa-
bility. A numerical example is presented which illustrates the method and shows the accuracy that
is obtained.

A Method Using Substructure-Level Response Computation

The algorithm presented in this paper is for computing the transient response of structures whose
motion is governed by the equation

M+ C+ Ku = F(2) o Q)

where M, C, and I are taken to be constant mass, damping, and stiffness matrices, 1, 4, and u are
acceleration, velocity, and displacement vectors, and F(t) is a vector of forces exciting the system.
As mentioned in the Introduction, the transient response of a given structure is computed in this
algorithm by solving transient response problems for the substructures defined by “decomposing the
structure. To introduce the notation that will be used in this paper, a mass matrix for a structure
composed of two substructures is shown below, after a possible reordering of rows and colamns:

My MY 0
M= My MO+ M“) M) |- (2)
o M

" "The superscripts in parentheses tell which substructure a given matrix partition is associated with,
and the subscripts 5 and L refer to matrix partitions associated with shared, or interface, and local,
or internal degrees of freedom. For some of the development in this paper, a structure composed of
only two substructures is considered in an effort to simplify the presentation. However, the methods
presented will be applicable for an arbitrary number of substructures.

Because responses will be obtained for each of the substructures a structure is composed of, some
convention must be adopted for representing the structure response in terms of the substructure

responses, particularly at the interfaces. In this paper, the approach taken is similar to the standard

approach for the assembly of element matrices in the finite element method. The response of the
structure in interface degrees of freedom is represented as the sum of the interface responses for the
substructures sharing the interface, e.g.,

e

L

u = ug) + ug) ) (3)
ul?
L

so that each substructure’s interface response is only one component of the total interface response
of the structure. Of course, if this convention is adopted, substructure transient response problems
must be defined and solved in such a way that the response of the structure obtained by assembling
together the substructure responses is accurate.
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Substructure response problems can be defined for independent computation by extracting equa-
tions from the structure equations of motion, and they will be of the form

{ MY M) } { &) } N [ é‘{g cg;; ] { a(?") }
wfd [ Lab % L e 1o
I‘((ks) Kg? w) _ F.(sk) '
s s O R R NN G B O ()
LS LL L L

where “hat” symbols identify matrix or vector partitions for which a policy for assigning the cor-
responding partitions in the structure equations of motion to the different substructures must be
determined. Again, reordering of rows and columns may be necessary to collect all “shared” degrees
of freedom together for a given substructure. Simply computing substructure responses that satisfy
these equations and assembling them together will not result in an accurate representation of the
response of the overall structure, because the interaction between substructures is neglected in such
an approach. It must be noted that in the response of the structure, each substructure has two
sources of excitation. One is the external applied force, which appears on the right hand side of the
equation above, and the other is due to interaction with adjacent substructures at the interfaces.
This suggests a two-step approach for computing the responses of substructures in the response of
the coupled structure. The first step consists of obtaining independent substructure responses that
satisfy the substructure equations of motion above. These responses neglect any interaction between
substructures. Then the second step consists of correcting these substructure responses to obtain
responses of substructures in the motion of the coupled structure. It will be shown that this second
step can be accomplished with a surprisingly small amount of effort, and with very little information
from the independent substructure responses.

If independent responses satisfying the substructure equations of motion are computed, and as-

sembled together and inserted into the structure equations of motion, a residual r(¢) will be obtained.
For a two-substructure structure the residual will be given by

r(t) = Mi+Ci+Ku-F

uf) M o (e )
- | M e w |{ e
o ug o i
[ c) ¢l 0 ad) 1
ol ol e @ || Wl
(k) K[ 0 u) F{
+ Kﬁ‘lg EQ+ kD kD | uf +u) p-q Fs ¢ (5)
2) (2)
o k3 ki uf Fy
By making use of Eq. (4), the residual can be obtained as
DO\ [ M+ ofaf + ki)
rg(t) - 2.0) . (t)l .o [’ ©)
D | | e i) + k)

where

rs(t) = (MY + MIYaP + o) - M{a - MQadd
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Note that the residual associated with one substructure is given entirely in terms of the interface
motion computed for adjacent substructures. Note also that rs(t) is defined in terms of the “hat”
partitions of Eq. (4), and can be obtained as a null vector, if these “hat” partitions are chosen to

satisfy the following:
M;l) Y (2) M(l) M2

5§
o) — C(z) e 1 e,
. 8
ng? _ (2) (1) +K§25), (8)

FEJ) (2) = Fs.

With this as motivation, the “hat” partitions are taken to be defined this way in this paper. A physical
interpretation of this choice is that for each of the independent substructure response problems, the
structure is modeled as if it were clamped one node beyond the interfaces, and the excitation acting
on the structure at the interfaces is divided between the substructures that share the interfaces.

The residual in the equations associated with a given substructure can be seen to be a result
of including the interface motion of adjacent substructures in the given substructure’s equations
of motion. This interface motion for adjacent substructures was neglected in the solution of the
independent substructure response problems. In order to obtain the true response of the structure,
the substructure responses must be corrected to account for adjacent substructures’ interface motion,
so that when the substructure responses are assembled into the structure equations of motion, the
residual is zero.

For the correction to the first substructure’s response, note that if the interface motion for the
second substructure were given, the residual in the structure equations of motion associated with
the first substructure would be defined. The first substructure’s response would have to be corrected
by adding a response of the first substructure to the negative of the residual resulting from the
interface motion of the second substructure. The second substructure’s response would have to be
corrected in a similar manner, if the interface motion for the first substructure were given. However,
the interface motion for both substructures is not known a priori, because all of the interface motion
will be changed as a result of the corrections to the substructure responses. The responses of both
substructures will have to be corrected simultaneously, so that the response of each substructure to
the negative residual due to the other’s corrected interface motion will be added to the independently
computed substructure response. The following paragraphs present a method for accomplishing this.

Because the residual is defined in terms of interface motion, it is convenient to introduce a vector
v(%)(t) containing the interface accelerations, velocities, and dlsplacements for the kth substructure
as

g (1)
oBit) = { a1 ©)
ug(2)
With this definition, the correction of the first substructure’s response to account for the second
substructure’s interface motion will be the response to an excitation of the form

f(l)(t) = [—Agl(,lg - Ogg ‘Iggs)] 1,(2)(0’ (10)
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where the degrees of freedom are ordered as in the structure equations of motion. If the second
substructure’s interface motion v(z)(t) is given only at the beginning and the end of a time interval
consisting of p time steps of length At, the interface displacement u_(gz)(t) can be approximated over
the time interval 0 < t < pAt by interpolation. Hence, ug)(t) is assumed to take the form

w1 = (B0 O HHIe?0)
+ [ PO b0 (pAD) (11)

where I represents a unit matrix and ¥;(t), ¢ = 1,...,6 are interpolation functions that must satisfy
the following end conditions:

$1(0) = 1, $1(0) = 91(0) = ¥1(pAt) = $r(pAt) = $u(pAt) = 0,

P2(0) =1, $2(0) = ¢2(0) = 2(pAt) = 12(pAt) = Y2(pAt) = 0,

¥3(0) = 1, ¥3(0) = 13(0) = ¥3(pAt) = ¥3(pAt) = 93(pAt) =0, (12)
Pa(pat) =1, a(0) = $a(0) = ¥4(0) = Yu(pAt) = ¥ua(pAt) =0,

Ps(pAt) =1,  5(0) = ¥5(0) = ¥5(0) = ¥5(pAt) = ¥5(pAt) = 0,

Pe(pAt) =1,  $6(0) = ¥6(0) = ¥6(0) = Ye(pAt) = Ys(pAt) = 0.

Quintic polynomials were used for the results obtained in this paper. Expressions for 'ug)(t) and
ﬁg)(t) for defining the excitation for correcting the first substructure’s response are easily obtained
by differentiating the interpolation functions.

With ug)(t) defined in terms of v(?)(0) and v(®(pAt), the corrected interface motion for the
first substructure at the end of the time interval will be the sum of the response to the independent
response problem and the response based on vm(t), 0 <t < pAt. Hence, it will have the form

ind

v(l)(pAt) =W (pAt) + va(z)(O) + Tlgv(z)(pAt), (13)

where each column of the matrices S12 and T2 contains the first substructure’s interface response
at t = pAt to a negative residual specified by a column of the first or second matrix, respectively,
on the right-hand side of Eq. (11). Using a similar approach, the corrected interface response of the
second substructure at the time t = pAt can be expressed in terms of the first substructure’s interface
motion as

ne) (pAt) = @ pAt) + 5211?(1)(0) + Tzl’v(l)(PAt)- (14)

ind

As mentioned above, corrected interface motion for an adjacent substructure is not known before
the reconciliation is accomplished. All that is known in the two equations above is the interface
motion of both substructures at ¢ = 0, from initial conditions, and the interface motion obtained
from the solution of the independent substructure transient response problems. However, given the
set of linear equations in Eqs. (13) and (14), it is straightforward to solve for the unknowns, with the
result that

{‘v(l)(pAt)} _ [I_ [ 0 Tn”" {vfi}, pAt) + S120)(0) (15)
v(@)(pAt) - T O vf:L(pAt) + S10M(0) |
More compactly, the reconciled interface motion is given by
v(l)(O)
v(V(pAt) } —1 +(3(0)
=[I-T S I ) 1
{sopan) = =TS 11 (16)
via(pA?)
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where the matrices S and T are readily identified. The corrected motion for the first substructure’s
local degrees of freedom at t = pAt is given by

)
up (PAY) | _ [ upma(pAt) ® oo v20)
{ai‘)(pAt)} ) {uff,,-’,,Z(pAt) } 152 10 Bapan | (7)

where columns of the matrices S} () and Tl(,l) contain responses in local degrees of freedom to interpo-
lation functions for representing mterface motion. These two matrices are naturally obtained at the
same time that the matrices .5'12 and Ty, are obtained, from the solution of the same substructure
Tesponse problems "The corrected motion in local degrees of freedom for the second substructure is
obtained in the same manner. Once the motion in both local and shared degrees of freedom has been
corrected for { = pAt the initial condmons have been obtalned for ongoing computation of response
for the next p time steps.

The developments presented here are easxly apphed to structures composed of more than two
substructures. For example, if there are three substructures, the matrices § and 7T in Eq. (16) take

the form
0 512 313 0 T12 Tl3
S = 521 0 523 5 T = T21 0 T23 ) (18)
S31 S32 0 T3; T3, 0

and modification of the rest of the procedure presented for two substructures is straightforward.

Infrequent Reconciliation of Substructure Responses

In the method of the precedmg section, responses are computed independently for different sub-
structures for p time steps at a time, and then the independent substructure responses are corrected
to obtain substructure responses in ihe response of the overall coupled structure. In this section, a
procedure for carrying out the reconciliation of independent substructure responses after a number of )
p-step time intervals is developed. This procedure will allow substructure responses to be computed
independently for long periods of time without correcting for interaction between substructures.

The interface motion for the second substructure over the time interval pAt <t < 2pAt can be
approximated in terms of the interpolation functions introduced in the preceding section and the

interface motion at the beginning and end of the time interval as
ulP(1) = [P (1] Ya(t*)I wg(t‘)I]v(z)(pAt) +H9a( $s()] Ye(t) P (2pAt),  (19)

where t* = t — pAt. Recalhng that substructure responses have two components 1nc1udmg the

A}

respgnsi to external excitation, which is represented in the lndependent substructure responses, and
the response due to interaction with adjacent substructures, which is represented in the correction to
the independent substructure responses, the interface response of the first substructure at the time

t = 2pAt will have the form

oo

v(l)(ZpAt) = o) (2pAt) + S12(2pAt)0(0) + Tria(2pAt) ) (pAt) + Tlg(pAt)v(Z)(2pAt) (20)

ind

' erre, the columns of S12(2pAt) contain responses of the first substructure at t = 2pAt based on
the second substructure’s interface motion, which is given in terms of the interpolation functions ¥,
1, and 3 for 0 < t < pAt, and is extended as zero for pAt < t < 2pAt. Similarly, the columns
of T12(2pAt) contain responses of the first substructure at ¢ = 2pAt based on interface motjon of
the second substructure which is given in terms of the interpolation functions 4, %5, and g for
0 < t < pAt, and is extended in terms of 11, 12, and 3 for pAt <t < 2pAt. The matrix T12(pAt)

is simply the matrix 71z of the preceding section.

D B m

i

FEATN
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The interface motion for both substructures at ¢ = 2pAt can be written as
v()(2pA1) v(2pA1) v<l>(o>}
{voman) = o (apar) | T SCPAD (v
»(V(pAt) »(V(2pAt)
#1200 {Jpad }) #7600 { Gizpan ) @)

with S and T matrices defined in terms of 0, Sy2, Sa1, 0, etc., as in the last section. Solving for
v((2pAt) and v(D(2pAt) gives the result

v(0
v(2pAt) = [T — T(pAt)]"'[S(2pAt) T(2pAt) I] { v(ISA)t) } (22)
vind(2pAt)
where . oW (ipAt) -
o(ipAt) = { Toan } . (23)
Recalling that
v(pat) = 1 - a0 sa) 11{, "0\, (2)

and letting A = [I - T(pAt)]~!, Si = S(ipAt), and T; = T(ipAt), v(2pAt) can be obtained in terms
of initial conditions and independent substructure responses as

v(0)
v(2pAt) = A[(S2 + T2AS:) TA I]{ Vina(pAt) } - (295)
_ 'v,‘"d(2pAt)

The corrected interface motion at ¢ = 3pAt can be found using the same approach. When the
interface motion for the different substructures is assumed in terms of interpolation functions as in
Eq. (19), linear equations involving »(3pAt) can be written as in Eq. (21). These equations can be
solved for v(3pAt), yielding the result

v(0)

o@pA) = A[Ss Ty T I :((2’;‘2’2) . (26)
’v,'nd(3pAt)
Interpolation functions are simply extended as zero into the time interval 2pAt¢ < ¢ < 3pAt in the
generation of responses for matrices S3 and T3. Inserting the expressions for v(pAt) and v(2pAt)
from Eqgs. (24) and (25) gives v(3pAt) in terms of initial conditions and independent substructure
responses as

v(3pAt) = A[ (S3 + T2A52 + (T3A + (TgA)z)Sl) (T3A + (TgA)z)
- v(0) o '
vind(pAt)
'v,'nd(3pAt)
This result can be generalized for finding the corrected interface motion at a time t = mpAt, with
the result that

v(0)

'v,’nd(pAt)

m-1
v(mpAt) = A [ (E BiSm—i) Bm—l Bm—‘2 e BO ) (28)
=0 -

vind(mpAt)
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where By = I, and the other B; matrices are defined by the recursive formula

i-1
B,‘ = Z(T,'_l.‘.lﬁ)Bl, (29)
1=0

so that By = T3A, B, = T3A + (TgA)z, By = T4A + TR AT, A + T, AT3A + (TzA)S, etc. Defining a
matrix Cy, as .
Cm =A [(Z B'Sm—t') Bm—l Bm—2 .-+ Bp y (30)
1=0
the corrected interface motion can be obtained separately for each substructure by partitioning Cy,
into upper and lower halves C(l) and C, (2), and multiplying each by the vector on the right hand side
of Eq. (28). For parallel computation, if different processors are assigned to different substructures,
the processor for the kth substructure only needs to have access to C¥ and the interface motion
computed independently for all substructures for every pth time step.
After interface motion has been corrected for ¢ = mpAt, the motion for local degrees of freedom
for each substructure can be corrected. As an example, the corrected local motion for the first

substructure will be given by

»(2(0)
(1) (D(pAt
uy ' (mpAt uy . (mpAt v'¥(pAt)
i Dikowd B e’ i SAE AR RN U I S D
Uy’ (mpAt) uL.-nd(mpAt) :
v (mpAt)
where the matrices Sy (k ) ( ) contain responses in local degrees of freedom to interface motion

given in terms of mterpola,tlon functxons and are analogous to the S; and 7; matrices used above in
terms of subscript numbermg The vector of the second substructure’s corrected mterface motlon at

every pth time step is given in terms of the mdependently computed interface responses as

»(2)(0) 0 1(2? 00 --- 0 (0)
v(I(pAt C 0 --- 0 Vina(pAt

(:P ) _ [ G ]: d(:P ) _ (32)
v (mpAt) [ C"S,f) ] Vind(mpAt)

Therefore, the product of the matrix on the right hand side of Eq. (31) and the matrix on the right
hand side of Eq. (32) is the matrix by which the vector of independently computed interface responses
must be multiplied to obtain the correction for the motion in local degrees of freedom for the first
substructure. The same approach is taken to find the correction for the motion in local degrees of

freedom for the second substructure.

To summarize, the developments presentgdﬁ 5;1 this section permxt the independent computation
of response for different substructures for a total time interval of length mpAt. The interface motion
for all of the substructures at the end of this time interval can be corrected using Eq. (28), and then
the motion for local degrees of freedom for each of the substructures can be corrected as shown above.
Once these corrections are made, initial conditions are obtained so that independent computation of
substructure responses can proceed again for another mpAt. The amount of computation required
for the corrections is very small compared to the amount of computation required for obtaining the
independent substructure responses. The computational “overhead” that is required for this method

consists of obtaining substructure responses to interface motion specified in terms of interpolation
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Figure 1: Plane truss used in the numerical example, and its division into substructures.

functions, and carrying out the matrix operations outlined above to obtain the matrices required for
making corrections. This overhead is justified if the transient response of the structure must be com-
puted for a long time. The amount of computation required both for the “overhead” operations and
for the corrections is determined by the dimensions of the matrices involved, which is determined in
turn by how many shared and local degrees of freedom are associated with each of the substructures.

Numerical Example

The algorithm presented in this paper is demonstrated on an example structure which is shown
in Fig. 1. The structure is a plane truss composed of 143 aluminum members, each of which has an
elastic modulus of E = 70 x 10° N/m?, a cross-sectional area of A = 4 X 10~* m?, and a density of
p = 2710 kg/m3. The dimensions are as shown. A force is applied to the top right corner of the truss
starting at ¢ = 0, and it is given by

F(t) = 5(1 — cos 2t) (Newtons), - (33)

where € = 590.3 radians per second, which is between the second and third natural frequencies of
the structure. The truss has eighty-eight degrees of freedom, and is assumed to have proportional
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Figure 2: Plots of exact response (dashed line) and computed response (asterisks).

damping of the form C = aM + K, where a and f are chosen to give modal damping factors
between one and five percent. For application of the algorithm presented in this paper, the structure
was partitioned at the top of the sixth bay into two substructures, which are also shown in Fig. 1.
Note that each substructure is modeled in the algorithm as being effectively clamped one truss bay
beyond the interface, as shown in the figure. R o
In Fig. 2, the horizontal displacement of the structure at the point where the excitation is applied
is plotted. The dashed line is a plot of the exact response, obtained from a mode-by-mode exact
solution, and the asterisks represent values that were obtained using the algorithm of this paper. The
responses of the two substructures were obtained using an algorithm that finds the exact response to a
piecewise linear approximation of the excitation.!? A time step of At = 3.74 x 10~ seconds was used,
which is equal to about one twenty-eighth of the period of the excitation, and is also approximately
equal to the period of the highest mode of the structure. For larger time steps, the error becomes
_visible on a plot scaled as in Fig. 2, when the piecewise linear algorithm is used on the structure
as a whole. In this example, substructure responses were computed independently for sixty time
steps at a time, and then corrections to the independent substructure responses were made based
on the interface motion computed for every tenth time step. Therefore, the quintic interpolation
polynomials for interface motion were defined over time intervals of length pAt with p equal to ten,
and there were six of these time intervals in each time period over which independent substructure
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responses were computed.

Because the response of the structure was only corrected for every sixtieth time step, the asterisks
on the plot in Fig. 2 are sixty time steps apart. It should be noted, however, that the response for
any degree of freedom at any time can be obtained in a straightforward manner with a small amount
of additional computation. From the plot of Fig. 2, it is evident that the accuracy obtained in this
example is quite adequate for most purposes, even though the corrections to independent substructure
responses were made based on a very limited amount of information. The only approximations
made in obtaining these results were in the piecewise linear approximation of the excitation and the
piecewise quintic approximations of the interface motion.

Summary

In this paper, an algorithm is presented for computing the transient response of structures by
computing the transient responses of substructures. The algorithm is well suited for parallel im-
plementation, where a different processor would be assigned to each substructure. The fact that
computation can proceed independently for different substructures for dozens of time steps at a time
reduces the interdependence between processors, which can be of considerable importance when dif-
ferent substructures require different amounts of computational effort per time step. The correction
of independently computed substructure responses to obtain the response of the structure acting as
a whole requires only the interface motion computed for substructures at occasional points in time.
This correction of substructure responses can be done independently for different substructures once
the interface motion for all of the substructures has been computed, and this correction requires
very little effort. Because of this, the total amount of computation required using this approach will
be only slightly greater than the amount required to solve the transient response problem for the
structure as a whole for many problems. A surprisingly high level of accuracy is obtained using this
algorithm, in view of how little information is required for making corrections to the independent
substructure responses. ) '
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