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A decentralized design procedure which combines substructural synthesis, model re-

duction, decentralized controller design, subcontroller synthesis, and controller reduction

is proposed for the control design of flexible structures. The structure to be controlled

is decomposed into several substructures, which are modelled by component mode syn-

thesis methods. For each substructure, a subcontroller is designed by using the linear

quadratic optimal control theory. Then, a controller synthesis scheme called Substruc-

tural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system

controller, which is to be used to control the whole structure.

1. Introduction

Component mode synthesis (CMS) methods [1,2] have proved to be indispensible for ana-

lyzing the dynamic response of large structural systems. Finite element models of order 104

are reduced, by the use of CMS methods, to order 102 to make possible the accurate numeri-

cal simulation of dynamic events. The most widely used CMS methods are those described in

Refs. [3]-[6].

For the past decade there has been a growing interest in the topic of control of flexible

structures, or control-structure interaction (CSI), but so far little has been done to employ

CMS concepts in the design of controners for flexible structures. Although many decentral-

ized control methods have been developed for general linear systems, there have been few

applications of decentralized control to flexible structures. In Ref. [7], Young applies the

overlapping decomposition method, which was formulated by Ikeda and _iljak for large scale

systems [8,9], to develop a control design approach called Controlled Component Synthesis

(CCS). The component finite element models employed by Young include boundary stiffness

and inertia loading terms in the manner introduced in the CMS literature in Ref. [6]. The

controller design is carried out at the component level. Then, the large controlled structure is

synthesized from the controlled components. The idea behind the CCS approach is the same as

that behind the CMS method. However, the way the structure is decomposed is not the same.

Recently, in an attempt to simplify the decentralized control design for structures, Yousuff

extended the concept of inclusion principle, which was developed along with the overlapping

decomposition method by Ikeda et al. [9], to systems described in matrix second-order form

[10]. The substructural model in Yousuff's work is an expanded component, i.e., the original

boundary of the component is expanded into the adjacent component, which is similar to the

substructure used in Young's CCS method. The expanded component is a result of overlapping

decomposition.

The terms component synghesis and substructure coupling both refer to procedures whereby structures are
considered to be composed of interconnected components, or substructures.
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The need to "load" the boundary of one component with stiffness and inertia terms from

the adjacent components is considered to be a drawback of the CMS method of Ref. [6] in

comparison with the methods of Ref. [3]-[5]. Likewise, a decentralized control design procedure

that is not based on overlapping comp0nents should have an advantage over the methods

described in Refs. [7] and [10]. In this paper a decentralized control design process called

Substructural Controller Synthesis (SCS), which was developed in Ref. [11], is described. Figure

1 shows the various steps involved in the SCS method described in this paper. First, a

natural decomposition, called substructuring decomposition, of a structural dynamics system

is defined. It is well known that for structural dynamics equations described in matrix second-

order form, the system matrices of the whole structure can be assembled from the system

matrices of substructures. For each substructure, a subcontroller is designed by an optimal

control design method. Then, the system controller, which is to be used to control the whole

structure, is synthesized from the subcontrollers by using the same assembling scheme as

that employed for structure matrices. The last step is to reduce the order of the system

controller to a reasonable size for implementation. This can he done by employing any existing

efficient controller reduction method, for instance, the Equivalent Impulse Response Energy

Controller Reduction Algorithm developed in Ref. [12]. The final control implementation in

Figure 1 is a centralized control, which means the final controller for implementation is a

system controller. However, the control design is decentralized, because each subcontroller is

designed independently.

The substructure used in the Substructural Controller Synthesis method is a natural com-

ponent, i.e., not an expanded component like that in Young's method. One advantage of using

natural components is that SCS can be effectively incorporated with the Component Mode

Synthesis method fo design controllers for large scale struc{ur_. The -Substructures can be

modelled by a CMS method and then assembled together to form an approximate model for

the whole structure. The subcontrollers can be designed based on the CMS substructures and

can then be assembled together to form a system controller for the whole structure. Another

attractive feature of the SCS controller is that it can be updated economically if part of the

structure changes. Since the system controlle_r is synthesized from subcontrollers, if one sub-

structure has a configuration Or parameter charige, the only subcontroller which needs to be

redesigned is the one-_sociated with that substructure. Therefore, the SCS controller is, in

fact, an adaptable controller for structures with varying configuration and/or with varying

mass and stiffness properties.

The organization of this paper is as follows. In Section 2, substructuring decomposition

is defined for a general linear time-invariant system described by first-order equations. In

Section 3, a substructuring decomposition for structural dynamics systems is developed. Then,

based on the substructuring decomposition, a Substructural Controller Synthesis method is

formulated in Section 4. Finally, in Section 5, a plane-truss example is used to illustrate the

applicability of the proposed method.

2. Substructuring Decomposition

Consider a linear time-invariant system described by

Si_ = Az + Bu

y = Cz (1)

where z E R n is the state vector, u E R l is the input vector, and y E R m is the output vector.

S, A, B, and C are the system matrices with appropriate dimensions.
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Next, consider another linear time-invariant system described by

gi = A_ + hu
y=O_ (2)

with the system matrices in the following block diagonal form

g $2 ._ As /_ B2 (_ = C2
• • *o

". o •o °

S_ A,, ,, C_

and

..., , u:,..., _- ..,.
The dimensions of the variables are zi C R _, ui E R t_,and Yi E R _ . It is assumed that system

(1) and system (2) have the same set of inputs (_'=t li = l) and the same set of outputs

(_i_1 ml = m). Therefore, for this case it is appropriate to use u and y in Eq. (2) as well as

in Eq. (1). Because of the block diagonal form of the system matrices, system (2) is, in fact,

a collection of u decoupled subsystems

Siki = Aizi + Biui

yi = Cizl i = 1, 2, ..., u (3)

Now let us define a substructuring decomposition. System (2) is said to be a substruc-

turing decomposition of system (1) if there exists a coupling matrix T such that the following

relationships hold

S = _T_ A = _T_ B = _T/} C = O/_ (4)

and if the states of the two systems can be related by

= Tz (5)

The above relationships merely state that the system matrices of system (1) are assemblages

of the system matrices of the subsystems in Eq. (3). Therefore, system (1) will be referred to

as the assembled system and system (2) will be referred to as the unassembled system.

3. Substructuring Decomposition of Structural Dynamics Systems

In this section, the substructuring decomposition of a structural dynamics system is formu-

lated. Without loss of generality, we will consider a structure composed of two substructures

that have a common interface, as shown in Figure 2. It is assumed that the control inputs

and the measurement outputs are localized. In the present context, "localized control in-

puts" means that the actuators are distributed such that u_ is applied to the c_-substructure

only and up is applied to the/3-substructure only. "Localized measurements" means that y_

measures only the response of the c_-substructure and yp measures only the response of the

/3-substructure.

Let the equations of motion of the two substructures be represented by

Mini + Diki + Kixl = Piui

yi = V_xi + W_i:_
i = o_, /3 (6)
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It is noted here that the above dynamics equations for the substructures do not have to be

exact (full-order) models. They can be approximate (reduced-order) models obtained by any

model reduction method, say a Component Mode Synthesis method [2]. The dynamics of the

the assembled structure (the structure as a whole) is described by

M_ + D_ + Kx = Pu

y = vz + w_ (7)

Since the two substructures have a common interface and are parts of the assembled structure,

the displacement vectors of the substructures and the displacement vector of the assembled

structure are related. There exists a coupling matrix T which relates x_, xz, to x as follows:

xo Tt _ x (8)

Given the coupling matrix T, it can be shown that the system matrices of the assembled

structure and the system matrices of the substructures satisfy the following relations:

.   [oo0o 0] 
p, V= v T, W= owT

T

(9)

The above relationships can be proved by using the method of Lagrange's equation of

motion [1]. Therefore, it is an inherent property of structural dynamics systems that the

system matrices of the assembled structure can be obtained by assembling the system matrices

of the substructures. This property is, in fact, the essence of all "matrix assemblage" methods,

e.g., the Finite Element Method and Component Mode Synthesis. The above formulation is

based on the matrix second-order equation of motion. For control design purposes, a first-

order formulation which leads to a substructuring decomposition of the structural dynamics

system is required.

Let us rewrite the equation of motion (6) in the following first-order form

[D_M_] f ] [K:_i 0

t.-- JK ,/ L

(5'/) (ki) (A,) (z,) (B,)
i = ,_, _ (lo)

(Ci) (z,)

where the symbol undereach matrix denotes that this equation corresponds to Eq. (3). Simi-
larly, Eq. (7) can be rewritten as

(s) (k)
[:o]

(m) (z) (B)

U

{x}u = [v w] i ::

(c) (z)
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wherethe symbol under eachmatrix denotesthat this equation correspondsto Eq. (1).
Combination of the two substructure equationsin Eq. (10) givesthe first-order equation

of motion of the unassembledsystemin the form of Eq. (2).

(S) (4) (g) (4) B (12)

y_ =[ 0c_j z.
(c)

It can be shown that the unassembled system (12) is a substructuring decomposition of the

assembled system (11). That is, (S, A, B, C)in Eq. (11) and (S, A, B, C) in EQ. (12) satisfy

the relations in Eq. (4). The state vector of the assembled structure and the state vectors of
the substructures are related by a coupling matrix T as

&_

xp

(4)

T, 0

0 T_
T_ o
o T.
@)

; } (13)

(z)

Physically, the coupling matrix _b that relates the state vectors of the substructures and

the state vector of the assembled structure simply describes the compatibility conditions which

must be imposed on the interface degrees of freedom. Let xi represent the physical displace-

ment coordinates of substructures i, and let the physical coordinates of the substructures be

partitioned into two sets: Interior coordinates (I-set) and Boundary coordinates (B-set), as

shown in Figure 2.
B

The displacement compatibility condition requires that x_ = x_. If the displacement vector

of the assembled structure is represented by

{'}X a

X ---- X B

where z s is the vector of interface degrees of freedom, then the three displacement vectors x_,

x0, and x are related by

{}-- .--

x O x_ 0 0 I To

with

[,00] [00,]To= 010 ' To= 010

(14)

The velocity compatibility condition requires that &_ = &_, which leads to

&. = T_&, &0 = TO& (15)
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Combination of Eqs. (14) and (15) showsthat the state vectorsof the substructuresand the
state vector of the assembledstructure are related by a coupling matrix T as in Eq. (13).

4. Substructural Controller Synthesis

The discussion in this section is based on the tw0'component structure in Section 3. The

system is assumed to be subject to disturbance and observation noise. Therefore, the formu-

lation is a stochastic one. At the end of this section, a control design procedure called the

LQGSCS Algorithm is used to summarize the Substructural Controller Synthesis scheme. The

method proposed can also be applied to a deterministic problem with only slight modification.

First, let the dynamics of the assembled structure (the structure as a whole) in Figure 2 be

described by

Sk = Az + Bu + Nw (16)
y = Cz+v

where input d[s_,urbance :v and output disturbance v are assumed to be uncorreiated zero-

mean white noise processes. For a linear stochastic system with incomplete measurement,

optimal state feedback control design requires a state estimator, called a Kalman filter, to

reconstruct the states for feedback. The state estimator of the plant described by Eq. (16) has
the form

Sil= Aq+ Bu+ F°(y-Cq) (17)

where F ° is determined by solving a Riccati equation. If a feedback control scheme u = GOq

is incorporated with Eq. (17) to control the plant, the estimator becomes a controller in the
form

Sil = (A + BG ° - F°C)q + F°y (18)
u = G°q

where superscript o denotes optimal design. The=feedback gain matrix G ° is determined by

minimizing a performance index

J = lim 1 T
t--.oo _E[z Qz + uTnu]

For structural control problems, the weighting matrix Q is usually chosen to be

(19)

Q=[Ko MO ] (20)

such that the first term in the performance index represents the total energy of the structure.

Since u is assumed to have the form indicated in Eq. (2), it is appropriate to choose the control

weighting matrix R to have the form :_

R n. 0 ] (21)0 Rz

The above centralized design scheme for a linear optimal compensator is well known.

Now, a decentralized controller synthesis method, called the Substructural Controller Synthesis

(SCS) method, will be formulated. The development of the Substructural Controller Synthesis

method, which is stimulated by the substructuring decomposition and the Component Mode

Synthesis method, is described in detail in Ref. [11]. The plant to be controlled is first de-

composed into several substructures by the substructuring decomposition method. Then, for
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each substructure a subcontroller is designed by using linear quadratic optimal control theory.

The collection of all the subcontrollers is considered as the substructuring decomposition of a

system controller that is to be employed to control the whole plant. Finally, the same cou-

pling scheme that is employed for the plant is also used to synthesize the subcontrollers into

a coupled system controller.
In order to show more clearly how the concept of substructuring decomposition is employed

to assemble the subcontrollers, the collection of the two substructures is now considered as a

single system, the unassembled system. The dynamic equation of the unassembled system can

be written in a compact form

with

and

Sz = fi,_. +/3u + Nw (22)
y=C_.+v

[so0] 0]S'= 0 5'_ ' 0 A_ '

[

The distribution of the input noise is assumed to be substructurally decomposable, i.e., N =

7_TN, so that system (22) is a substructuring decomposition of system (16). This assumption
is not e serious restriction since, in general, distribution and intensity of the noise are uncertain

quantities.

The performance index of the unassembled system is simply the summation of the perfor-
mance indexes of the substructures

= J_ + J_ = lim 1E[Z'T(_z +d uT Ru] (23)
_ ....-* oo Z

with

0[ o 0] 0]0 Qo ' 0 R_

The optimal controller for the unassembled system, which is the collection of the two

independently designed subcontrollers , can be written in compact form as

S/_ = (_i + BG° - P°d)_ + F°y (24)
u = _°q

with

The last step is to assemble the subcontrollers by using the same coupling scheme as

used for assembling the substructures. The assembled controller for the assembled system is

represented by

SO = (A + BG _ - F¢C)q + F*y (26)
u = G¢q
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with
F¢= _T_O, G _ = _o_ (27)

where superscript$ denotes that the controllerisnot optimal but isconsidered as suboptimal.

The control design matrices F _ and G $ for the assembled structure are obtained by assembling

the optimal control design matrices F ° and G ° for the substructures by using the coupling

matrix T. If the assembled controller is employed to control the assembled structure, Eq. (i6),

the following closed-loop equation is obtained

[o]{}[ ]{} [0S _" A BG _ z + F ® (28)0 il = F'_C A+BG _-F®C q v

Closed-loop stability of a Substructural Controller Synthesis design is, in general, not

guaranteed. This is the same disadvantage that most indirect control design methods have.

Indirect control design means that the controller iS n °t d_e_sig_ned based upon the exact full-
order structure but is based on an approximate model or reduced-order model. From the form

of Eq. (28), it is seen that the separation principle is applicable to the SCS control system.

The closed-loop poles of the assembled system are the union of the regulator poles (eigenvalues

of S-I(A + BG*)) and the observer poles (eigenvalues of S-I(A- F*C)). Therefore, stability

of the assembled closed-loop system can be checked by examining the locations of these two

sets of eigenvalues.

One advantage of using Substructural Controller Synthesis to design a controller is that

an SCS controller is highly adaptable. For a structure with varying configuration or varying

mass a_ness propertles,-]_some space structur_,-;L-he-Substructural controller Synthe-

sis metKo_may be especially ef_clent. The $CS contr0ller can be Updated economically by

simply carrying out redesign of Su_bcontroilers associated with those substructures that have

changed. On the other hand, for a controller based on a centralized design scheme, a slight

change of the structure may require a full-scale redesign. This favorable decentralized feature

of the Substructural Controller Synthesis method is similar to that of the Component Mode

Synthesis method in the applicationt0 model modification.

5. Example

A plane truss example is used to demonstrate the applicability of the Substructural Con-

troller Synthesis method. The example consists of two identical substructures with almost

co-located sensor and actuator allocations. The truss structure, which is shown in Figure

3, consists 0fsix bays and has twenty degrees-of-freedom' Two force actuators and two dis-

placement sensors are allocated symmetrically at f and d, respectively. The actuators are

contaminated by disturbances with intensity 10 -a. The sensors are contaminated by noises

with intensity 10 -12. These levels of noise intensities are chosen arbitrarily just for the purpose

of example study, and are not justified by the experience of any real case. (In Ref. [13], there is

an example with input noise intensity 10 -4 and output noise intensity 10-15.) All disturbances

are assumed to be uncorrelated zero-mean white noise processes. The mass and stiffness ma-

trices for the structure are obtained by the finite element method. The damping matrix is

chosen to be 1/1000 of the stiffness matrix. The eigenvalues of the open-loop system have

damping ratios ranging from 0.05% to 1.5%. The structure is divided into two substructures

as shown in Figure 3. _....

In order to illustrate in some sense the "adaptable" feature of the method, SCS control

design has been carried out and compared with the full-order optimal controller for three

E
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different cases.Conditions, assumptions,formulations, and results for the three casesstudied
aresummarizedin the following.

Case 1: (Two-input and two-output)

For this case,the two substructuresare identical due to symmetry. Therefore,only one
substructural levelcontrol designneedbecarriedout. The other subcontrollercanbeobtained
by using symmetry. The resultsareshownin TableI and Figure 4, in which R is the weighting

of control cost in the performance index. It is seen that the SCS controller has a near-optimal

performance. The performance value of the SCS controller is less than 4% higher than the

performance value of the optimal controller. The substructures and subcontrollers for this

case are symbolically represented by the following equations.

Left substructure

SlZl = Alzl + Blul + Blwl

yl = Cl zl + vl

Left subcontroller

Sl(h=(A1 + B1GO-F°C,)q, + F°Y,

ul = G° ql

Right substructure

$2;_2 = A2z2 + B2u2 + Bsw2

Ys = Cszs + vs

Right subcontroller

Ss_ls=(As + BsG°-F°Cs)qs + F_ys

u_ = G° qs

Case 2: (Two-input and single-output)

Assume that the right sensor has malfunctioned. In this case, the right substructure is not

observable. The generalized subcontroller for the right substructure is defined to be a full-state

feedback controller, although there is really no state estimator available. Comparisons of the

SCS controller and the full-order optimal controller are summarized by Table 2 and Figure 5.

It is seen that the performance of the SCS controller for this case is not as good as that for the

previous case. The substructures and subcontrollers for this case are symbolically represented

by the following equations.

Left substructure

SlZl = Alzl + Blul + Blwl

Yl = Cl zl + vl

Left subcontroller

S, ih = (A1 +BIG ° -- F°C,)q, + F?yl

ul = G° ql

Right substructure

Ss£'s = Aszs + Bsus + Bsws

Right generalized subcontroller

Ss4s = (As + BsG°)qs

us = G° qs

Case 3: (Two-input and single-output; right substructure noise-free)

We suspect that the poor performance of the SCS controller in Case 2 is due to the fact that
there is not an observer to filter the noisepn the right substructure. Therefore, as another case

for study, we consider the same actuator/sensor configuration as that of Case 2, but assume

that the right substructure is free of disturbance. The results are summarized by Table 3 and

Figure 6. The SCS controller for this case has a near-optimal performance. The substructures
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and subcontrollers for this case are symbolically represented by the following equation.

Left substructure

Slkl = Alzl + Blul + Blwl

Yl = Cl zl + vl

Left subcontroller

ul = G° ql

Right substructure

$2£'2 = A2z2 + B_u2

Right generalized subcontroller

$2_2 = (A2 + B2G°)q2

u2 = G° q2

From the results of the above three cases, it is seen that, for this example, the performance

of the SCS controller is, in general, near-optimal. The 0niy situation where the SCS controller

exhibited a poor performance iS Case 2, in which the right substructure is subject to distur-

bance but has no output measurement as a feedback to filter the noise. Additional cases are

presented in Ref. [11].

6. Conclusions

A decentralized lIinear quadratic control design method called Substructural Controller

Synthesis is proposed for the control design of flexible structures. The SCS method presented

in this paper is only a preliminary research result. It is not a fully-developed method, but

rather a proposed con{roller design technique which requires further research. Although some

numerical examples have shown promising results, theoretical aspects of the SCS method still

need to be pursued in greater depth and other examples need to be considered. The example

illustrated does not involve model reduction and controller reduction. However, the method is

ready to be incorporated with component mode synthesis and controller reduction methods.
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Table 1: Performance values of Case 1

R_

Optimal

0.01

1.1737E-4

0.05

1.7796E-4

0.1

2.1445E-4

0.5

3.3929E-4 4.1689E-4

5

6.7621E-4

10

8.3436E-4

SCS method 1.2155E-4 1.8168E-4 2.1856E-4 3.4522E-4 4.2385E-4 6.8522E-4 8.4451E-4

Difference 3.6% 2.1% 1.9% 1.7% 1.7% 1.3% 1.2%

Table 2: Performance values of Case 2

R= 0.01 0.05 0.1 0.5 1 5 10

Optimal 1.3742E-4 1.9240E-4 2.2709E-4 3.4887E-4 4.2544E-4 6.8283E-4 8.4029E-4

SCS method! 5.3709E-4 6.6359E-4 7.0535E-4 7.9789E-4 8.4867E-4 1.0293E-3 1.1520E-3

Difference 291% 245% 210% 129% 99% 51% 37%

Table 3: Performance values of Case 3

R= 0.01 0.05 0.1 0.5 1 5 10

Optimal

SCS method

5.9433E-5

6.1968E-5

8.9437E-5

9.1607E-5

1.0763E-4

1.0989E-4

1.6989E-4

1.7296E-4

2.0863E-4

2.1219E-4

3.3822E-4

3.4275E-3

4.1726E-4

1.1520E-3

Difference 4.3% 2.4% 2.1% 1.8% 1.7% 1.3% 1.2%
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Figure 1: Steps in Substructural Controller Synthesis method
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Figure 2: Two-component structure
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Figure 3: Details of the plane truss for the SCS design example
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