
N90-23068

Six-Degree-of-Freedom Missile Simulation

Using the ADI AD 100 Digital Computer and

ADSIM Simulation Language

Koos Zwaanenburg

Applied Dynamics International

Ann Arbor, Michigan

Abstract

This paper illustrates the use of an AD 100

computer and the ADSIM language in the six-
degree-of-fieedom digital simulation of an air-

to-ground missile. The missile is launched

from a moving platform, typically a helicopter

and is capable of striking a mobile taxget up

to 10 kilometers away. The missile could be
any tactical missile.

Introduction

Real-time simulation with hardware in the

loop is used extensively in the missile devel-

opment business. It is used primarily to val-
idate designs prior to the actual flight, to

avoid experiments with actual flight hardware,

and to reduce costs of flight trials by simu-

lating a large variety of scenarios and con-
ditions instead of performing these tests in

real life. Missile manufacturing companies are

an important section of Applied Dynamics'

customer base. Therefore, Applied Dynamics

International(ADI) developed this particular
missile model so that it can function as a real-

istic example of the type of models that most
of our customers work with.

Six-Del_ree-of-Preedom Missile Model

The missile is controlled by four fins mounted

in cruciform configuration at the rear of the

missile. The fins are independently controlled

by pneumatic servos. The servos are activated
by commands from the autopilot, which pro-

cesses the sensor and seeker guidance outputs

before issuing these commands. The missile

roll, pitch, and yaw attitudes axe sensed using

two-degree-of-freedom gyros. Two such gyros

are required. The target is tracked using an

inertially stabilised seeker (laser or RF/IR)
mounted at the front end of the missile in-

side a radome. Imperfect attitude sensing and

target tracking axe included in the simulation.
The user can exclude, include or amplify these

extraneous effects by selecting the proper op-
tions switches.

The missile is thrusting during part of the

flight. Thrust is a prespecifled function of
time. Burnout occurs about five seconds from

launch time. As the missile burns the pro-

pellant, the rotational inertias of the vehicle

change and the center of gravity moves for-

ward along the missile longitudinal axis. The

missile aerodynamic center remains aft of the

missile center of gravity at all times. Imperfect

c.g. location, thrust offset, and misalignment
are also modeled in the simulation. Atmo-

spheric wind velocity is modeled as the sum of

a steady state and a gusting component. The

gusting component is assumed to be a sero-

mean, uniformiy distributed random variable

in all directions. Vehicle translational equa-

tions of motion are expressed in earth axes,

while the missile body axes are used for the

724

https://ntrs.nasa.gov/search.jsp?R=19900013752 2020-03-19T22:16:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rotationaldynamicequations.
Aerodynamiccoefficientsare described as mul-

tivariable functions of typically the missile an-

gle of attack, angle of sideslip, control sur-
face displacements and Much number. Fur-

thermore, rotor downwash (the effects of which
a_e confined to the neighborhood of the heli-

copter), instantaneous thrust, gyro drift an-
gles, and seeker tracking errors sue described
as nonlinear functions.

The simulation is terminated when one of the

following conditions occurs: when the simula-

tion end time exceeds the user-specified end

time, when the missile crashes, when the mis-

sile Maeh number exceeds a specified limit, or

when the relative position component along
the relative velocity vector z,. changes sign.

When z,¢ changes sign, the miss distance is

computed by linearly interpolating the sepa-

ration between the missile and the target to
the point where zrt is zero.

The complete system of equations has been

partitioned into different modules for simplic-

ity. These modules can be looked upon as vari-
ous "generic" subsystems of the missile model.

They can be used separately for other missile
simulations.

The missile coordinate conversion module

(MCC) describes the various inertial and body

axes coordinate transformations required for

every tactical missile model, the missile atti-
tude, quaternions, direction cosines, the effect

of steady and gusting wind components, the

rotor downwash, the velocity components, and
angle of attack and sideslip.

The line-of-sight module (LOS) describes the
missile-target geometry and velocities in abso-
lute and relative terms and describes the tar-

get tracking errors, rsdome aberrations, and

glint.
The seeker module describes the tracking er-
rors in azimuth and elevation and the seeker

dynamics. Furthermore, it describes the guid-

ance commands for the autopilot module.

This module allows insertion of specifics for

laser, RF, or IR seekers.

The autopilot module describes an analog au-

topilot that accepts guidance commands from
the seeker module and body attitude informa-

tion from the MCC module to implement a

proportional navigation scheme that will guide

the missile to the target. The autopilot mod-

ule features separate autopilot channels for
roll, pitch, and yaw. Gyro drift is modeled

as well. The autopilot module generates four

fin position commands for the four actuators.
The actuator module will be used four times

for this particular missile simulation. The ac-
tuators are described as nonlinear fourth-order

systems with nonlinearities like running and

breakaway friction, torque limiting, and fin an-

gular traveling limiting.

The aerodynamics module describes all aero-

dynamic force and moment coefficients acting
on the missile airframe as multivariable func-

tions. Inputs to the functions are typically

the missile angle of attack, angle of sideslip,
control surface displacements and Much num-

ber. This module is dependant on the types

of wind-tunnel measurements performed on
the missile; therefore, this module is the least

"generic _ of all missile modules. For this par.
ticular missile there are 14 functions of one

variable, 17 functions of two variables and 9
functions of three variables that describe the

aerodynamics. Furthermore, some functions

are included to represent thrust and mass vari-

ations due to propellant burn.

The missile equations of motion module com-

bines the aerodynamic coefficients with air

density, dynamic pressure, and gravity to form

the total forces and moments acting on the aiI-

frame. Dividing these forces and moments by
mass or moments of inertia provides the mis-
sile translational and rotational accelerations.

T25



SYSTEM 100 Architecture

Applied Dynamics International has been in-

volved in solving time-crltical simulation of
continuous dynamic systems since its found-

ing in 1957. The SYSTEM 100 simulation

computer system was introduced by ADI in

1984. It consists of an AD 100, a high-speed,

floating-point compute engine; a host con-

troller, a general-purpose digital computer of

the VAX family; and ADSIM, a user-friendly

simulation language designed specifically for
the AD 100. The SYSTEM 100 hardware and

software work together to form a complete
simulation environment.

The AD 100

The AD 100, a synchronous, bus-oriented mul-

tiprocessor compute engine designed for time-

critical digital simulation, is the basic funda-

mental building block of the SYSTEM 100.
The AD 100 is s single-user system without

an operating system. It is controlled by a mul-

tiprocessing VAX host computer running the

VMS operating system. Acting as the con-

troller and user interface, the host computer
relieves the AD 100 of these interrupt-based

tasks. The compute engine needs to be iso-
lated from the overheads and restrictions as-

sociated with an operatin 8 system in order to

achieve and maintain its optimum computa-
tion speed or frame rate.

The AD 100 is capable of 20 million fioatin 8-

point operations per second. The basic system
consists of four processors and a host interface

tied to a common bus, the PLUSBUS. The

PLUSBUS is 105 bits wide, 65 bits of data
and 40 bits of address and control. Emitter-

Coupled Logic (ECL) devices are used to ob-

tain high computational speed. The four basic
processors axe the Communication and Con-

trol Processor (COM), the Arithmetic Logic

Unit (ALU), the Multiplier (MUL), and the

Storage Processor (STO). Each processorhas

itsown program memory, program counter,

and instructiondecoder. Each processor has
a 64-bitinstruction.The COM Processor has

a 64K program memory, and the other proces-

sors have 4K program memories. Timings in

the AD 100 are expressed interms ofa master

clock period of 25 nanoseconds. The instruc-

tion cycle of the AD 100 consistsof four of

these phases or periods.

Every arithmeticoperation performed on the

AD 100 is done in floating-pointarithmetic.

Calculationsare performed using eithera 53-

bit short-word format or a 65-bitlong-word

format. Both formats contain 1 sign bit,12

exponent bits,and either40 or 53 significand

bits.The long-word format isused where ad-

ditionalaccuracy isneeded, such asin the case

ofnumerical integrationto minimize roundoff
and truncationerrors.

The STO Processor provides 64K of 65-bit

high-speeddata storage.Memory accessesand

address arithmeticcan take place two per in-

structioncycle. Some simulation tasks such

as functiongenerationand memory buffersre-

quire large amounts of data storage. It is

for thesepurposes that an optionalprocessor,

the Function Memory Unit (FMU), was intro-

duced, which has data memory of 2 million

words by 64 bits.

ADSIM Environment

With a specific application area in mind,

namely reai-time simulation, ADI was able to

design the AD 100's hardware and ADSIM to
handle the necessities of the simulation envi-

ronment. ADSIM is made up of a high-level

simulation language and a run-time interactive
control environment.

The ADSIM language is mathematically ori-

ented. Many key elements of a typical simu-

lation are built into the language, such as in-

tegration techniques, function generation, and

726



control-system nonlinearity functions. A con-

trol executive consisting of two programs, one
that runs on the host controller and one that

runs on the AD 100, provides the basis for im-

plementing a model. The control structure

built into this executive controls such param-

eters as system time (simulation time), frame
time, and integration step sise. A dynamic

section is provided for the model's differen-

tial equations. ADSIM allows the model to

be implemented as a series of scalar and first-
order differential equations. If conditional

code is included as part of the model, the

controlexecutive takes care of padding the

frame such that each frame isconsistentwith

real time. Sorting of the dynamic equations

and identifyingMgcbralc loops are examples

ofsome ofthe capabilitiesofthe ADSIM com-

piler. Integrationis handled using Runge-

Kutta, Adams-Bashforth, or Adams-Moulton

system-levelroutines.The model development

time ismuch lesswhen a simulationlanguage

such as ADSIM isused since many of these

standard simulation techniquesare builtinto

the language.

ADSIM program development, includingedit-

ing, compiling, and debugging, isperformed

on the host computer. There are two ADSIM

compilers: one that produces code to be ex-

ecuted on the AD 100 for time-criticalwork

and one that produces code to be executed on

the host computer fornon-time-criticalexper-

imentation and debugging. The same ADSIM

sourcecan be processed by eithercompiler.

Running a program on the AD IO0 involves

loading the executable code from the host
computer into the AD 100 at run time. The

user run-time interface consists of a program

called INTERACT running on the host com-

puter. INTERACT provides a user-friendly

interface for debugging and experimentation,
allowing constants to be changed, variables

to be displayed, integration methods changed,

breakpoints to be set, etc. This environment

reduces the time it takes to get the simulation
into a state where it can be integrated into the

design ud testing phase.

FORTRAN

The AD 100 is also able to run FORTRAN

programs. ADI developed FORTRAN/AD, a

subset of the FORTRAN 77 standard, to run

on the AD 100 computer. In general, FOR-

TRAN programs will not be as computation-
ally efficient as ADSIM programs, but they
allow the user to benefit from investments al-

ready made in FORTRAN simulations.

Implementation in ADSIM

The interactive nature of ADSIM, together

with the INTERACT uti]ity, make the task

of implementation, verification, and validation

easier and allows one to develop a feel for the
system being simulated. A rich set of INTER-

ACT commands allows the user to change any

simulation variable or to change the integra-
tion time step and method; an on-line data

logger and graphics package allow the capa-

bility to verify simulation results. Vaxions re-
searchers have estimated that the verification

and validation portion of a simulation can con-

sume 30 to 60 percent of a particular project's

schedule and budget. The implementation of

the missile model in ADSIM, together with

its interactive environment, is very struightfor-
ward. It requires about 1150 lines of ADSIM

source code. The implementation runs on the

AD I00 with a frame time of 444 ps, allowing
the model to run more than four times faster

than real time. The same ADSIM model runs
on VAXcs as well. The frame times on vari-

ous VAXes allow the model to run between 5

and 20 times slower than real time, depend-

ing on the type of VAX. On the AD I00, the

entire model requ_es about 5 percent of the
hardware resources.

727



Implementation in FORTRAN

To compare the accuracy and performance of
the model, ADI also implemented the missile
model in FORTRAN. This FORTRAN code

runs on the AD 100 as well as on many general-

purpose digital computers. The implementa-

tion in FORTRAN requires about 3950 lines
of source code. On the AD 100, the frame

time of the model is about 1100 ps, allowing
the model to run just a bit faster than real

time. On a VAX computer, the same FOR-
TRAN code runs from 10 to 50 times slower

than real time, depending on the type of VAX.

References

[1] Wright, M. System I00 Simulation Com-
puter Architecture. European Simulation

Multiconference, June 1989.

[2] Siz-Degree-of-Freedom Missile Simula-

tion. Applied Dynamics Application Re-

port, March 1989.

Comparing ADSIM and FORTRAN

The implementation in FORTRAN does not

support an interactive environment. As a re-
suit, the development of the FORTRAN ver-
sion of the simulation turned out to be or-

ders of magnitude more tedious than the corre-

sponding ADSIM implementation. Such issues

as functions, models, sorting of the equations,

and optimizing were major hurdles for the
FORTRAN implementation, while they were

trivial for the ADSIM implementation. The

numerical accuracy of the two models is es-

sentially the same. The two implementations

provide answers that are similar up to seven

or eight decimal places. Both models, when

running on the AD 100, can he extended, to

hardware-in-the-loop studies.

(_onelusions

The performance numbers of the AD 100

show that it is possible to implement a high-

performance missile model in a real-time tim-

ulation without the problems associated with

an implementation on a general-purpose com-

puter using FORTRAN.

7"28


