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MULTIBODY DYNAMICS: Modeling Component Flexibility with
Fixed, Free, Loaded, Constraint, and Residual Modes

John T. Spanost and Walter S. Tsuha}
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California

The assumed-modes method in multibody dynamics allows the elastic de-
formation of each component in the system to be approximated by a sum
of products of spatial and temporal functions commonly known as modes
and modal coordinates respectively, This paper focuses on the choice of
component modes used to model articulating and non-articulating flexible
multibody systems. Attention is directed toward three classical Compo-
nent Mode Synthesis (CMS) methods whereby component normal modes
are generated by treating the component interface (I/F) as either fixed, free,
or loaded with mass and stiffness contributions from the remaining compo-
nents. The fixed and free I/F normal modes are augmented by static shape
functions termed “constraint” and “residual” modes respectively. In this
paper a mode selection procedure is outlined whereby component modes
are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-
Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in
accordance with a modal ordering scheme derived from balanced realization
theory. The success of the approach is judged by comparing the actuator-
to-sensor frequency response of the reduced order system with that of the
full order system over the frequency range of interest. A finite element
model of the Galileo spacecraft serves as an example in demonstrating the
effectiveness of the proposed mode selection method.

INTRODUCTION

The general class of dynamical systems known as flexible multibody systems are assemblages of rigid
and elastic bodies including spacecraft, robotic manipulators, and industrial machinery. The equations
describing the motion of such systems are so complex that, in most situations, information from them can
only be obtained via simulation. In 1987, the state-of-the-art in flexible multibody simulation was reviewed
and assessed at a workshop hosted by NASA’s Jet Propulsion Laboratory.!!l A number of open issues were
raised including the issue of modeling component flexibility.

Most of the current simulation algorithmsp‘e‘ addressing flexible multibody systems employ a formu-
lation based on the classical assumed-modes method.!”l The method is summarized in Figure 1. For each
component in the multibody chain, a moving coordinate frame {b,,8,,b5} is introduced with respect to which
the elastic deformation u is measured. Consequently, the overall motion of the component is described in
part by the “large” motion of the frame {b,,b;,b5} and in part by the “small” elastic deformation u. The
underlying assumption of the method is that the deformation u can be expanded in a finite sum of products
of spatial and temporal functions. The spatial functions are often referred to as mode-shapes or simply
modes while the corresponding temporal functions are termed generalized or modal coordinates. Accepting
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that the deformation can be expanded in this form, one is confronted with the problem of having to select
the modes such that the effects of flexibility are properly captured. In engineering practice, the modes are
selected from a set of component eigenfunctions which are computed by commercial finite element codes
(i.e., NASTRAN) after free or fixed interface* conditions are imposed. Once the modes are selected, they
are entered into the multibody simulation program which assembles the system equations of motion and
proceeds with their numerical integration.

Clearly, the two most important aspects of the mode selection problem is model accuracy and model
order. Ideally, one would like to have a highly accurate system model of very low order. The problem is
that these goals are generally at a conflict with each other. Qualitatively, the larger the number of modes
used to describe the flexibility of each component, the more accurate the simulation results are expected to
be. However, as the number of modes per component increases so does the time required to perform the
simulation. Consequently, one is confronted with the problem of having to select a minimal set of modes for
each component while maintaining acceptable accuracy in the simulation results. Therefore, the challenge
is to find that set of component modes which makes the solution of the system equations to converge the
fastest.

In order to improve convergence, an augmented fixed interface (I/F) mode set was first proposed in the
1960’s by the pioneering work of Hurty!®! in connection with the now well known Component Mode Synthesis
(CMS) method.** In the aerospace community, this mode set has long been known as the “Craig-Bampton”
mode set (in attribute to the refinement of Hurty’s work made by Craig and Bampton!®!) and will be referred
to as such in this paper. The Craig-Bampton mode set is generated by augmenting the low frequency subset
of fixed I/F normal modes with a set of static shape functions termed “constraint” modes. Hurty’s work
opened up a mew area of research in structural dynamics as a number of new CMS methods appeared in
the literature since.[1°~ 18] In particular, two new mode sets proposed in the early 1970’s were shown to
have excellent convergence properties in the sense of CMS. First, the MacNeal-Rubin mode set, attributed
to the works of MacNeal‘mr and Rubin,[!¥ is formed by augmenting the low frequency subset of free I/F
normal modes with a set of shape functions termed “residual” modes. Second, the Benfield-Hruda mode
set proposed by Benfield and Hrudall?l consists entirely of normal modes referred to as “loaded” I/F. In
this case, the component is loaded at its interface with mass and stiffness contributions from the remaining
components and the loaded I/F normal modes are obtained from the solution of the “loaded” eigenvalue
problem. Employing fixed, free, and loaded I/F modes respectively, the Craig-Bampton, MacNeal-Rubin,
and Benfield-Hruda methods have been used extensively in connection with CMS-related component model

reduction problems.

The problem of reducing the order of a mechanical system by reducing the order of its components is
shared by both the structural dynamicist confronted with eigenvalue problems of thousands of degrees-of-
freedom (dof) and the multibody dynamicist faced with days or weeks of nonlinear computer simulations
for articulating systems of much lower order. This was recognized by a number of researchers in articulated
multibody dynamics who transferred the CMS approaches to component model reduction into the large-
motion multibody arena.l'=22| Sunada and Dubowsky!19:29 used the Craig-Bampton method to reduce
computation time associated with the simulation of flexible linkages and robotic manipulators. Similarly, Yoo
and Haug?1:2?] adopted the Craig-Chang!!®1%l version of the MacNeal-Rubin approach in their treatment
of articulated flexible structures. Other researchers addressing component mode selection in multibody
dynamics include Singh et al.l5! who along with Macalal?3l advocate the use of augmented-body modes, a
special case of mass-loaded modes in the Benfield-Hruda method. Other relevant studies include the residual
mass concept of Bamford,[?4] the modal identities of Hughes,[25:26] and the parallel work of Hablani.[?7]

However, a disadvantage of the CMS methods is that they do not directly consider the control system

* The collection of all points where a component attaches to other components is referred to as “interface” or simply “I/F“.
** provide some background, CMS is a Rayleigh-Ritz based approximation method born out of need to analyze linear
structural dynamics problems of unusually high order. The large order structure is broken down into a number of components
or substructures and a Rits transformation is employed in reducing the order of each substructure. Subsequent coupling of the
reduced order substructures results in a low order system model amenable to linear analysis.
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or the location of actuators and sensors when reducing component order. More specifically, a large number
of low frequency appendage modes, characteristic of complex spacecraft components, do not contribute to
control-structure interaction and consequently these should be discarded as they unnecessarily complicate
the multibody simulation model. In view of the control elements, how does one then identify and truncate
the non-participating component modes such that the system dynamics remain intact? With the exception
of two recent papers,|28:2°] this question has received little attention in the multibody literature. Eke and
Man!?8l proposed a system based modal selection technique where the significant system modes are first
identified via a suitable method, then projected down to the components, and finally orthogonalized with
respect to the component mass and stiffness matrices. Skelton!?°! advocates Component Cost Analysis (CCA)
to component mode selection. It should be noted that, in the case of articulating structures, both of these
approaches are sensitive to inter-component articulation since mode selection is done after the multibody
system equations have been linearized about a particular equilibrium configuration.

Outside multibody dynamics, order reduction of linear system models has been a topic of research
by the controls community. Here, the primary motivation behind model reduction is the design of low
order controllers which are in turn based on low order models of the system under control. In 1980, a
new model reduction approach was introduced by Moorel3®! known as “balanced” model reduction. The
approach takes into account the system inputs and outputs and suggests that yet another set of modes
(i.e., balanced modes) be used in coordinate truncation. Moore employs a coordinate transformation to
bring the system into the balanced form whereby the reachability and observability gramians are equal
and diagonal.!:’ol In the balanced form, the coordinates corresponding to small elements on the diagonal
of the gramians are candidates for truncation since they can be interpreted as least controllable from the
actuators and least observable from the sensors. Application of balancing to structural systems showed that,
as damping approaches zero asymptotically, truncation of balanced modes is equivalent to truncation of
normal modes.[3:=33] This special result is used in the component mode selection method proposed in this

paper.

In this paper a two-stage component model reduction methodology is proposed complementing CMS
with balancing. First, CMS mode sets are generated and used to reduce the order of each component
in the Rayleigh-Ritz sense. The methods of Craig-Bampton, MacNeal-Rubin, and Benfield-Hruda provide
alternate Ritz transformations for component model reduction. After the reduced component models are
brought to diagonal form, a second reduction is performed via balancing. In particular, Gregory’s"”] modal
ranking criterion derived for lightly damped structures with sufficiently separated modal frequencies is used
to identify and further truncate “insignificant” modes from each component. In this stage, the component
interface locations are treated as additional inputs and outputs of interest. The component model is thus
reduced as a separate entity without having to assemble the system model.

The paper is organized as follows. First, the three component mode sets of Craig-Bampton, MacNeal-
Rubin, and Benfield-Hruda are briefly described. Then, the component Ritz reduction and diagonalization
procedure are presented. Next, the balanced reduction procedure is discussed in the context of compo-
nent mode selection. Finally, the effectiveness of the proposed end-to-end model reduction methodology is
demonstrated with an example of a complex spacecraft.

COMPONENT MODE SETS

Consider a structural system consisting of several interconnected elastic components. Each component
(see Fig. 2) can be described by a second order matrix differential equation of the form

MunZn + KnnZTn = fa (1)

where z,, f, denote the n x 1 displacement and force vectors respectively and My, K,.,, represent the
n X n mass and stiffness matrices respectively. This n-dof component model is typically obtained from a
commercial finite element program such as NASTRAN.

Before proceeding with the description of the mode sets, the reader should be clear on the special
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notation used in this section. That is, vectors and matrices carry single and double subscripts indicating
their respective dimension. The only non-subscripted vectors and matrices are those whose elements are all
zeroes.

Craig-Bampton Mode Set(®:9)

The component finite element model of Eq(1) can be partitioned as follows

Mi M|l + Ki K|z _[F (2)
Mji M, | |2 Ky Kjj] =5 | 0]
where z; and z; represent the interface and interior coordinates respectively (Fig. 2). Note that in writing
Eq(2) it is assumed that no forces act on the interior coordinates. However, if forces due to actuators and

disturbances act on some interior coordinates it is recommended that these coordinates be removed from the
j-partition and placed in the i-partition of z,,.

The first k fized I/F normal modes ®,x and modal frequencies {lx; are obtained from the solution of

the eigenvalue problem
—M:':“I’jkﬂik + K;;®=0; k<j (3)

A constraint mode is defined as the static deformation shape that results by imposing unit displacement on
one coordinate of the i-set while holding the remaining coordinates in the i-set fixed.!®! From the definition,

the constraint mode set satisfies the matrix equation

ko kolle]= %] o

into the shape of the constraint modes. In the spec1al case of a statically determinate 1-set, the constraint
modes yield the component rigid body modes and F;; vanishes. It can be shown that the space spanned by
the rigid body modes is a subspace within the space spa.nned by the constraint modes The matrix ¥;; is

obtained from the bottom partition of Eq(4) =
I A o

The Craig-Bampton mode set can now be formed by augmenting the constraint modes with the truncated

HEEAIN o

It should be noted that the constraint modes are orthogonal to the ﬁx’efd”:IV/ZF normal modes with respect to
the component stiffness matrix. Finally, Eq(6) can be written in a more compact form as

~ set of fixed I/F normal modes as follows

= Qc:m Nm (7)

where m =t + k represents the total number of modes in the set.

eal-Rubm Mode Se [10,11]

The first k frec I/F normal modes $,x and modal frequenc1es Qi are obtamed from the solutlon of the

eigenvalue problem 7 :
M, 002, + K,m@,,k =0; k<n 7 (8)
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Furthermore, ®,x can be scaled so that it satisfies the mass orthonormality relation
q):ann¢nk = Ik (9)

where I is the identity matrix. The free I/F normal mode set can be partitioned into rigid and elastic
subsets as follows

0 0
&, = [¢nr ¢ne} H nkk = [0 n“] (10)
where k = r + ¢. Now, the component finite element model of Eq(1) can be partitioned as
M Ma M; z; K; Kg K; ; f;
M; My, M, |+ | Ku Ku K, |=1]0 (1)
M, M, M, z, K. K, K, zr 0

where, as in the Craig-Bampton method, z; represents the interface coordinates and z; = [z] zT| represents
the interior coordinates (Fig. 2). Here again it is assumed that no forces act on the interior coordinates.
If forces are applied to some interior coordinates, then these coordinates should be removed from the j-set
and placed into the i-set. Furthermore, the r-partition of the interior coordinates can be any statically
determinate set such that if the component is restrained at z,, rigid body motion is prevented.

The residual modes ¥,; are linear combinations of the n — k truncated free I/F normal modes. These

are obtained from the refined procedure of Craig and Changl!5:1€l
Vi = [P:nGnnPnn e énen:ﬁq’:e]Fni (12)
where
Ki Ka]™' o
Gun = Ki Ky ] 0 (13)
0 0 0
Pop = Inp — MnnénrQZ, (14)
;]
Foi= 10 (15)
0 -

The matrix G, in Eq(13) is a pseudo-flexibility matrix corresponding to the singular stiffness matrix Ky,.
The matrix P,,, plays the role of a projection matrix such that the columns of PJ, G, Pn. span the same
space as the totality of n — r elastic modes of the component. By subtracting the contribution of the
retained normal modes from the elastic flexibility matrix P}, G,, P.n, one obtains the residual flexibility
matrix whose columns are the residual modes. This is a clever way of capturing the contribution of the
truncated normal modes without having to compute them in Eq(S).l”'lel Clearly, only the residual modes
associated with force-carrying coordinates are of interest. These are stripped from the residual flexibility
matrix by post-multiplication with Fy;.

The MacNeal-Rubin mode set can now be formed by augmenting the truncated set of free I/F normal
modes with the residual modes as follows

Zn=|®nx Ynil [3] (16)

It should be noted that the residual modes are orthogonal to the free I/F normal modes with respect to
both the mass and stiffness matrix of the component. In addition, the MacNeal-Rubin mode set is said to be
statically completel'] with respect to all forces in the i-set. That is, the deformation of the component due
to static loads acting on the i-set can be written as a linear combination of the modes in the MacNeal-Rubin
mode set. Finally, Eq(16) can be written in a more compact form as

Zn = Ppm m (17)
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where m = 1 + k represents the total number of modes in the set.

Benfield-Hruda Mode Set!!2!

In order to best describe this mode set, consider a multibody system consisting of only two elastic
components. These will be referred to as components A and B and subsequent notation will be superscripted
accordingly. For simplicity of notation, both components are further assumed to have the same dimension
n.

The first m loaded I/F normal modes ®;,,, and modal frequencies 0, of component A are obtained
from the solution to the eigenvalue problem
—MA A + KA BA=0; m<n (18)

nm-"mm

The matrices M2, and K2, are given by

A MA MA' ‘I’z:an‘I’ﬁi 0
M= [k ]+ [T ] )
. KA KA w"’Kgn\I/:‘ 0
Kz, = [KA K;;] +| o] (20)

where, as previously, the 7 and 7 partitions of z,, correspond to interface and interior coordinates respectively.
Clearly, the first terms on the right side of Eqs(19,20) are the mass and stiffness matrices of component A.
The non-zero partitions of the second terms, W27 M2, W2, and U2 K2 U2, are referred to as the interface
“loading” matrices and represent the mass and stiffness contributions of component B. The matrix ¥, is

formed from the stiffness partitions of component B

I..
V2 = [ u ] (21
~K2' K3 )

_in the same way that the constra.mt modes in the Craxg—Bampton mode set were defined. For a statxcal]y

The Benfield-Hruda mode set of component A is formed entlrely from the truncated set of loaded I/F
normal modes . : S ,
= ®pm m (22)
where @27 = @2 = as computed from Eq(18) The correspondmg mode set of component B can be formed
in similar fashion. The generalization of the approach to more than two components is straightforward.

Before proceeding, a few comments are in order. Loading a component with mass and stiffness contribu-
tions from the remaining components is an attempt at capturing the modes of the system that this component
is a_part of. Such feature yields a much improved system model. [12] However, unlike the Craig-Bampton

and MacNeal-Rubin mode sets, information from the remalmng components is T necessary in forming the
Benfield-Hruda mode set. As a consequence, the task of generating the loaded I/F modes can be much more
computationally intensive, especially in the case of multibody systems consisting of several components.

RAYLEIGH-RITZ REDUCTION

Havmg dlscussed each of the three mode sets, the specxal notatlon of the la,st sectlon is now abandoned
Subscripts indicating vector or matrix dimension will be dropped for convenience of notatlon To this effect,
the component model of Eq(1) can be written as

Mzi+ Kz = Pu (23)
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where the vector u represents I/F forces due to the attaching components as well as forces due to actu-
ators and disturbances acting on the component. The matrix P represents the spatial distribution of all
applied forces. Eq(23) describes the dynamics of the component under the assumptions of small structural
deformations and small overall motion. The corresponding output equation can be written in terms of the

displacement coordinates and rates as
y=Hz+ Haz (24)

where H,, H, represent the displacement and rate output distribution matrices respectively. These may
include sensor outputs as well as other outputs of interest such as component interface displacement and
rate.

The component model can now be reduced by letting
z=®n (25)

where the dimension of the modal vector 5 is much smaller than the dimension of the displacement vector z
and the columns of & play the role of component Ritz vectors in the classical Rayleigh-Ritz approximation
method.!”l Any one of the three truncated mode sets given by Eq(7), Eq(17), and Eq({22) can serve as the Ritz
transformation matrix ®. Furthermore, different components of a multibody system need not be reduced
with the same type of mode set. For example, in a system of three components, the first can be reduced
using MacNeal-Rubin, the second via Benfield-Hruda, and the third via Craig-Bampton. Alternatively, all
three could be reduced via Craig-Bampton. In general, this choice is system dependent.

However, there still exists the question of how many normal modes one should include in the Craig-
Bampton, MacNeal-Rubin, and Benfield-Hruda mode sets. Clearly, the answer will most likely depend on
many factors inherent to the multibody system in question. As a rule of thumb it is suggested that normal
modes with frequencies above two times the system frequency of interest be truncated from any of the three
mode sets chosen to represent component flexibility. This claim is shown to be adequate in the example
problem of this paper and has proven adequate in numerous other practical problems the authors have
studied.

Substituting Eq(25) into Eqs(23,24) and premultiplying Eq(23) by ®7 yields
OTMd7 + T Kdn = &7 Pu (26)
y=H;®n+ H:®7 (27)

These equations represent the reduced order component model. Thus, (n — m) degrees of freedom have been
climinated in going from the n-size model of Eqs(23,24) to the m-size model of Eqs(26,27).

DIAGONALIZATION

Eq(26) will now be brought to diagonal form for reasons that will become clear in the next section. Let
n=¥¢ (28)

where the square matrix ¥ satisfies the mass and stiffness orthogonality relations
[®9]" M [®¥]=1T; [®¥]" K [®¥] = 0? (29)

and 0 is the diagonal matrix of frequencies corresponding to the orthogonalized modes. The matrix I is
the identity matrix. Substituting Eq(28) into Eqs(26,27), premultiplying Eq(26) by ¥”, and adding modal
damping one obtains

£ +2¢0€ + 0%¢ = [®V]"Pu (30)
y = H,[®V]¢ + Hy[®V]¢ (31)
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where ¢ is the diagonal damping matrix. Eq(30) describes the dynamics of the component in diagonal form.
Finally, Eqs(30,31) can be written in the more compact form

E+2:06+ 0% = Bu (32)
y=Cié+Caé (33)

where
B = [d"I’]TP, Cl = Hd‘p\l’] H Cg = HQ[Q‘I’] (34)

Next, the component model of Eqs(32,33) will be reduced further by truncating modes from the orthogonal-
ized set [@V].

BALANCED REDUCTION

The component model of Eqs(32,33) can now be written in first order or state form by letting xy =

[fr ér]r

x = Ax + Bu (35)
where I
0 0
4= [—02 —2;0] b= [B] =[0G (37)

At this point it will be a.ssumed that the states correspondmg to component rlgxd body modes_have been

" partitioned out of Eqs(35 36) such that all eigenvalues of matrix A have strictly negative real parts. Thus,
matrix A has dimension 2p where p = m — r and r represents the number. of rigid body modes. Matrices B
and C are of appropriate dimension.

The reachability and observability gramians of the model are defined in terms of the matrix integrals!34)
o0 - oo - . T
W = / ABRT AT, V= f AT oAy (38)
0 0

and are computed from the linear matrix equations

AW +WAT + BB =0; VA+AV+("C=0 (39)
The model is said to be balanced if

W=V=E= dzag{ o, 1=12, ..., 2p} (40)

and 0y 2 07 2 03 ... > ng > 0. MooreI30I showed that. any linear, tlme-mvarlant asymptotlcally stable
model can be brought to balanced form via a suitable linear transformatlon of state. The idea behind balanced
model reduction is to bring the model into the balanced form and truncate states in that form. The balanced
states to be truncated are identified on the basis of the relative magnitudes of the scalars ¢;. Such rationale
comes from input-output considerations based on the notions of controllability and observability. (34] Loosely
speaking, the balanced states corresponding to small o;’s are “least controllable” from the inputs u and
“least observable” from the outputs y. Consequently, these states are candidates for truncation. The scalars
o; are invariant under state transformation and equal to the square roots of the eigenvalues of the gramian
product (i.e., oy = \/A;|WV]). Therefore, in the context of model reduction, it is not necessary that the
model be balanced in the sense of Eq(40) but only that the gramian product is diagonal (i.e.,, WV = 7).
Furthermore, an important feature of balanced model reduction is that there exists an co-norm frequency

error bound!35]
2p

67 (jw) - G*(jw)lle <2 Y o3 k<2p (42)
i=k+1
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where G??(s) = C[s] — A]™'B is the transfer matrix of the full order model and, similarly, G*(s) is its
kt*-order counterpart. For the component model parameters of Eq(37), the transfer matrix can be written
as a sum of contributions from each elastic mode

(c1: + c2i8)b;
82 + 2¢wis + w?

G”(s) =D Gr(s); GF(s) = (43)
i=1

where
¢; 18 the 77 element of the diagonal matrix ¢
w; is the 11 element of the diagonal matrix 1
b; is the :** rowof B
c1; is the 1** column of C)
co; 18 the ** column of C;

Gregory/®2! showed that the modal model of a lightly damped structure with well separated frequencies
is approximately balanced. In addition, he obtained closed form expressions for the scalars o; in terms of
the transfer matrix parameters ¢, w;, b;, c1;, c2; as follows

{7 . 2.7 .
VbibT[cT;c1i +wieT cail
o; & )

4;‘.'(4)'-

; 1=1, .., p (44)

and o; & 0p4;. Following the rationale of balanced model reduction, component modes with small o; are
least affected by the applied forces u and contribute least to the outputs y. Consequently, these modes
can be truncated from the set [®¥]. The scalars o; indicate modal influence and will therefore be referred
to as “modal influence coefficients.” The quality of the approximation in Eq(44) depends on how well the
following criterion on “close-spaceness” of frequencies is satisfied(32l

maz(¢:, ¢j)maz(w;,w;)

1; ) ] 45
lw,-—w_,-l < ‘#J ( )

Since most space structures exhibit clusters of closely spaced frequencies, Eq(45) may be violated. In such
case, one could ignore Eq(45) and proceed with modal truncation as suggested by Eq(44) thereby retaining
only modes with large o;. Alternatively, modes that violate Eq(45) can be placed into groups and separate
analysis be carried out on each group of closely-spaced modes to determine whether additional modes with
small modal influence should be retained. In this case, all modes with large o; and some modes with small
o; may be retained. The approximate error bound of Eq(42) can be used as a guide in determining how
many modes to retain.

Finally, an interesting observation can be made with regard to the approximate balancing formula of
Eq(44). When the output equation does not include rates (i.e., H = C; = 0), Eq(44) reduces to

wom (SISO s i=1, s (46)

Furthermore, from Eq(43), the transfer matrix evaluated at zero frequency yields

p

G*(0) = zp:c;g'(o) =Y cusbi _ C\17*B = H,[®¥|Q~*[0¥]" P (47)
i=1

=1 w'?

where one will recognize that the matrix {®¥](2-?[®W¥|T is the elastic flexibility matrix of the Ritz-reduced
component. Eq(46) indicates that the balancing scalar o; is proportional to the Frobenious norm of the
contribution of mode 1 to the elastic flexibility matrix. In other words, the balanced modal truncation
criterion signifies the modes which participate most in the static response of the component.
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EXAMPLE

The proposed two-stage component model reduction methodology is illustrated in Figure 3 and will
now be demonstrated with a high order finite element model of the Galileo dual-spin spacecraft. Figure 4(a)
shows the three-component topology of the spacecraft. Two of the components are assumed flexible while
the third is idealized as rigid. The 243-dof flexible Rotor and the 6-dof rigid Platform are attached to the
57-dof flexible Stator by hinge joints such that the three components articulate relative to each other. The
NASTRAN model shown in Figure 4(b) was originally of much larger dimension but was reduced to the
aforementioned size via the Rayleigh-Ritz method using a set of appropriately chosen constraint modes as
the Ritz transformation.

Two motor actuators located at the Rotor-Stator and Stator-Platform interface provide pointing control
to the Platform. The controller accepts Platform attitude measurements from a gyro sensor located on the
Platform, calculates the motor torques necessary to accomplish the pointing objective, and commands the
motors accordingly. The problem set forth was to develop a system model of much lower order to be used for
simulation in view of anticipated control-structure interaction while the system is undergoing large overall
motions. In particular, it was deemed that the control loop closed around the Rotor-Stator actuator and
Platform gyro would be most critical since the flexible Stator is located in between. Figure 4(a) shows the
location of the control input and the two sensor outputs of relevance. The main requirement placed on the
low order system model was that the actuator-to-sensor frequency response at all “frozen” configurations be
faithfully reproduced in the 0-10 Hz range.

The 243-dof model of the Rotor and 57-dof model of the Stator were passed through the model reduction
steps outlined in Figure 3. All three mode sets were formed for both flexible components using truncated
fixed, free, and loaded interface modes to twice the system frequency of interest or 20 Hz. This resulted in
74 elastic modes representing the Rotor (i.e., elimination of 163 dof) and 16 elastic modes describing the
Stator (i.e., elimination of 35 dof). The orthogonalized mode sets are listed in Table 1. Then, a standard
component mode synthesis procedurel!®l was employed to assemble the Rotor, Stator, and Platform into
a system at one particular configuration. Three system models resulted corresponding to the three mode
sets and the actuator-to-sensor frequency response was computed for each. The results were superimposed

_over the “exact” response obtained from the full order model and are illustrated in Figures 5, 6, and 7.
Note that all mode sets performed equally well indicating virtually no error in the 0-10 Hz frequency range of
interest. The Craig-Bampton mode set was further reduced via balancing. The 19 Rotor modes and 15 Stator
modes with largest modal influence coefficients were retained in the reduced order model. These are marked
by an asterisk in Table 1. Once more, the system model was assembled and the input-output frequency
response was carried out yielding the result of Figure 8. Surprisingly, no error is apparent in the 0-10 Hz
frequency range in spite of eliminating 55 additional modes from the Rotor. This indicates the presence
of a large number of low frequency component modes occuring below 10 Hz that do not participate in the
response. The reduced and full order system model were assembled in different configurations corresponding
to different articulation angle settings and similar results were obtained. The analysis was repeated with the
MacNeal-Rubin and Benfield-Hruda mode sets and the actuator-to-sensor frequency response results were
nearly identical to those obtained with the Craig-Bampton mode set.

Finally, an interesting experiment was conducted. From Table 1, it was noted that the 19 Craig-Bampton
Rotor modes retained by the modal balancing formula were not ordered according to frequency. In fact, the
last 6 modes in the set of 74 had large modal influence coefficients. If one was to naively select the first 19
modes to represent the flexibility of the Rotor, the system frequency response result of Figure 9 would be
obtained. The large error between the reduced and full order models indicates that the low frequency modes
are not always the “most important” and demonstrates the need for intelligent component mode selection.

CONCLUDING REMARKS

A component mode selection and reduction method for modeling flexible multibody systems has been
presented. The method combines the Component Mode Synthesis (CMS) approaches of Craig-Bampton, /8]
MacNeal-Rubin,[1®11] and Benfield-Hrudal!?l with the Moore-Gregory!**:33l modal balancing method.
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The two-stage modal reduction method works directly on the component finite element model (FEM)
and does not require assembly or knowledge of the system FEM. In the first stage, Rayleigh-Ritz reduction
via CMS mode sets eliminates the high frequency unimportant and unreliable data from the component
FEM. In the second stage, modal balancing further eliminates the modes that are least affected by ac-
tuators, disturbances, interface forces, and contribute least to motion at sensor and component interface
locations. Thus, modal balancing can be viewed as a second Rayleigh-Ritz reduction where the Ritz vectors
are appropriately selected component modes. The proposed method is applicable to both articulating and
non-articulating systems and was succesfully used in developing a low order model of the three-body articu-
lating Galileo spacecraft. The truncated mode sets of Craig-Bampton, MacNeal-Rubin and Benfield-Hruda
performed equally well in capturing the low frequency system dynamics over all articulated configurations.
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