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Abstract

We are concerned with the problem of finding among all polynonfiMs of degree at most

n and normalized to be 1 at c the one with nfinimal uniform norm on £. Here, £ is

a given ellipse with both loci on the real axis and c is a given real point not contained

in £. Problems of this type arise in certain iterativc matrix computations, and, in this

context, it is generally believed and widely referenced that suitably normalized Chcbyshev

polynomials are optimal for such constrained approximation problems. In this note, wc

show that this is not true in general. Moreover, we &-rive sufficient conditions which

guarantee that Chebyshev polynomials arc optimal. Also, som_" numerical examples are

presented.
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1. Introduction and Statement of the Main Results

Let IIn be the set of all complex polynomials of degree at most n. For r > 1, we denote by

1
I Iz-ll+12+ll<,'+-}

r

the ellipse with foci at 4-1 and semi-axes

1 1 1 1_
br := 5(r- ; )

In this note, we study the constrained Chebyshev approximation problem

re.in max IKz)l (1)
pEFi.:p(c)=l zE£r

where n E i'_, r > 1, and c E IR\ St. Standard results from approximation theory (see e.g.

[9]) show that there always exists a unique optimal polynomial, denoted by p,(z; r, e) in

the sequel, for (1) and, moreover, that pn is a real polynomial. In 1963, Clayton [3] proved

that p,,(z; r, c) is just the polynomial

• Tn(:)
tn(z;c).= (21

where

1 n 1 1 1
T,(z)=_(v +--) ,Z=vn _(v+v ) (3)

denotes the nth Chebyshev polynomial. The approximation problem (1) arises in certain

iterative matrix computations (see e.g. [2,5]). In this context, Clayton's result is widely

referenced in the literature (e.g. [2,5,8,12,13]) and is even used to derive new results

on constrained approximation problems [1]. Surprisingly, nobody seems to have checked

Clayton's proof.

In this note, we show that the normalized Chebyshev polynonfials (2) are not ahvays

optima] for (1), and hence Clayton's result is not true in general. More precisely, we have

the following

Theorem 1.

a) Let r > 1 and c > a,. or c < -a,-. Then, for n = 1,2,3,4, t,_(z;c) is tlle mlique

optimal polynomial for (1).

b) For any integer n > 5 there e.xa'sts a rea/number r* = r*(n) > 1 such that t,,(z; c) is

not optimal for (1) for aH r > r* and all c E 1R with a,- < Icl < a_ + 1/a2r.

However, t, = p, in most cases, and t,_ ceases to be optimal only for normalization points

c which are very close to the ellipse. We will show that the following conditions on c are

sufficient to guarantee the optimality of t,.



Theorem 2. Let n >_ 5 be an integer, r > 1, and c C 1R. Then, tn(z;c) is the uuique

optimal polynomial for (1), iT

(a) ]el > ½(r 4_ +

"t

r-v/_)

or

1 (2a_-l+x/2a_-a 2+1) .(b) Icl >

Remark 1. In general, the conditiSns (a) and (b) do not imply each other. In particular,

(a) (resp. (b)) is less stringent for small r (resp. large r). Also, note that (b) is satisfied

if Icl>__(1 +

The paper is organized as follows. In Section 2, wc state a necessary and sufficient

criterion for t,_ to be optimal h_r (1). Also some auxiliary results arc collected which will

be used in Section 3 and 4 to prove Theorem 1 and 2, rest)ectively. Finally, in Section 5,

we present some numerical examples.

2. Preliminaries

In the sequel, let always be r > 1 and n E ]hi. Since p,(z; r, -c) = p,,(-z; r,c) it is sufficient

to consider positive c only; so for the rest of the paper, we assmnc that c > a,..

First, we determine the cxtremal points zl of l, defined by

It.(z,;c)l = max It.(z;c)l,
z EE,.

With (3), one easily verifies that there are 2n such points given by

zt := a,.cos_t + ib,.sin_pt , _t:=lTr/n , I =1,...,2n

Moreover, note that tn(zt; c) = (-1)tT,(ar)/Tn(c). Using mvli,, and Shapiro's character-

ization [10] of the optimal solution of general linear Chebyshev approxinmtion problems,

we deduce that tn - pn iff there exist nonnegative real num1_crs o't, l = 1,..., 2n (not all

zero) such that

2/1

at(-1)tq(zt) = 0 for "all q E II,_ with q(c) = 0 (4)
I--=l

By solving this linear system explicitly, one arrives at the following
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Lemma 1. The polynomial (2) tn is optimal for (1) iff at >_ 0 for I = 1,..., 2n, where

T.(c) _ .-1 Tk(c)
k=l Tk(ar)

=

Proof. The result is a special case of Theorem 3 in [4] where we investigated the ap-

proximation problem (1) in the more general setting of complex c. On the other hand,

by using the polynomials q(z) = Tk(z) - Tk(c), k = 1,... ,n, as a basis in (4), it is also

straightforward to verify directly that the al given by (5) satisfy (4) and that these are up

to a constant factor the only solutions of (4). •

Remark 2. Clearly a2n > 0 and, moreover, at = a2,-t. Hence, t, is optimal iff at > 0

for l = l,...,n.

The following result due to Rogosinski and Szeg5 [11] will be used in the next section

to establish a sufficient condition for the positivity of the al.

Lemma 2. Let A0, AI,---, An be rea/numbers which satisfy An >_ O, An-i - 2An >_ O, and

Ak-1 -- 2Ak + Ak+l >_ 0 for k = 1,2,...,n - 1. Then:

- T + Akcos(_:_)> 0 rot _1 _ e In (6)
k=l

We close this section with the following technical lemma. The proof is straightforward

and omitted here.

Lemma 3.

a) Let k E PC. Then:

k Cos 2 (j -- 1/2)7r __ { 0 i[ k = 1/¢ /,'/2 if k>2
j=l

b) Let 2 < l < n be an even integer and _1 = hr/n. Then:

n-1

k----0

= 0 (7)

and
n-1

kcos(k_,) = -_/2
k=l

(s)
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3. Proof of Theorem 1

• Let r > 1 be fixed and set a := at. Then, for each l, (5) defines a polynowSal at(c) = at

in c of degree n. Therefore,

n alj)(a )

a,(c) = at(a)+ (c- a)(al(a ) + E J' (c- a) "i-') (9)
j=2

First, we prove part b) of Theorem 1. Let n > 5 and 2 < I < n be an even integer. With

(5) and (7), it follows that

n--1

o,(a): (-1)' + :0 (10/
k=l

Furthermore, we derive from (5)

1 T'(a) "-' T_.(a) cos(k_2t ) (11)
al(a) 2 T.(a) + E Tk(a)

k=l

: cos((2j - 1)r/(2k)), j = 1,...,k, denote the zeros of Tk. Then,

k oo k oo

: _ }(k)= a_+_ ((,_[Z .=a . = ,.=o

k

1 ((k) 2m
(g,,,+, E ( j )

j=l

0 if k = 1= k/a + k/(2a 3) + 0(1/a '_) if t.>2 (12)

Here, we used the fact that T_./Tk is an odd function and part a) of Lemma 3. With (8),

(11), and (12), it follows that,

1 l._ a}_g 1 (13)4(.) =-_cos( ) +o(7)

Combining (9), (10), and (13) yields

j=2
j_

(c - _);-')

and, finally, since, in view of (5) and T_J)(a)/Tk(a) = O(1/W), for j >_ 2 we have a}J)(a) =

0(1/a2),

- _at(c) -- c a a a (__1 cos( ) + O(-7_ ) + O(a(c-a)))



Thus, at(c) < 0 and, therefore, (2) is not the optimal polynomial for (1), if c - a < 1/a 2,

a is sufficiently large, and cos(br/n) > 0, i.e. I < n/2. Note that even I with 2 < I < n/2

exist, since n > 5. This concludes the proof of part b) of Theorem 1.

We now turn to the proof of part a) of Theorem 1. Let r > 1 and c > a = ar be fixed.

Moreover, set Ak := Tk(c) and ak := Tk(a). Then, in view of Lemma 1 and Remark 2, one

needs to check the positivity of

n--1

k=l

for the four cases n = 1,2, 3, 4. For n = 1, 2 this is clearly true, since

(2) 1(A2 _1)>01 .41_1)> 0 , al =

and

(2) 1 A2 _2"41 +1)=
(c-a)(ac-a _ + 1)

a(2a 2 -- 1)
>0

Next, consider n = 3. It is easily verified that A3/a3 > Al/al, and hence

a_3)= l_(A3
2 a3

A1)_4_ l(A2 -1) > 0
el 2 a"7

By using that T2(c)T2(a) + ca is a monotonously increasing function in c for c > a > 1, we

deduce

1 A3 A2 A, +1)= (c-a)(2T2(c)T2(a)+2ca+l )°'_3) = 2( a-3 a--2 a--_ 2a \ (4a2 - _)(_a _ --_ _ - 1

> 2a(c - a) > 0
- (4a 2 - 3)(2a 2 - 1)

Similarly, one obtains

A, 1 (c-a){4(c 2 +2ca+a2)-3
a_a) _ 1 A3 A2 + - _ 2(4a2 - 3)2 a3 a2 al 2 a ',

> - lsa 2+ 9) > o
- 2a(4a 2 - 3)(2a 2 - 1)

2ca 4- 1
2a 2 1 ]

Finally, we turn to the case n = 4. Analogously to the case n = 3, l = 1

1 (A4 _ 1) + _.___2(A3 A1 ) > 0
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For l = 2, we have

Or_4) 1 A4 _ 2A2 + 1) =: 5 a-T
(.42 --a2)(A._a2 -(/_ + 1) > 0

a_(2a_ - 1)

The positivity of tr_4) follows from

2(: - as) 1 (A4 Aa A,))= 4(c2 - aS ). _ - 1-- V/2-( aa al

2(c 2 + a _ - 1) vr2c

= 8(/4_ 8(/_+ 1 (/(4(/_-3) (15)

> 8(2 - _)(/4 + 4(2_- 5): + 6 - vq > o (1c)
- (8a 4 -8a _ 4- 1)(4a 2- 3)

Here we have used that (15) is a monotonously increasing function in c for c >_ 1 and that

the numerator in (16) has no real zero. Similarly, by a rontine, but lenghty, computation,

one verifies that

a2a3a4

2(c-_,) a_4) = a2a3a4 (1.44 A3 + A2 A, + 1)
2(C -- a) 2 (/4 a3 a2 al

= (2c 2- 1)((c- a)a3 + a_)a2 + ((c(4a 2- 1)- aa)(a'z- l)a- a2)(a2- 1)

>_ a2(4a 4 - 6a 2 + 3) + 2a2(a2 - 1) 2 > 0

This concludes the proof of part a) of Theorem 1.

4. Proof of Theorem 2

Let r > 1 and c > a := a,- be fixed. Note that a and c have tlw representations

1 1 _1( 1a=_("+-) ,c=_ P+_)' /_>,"

With (3) and (17), one obtains

(17)

Tk(c) R k + 1/R k

Tk(a) -- r k+l/r k --f(_k) , (18)

where we set

_o_h(OogR)_ /_) _._
f(_) := eosh((log_),,:/_) ' _k := --.,,,

Since f is continuous, bounded, and even, it can be expanded into the Fourier series

, -__

cx_

1

f(¢:)= _a0 + E cU cos(j_)
j=l
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By rewriting the expression (5) for at in terms of (18) and, subsequently, using the discrete

orthogonality relations of cos(/_k), k, l = 0,..., n, (see e.g. [7], p.472), we get

= (-1)' + +
n-1

s(:, )cos(l ,))
k----1

f 2(--1)i(ai + _--'mCC='(a2mn--t "4-_2mn+t)) for l= 1,... ,n -- 1

.(-1)'(_. + E,_ _2(m+,).) for l=.

It follows that all al > 0 and, in view of Lemma 1, that the normalized Chebyshev

polynomials (2) are optimal for (1), if the Fourier coeffients cU of f satisfy

_j = (-1)Jl_JI , J = 1,2,... (19)

It is well known (see e.g. [6], Theorem 35) that (19) holds true if f is a convex function.

Hence, in order to prove that the condition (a) in Theorem 2 guarantees the optimality

of the polynomial (2) for (1), it only remains to show that (a) implies the convexity of

f. Since f is even, we only need to consider _ > 0. Moreover, set x := (log r)n_/= and

3' := log R� log r > 1. Then, using standard calcldus, we obtain

cosh(Tx) nlogr f"(_2)--72-1-2_tanh(x)tanh(Tx)+2tanh2(x)

> 3`2 - 1 - 27tanh(x) + 2tanh2(x)

>72-1+2 min Y(Y-7)
o_<v_<l

_ f(1-7) 2 if7>2

72/2 -- 1 if 7 < 2

(20)

Therefore, (20) is nonnegative, and thus f convex, if 7 > v_. Tkis last condition is easily

seen to be equivalent to the condition (a) in Theorem 2.

Remark 3. The main idea of the proof, namely to verify the positivity of the al via the

convexity of f, is due to Clayton [3]. However, in [3], it is claimed that f is convex in all

cases R > r > 1. Unfortunately, this is not true in general.

Now, assume that the condition (b) of Theorem 2 is fulfilled. Again, we will use the

notations Ak = Tk(c) and ak = Tk(a). Note that, by the three-term recurrence formula of

the Chebyshev polynomials,

Ak+] = 2cAk -- Ak-] , k = l,2,... (21)

8



Next, set

Ao - An 1 A._k (99), An =- and for k=l,2,.., n-1 Ak-- , --
an 2 ' ' ' ' an-k

and let s(9_) be the trigonometric polynomial defined by (6). With (5) and (6), one readily

verifies that al = s(ln/n), and, in view of Lcmma 1 and 2, we conclude that tile polynomial

(2) is indeed optimal for (1) if the numbers (22) satisfy

A,,>0, An-l-2An>O, and, for k=l,...,n-1, Ak-i -2Ak+Ak+_ >_0 (23)

Tile first condition in (23) is hivially true, and tile second one follows from A1 > al. Using

(22), the remaining inequalities in (23) can be rewritten in the form

A2 2,41 1-4- - > 0 (24)
a2 al 2 -

and
Aj+I A_ Aj-1

2___ +_>0 , forj=2,...,n-1
a j+ 1 aj a i- 1

A simple calculation shows, that (24) is equivalent to

(25)

c>c':= a2. +x[a2a22a +1 (= 2a 2-1+ _/2a_2ar- a2r +1) (26)

which is just the condition (b). For the proof of Theorem 2, it only remains to show that

(26) also implies (25). Let j > 2. First, by using (21), wc deduce that

Aj+I 2Ad Aj-1+--
aj+l aj aj_l

_ Aj_2 ) (27)1 / _1 (A= Aj(2(aj+ 1 aj )+ 2c a j_! ai+1 aj 1 aj+l

(4c2ajaj_, -- 4caj+,aj_l d- aj(aj+l -- aj_l))
> Aj

-- 2caj+lajaj_l

Next, set

Qi(c) := 4c2ajaj_, - 4caj+,aj__ + (lj(a3+ 1 -- aj-l)

and note that Qj attains its minimum at aj+,/(2aj) < c*. Hence, in view of (27), (25)

holds true, if Qj(c*) > 0 is fulfilled. This is indeed the case, and we will show by induction

that

Qj(c*)> Q2(c*)>o , j=2,3,... (28)

9



For j -- 2, this follows with

Q2(c*) = 4(c*) 2a2a - 4c*aaa -b a2(a3 - a)

= o-1 (o2(2a'- 3a2+ 2)- (°2- 1),/a2o_+ 1) >_0 ,

since x/_-a2 > x/a2a2 + 1 and 2a 4 - 3a 2 + 2 > x/2(a2 - 1) for a > 1. Finally, if (28) holds

true for j, a routine, but lengthy, cMculation shows that

Qj+I(c*) - Qj(c*) = (a2- 1)(-4(c*)2a,, -t- 2c *aj+---_2+ a) + (aj__+2 1)Qj(c*)
aj \ aj

( - )>(a2-1 ) -4(c*)2a+2c *a4 +a + -1 Q_(c*)
-- a2 _2

=(a_- 1)(2(Q_(c*)-c')+a3)>_0

(note that aj+2/aj >_ a4/a2). Therefore, (28) is also satisfied for j + 1, and this completes

the proof of Theorem 2.

5. Some Numerical Examples

In order to illustrate the range of parameters for which the normalized Chebyshev polyno-

miaJs (2) are not optimal for the approximation problem (1), we present a few numerical

examples. Let r* = r*(n) denote the smallest r > 1 such that for all r > r* there exists a

real number c(r,n) > ar such that for all ar < c < c(r,n) the polynomial (2) is not best

possible in (1). For later use, let us denote by c*(r, n) the maximal c(r, n) with this prop-

erty. Recall, that in view of Theorems 1 and 2, 1 < r*(n) < oc exists for all integers n > 5.

In Table I, the numerically computed values of r*(n) and the corresponding semi-axes of

£_, are listed for 5 _< n < 20.

Table I

Note that r*(n) tends to 1 as n increases.

The case that the normalized Chebyshev polynomials (2) are not optimal for (1) occurs

only for c close to the ellipse. In Figure 1, for the cases n = 5 (solid line), n = 7 (dashed),

n = 10 (dashdot), and n = 15 (dotted), the curves

ar

10



are plotted as functions of at.

Figure 1

For some cases for which (2) are not optimal for (1), we computed the best polynomials

numerically. XYe were not able to detect any analytic representation of these polynomials.
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n r* at* br. n r* at* br_

5 2.6492 1.5133 1.1359

6 2.0588 1.2723 0.7865

7 1.8006 1.1780 0.6226

8 1.6490 1.1277 0.5213

9 1.5476 1.0969 0.4508

10 1.4745 1.0764 0.3982

11 1.4191 1.0619 0.3574

12 1.3755 1.0512 0.3242

13 1.3402 1.0432 0.2970

14 1.3111 1.0369 0.2742

15 1.2867 1.0319 0.2547

16 1.2658 1.0279 0.2379

17 1.2478 1.0246 0.2232

18 1.2321 1.0219 0.2103

19 1.2183 1.0196 0.1988

20 1.2061 1.0176 0.1885

Table I
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