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Abstract

In this paper we propose a few methods for solving large Lyapunov equations that

arise in control problems. We consider the common case where the right hand side is

a small rank matrix., For the single input case, i.e., when the equation considered is of
the form AX + XA T + bbT = O, where b is a column vector, we establish the existence

of approximate solutions of the form X = VGV T where V is N x m and G is m x m,

with m small. The first class of methods proposed is based on the use of numerical

quadrature formulas, such as Gauss-Laguerre formulas, applied to the controllability

Grammian. The second is based on a projection process of Galerkin type. Numerical

experiments are presented to test the effectiveness of these methods for large problems.

1 Introduction

Many of the matrix equations that arise in control problems can be successfully solved by

well-known numerical techniques, when the matrices involved are small. In contrast there has

been very little done to provide numerical methods for solving these same problems when

the associated matrices are very large. Yet, there are now several applications in control

which lead to matrix equations involving very large sparse matrices. These typically mi._,"

whenever the model involves a partial differential equation in several space dimensions such

as when considering large space structures [2] or when a large network model, e.g. electrical

network, [3] is involved.

Recently, there has been a few efforts directed towards large scale matrix problems iv,

control. In [5] we proposed a method for partial pole placement, which consists of placing a

few of the poles of the matrix, namely only those that are unstable. The methods proposed

are based on projecting the problem onto a small invariant subspace of A associated with

the unstable eigenvalues.

*Research supported by USRA under NASA Grant NCC 2-387.



In this paper we focuson Lyapunov's equations. The numerical solution of these equa-

tions have gained considerable importance in the last few years due to the crucial role that

they play in the so-called Hoo analysis. The basic problem addressed by this theory is to find

a low dimensional ODE model that approximates the original dynamical system governed

by

= Ax + t:lu (1)

y=Cx

IIere, A is N x N, B is N x p and C is q x N. In the situation we consider N may be very

large while p and q are very small. The closeness of this system from its lower dimensional

model is measured in terms of the singular values of the matrix XY where X and Y are

solutions of the two Lyapunov equations,

AX + X/t T + BB T = 0

ATy + YA + cTc = 0

(2)

(3)

These are termed ttanke! singular values of (1). Typically, one would like to compute some

of the largest Hankel singular values. Ill this paper we will provide the tools for computing

approximations to X and Y. Moreover, these approximations are in such a form that they

allow easy computation of tile largest singular values of XY.

Throughout, we will assume that the eigenvalues of A have negative real parts. In this

situation there is an explicit formula for the solution to (2),

_0 CD°
X = cTABBTdArdr (4)

Tile above expression is known as the controllability Grammian of (1).

Much of tile theory in this paper will be established by using the above formula, The main

observation which we will prove in the next section, is that there are accurate approximations

to the system (2) of small rank. Extracting such approximations will be the subject of

sections 3 and 4.

2 Low rank solutions to the Lyapunov equation

The purpose of this section is to identify the types of approximations that will be used in

this paper. We will restrict ourselves to the case corresponding to the single input situation

in (1), i.e., the equation (2) becomes

.'IX -t- XA T + bbT = 0 (s)

where b is a single column vector, and its explicit solution is given by

X = e'AbbTe_Ardr. (6)



One way to integrate formula (6), would be to start by replacing (6) by its approximation

_0 s
X(s) = eTabbT e_Ar dr (7)

where s is selected so that the error in the approximation is small enough. Note that we

must integrate in the interval [0,s] a function of the form w(t)w(t) T where w(t) is the vector

function w(t) = etA& Assume that we approximate w(t) in the interval [0, s] as w(t)._

win(t) = qm(At)b, where qr,, is a polynomial of degree rn- 1. The resulting approximation

for X(s) is

Xm(s) = Wm(r)w_(r)Tdr (S)

This approximation can be made arbitrarily accurate by increasing the degree of qm. Thus,

by choosing a large enough s and and a large enough degree for q, we can make the approx-

imation X_(s) to X as accurate as desired. L_et Vm = [b, Ab,...,A_-_b] and qm(t) =

aO + a_t + ... + am_f _-_. Then win(t) can be written as win(t) = VmZm(Q, Za(t) =

[aO, alt, ..., 0__1t'_-1] T and therefore

(/0" )= v -- Vma,.v (91

where Gr,, is an rn x m matrix whose entries can easily be shown to be equal to

g!?) _ Oq_ l (_j- 1 si+J- I
- i+j-I (10)

Throughout the paper we will exploit approximations to the solution X which are of the
form

Arm ---_ gmGm VT. (ll)

where Vm = [Ul,V2, .... ,_')m] is a fixed set of vectors and Gm is an arbitrary rn × m matrix.

The set of all such matrices is clearly a subspace of the space of N x N matrices. Tim ral_gc

of any matrix in this subspace is included in the subspace K = span{V,_} while its kernel

contains the orthogonal to K. The subspace of the matrices (11) is in fact uniquely defined

by the range K of these matrices. Thus, we will denote by Zm(K) the space of all nmtrices

of the form (11), or Zm if there is no ambiguity, where _ is a basis of the subspace K. If we

restrict the matrices to be symmetric, then Z,,_ is of dimension (m(m + 1))/2. If one waw s

to deal with the more general situation where the right-hand-side is of a more general form

by T rather than bbT then G can no longer restricted to be symmetric and the dimension of

Zm is m 2.

What we have just shown above is that there are approximations from Zm(K,,_) where

K_ is the Krylov subspace

Item = span{b, Ab, ...,A_-Xb} (12)

that will converge to X as m tends to infinity. Here, wc should mention that , rigorously

speaking, this statement is trivial in the finite dimensional case since there is always an



exact solution of the form (11) for m >_ N. However, 'convergence' is meant in the infinite

dimensional context, in the same way that one speaks of the convergence of the conjugate

gradient method which is known to be a finite process.

If we can find a good approximation to w(t) in the interval [0, s], by a low degree poly-

nomial, we should be able to find a good approximation to X from Zm. However, the above

formulas should not be used as a practical procedure since they are likely to be highly unsta-

ble. Section 4 presents a process that is mathematically (but not algorithmically) equivalent

to (he procedure outlined above with a specific choice for qm. In the next section we ex-

ploit well-known numerical quadrature formulas to derive particular subspaces K and their

corresponding approximations.

3 Use of numerical quadrature

The first procedure that we propose for approximathlg X is based upon evaluating the inte-

gral (6) by standard numerical quadrature formulas. We will describe two such procedures.

First, assume that .s has been chosen and that we can evaluate w(t) at m equally spaced

points

(13)
t, = (i- 1)m__ 1,i = 1,2,...,m

then an appropriate quadrature formula for evaluating (6) would yield,

m

Xm = _ _iw(li)w(ti) r (1.4)
i=1

where the 6i's are the quadrature coefficients. In other words,

Xm = lYmAI4_;n (15)

in which Wm is the N x m matrix W,,, = [w(l,),w(t2),...,w(t_)] and A = Diag(3a,...,6m).

Note that w(t_) = b. In order to use the formula (14) we also need to compute and save

w(ti), i = 2..., m. One way in which this can be done is by solving the system of Ordinary

Differential Equations

(v = Aw (16)

w(O) = b (17)

by any technique and save the vectors w(li), i = 1,2, .., m at the points ti. Alternatively, one

may compute w(ti+l) from w(ti) by w(li+,) = cAAtiw(ti), where Ati = ti+l-tl, in a number

of efficient ways as has been recently suggested in [4]. The problem considered in [4] is to

approximate the product of the exponential of a matrix times a vector. We will describe one

such approach in some detail in Section 4.

'l'hus, the class of algorithms based on numerical quadrature would begin by choosing a

quadrature rule and performing the following procedure.



Algorithm 1

(1) Start: Define w(tl) = b;

(2) For i = 2, ..., rn do:

• Compute w(ti) from w(ti_l);

• Save w(ti) in the i-th column of Win.

It is clear that the actual matrix Xm should never be computed explicitly, since it is

a dense N × N matrix in general. One only needs to store Wm and Am. In fact, it is

worth pointing out that one may not even need to store Wm if the original problem is

to approximate Xv where v is some vector, rather than to compute an approximation to

the matrix X itself. In this situation the approximation x = Xmv can be accumulated as

x :-- x + (¢_iw(ti)Tv)w(li) every time that a new w(ti) is generated and one can discard the

old w(ti)'s.

The question that we would like to address next is which integration schemes to use and

how to implement them. First, a restriction of the scheme is that the weights _i should be

positive, since we know that the solution is semi-positive definite matrix. For example, this

is not satisfied for the open Newton-Cotes formulas but it seems to be true for the closed

formulas and for the Gauss-Legendre formulas. We have implemented and tested two basic

classes of quadrature formulas.

1. Closed Newton-Cotes formulas with 3 points (Simpson's rule), 5 points, and 7 points.

2. Gauss-Laguerre formulas with 9 points and 15 point,_.

Newton-Cotes formulas are fairly standard and the corresponding coefficients can be

found in any elementary numerical analysis textbook. These use equally spaced points

which may be an undesirable feature in our case because of the exponential behavior of the

function to integrate. At the beginning of the interval w(t) varies far more than for large t.

Therefore it is natural to expand the intervals of integration as we proceed. One procedure

we have experimented with is to double the size of the intervals [xi, xi+k] onto which the

Newton-Cotes formula is based at every time. For the 7-point Newton-Cotes formula we

triple the size of the interval. This simple modification does provide better results th,_v

keeping a fixed interval.

The Gauss-Laguerre quadrature formula is a highly accurate scheme to evaluate integrals

of fimctions of the form e-tg(t) on the infinite half line. The basic formula is,

ff mg(.)a.
i----1

where the ti are the roots of the Laguerre polynomial of degree ra and where the w,'s are

the quadrature weights. For general functions the formula is used as follows,

= e-'(c'g(,))d, =  ie"g(tdg( d = 6 g(td. (19)
i=1 i=1

5
w



The roots and the coefficients for our numerical tests have been taken from [1].

An aspect which we found to be critical to the performance of the Gauss-Laguerre in-

tegration is a proper scaling of the variable r. For some problems, such as the one in the

numerical experiments section, the norm of A can be very ]argc and as a result the vector

w(ti) can be tiny for most of tile '"ti s, thus leading to a poor evaluation of the integral (6).

For example assume that A is symmetric negative definite having A1 = -10 as its eigenvalue

closest to zero, and consider Gauss Laguerre integration with t5 points. Then for the second

root t2 = 1.21559.. all the eigcncomponents of w(t.2) will be no larger than e -12155_ _ l0 -°e.

For ta the components do not exceed e -22e_04 _ 1.38610 -1°, and beyond t3 the w(t;)'s be-

come too small. A remedy is to use a change of variable _ = mr to ensure that the value

of w(t) at the last root tm is not too small or too large. For example, if an estimate of the

rightmost eigenvalue AI of A is available, we might choose o_ so that [eo_"'x_ [ = tol, where tol

is some prescribed tolerance.

4 A Krylov subspace technique

In this section we present a method that is based on a global approximation to w(t) in

[0, +00). Explicit integration of this approximation will then yields an approximation to X.

This, as will be seen, is equivalent to a projection process of GMerkin-type.

The first question that we address is how to approximate cAb for a given vector b. This

was considered in [4] where polynomial approximation to the exponential was used. The

approximation to cAb is taken of the form

where p,,,-i is a polynomial of degree m - 1.

Clearly, one can use other types of approximations, e.g., rational, which are usually more

accurate. The attraction of polynomials is the fact that they do not require solving linear

systems. One way in which a good polynomial can be found is by attempting to minimize

some norm of the error e_ - pm-l(z) on a continuum in the complex plane that encloses

the spectrum of A. For example, Chebyshev approximation can be used. The disadvantage

of this approach is that it requires some approximation to the spectrum of A. In [4] we

considered a technique based on Arnoldi's method which does not require any eigenvalue

information. This technique is now summarized.

The approximation (20) to cab is an element of the Krylov subspace (12). In this approach

we need to generate an orthonormal basis Vm = [vl, v2, va,..., v,_] of h'_ via the welt-known

Arnoldi algorithm starting with v, = b/llbl]2.



Algorithm 2: Arnoldi

1. Initialize: Compute v, := b/llbN2.

2. Iterate: Do j = 1,2, ..., m

1. Compute w := Avj

J
2. Compute a set of j coefficients hij so that w := w - _i=1 hijvi is orthogonal to

all previous vi's.

3. Compute hj+l,j = [[w[12 and vj+, = w/hj+Lj.

By construction the above algorithm produces an orthonormal basis Vm = lye,..., v,,,],

of the Krylov subspace Kin. If we denote the m x rn upper ttessenberg matrix consisting of

the coefficients hij computed by the algorithm by H,, we have the relation

T
AVm = VmHm + hm+l,.d',,_+le_ (2_)

from which we get Itm = VTAVm. Therefore Hr_ represents the projection of the linear

transformation A onto the subspace I(,,,, with respect to the basis Vm. As is well-known

in the particular case where A is symmetric, Arnoldi's algorithm simplifies to the Lanczos

process in which case Hm becomes tridiagona] symmetric.

We can write the desired approximation to x = cAb as x_ = pm(A)v or equivalently

x_ = Vmy where y is an m-vector. In [4], the choice y = fleHme_ with /_ = [[b][2 was

suggested, leading to the following formula for arbitrary t,

e'ab _ ZV.,emme_ (22)

The quality of this approximation was also analyzed in [4] and the following result was
shown.

Theorem 4.1 Let A be any square matrix and let p = I]Al[2. Then the error of the approx-

imation (22) is such that

(23)

Experiments reported in [4], reveal that this approximation can be very accurate even for

moderate values of the degree m. The theorem shows convergence of the approximation (22)

for fixed t, as m increases to oo. However, note that th(" above approximation is exact wh('n

m = N, see [4].

Let us now substitute the expression (22) in (6). We obtain the approximation

(E )X_ = V,_ e'Hm(/3e,)(/3el)TCH_dr vTm =_ I/_G,,_V_. (24)



Assumingthat [t,_ has eigenvalues with negative real parts, we note that Gm is the solution

of the m x rn Lyapunov equation

G' _ THm ,_ + ,mlt,+ + fl2eleT = 0 (25)

In other words, modulo the polynomial approximation made on the exponential of A, we

]lave reduced tile original problem into one of dimension m. This raises the question as to

whether or not the process ,i,_st described is mathematically equivalent to a projection-type

method such as a Galerkin process.

To see that this is the case we need to define the subspace of approximants and the

inner product. The subspace of approximants will be the subspace Zm(Km) as defined in

Section 2. This is the same as the subspace of all matrices of size N of the form V_GV T

where Vm is the orthogonai basis of K,,, as constructed from the Arnoldi process. Recall

that from our definition I_ is fixed and therefore the actual variable is the m x m matrix

G. For the inner product we take the usual inner product in R N2, i.e., the inner product of

two matrices taken as vectors of N 2 elements. It is a simple exercise to show that this can

also defined by

< X, Y >= tr(XY T) (26)

The Galerkin condition defines an approximation _" by stipulating that ._" belong to Zm

and that the residual R(._ _) = Af( + f(A r + bbT be orthogonal to all of the subspace of

approximants. This second condition gives,

tr[ZRT(f()] = 0, VZ e Zm (27)

and therefore,
, zT (;" To = tflvo, ] t [aVgR(X')T  ] v a

Taking matrices G of the form G = eie_, i,j = 1, ..., m leads immediately to

(28)

T - Tv n(x) v,,,=o. (29)

Let us now substitute 2 = V,_G,,_V,;r_ in (29). Remembering that Vm is orthogonal and that

we have b = five, where vl is the first cohmm of Vm, we get

o = Vrml_(K)rvm= r V. ' ,,r V_A +TTV,_ (A mGmt m + VmGm bbT)l/m

= HmG,,, + G,,,H_ + fl2e,eT (30)

which is exactly (25). We have therefore just proved the following result.

Theorem 4.2 The Galerkin method applied to the Lyapunov equation (5) over the subspace

Zm is mathematically equivalent to approximating the solution X by evaluating the integral

(6) in which w(r) = e_Ab is replaced by its approximation (22).

This theorem can allow one to establish error bounds for the approximation provided by

a Galerkin-type process onto the subspace Z,,,.
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5

10

15

2O

IIR  !! Time(see)
1.10E-04 0.18
5.40E-06 0.23
7.92E-07 0.35
1.92E-07 0.45

Table 1: Performance of tile Krylov subspace method.

5 Numerical Experiments

In this section we describe a few numerical experiments in order to test and compare the

methods described in Sections 3 and 4. All the tests have been performed in double" pre-

cision arithmetic on an Ardent Titan super workstation. Our example is derived from the

discretization of a partial differential equation of the form:

0--7 + y)g(t) (3l)

O_2 _t 0 2 _t

in a rectangular domain, with Dirichlet boundary conditions. Ilere A = _ + _ is the
Laplacean operator. If we discretize the rectangle using n_ + 2 points in the x direction and

ny + 2 points in the y direction, the above equations lead to a matrix problem of the form:

h= Au + bg (32)

where A is square of dimension N = n_ny. In this experiment we took n,_ = 20 and n u = 40

leading to a matrix of size 800. The corresponding matrix has a 1-norm of 3,528.0. We

have taken b to be simply el the first column of the identity. Tests with other choices for b

showed similar results. First we would like to show the behavior of the residual achieved by

the Krylov subspace method described in Section 4, as the degree m varies. Table 1 shows

the scaled Frobenius norm of the residual, i.e., the quantity [[AXm + XmA T + bbrl[r ,, where

[Izttr: = (tr[ZTZI/N) 1/2. This is done for m = 5,10,15,20.

We have used the Arnoldi process instead of the Lanczos algorithm on purpose, despite

the fact that the matrix is symmetric. This is in order to give an idea of the increase in

time in the more general nonsymmetric case. The table indicates that the accuracy of the

Krylov subspace approximation to the Lyapunov equal, ion is good for very small m and theu

improves slowly. The times reported in this table and in the next one are in seconds on the

Titan and have been obtained using the -03 compiling option.

Next, we would like to test the methods based on numerical integration described in

Section 3. Just as in the previous test we show the residual norm and the time to compute

the" approximate solution for various choices of accuracy and step size. In all of the methods

we used the same change of variable for scaling purposes as described at the end of Section 3:

we scaled the variable l by 2.5/11AI1,.To approximate cA_t",,_ we used the formula (20) of

9



Method m IIReslls Time

Laguerre(9) 9 4.2! E-06 0.57

Laguerre(15) 15 7.08 E-08 0.92
NC-3 At = 0.3 6 3.47 E-04 0.23

NC-3 At = 0.1 11 1.17 E-04 0.30

NC-3 At = 0.05 16 8.53 E-05 0.44

NC-5 At = 0.40 _9 1.59 E-04 0.26

NC-5 At = 0.20 12 5.97 E-05 0.35

NC-5 At = 0.20 16 1.45 E-05 0.41

NC-7 At = 0.5 7 3.76 E-04 0.23

NC-7 At = 0.25 13 4.96 E-05 0.36

NC-7 At = 0.20 18 9.60 E-06 0.46

Table 2: Behavior of tile integration techniques.

degree 5 for the Newton Cotes formulas and 10 for tile Gauss-Laguerre formulas. In general

the Newton-Cotes formulas d0=n_t=perform as well as those based on Gauss-Laguerre. The

disadvantage of Gauss-Laguerrc formulas is that if ttmir accuracy is not sufficient one must

restart all over again since the roots of the Laguerre polynomials of different degrees are

different. Not so with the Newton Cotes formulas.

6 Conclusions

We have proposed and tested two types of techniques for approximating solutions to large

Lyapunov equations that arise in control problems. The attraction of the Krylov subspace

method is its simplicity and its overall effectiveness. The Gauss-Laguerre formula may be

particularly useful when only the product of X by a vector is desired and one cannot afford

to store tile vectors w(ti). The use of Newton-Cotes fornmlas is not recommended without

incorporating a proper change of variables to improve effectiveness of the integration scheme.

Although we have relied on the integral formulation of the solution which requires that the

eigenvalues of A all have negative real parts, the Galerkin approach may be applied to more

general situations. The theory for this is not established however. Another case that we have

not addressed is the general situation of equations of the form AX + XA T + B = 0, where

/3 is may be sparse but necessarily of small rank. A completely different approach may be

required in this situation, one that might exploit any possible sparsity in the solution.

10
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