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Abstract

We calculateto firstorder in classicalperturbationtheory the divergent

part ofthe selfforceofa radiatingstringcoupled to gravity,an antisymmetric

tensorand a dUaton infourdimensions.While thisdivergencecan be absorbed

intoa renorrnalisationof the stringtension,demanding that both itand the

divergencein the energy momentum tensorvanishforcesthe stringto have the

couplingsofcompactifiedN = I D = 10 supergravity.In effect,supersymmetry

cures the classicalinfinities.
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The classical treatment of radiating charges has a venerable history 1, and from it

much useful information can be gained such as the Larmor formula for radiation damp-

ing. The analogous problem for a classical string also has important applications: for

example the backreaction on a radiating cosmic string _. Without backreaction, the

metric in weak field perturbation theory develops singularities along null lines origi-

nating at cusps, points in spacetime where the string tangent vector vanishes and it

moves at the speed of light 3. It is reasonable to expect that radiation reaction must

modify this somehow by slowing down the string, but as yet the question of what

really happens at a cusp remains unanswered. Attempts have been made to include

backreaction by calculating the decay rates of highly excited quantum strings 4, but

the connection with the classical problem remains obscure. In any case, a cosmic

string is really a classical object, and the question should be resolvable within the

framework of the classical theory. Some headway has already been made: Quashnock

and Spergel _ have investigated how the trajectory of a radiating loop changes with

time. In this letter we examine the first order corrections to the equations of motion

of the string paying particular attention to the divergent parts of the self force and

the energy momentum tensor. To remain general, we consider the string coupled to

gravity, an antisymmetric tensor field and to the dilaton. This enables us to make

contact with the work of Dabholkar and Quashnock s and Dabholkar and FIarvey s.

Our theory is a classical bosonic string in 3+1 dimensions, which may be con-
i

sidered as a truncated version of a higher dimensional theory. We allow arbitrary

couplings to "the" dilaton (which is a linear combination of the higher dimensional

supergravity dilaton and that resulting from the compactification of the extra dimen-

sions) and the anti-symmetric tensor (AST). We show that there is a logarithmic

divergence in the equations of motion when backreaction is included, which can be

absorbed into a renormalisation of the mass per unit length (this was previously



shown for the AST s and for a gauge fieldr). When the couplings of the string to

gravity (#) and to the AST fleld (A) satisfy/_2 = )_2e(3-aa)¢ ' where a and fl are the

dilaton couplings (defined below) and _ is the dilaton expectation value, the diver-

gence vanishes. This is intriguingly similar to the calculation of the self-energy of a

straight superstring 8, where logarithmic divergences conspired to cancel between all

the fields. GeneraLizing these results to arbitrary couplings, we find that requiring

the energy momentum tensor to vanish as well as the self force constrains a to equal

1. These canceUations are no accident: they occur for precisely those couplings for

which the action is the bosonic part of a dimensionally reduced N = 1 D - 10 super-

gravity theory. Thus we might say that that the classical divergences cancel because

of supersymmetry.

With the conventions of Landau and Lifshitz 1, our classical action is the sum of

a string action $2 and the action for the massless four-dimensional fields 5'4:

& -- 16 -G / OxV'g[-R + + (2)

where g = Idet(g.,.,)l, H_, = cg_,Bvp + O,.Bp_, + OpB,,,. is the AST field strength

and X_'(o ") are the worldsheet coordinates. This is part of the bosonic sector of the

conformally rescaied and dimensionally reduced N = 1 supergravity action s with

string sources when a = 1 and fi = 2.

The equations of motion for the string that follow from this action are

_,(O.(Vh'7"%X" ) + (r_p + a_O_)£ _) = -_e-"'g_O_B,,_r. "_ (3)

where "7 = [det(%b)[ and where 12"= and K:_" are given by

= v '7  OoXuObX

=   bO X"ObX (4)



The equation of motion for the massless fields g._, B_ and _ are

1

R_ - _g_R = 81rGT_., (5)

o'h_ = -16.0.f d:.(_._-2.._)e*_c')(,- x(.))

cOabm, -- -16¢rGA f dao'K_e#'_6(4)(. - X(a')) (10)

02¢ = -_s_c_f d2_Lea®¢')(,- X(_))

£ is defined to be £_. These equations are of the form

-- / d_eS(a)6(4)(m - X(cr)) (II)02A(m)

where the potential A represents the gravitational, antisymmetric tensor or dila-

ton perturbations and _ is 16rG_(£_,_, - 1 =¥5_?_,_/:)e , 16vGAK:_ve #¥ or 87rG_a£..e ¢'¥

_a.(C_g_a_,)=- #--e-_'H'-_2 _S_C./ e_.._"_°'_6(')(=- X(_)) (6)

The energy momentum tensor is the sum of a string piece

and the field pieces

T;_ _ 1 (0._0_ _ _ _g_(0¢)_ )16_'G
1

e-_ ( H;_H _" - _ g"_ H 2) (9)T_"- 32_'G

We expand around a constant field background, g_,,_ = 7/_,, + h_,(z), ,_(z) =

+ ¢(z), Bt,,_(z) = _,_ + b_(z) to first order in the dimensionless couplings G#

and GA with an arbitrarily moving string as a source. Choosing the gravitational

harmonic gauge g_F_ = 0, and the antisymmetric tensor analogue of the Lorentz

gauge O_,B _ = 0, we obtain the weak field equations of motion



respectively.

G(z,y) = (27r)-lO(z ° - y°)//((z - y)2) (Jackson 1)

= - [ d_vd2_(_)c(_, y)_)(y - x(_))A(z)
,/

Equation (11) is easily solved using the retarded Green's function

(12)

Introducing A u = z u - Xu(_r), we may perform all but one of the integrations to

obtain

A(z)= 4_r/d_---- [A • X],-=,-, (13)

where the integrand is to be evaluated at the retarded proper time, given by

A2(r,_r) [,-=¢,= 0. Each of the quantities in (13) is logarithmically divergent as

z _ X(_r). However we will see that these divergences are not fatal. In order

to calculate the self forces due to the various fields requires an expression for the

derivative of A(z). Generalizing a similar expression for the electron' we find

O,AO,)- 4_/ d_t-2---- (14)
• A Or \X • A/J_.=,.

The divergence is extracted by taking the field point on the string and expanding the

integrand around it. It is convenient to fix the worldsheet coordinates by using the

conformal gauge

X.X' = 0

_ + x '_ = 0 (1s)

To order G/z it is irrelevant whether we use g_ or y_ to contract the spacetime

vectors• Changing the worldsheet variables in the integrand to primed quantities,

taking z = X"(tr) and r' = _', (the retarded proper time) so that Ar = r, - r =

-IAtrl = -1o" - o'], and using the gauge conditions we find that the divergent part

of OpA(X(tr)) which we denote by :Dp(Z) is

v,(x) = _ d_' (x'/- S:_)+ _ x', - o--;t',,_tE
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where E = X2.

a) Dilaton: in this c_e _2 = 161rGpae"¥E so that

1 1 "2 X_)
_,(X) = -2GpeaYa f do.'lz_o.i._a ( , --

(17)

The divergent piece in the force per unit length f_, exerted by the dilaton field on

the string is, by equation (3) given by

f_,d,,, -- -a# _,'L'_' = 0 (18)

by the gauge conditions.

b) AST: here ]_ is a tensor quantity, Z'_ = 167rGe_¥Ad'baaX*ObX _', and the divergent

part of the self force f_,di, is

fl_,dlv -- - Ae"¥ ICvP2) a°'vrfru

= _4GA2(2_ ' _ X,,,,)e(a_,,)¥ / do: (19)lao.I

c) Grat, iton: for the graviton, in the conformal gauge, Z = Z v_ = 16_ra_e"_(2_'2 _ -

X"X" - ?_,_2) and we find

= - X") f do., (20)

Putting (18-20) together, we arrive at our first result: the classical equations of motion

for a string including backreaction are in the conformal gauge

[ GA2

where R is an infrared cut-off provided by the curvature of the string and 6 an

ultraviolet cut-off which, for a cosmic string (see e.g. Vilenking), is its width. This is

to be compared with the result for a charged point particle 1

m 1 4_m6 = 54"_ (x_' + 2"(22)) (22)
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There is no simple local expression for the self force for a string because the self-

interactions are non-local, and the string divergence is only logarithmic because it is

an extended object.

We note that it is not in general correct to deduce the divergent part of (21) from

the divergent part of the effective action, which is obtained by substituting back into

$2 the fields for which the string is a source. To first order,

S_ z) = p(87rGg)e 2''¥ / d2o'd2o"£_(o')G(o',o")£_(tr ') (23)

/

_ 1)(4, o. )e / d2  ')r4

where G(o',o j) = (2_r)-lO(X°(o ") - X°(o"))g((X(o ") - X(_r'))'). Performing the in-

tegration over r' the S-function leaves behind a factor (2[A. X(o")l) -1, which when

expanded in powers of Ao" = o"- tr becomes (2v/-_lAo']) -1, where rrtab = O_X. ObX

is the induced metric on the world sheet. Thus

¢(') 4Gg'e2"¥1n(R/6) d'o" £_£_ + _e(_-'")_/E_/E + 1)£'

(24)

Using the equation of motion for 7_b it is easy to show that %b = _m,b where _ is

an arbitrary conformal factor, but the variation of (24) with respect to X _' vanishes.

The reason for this discrepancy is clear: varying (23) with respect to X t' produces

terms involving derivatives of the Green's function, which axe not included in (24).

We now turn to T _, which diverges quadratically as the string is approached. This

divergence can be found by extracting the highest (linear) divergences in the relevant

versions of cgpA and substituting into (9) and the weak field gravitational energy

momentum pseudotensor. This has already been done for the straight superstring s,

from which it is easy to show that in the case of arbitrary couplings the divergence is

proportional to #2e2"_(au/2-1) + $2 e_/2. Taken together with (21), the divergences



cancelin both the self force and the energy momentum tensor only if A2 =/z2e (2"-_)_

and a = 1. When /9 = 2 the cancellation occurs independently of the value of

the background field, and we have precisely the parameters in the classical action

for a fundamental string coupled to the background flelds 9_,, B_, and ,I' in four

dimensions l°'s. Interestingly enough, this cancellation occurs for the fundamental

string in d = 4, where d is the number of "large" dimensions, irrespective of the

compactified dimensions. The classical action in D = d + n dimensions, where n is

the dimension of the compact space is n

S = S2+SD

# f 1 f d, crv/._R(2)_

SD 16_rG / dDzv_e-"(-R(D) - 4(V_I')' + 1H2)

So long as the curvature of the world sheet is much less than #, the last term in

S= can be ignored. We choose coordinates z A = (z",y i) where # = O,...,d- 1 and

i = 1, ..., n. Rewriting the D-dimensional metric 9.4s as

9AB(z,_l)dzAdz B = e(4#-2r'_)/(d-2)g_w(z)dz"dzU + e2_Tijdvid_/j (25)

with _ = o'(z), we find that the dimensionally reduced action becomes, upon defining

= _(2@ - ,_) with a = ,/[2/(d- 2)]

s, = =*+

where V is the volume of the internal space and U an effective potential whose form de-

pends on the particular compactification n. A massive dilaton will not however affect

the divergence structure which is a short distance result. We have dropped the vec-

tors and scalars that result from the compactifications of the massless D-dimensional



fields, for if the string moves in only the non-compact dimensions (Xi(o -) -- co_s_) it

will not generate any of these fields. Thus our results do not depend on the original

number of dimensions of the theory. Although they are classical results and not ob-

viously connected to the quantum string theory, it is nevertheless intriguing that the

divergences in T_ could cancel between fields of different spin when the graviton and

antisymmetric tensor couplings are equal. It was previously shown that there was no

renormalisation of the string tension to one loop in the quantum superstring theory

and argued that supersymmetry was to blame s. Here we can see explidtly how the

supersymmetry works; the theory is the bosonic part of an N = 1 supergravity theory

only when # = A and a = v/_2/(d- 2)].

Our extraction of the divergent part of the self force (21) is of interest for cosmic

string backreaction calculations. Quashnock and Spergel _ developed a perturbation

theory which evolved the string along a Nambu trajectory for one period, and then

calculated the change in X_ + X 'u and X_ - X 'u from (21). No infinities appeared,

which we can now see is because the divergence is proportional to _u _ X,,_, which

always vanishes with this technique.

FinaUy, we discuss the relation between the divergences in the classical theory to

those in the in the quantum theory. When a charged spinless point particle, whose

classical divergence in the self-mass is Linear, is quantized the divergence becomes

worse - quadratic, in fact. This divergence can be cancelled by making the theory

supersymmetric, so that the quadratic divergence from gauge boson bubbles on the

scalar propagator is cancelled by fermion loops. Similarly, quantizing the bosonic

string theory makes the divergence in the self-mass worse, and supersymmetry sorts

the problem out. Classically, there is no divergence in the self energy as we have seen,

provided # = A and a = _/2 = 1, but upon quantization, which can only be done con-

sistently for these values of the parameters (and with an extra 22 bosonic degrees of
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freedom)it is found that the one loop correction to the self mass is again divergent 1_.

The divergence comes from parts of moduli space corresponding to parts of the torus

becoming long thin tubes, down which only massless modes (and tachyons) can prop-

agate. If we ignore the tachyon, the divergence is logarithmic and proportional to

the dilaton one loop expectation value: the geometrical picture is that conformal

invariance enables us to deform the thin handles down which the massless modes are

propogating into a sphere attached by a stalk to a torus with no external legs. For

the closed superstring, the dilaton expectation value vanishes at one loop, supersym-

metry again removes the divergence, and the self-mass is finite. These arguments are,

of course_ far from rigorous_ but they are intended only to highlight the intriguing

relationships between quantum and classical string theory and the role that super-

symmetry plays in both.
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