
/L-_O- _z3X-tJ.

A Final Report /_/'-:32 - _" P_-J

Grant No. NAG3-630

1, 1985-April 14, 1989 _7( fApr_

a R 4t.rll  COMmUNICatiOnS
NETWORK FOR AIRCRAFT

Submitted to:

National Aeronautics and Space Administration
Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

Attention:

Dr. J. C. DeLaat, MS 77-1

Advanced Control Technology Branch

Submitted by:

Alfred C. Weaver

Associate Professor

Report No. UVA/528238/CS901101
June 1990

(NAg A-C_-I c_6 _A0) AT_N_T:

C_IH?_ICATTOnlS NriW[2PK F_K

Reoort tVir_ini,_ Univ.)

A _FaL-TI_ _

ATRCKA_T rin_l

_7 p CSCL 17_

NQO-2451ff

Un_| i_s

_3/32 02d 7,z,7_

Computer Networks Laboratory
DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF

ENGINEERING
& APPLIED SCIENCE

University of Virginia
Thornton Hall

Charlottesville, VA 22903

https://ntrs.nasa.gov/search.jsp?R=19900015198 2020-03-19T21:52:53+00:00Z



UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-

rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160

faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These

range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-

space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-

neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-

puter Science. Within these disciplines there are well equipped laboratories for conducting highly

specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only

graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student

enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,

Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts

and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-

neering research program. The School of Engineering and Applied Science is an integral part of this

University community which provides opportunities for interdisciplinary work in pursuit of the basic goals

of education, research, and public service.



A Final Report
Grant No. NAG3-630

April 1, 1985- April 14, 1989

AIRNET- A REAL-TIME COMMUNICATIONS

NETWORK FOR AIRCRAFT

Submitted to:

National Aeronautics and Space Administration
Lewis Research Center

21000 Brookpark Road
Cleveland, OH 44135

Attention:

Dr. J. C. DeLaat, MS 77-1

Advanced Control Technology Branch

Submitted by:

Alfred C. Weaver

Associate Professor

Report No. UVA/528238/CS90/101
June 1990

Computer Networks Laboratory
DEPARTMENT OF COMPUTER SCIENCE



A Final Report
Grant No. NAG3-630

April 1, 1985-April 14, 1989

AIRNET" A REAL-TIME COMMUNICATIONS NETWORK FOR AIRCRAFT

Submitted to:

National Aeronautics and Space Administration
Lewis Research Center

21000 Brookpark Road
Cleveland, OH 44135

Attention:

Dr. J. C. DeLaat, MS 77-1

Advanced Control Technology Branch

Submitted by:

Alfred C. Weaver

Associate Professor

Computer Network Laboratory

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528238/CS90/101
June 1990

Copy No.



AirNET: A REAL-TIME COMMUNICATIONS NETWORK FOR AIRCRAFT

Brendan G. Cain

Alfred C. Weaver
M. Alexander Colvin

Robert Simoncic

Computer Networks Laboratory
Thornton Hall

University of Virginia
Charlottesville, Virginia 22903

(804) 979-7529

ABSTRACT

We have developed a real-time local area network for use on aircraft and space vehicles. It uses

token ring technology to provide high throughput, low latency, and high reliability. The system has been
implemented on PCs and PC/ATs operating on PCbus, and on Intel 8086/186/'286/386s operating on
Multibus. We provide a standard IEEE 802.2 Logical Link Control interface to (optional) upper layer
software; this permits the controls designer to utilize standard communications protocols (e.g., ISO,

TCP/IP) if time permits, or to utilize our very fast link level protocol directly if speed is critical. Both
unacknowledged datagram and reliable virtual circuit services are supported. Using our software, a

station operating an 8 MHz Intel 286 as a host can generate a sustained load of 1.8 megabits per second

per station, and we can deliver a 100-byte message from the transmitter's user memory to the receiver's
user memory, including all operating system and network overhead, in under 4 milliseconds.

±i



lo

2.

3.

.

.

.

7.

TABLE OF CONTENTS

BACKGROUND ......................................... 1

USER INTERFACE ....................................... 2

EXAMPLE PROGRAMS ................................... 4

3.1 Example 1 - A Broadcast Datagram Service ................. 5

3.2 Example 2 - Reliable Virtual Circuit Service ................ 7

OUR SYSTEM .......................................... 11

4.1 Proteon ProNET-10 .................................. 12

4.2 Stations ........................................... 12

PERFORMANCE AND DELAYS ............................ 13

5.1 Station Transmit Metrics ............................... 14

5.2 Other Effects ....................................... 15

5.2.1. Interrupt Handling Overhead ....................... 16
5.2.2. CPU Idle Time ................................. 16

5.2.3. Measurement Overhead .......................... 17

5.2.4 Same Station Effect ............................. 17

5.2.5 A Faster Transmitter ............................ 18

5.2.6 Compilers ..................................... 18

CONCLUSIONS .......................................... 19

ACKNOWLEDGEMENTS .................................. 19

REFERENCES .......................................... 19

APPENDIX: Master's Project Presentation by Brendan Cain

iii



AirNET: A REAL-TIME LOCAL AREA NETWORK FOR AIRCRAFT

I. Background

Historically, electronic communication aboard aircraft has been accomplished by using point-to-

point connections or bus wiring, the latter being exemplified by the l Mbps, master/slave MIL-STD-

1553B avionics bus. As the number and type of devices which need interconnection increase, and as the

amount of data which needs to pass among them also increases, these interconnection strategies become

less viable. What is needed is a high speed interconnect which can be shared by many devices -- in other

words, we need some form of local area network.

NASA-Lewis Research Center faced just such a problem in their attempt to accomplish distributed

control of aircraft engines and airframes. The CPUs, sensors, and effectors which were physically

distributed about the aircraft needed a common real-time interconnection mechanism to support their

interaction. NASA-Lewis contracted with the Computer Networks Laboratory at the University of

Virginia to build a prototype local area network which would support this type of real-time messaging.

Our analysis of the communications patterns aboard an aircraft suggested that our system needed to

support three distinctly different types of traffic: (1) slow, periodic messages, (2) background file transfer,

and (3) real-time control messages. The first two message types had negligible impact on performance,

so our system was designed around the needs of the real-time control systems. Our requirements were

that (1) each network station should be able to process at least one hundred 100-byte control messages per

second; (2) once generated, a message should be delivered within l0 ms; (3) the network itself should

support a sustained data rate of 5-10 megabits/second; and (4) each network station should be based on

commercial-off-the-shelf technology, in the class of a 6-12 MHz Intel 286 or 386 microprocessor.

We acquired a commercial token ring network, the Proteon ProNET-10, and developed around it a

user-friendly yet robust real-time messaging system. This was equivalent to providing all the



communicationsserviceswithin thekernelof amodemoperatingsystem.WecalltheresultAirNET.

2. User Interface

One possibility for the user interface would be the full suite of ISO protocols; such a choice would

have provided a messaging service in the application layer such as X.400 or the Manufacturing Message

Specification (MMS). But we knew from our previous network performance evaluations [2,3,4] that the

commercially available ISO protocol packages (1) would not meet our performance requirements and (2)

were really overkill for a relatively short, single-segment LAN with a modest number of stations.

Therefore we chose to write our own user interface, provided as a set of library functions which the user

links into his application program. To encourage interoperability, our system adheres strictly to the IEEE

802.2 Logical Link Control (LLC) standard.

AirNET provides a basic datagram service, with optional acknowledgements and checksums, to

multiple application processes running on microcomputers. The user interface is a set of 'C' procedure

calls which create and manage sockets, set options, send and receive messages, and report network status.

The LLC architecture is shown in Figure 1. Communication occurs through sockets, which are

equivalent to IEEE 802.2 LSAPs (link service access points). Programmers use the LLC interface by

linking into their 'C' programs as many of the following communications primitives as are needed for the

intended application:

LLCon (socks) initializes the network interface. Table space for socks number of sockets is allocated.

LLCoff( ) disables and closes the socket interface.

LLCopen (sock) opens the socket numbered sock. A socket must be opened before use. Like LSAPs,

sockets must be even-numbered integers in the range 2 to 254 inclusive.

LLCclose (sock) closes the socket numbered sock. The socket must be idle (no pending transmit or



receive calls).

LLCoption (sock, xsignal, rsignal, xtime, rtime, priority, ack, tries) sets options on socket number

sock. Variables xsignal and rsignal are pointers to functions to be called when a packet has been

transmitted or received, respectively. The variables xtime and rtime are the amount of time allowed for

the operation to complete (a value of zero never times out). The value of priority sets the transmission

priority of the message in the range 0 (lowest) to 7 (highest). The LLC software manages an eight-level

queue, serving the highest priority messages first. The flag ack, if set, requires that the packet be

specifically acknowledged by a reply message. If the transmission was not successful, tries tells how

many times the transmitter should transparently send the packet before declaring an error.

LLCxmit (sock, destination, packet, size) delivers the packet pointed to by packet, of length size, to

socket number sock for delivery to the network entity whose address is pointed to by destination.

LLCrecv (sock, source, packet, size) enables reception of a packet at socket sock. The programmer

provides source (a pointer to a buffer to hold the incoming packet's source address), packet (a pointer to a

buffer that will hold the incoming packet), and size (the length of the packet buffer).

LLCxmit and LLCrecv move messages between the LLC entity and the MAC (medium access control)

engine in the same computer (not end-to-end). This frees the CPU to operate in parallel with the network

hardware. Using IEEE 802.2 terminology, the procedure call represents the data request, the return from

the call represents the confirm, and an appropriate change in the status byte retumed by the LLCstatus

call represents the indication.

LLCreset (sock, direction) resets any pending operation on the transmit side (if direction = 'x') or

receive side (if direction = "r') of the socket and releases the associated buffer. A socket is bidirectional

and so can send and receive simultaneously.

LLCstatus (sock, direction, status) returns the current status of a socket. For socket sock, on the



4

transmitor receivesideasdeterminedby direction, LLCstatus returns status, a pointer to a status

variable, which indicates operation pending, no operation pending, I/O in progress, operation failed, or

operation timed out.

Finally, every operation on a socket returns an operation status: operation accepted, invalid socket,

duplicate socket, too many sockets, socket busy, or packet too large.

We also provide a real-time network monitor which displays color-coded histograms of recent

network traffic. The monitor can trace all network traffic, or selected traffic as defined by a user-specified

filter. The monitor displays network load in packets/sec and in bits/sec, sampled at a user-defined rate,

and calculates current, average, and maximum data rates. In trace mode the monitor can trap and later

display the last 1,000 network events.

3. Example Programs

To show the simplicity of the user interface, we present two example programs. The first is

extremely simple: a transmitter broadcasts an unacknowledged datagram on the network. The second is

more complex: the sender creates a reliable virtual circuit to guarantee in-order delivery with no

duplicates. This requires the use of higher-level acknowledgements and sequence numbers.

Services are provided by a software library containing the aforementioned LLC procedure calls.

When the LLC service is used, those LLC calls must be issued in a certain sequence to obtain the desired

result. The network interface must first be initialized, then one or more sockets may be opened for

communication and their options set. Only then can receive and transmit operations be applied. Each

socket can be used for both reception and transmission in parallel; receive and transmit operations are full

duplex. To close a connection the socket should first be reset, then closed. To stop all communication,

each socket should be reset and closed, then the communications disabled.

If communication is to be established between two machines, one a receiver and the other a

transmitter, a possible sequence of operations could be as follows.



At the transmitter:

1. "r.v.Con will initialize the network interface and allocate table space for the socket.

2. LLCopen will open the socket.

3. LLCoption will set options on the socket for transmission.

4. Several LLCxmit operations can be issued to send a number of packets through the socket to

another socket on the remote machine.

5. After all information is transmitted, LLCreset will reset the state of the socket.

6. r.r.Cclose will close the socket.

7. LLCoff will disable and deallocate the socket interface.

At the receiver:

1. LLCon will initialize the network interface and allocate table space for the socket.

2. r.r.Copen will open the socket.

3. r.r.Coption will set options on the socket for reception.

4. The appropriate number of LLCrecv operations should be issued to receive all packets from

the remote machine.

5. After all information has been received, LLCreset will reset the state of the socket.

6. LLCclose will close the socket.

7. LLCoff will disable and deallocate the socket interface.

3.1. Example I -A Broadcast Datagram Service

To illustrate LLC operations we offer two examples. Both are written in Turbo C 1.5. The first

program, ]:)last, can be run on any station. It broadcasts MSND messages of fixed length SIZE to all

stations on the network.



6

I* Program "blast" will broadcast MSND messages *I

/* of size SIZE to all nodes in the network. */

**********************************************************

#include <stdio.h> /* standard IlO */

#include <llcio.h> /* LLC interface *I

#define MSND I00 /* number of-_ssages to send */

#define SIZE i000 /* size of the message */

#define BROADC 255 /* broadcast address */

Int cls - 0, /* service class *I

tout = 0, /* timeout */

retry = I, /* retry limit */

n8 - 2, /* source socket */

mnum;

unsigned

int status;

char message[SIZE] =

unsigned

char netadr[2] = { 2, 255 };

nop() ( }

do_m(opn)

char opn;

{ switch (opn) {
case ' r' :

I* returned status *I

( "Message..."}; /* broadcast message */

/* destination: socket number, node address *I

I* signal function *I

I* close down *I

while (status = LLCreset(ns,'x'))

printf("*** LLCreset rejected, status : %s\n ", LLCopbits(status));

case 'c' :

if (status -- LLCclose(ns))

prlntf("*** LLCclose rejected, status : %s\n", LLCopbits(status)};

case 'o' :

if (status = LLCoff())

printf("*** LLCoff rejected, status : %s\n", LLCopbits(status));

default:

exit(l);

)

main() /* transmit MSND messages */

(
/* initialize the network, open the socket and set the options */

if (status = LLCon(1)) {

prlntf("*** LLCon rejected, status : %skn", LIEopbits(status));

exit (i} ;

)
if (stature = LLCopen (ns)) {

printf("*** LLCopen rejected, status : %s\n", LI_opblts(mtatus));

down (' o' ) ;

}
if (status-LLCoption(ns, hop, hop, tout, tout, cls, retry)) {

printf("*** LLCoption rejected, status : %s\n", LLCopbits(status));

down (' c' ) ;

)

/* transmit MSND messages, wait for non-busy statum after each transmismlon */

for (mnum : I; n_num < MSND; mnum++) (

if (status = LLC_m/t(ns, netadr, message, slzeof(message)}){

printf("*** LLCxmlt rejected, status : %m\n", LLCopbits(status));

down('r');

)
while (LI_atatus(ns, 'x', &status), (status&STBUSY))

; /* wait until not busy */

)
down ('r'); /* close down *I

ORIGINAL PAGE IS

OF POOR QUALITY



7

Program blast starts by initializing the network interface and allocating table space for one

socket by calling LLCon. If LLCon is successful, LLCopen is called to open the socket.

LLCoption is used to set the socket options. If the returned status indicates unsuccessful

operation, an error message is printed and the program exits with down (' c') which will call

LLCelose and LLCoff before exiting. A successful call to LLCoption in this program will set the

following options for the socket ns=2:

1. The signal routine for transmit and receive is the same -- nop () which does nothing.

2. Timeout for transmit and receive is set to 0, which means that operation will never be timed

out.

3. Class is set to 0 -- connectionless data link service without acknowledgements. Priority is 0

0owest).

4. Number of transmission attempts is 1; LLC will not try to retransmit the packet if the first

attempt fails.

Now the program calls LLCxmit. After each transmission, the return status of the operation is

tested; if it indicates an error, the program exits. Otherwise it waits for the non-busy status of the socket,

indicating that the socket is ready, and then issues the next transmit operation.

3.2. Example 2. Reliable Virtual Circuit Service

In the second example we present one way to build a reliable virtual circuit service using the basic

datagram service. It consists of two programs running on different stations. Program sendrel will

send messages from a certain socket to the remote machine where program recvrel receives them.

Then it waits for an acknowledgement from the receiver at the same socket. If the acknowledgement does

not arrive within the specified timeout, the sender will retransmit the message and again wait for an

acknowledgement. The sender will tag the messages with one bit sequence numbers, 0 or 1. For every

new message transmitted, the receiver will altemate the sequence number. When retransmitting a lost



8

message, of course, the sequence number stays the same.

Program recvrel will receive messages from the sender. On each reception it will test the

sequence number. If it is the same as the previous one, it means the message is being retransmitted by the

sender so the receiver just emits another acknowledgement. If the sequence number is different from the

previous one, the receiver will process the message, send the acknowledgement, and await another

message.

In this example the communication service is reliable. If either the message or the

acknowledgement is lost it will cause retransmission from the side of the sender. The receiver correctly

handles duplicate messages. The source code of sendrel:

#include <atdio.h>

#include <llcio.h>

#define MSND i00

/* LLC interface */

/* number of mJslages to .end */

int cls - 0,

toutr - 60,

touts = 0,

retry = 0,

ns = 2,

dones n 0,

doner I 0,

rpt m I0,

Ea_um;

struct {

unsigned char seqn;

char message[100];

} dour;

unsigned

Ant statusl,

status2;

unsigned

char netadr[2]

char leqack;

= { 2, 100 };

/* service class */

/* timeout units */

/* retry limit */

/* source socket number */

/* set when message sent */

/* set when acknowledgement received */

/* retries */

/* sequence number */

/* message sent */

/* status returned */

/* destination: socket number, node address */

/* received acknowledgement */

/* receive signal handler */

sigr() {if (LLCstatus(ns, 'r', &status1), !(statual&STBUSY)) doner++;}

/* transmit signal handler */

sigs() {if (LLCltatus(ns, 'x', &status2), !(status2&STBUSY)) dones++;}

opstat(s, tag) /* check the operation otatus and return it */

int s;

char *tag;

{ if (s)

printf("*** LLC%s rejected, status: \n \t %s \n", tag, LLCopbits(s));

return (s);

}

down(opn)
char opn:

{ switch (opn) {

/* close down */

ORIGINAL PAGE IS
OF POOR QUALITY



9

case rE' :

case r c' :

case 'o e :

default :

}

while (opstat(LLCreset(ns,'r'), "reset") ) ;

opstat (LLCclose (ns), "open") ;

opstat(LLCoff(), "off");

exit (I) ;

main() /* reliable transmitter */

{
/* initialize, open and set options for the socket */

if (opstat(LLCon(1), "on") ) exit(l);

if (opstat(LLCopen(ns), "open") ) down ('o');

if ( opstat (LLCoption(ns, sigs, sigr, touts,toutr, cls,retry), "option") ) down ('c') ;

sprintf(dout.message, "MESSAGE .... -); /* initialize out message */

dout.seqn = 0; /* inltialize seq number */

/* send MSND messages with I0 retries upon failure */

for (mnum : I; mnum < MSND; mnum++) {

if ( rpt == 0 ) down('r'); /* if i0 retries -> down! */

/*** .......... PREPARE THE MESSAGE HERE ............. ***/

dout.seqn = (dout.seqn =: 0) ? 1 : 0 ; /* flip sequence number */

prlntf( " Sending %d %s \n", dout.seqn, dour.message );

rpt : i0; /* transmission retries */

do (

doner :dones = 0; /* signal handler indicators */

/* receive acknowledgement */

if(opstat(LLCrecv(ns, netadr, &seqack, sizeof(seqack)), "recv")) down('r');
/* send message */

if(opstat(LLCxmit(ns, netadr, &dour, :izeof(dout)), "xmit")) down('r');

while ( !dones il !doner ); /* wait until done */

if (statusl&STFAIL) { /* transmission failed */

printf("*** hexstat : %x\n", statusl);

printf("*** transmit failed, status: %s\n", LLCstbits(statusl,'x'));
)
else

if ( dout.seqn _ seqack )

break; /* O.K. -> send next message */
else

down ('r' ); /* error -> down */

} while ((rpt--) , ( rpt > 0 ));

}
down ('r' ) ;

Program sendrel makes use of signal handlers for both transmit and receive operations. First

LLCstatus is called to get the transmit or receive status of the socket; if it is not busy doner or

dones is incremented to indicate the completion of the operation.

The main module first initializes the network interface, opens the socket, sets options for the socket

and initializes the output message. Then it starts transmission and waits for the acknowledgement. If the

acknowledgement does not arrive within the timeout the message is retransmitted up to 10 times. If the

sequence number is out of order the program exits, else the next message is transmitted.

ORIGINAL PAGE IS "--

POORquAuT'
/ __:!



I0

Program recvrel is the reliable receiver for sendrel. It runs on another station.

#include <stdio.h>

#include <llcio.h>

#define MRCV I000

Ant cle = 0,

toutr = i00,

touts _ 0,

retry m 0,

ns _ 2,

dories I 0,

doner I 0,

mnum;

struct {

unsigned char seqn;

char message [100] ;

} din;

unsigned

int statusl,

status2;

unsigned

char netadr[2] = { 2, 5 };

char seqack - 0;

/* LLC interface */

/* number of messages to receive */

/* service class "1

/* timeout units */

/* retry limit */

/* source socket number _/

/* set when acknowledgement sent */

/* set when message received */

/* sequence number */

/* message received */

/* status returned */

/* remote: socket number, node address */

/* acknowledgement - sequence number */

/* receive signal handler */

slgr() {if (LLCstatus(ns, 'r', &status1), !(statusl&STBUSY)) doner++;}

/* transmit signal handler */

sigs() {if (LLCstatus(ns, 'x', &status2), _ (status2&STBUSY)) dones++;}

opstat(s,tag) /* check the operation status and return it */

int s;

char *tag;

{ if (s)

printf("*** LLC%e rejected, status: \n \t %s \n", tag, LI_opbits(s));

return (s);

}

down(opn) /* close down */
char opn;

{ switch (opn) {

case 'r' : while (opstat(LLCreset(ns,'r'), "reset") ) ;

case 'c' : opstat(LLCclose(ns), "open");

case 'o' : opstat(LLCoff(), "off");

default : exit 41) ;

}
)

main()

(

/* receiver for reliable communication */

/* initialize, open and set options for the socket */

if (opstat(LLCon(1), "on") ) exit(l);

if (opstat(LLCopen(ns), "open") ) down ('o');

if ( opstat(LLCoption(ns, sigs, sigr, touts,toutr, ols,retry), "option") ) down ('c');

/* post the initial receive buffer for the message to arrive */

If(opstat(LLCrecv(ns, netadr, &din, sizeof(din)),"recv")) down('r');

/* receiving messages and sending acknowledgements */

for (mnum - I; mnum <= MRCV; mnum++) {

whale ( !doner ) ; /* wait until receive done */

donee = doner = 0; /* signal handler indicators */

ORIGINAL PAGE IS
OF POOR QUALITY



II

/* post another receive buffer for the message */

if(opstat(LLCrecv(ns, netadr, &din, sizeof(din)),"recv")) down(°r');

/*

if

}
/.
if

receive failed or timeout? */

(statusI&(STFAILISTLATE)) (

printf("*** hexstat = %x\n", statusl);

printf("*** transmit failed, status: %s\n", LLCstbits(statusl,'x'));

down('r');

is this the next message ? */

( dln.seqn != seqack ) {

seqack = din.secrn; /* set the acknowledgement seq.number */

/* send the acknowledgement */

if(opstat(LLCxmit(ns, netadr, &seqack, sizeof(seqack)), "xmlt")) down('r');

while (!dones) ; /* wait until done */

/*** ........ PROCESS THX MESSAGE ......... ***/

printf(" received: %d %s \n", din.seqn, din.message);

}
else { /* retransm/tted message */

printf(" the same message \n");

/* send the old acknowledgement */

if(opstat(LLCxmit(ns, netadr, &seqack0 sizeof(seqack)), "xmit")) down('r');

while (!dones) ; /* wait until done */

}

After initializing the network, opening a socket, and setting its options, recvrel starts receiving

messages from sendrel and acknowledges them one at a time by sending back the sequence number

that was received in the message from the transmitter. If the receive operation fails or times out, the

program exits.

Programs sendrel and reevrel are written to run in parallel on two different stations.

Together they guarantee reliable exchange of information.

4. Our System

To determine whether this architecture and implementation would satisfy NASA's requirements, we

built a prototype system. The resulting system consists of several workstations connected to a

commercial token ring, the Proteon ProNET-10. The workstations are of three different architectures --

it is the station's effect on the overall performance of the LAN that is the emphasis of this paper.



12

4.1. Proteon ProNET-IO

The ProNET-10 is a 10 Mbit/sec token ring local area network whose functional characteristics

match well with those required by our prototype system. It provides a star-ring architecture using wiring

centers to interconnect up to 255 nodes or stations. Once a station has accessed the token and thus

obtained the right to transmit, it may transmit a single packet of maximum length 2046 bytes, followed

immediately by a new token. Placing the new token immediately after the transmitted packet, as opposed

to transmitting fill until the packet has made a complete circuit, results in improved throughput in a

system using primarily short messages.

4.2. Stations

The three machine architectures are:

• A Leading Edge model 'D' -- an IBM PC compatible with a 7.16 MHz 8088 CPU. In this

paper, this architecture is referred to by PC.

• A Compaq Portable -- an 8 MHz 80286 -- we use the term PC/AT.

• An INTEL 310 -- a 6 MHz 80286 with a Multibus I interface -- the term INTEL refers to this

architecture.

The ProNET-10 interface for the PC and PC/AT is a single board set plugged directly into the

backplane. For the INTEL, the ProNET-10 interface is a two-board set connected to the Multibus I. Both

sets contain the transmit and receive hardware packet buffers and the control/status registers

effectively the MAC engine.

The LLC layer and measurement programs were implemented in the C language on the PC and

PC/AT, and compiled under both the large and small models using two compilers, C86 and Turbo-C. We

will see the effects of these two factors reflected in our measurements. The INTEL version was

implemented under the RMX86 operating system using primarily C, although the operating system's



13

nativelanguage,PL/M (asubsetof PL/I),wasrequiredfor someof theinterrupthandlingandI/O. The

interrupthandlingwasimplementedusingtheRMX86tasksystem.Althoughthetasksystemprovidesa

convenientabstractionfor interrupthandling,theoverheadassociatedwith resuminga task afteran

interruptissignificant,aswewill seelater.TheC portion was compiled under the large model using the

iC86 compiler.

Although NASA is interested primarily in the performance of a system containing only INTEL 310

stations, the inclusion of the PC and PC/AT allows us to make some interesting observations.

5. Performance and Delays

We now come to the focus of our paper-- performance and delays in a real-time messaging system.

The performance of the ProNET-10 at the PHY (physical) and MAC layers is interesting in its own

right, and similarly, performance of a network under factors such as high offered load and many stations

is of interest when analyzing a particular protocol. However, this paper addresses primarily station

performance at the LLC layer -- the first layer whose performance is directly observable by the user. In

our prototype system we find that the overall performance of the system is a direct function of an

individual station's ability to transmit and receive packets at the LLC layer. The performance of the

station as dictated by such factors as its DMA channel design, processor speed, and interrupt handling

mechanisms, determines the system performance.

To see why this is so, let's look at the classic components of the overall end-to-end delay of a

packet at the LLC layer. We define end-to-end delay as the elapsed time from the moment a message is

enqueued by the sending application process until the moment the message is delivered to the receiving

application process (i.e., user memory to user memory).

The hardware packet buffer holds a single packet, and so queueing delay at the PHY layer is

negligible. Queuing delay is insignificant at higher layers due to low station offered load. Since our

delay measurements were taken with a single station transmitting, network access delay (waiting for the



14

delay is just

milliseconds

message.

token) is also insignificant. In our prototype system, the physical ring consists solely of a wiring center

(and in the typical system, ring length is short), and thus propagation delay is negligible. Transmission

the packet size divided by the transmission rate of lO Mbit/sec, and is about 1.64

for the maximum packet size of 2046 bytes, and only 80 microseconds for a lO0-byte

The remaining component, and the dominant factor in the end-to-end delay of a message, is station

delay. Station delay can be decomposed into three parts on both the transmit and receive ends. A CPU-

bound portion during which the packet header is filled or analyzed, followed by a DMA-bound portion in

which the packet header and body are transferred (often separately) to or from the hardware packet buffer.

The third and perhaps surprising portion is the interrupt handling and context switch overhead required

when the DMA is complete. Delays in these three areas overwhelm the other delays, and our

performance measurements illustrate the relative effects of three different machine architectures on each

portion.

5.1. Station Transmit Metrics

We present the metrics for station transmission over a range of packet sizes. All sizes are in terms

of information bytes only -- framing bits at the LLC and lower layers are not included.

Figure 2 shows end-to-end delays for the PC, PC/AT, and INTEL machines. End-to-end delay

measurements are important in real-time control systems, where bounded message delivery times are

critical.

These measurements were obtained using the same station as both the transmitter and receiver, i.e.,

sending the message to one's self. This approach eliminates the synchronization that otherwise would be

necessary to measure delays for messages sent between two stations.

We see that the INTEL performance is superior (lower delays are incurred) for packet sizes greater

than 8 bytes, and that the PC/AT outperforms the PC except for large packet sizes. Note that the station



15

wasdoingnootherwork,andthusthesenumbersrepresentalowerboundon delay.

The delays for the PC are uniformly higher than the INTEL's because the CPU-intensive portion

(accessing the socket, and filling or analyzing the packet header) is slower due to differences in the CPU.

Also, setting up the DMA is slower, although the DMA itself (the per-byte transfer rates) are equivalent.

The PC/AT is much faster than the PC for shorter messages because the CPU is faster. However,

the PC/AT's DMA transfer rate is slower than either the PC or INTEL, and so for large messages, begins

to significantly influence end-to-end delays.

Figures 3 and 4 show the performance curves for the PC, PC/AT, and INTEL machines in packets

per second and kilobits per second, respectively, over the range of packet sizes. The packets/second

metric is useful if one is interested in the message rate, while the kilobits/second metric represents the

maximum offered load of a station when sending messages of a certain size. These measurements were

obtained using a program that continually requests a message transmission after completion of the

previous request -- again, the station is doing no other work- and thus these measurements represent

the upper limits on station-generated load.

For these metrics, we again see that the INTEL performance is superior for packet sizes greater than

about 8 bytes. The PC/AT performance exceeds the PC up through packet sizes of about 1000 bytes.

The justification for our end-to-end delay measurements also suits the packets/second and

kilobits/second curves, although the end-to-end delay measurements are more dramatic since the station's

effect is doubled.

5.2. Other Effects

Figures 2, 3, and 4 encapsulate the essence of the station performance we wish to present here, but

there are several other interesting observations worthy of note.



16

5.2.1. Interrupt Handling Overhead

In our LLC architecture (see Figure 1), a packet is transmitted from the application to the hardware

buffer in three stages. First, the header is moved via DMA out of the transmit engine, and second, the

data itself is moved via DMA into the buffer immediately trailing the header. Third, the packet is

"originated" -- the MAC engine is instructed to access the next token and place the contents of the packet

buffer onto the ring.

Early in the evolution of the system on the INTEL machine, the LLC transmit engine was notified

of the completion of each stage through an interrupt. That is, the MAC engine interrupted the LLC layer

when the request was completed. Under the RMX86 task system, the interrupt resulted in the resumption

of a waiting task, which then called the appropriate routine in the transmit engine.

The performance of the INTEL system with this LLC architecture was no better than that of the PC.

We then changed the architecture so that rather than being interrupted after the completion of each of the

first two stages, the transmit engine just performed busy-waiting -- i.e., detecting completion by

continually polling the appropriate MAC control/status register. This single change resulted in the

performance improvement we saw in Figures 2-4.

Thus, the overhead in our use of the task system for interrupt handling is significant. We have

measured the overhead to be about 1 millisecond. This is an example of the (unexpected) cost of various

operating services. Since the current architecture still requires one interrupt on packet transmission (and

another on packet reception), this single factor alone contributes 2 milliseconds to the end-to-end delay of

a packet, regardless of its size.

5.2.2. CPU Idle Time

A related measurement is the percentage of CPU idle time during packet transmission. We monitor

the amount of time the CPU is idle while running the programs we use to determine packets/second and

kilobits/second. This is a measure of the amount of time the application will be able to do other useful



17

work,andis afunctionof thepacketsize. In additionto themachinecyclesavailableduringDMA, the

timetheMAC enginespendsplacingthepacketon thering(thetransmissiondelay)is timetheCPUcan

useforalternatework.

OntheINTEL,thereisvirtuallyno freetime-- evenfor longpacketsthefreetimeis lessthan1

percent.Whilethismetricis initially disconcerting,thefactthatpackettransmissionisCPU-boundleads

usto believethatuseof afasterCPU(e.g.,thenew16-25MHz80386)will directlyimprovethestation's

performance.

5.2.3. Measurement Overhead

The instrumentation of a system for measurement purposes often contributes some overhead to the

system, and skews the resulting measurements. We have measured that overhead, and determined it to be

insignificant, on the order of 1 to 5 percent, as shown in Figure 5.

5.2.4. Same Station Effect

As mentioned earlier, end-to-end delay was measured using the same station as the transmitter and

receiver -- a message is sent and received, the time is recorded, another is sent and received, recorded,

and so on. The resulting metric is accurate since the transmit engine and receive engine are not

competing simultaneously for station resources. However, for the packets/second and kilobits/second

measurements, we used a receiver separate from the transmitter. If we use the same station for both

transmitting and receiving, we see a decrease in performance ranging from 10 to 30 percent over the

packet size, also shown in Figure 5.

Since the receiver is handling one message while the transmitter is generating another, the receive

engine competes with the transmit engine for station resources, thus slowing the overall message

generation rate.



18

5.2.5. A Faster Transmitter

The performance curves in Figures 3 and 4 were obtained using a program constructed as follows.

The test program (the application) would request a packet transmission [via LLCxmit( )], having

earlier indicated [via LLCoption( )] the application routine to call upon transmit completion. This

transmit interrupt complete routine would return, and the application would then request another

transmission. To save the overhead of that context switch, a load program was constructed that, rather

than returning to the main application program, would reschedule another transmission from within the

transmit complete interrupt routine. This approach resulted in a decrease of nearly 1 millisecond per

packet transmission. This confirms our earlier measurement for interrupt handling overhead. The

conclusion is that it is possible to construct a faster transmitter than those producing the performance

shown in Figures 3 and 4, although any production system would probably not use such a construction.

5.2.6. Compilers

Only one compiler (iC86) was available on the INTEL, and only the large model was used because

of complications with compiling our interrupt handling system under the small model. However, the PC

and PC/AT had two compilers (C86 and Turbo-C) available, and the test programs were compiled under

both the small and large models using each compiler. The performance of the various resulting versions

were compared, and we noted significant differences. Figure 6 shows the packets/second performance

curve, with the INTEL curve included for reference. The kilobits/second and end-to-end delay curves

show a similar effect and thus are not included.

We note a difference in the model, large and small, with the small model providing consistently

better performance. We noted a similarly consistent improvement of the performance of the Turbo-C

version over that of the C86 version. On the PC, the Turbo-C large model and the C86 small model were

roughly equivalent.



19

Notealsothatin Figures2-4shownearlier,thePCandPC/ATcurvesarebasedon theC86large

modelversion.Webelievethatversionismostappropriatefor comparisonwith theINTEL iC86large

model.

6. Conclusions

We have presented the architecture and performance of a real-time messaging system. The system

is constructed using the Proteon ProNET-10 for the PHY and MAC layers, and a set of C routines

comprising the LLC layer, conforming to IEEE 802.2. The system is tailored for applications

characterized by few stations, predominantly short messages, and requiting bounded message delivery

times. We claim the overall performance of such a system is dictated by the station performance rather

than the underlying network.

We show the often surprising effect of such factors as DMA channel design, interrupt-handling, and

compiler efficiency. Operating system services provide a convenient abstraction, but at a real and

measurable cost.

The cumulative effect of these factors easily dominates the effects of other aspects of the network.

Thus, performance improvement efforts should be focused on the station.

7. Acknowledgements

The authors gratefully acknowledge the financial support of NASA-Lewis Research Center, and the

technical support of Mr. John DeLaat at NASA-Lewis.

REFERENCES

[1] PROTEON ProNET-IO Model p1200 Multibus Local Network System Operations and Maintenance
Manual, version 4.0, part number 188-031.

[2] W. Timothy Strayer and Alfred C. Weaver, "Performance Measurements of Data Transfer Services in



2O

MAP,"IEEE Networks, May 1988.

[3] W. Timothy Strayer and Alfred C. Weaver, "Performance of Motorola's Implementation of MAP,"

13th Local Computer Networks Conference, Minneapolis, MN, October 1988.

[4] Jeffery H. Peden and Alfred C. Weaver, "Are Priorities Useful in an 802.5 Token Ring?", IEEE
Transactions on Industrial Electronics, Vol. IE-35, No. 3, August 1988.



21

APPLICATION

LLC

INTERFACE BOARDS

I

1

!

I

I

I

I

I

LLC routines

0 0 0

tick
I

I xmi,b_r I I

i

MUL'OBUSI
F ', 1

I xm,tcsrI ' I r_,,,,:s,"I

i recv buffer

PHY

il
RING

Figure I

LLC Architecture



22

End-to-end

Delays

(msec)

20-

15-

10-

_

PC-- _.

PC/AT .....

INTEL ...........

s_, S °°-"

_ °°.,,°

s ,°°°
_ °..,°

_ .,°.°°°
_, .°...°'

,s ...

t" ..°

I I I I I
0 500 1000 1500 2000

Packet Size (bytes)

Figure 2

End-to-end Delays (msec) vs. Packet Size (bytes)



23

Packets/sec

400

300 -

200 -

100 -

PC

PC/AT .....

INTEL ...........

V°

_'°°

.......
• '°°

_, "°°
,_ "°°.°°

I I I I I
0 500 1000 1500 2000

Packet Size (bytes)

Figure 3

Transmission Rate (packets/sec) vs. Packet Size (bytes)



24

1500-

Kilobits/sec
1000 -

500 -

--

pc F .-"
. .-"

,° .,°"

PC/AT
,,,.,'"

,°.,'"

INTEL .....
o,

.," _J

." jl

,-t p

°°_,

I I I I I
0 500 1000 1500 2000

Packet Size (bytes)

Figure 4

Transmission Rate (kilobits/sec) vs. Packet Size (bytes)



25

Packets/sec

400 -

300 -

200 -

100-

INTEL - Different Station/No Measurement .....

INTEL - Different Station ...........

INTEL - Same Station-_

__'2"_'_'_._._._._. _._,_.

I I I I
0 500 1000 1500

Packet size (bytes)

I
20OO

Figure 5

Transmission Rate (packets/sec) vs. Packet Size (bytes)

Showing "Same Station" Effect



26

Packets/sec

400-

300 -

200 -

100-

INTEL ...........

PC

Top to Bottom:

TC/S, TC/L, C86/S, C86/L

"°.°o.,

I I
0 500

I I
1000 1500

Packet size (bytes)

I
20O0

Packets/sec

500 -

400 -

300 -

200 -

100 -

m

m

I
0

INTEL ...........

PC/AT .....

Top to Bottom:

TC/S, TC/L, C86/S, C86/L

"... "_..',...,,

".- ._:.-._..........

................
_, ._ ,, _... _ = ........

I I I I
500 1000 1500 2000

Packet size (bytes)

Figure 6

Transmission Rate (packets/sec) vs. Packet Size (bytes)

Showing Effect of Different Compilers



APPENDIX



UVtk Computer Networks Laboratory

AIRNET

a realtime communications network for aircraft

Master's Project Presentation

by

Brendan Cain

A-1
B_ndan C_n - 8/I 5/88



IJVtk
f

Computer Networks Laboratory

Background

• Local Area Networks

Resource sharing

File transfer

Distributed real-time control applications

• Sperry Marine Inc (shipboard control)

• NASA-Lewis (airframe control)

A- 2 Brendan Cain - 8/15/88



OVA
Computer Networks Laboratory

Proteon ProNET-10 Token Ring LAN

• 10 Mbits/sec

• One-byte MAC addresses, and thus 255 nodes (stations)

• Ring or star-ring architecture

• One packet per token

• No priority

• Parity bit error checking

• Bit stuffing to avoid token aliasing

\
A-3

BrendanCain - 8/15/88



UVtk Computer Networks Laboratory

Logical Link Control

• Models IEEE 802.2 Type I and III services

Type I - connectionless, or datagram service

m Type III - Type I with immediate packet

nowledgement

• LLC services provided by C library routines

LLCon(sockets)

LLCoff0

LLCopen(socket)

LLCclose(socket)

m LLCreset(socket)

LLCstatus(socket)

LLCxmit(socket, station, info, size)

LLCrecv(socket, station, info, size)

ack-

A- 4 Bmnd_m Cain - 8/15/88



UVA
f

Computer Networks Laboratory

Architecture

APPLICATION

LLC

INTERFACE BOARD

I

I

I

I

l

I

l

I

LLC routines

0 0 0

crc

l

I

I

I

tick
I

PHY

II
RING

J

A- 5 BrendanCain-8115/88



Computer Networks Laboratory

Project

• Existing system on PCs and PC/ATs

• Produce comparable and compatible system on INTEL 310

(80286)

• Compare LLC performance metrics

Station-generated

bits/second)

load (packets/second and

End-to-end latency

• Port Test, Measurement, and Application Programs

LLCTEST

LLCWRAP

LLCLOAD

_NCP

A-6
Brendan Cain - 8II 5/88



Computer Networks Laboratory

Development Environment

• INTEL 310 (80286) with Multibus I

• RMX86 Operating System

• IC86 Compiler

• Some PL/M Code

• Proteon ProNET- 10 p 1200

m Ring Control Board

m Host Specific Interface Board

• Two 1023 word packet buffers

• Separate transmit and

control/status registers

receive

• Full duplex DMA interface to Mul-

tibus

\
A-7

Brend_ Cain - 8/15/8g



f_ OVA Computer Networks Laboratory

Activities

• INTEL machines

• p 1200 interface

• Interrupt handling in RMX

• Timing mechanisms

• Packaging

A-8 B_ndin Clin- 8/15/88



UVA Computer Networks Laboratory

Performance results for PC, PC/AT, and INTEL

Bits/sec * 1000

1500 -

1000-

500-

O_

PC
.,o.°*

o°..°

PC/AT ..... . ...........
,.."

INTEL ........... . ............

,." 4 S

•.j,";-

J
I I I I [

0 500 1000 1500 2000

Packet size (bytes)

Message length (bytes)

2

32

128

512

1024

2032

Bits/sec * 1000

PC

3.0

24.2

170.2

560.1

909.7

1337.0

PC/AT INTEL

4.9 4.8

37.5 74.9

247.1 260.8

658.4 842.5

904.9 1341.9

1109.9 1801.7

A-9 Brendan Cain - 8/15/88



UVtk
f

Computer Networks Laboratory

Performance results for PC, PC/AT, and INTEL

Packets/sec

400

300-

200-

100-

PC

PC/AT .....

' INTEL ...........

\..
V,

,_'°,

,'.,,.• ,,,
..

,_ ",,,
• ".,,

_. *,,°
,,_ °-,.°

•_ o°,,

I I I I I

0 500 1000 1500 2000

Packet size (bytes)

Message length (bytes)
w

0

2

32

128

512

1024

2032

PC

217

190

189

166

137

111

82

_ Packe.ts/sec

PC/AT INTEL

334 315

304 299

288 293

241 255

161 206

110 164

68 111

A-IO

B_ Cain - 8/I 5/88



rJvtk
Computer Networks Laboratory

Performance results for PC, PC/AT, and INTEL

End-to-end

Delays

(msec)

20-

15-

10-

m

C_ _,_s

PC/AT ..... ... -_...._

INTEL ............

_js,p_s,j..,. ..o,,oooo°o.O.°.oO.'''''''°'°- °'°'°'°'°'°"

_ s ,_, ,p ..,.,-°"

,o _' .0°°°0-°'"

,,,_ .o,0.'°

s .0"°

_°°°,°°''°

_.:..."

I I I 1 I

0 500 1000 1500 2000

Packet size (bytes)

Message length (bytes)

0

2

32

128

512

1024

2032

End-to-end delay (milliseconds)

PC PC/AT INTEL

8.283

9.645

9.690

12.970

15.042

3.249 3.557

3.752 3.766

- 3.885

5.191 4.278

8.440 7.240

13.135 8.707

20.410 22.463 13.669

A-11

Brt'ndJta Cain - 8/15/88



OVA Computer Networks Laboratory

Performance results for INTEL, varying class

End-to-end

Delays

(msec)

150 -

100-

50-

Om

CRC+ACK
CRC ...........
ACK ..... _....'""

.,, .,,,,....,..,o .,''''''''

I I I I I

0 500 1000 1500 2000

Packet size (bytes)

Message length (bytes)

0

2

5_

1000

2032

End-to-end delay (milliseconds)

NONE

3.630

3.834

4.349

7.719

8.583

13.745

ACK CRC

8.303 4.369

8.513 4.718

8.961 10.999

11.864 37.820

13.130 67.997

18.295 133.673

CRC+ACK

9.918

10.242

16.430

42.829

73.405

139.044

\
A-12

Brm_lan Cain - 8115/88



f_ OVA
f

Computer Networks Laboratory

Station Load (bits/second * 1000)

Bits/sec * 1000

INTEL .............

1500 PC _-_ .............

._ . ..,,,,o,,O'°'''"

1000

500

0

I I I I 1
0 500 1000 1500 2000

Packet size (bytes)

Bits/sec * 1000

1500 -

1000-

500-

0_

INTEL ........... . ....
,.o°-"

..... • "''°"PC/AT ......
,o,O"

Top to Bottom: ....
,..oO°"

TC/S, TCJL, C86/S, C8..6./L""

.::-_:___-:......... :_::_:_--.:__

• ,f'••

/¢I_-;"
I I I I I

0 500 1000 1500 2000

Packet size (bytes)

A-13

13rendan Cain - 8/! 5/88



UVA Computer Networks Laboratory

Observations Regarding Performance

• Interrupt handling overhead is significant (1 msec)

• DMA channel operation is better (both setup and transfer)

• RMX86 OS and IC86 compiler significant

• Performance in acceptable range?

A-14

BrendanCain- 4/28/88



U TA
f

Computer Networks Laboratory

Acknowledgements

• Alf Weaver

• Alex Colvin

• Tim Strayer

• Robert Simoncic

• John DeLaat

°

A-15

j Bmrulan Cain - 8/15/88



1-3

4-5*

6

7-8

9

10 - 11

12

DISTRIBUTION LIST

National Aeronautics and Space Administration
Lewis Research Center

21000 Brookpark Road
Cleveland, OH 44135

Attention: Dr. J. C. DeLaat, MS 77-1

Advanced Control Technology Branch

National Aeronautics and Space Administration

Scientific and Technical Information Facility

P. O. Box 8757

Baltimore/Washington International Airport

Baltimore, MD 21240

Ms. Lorene Albergottie
Grants Officer
NASA Lewis Research Center

Mail Stop 500 - 315

21000 Brookpark Road

Cleveland, OH 44135

A. C. Weaver, CS

A. K. Jones, CS

E. H. Pancake, Clark Hall

SEAS Preaward Administration Files

*One Reproducible Copy

JO#3271:ph


