

Paul A.Sermon, Valerie A.Self and E.P.S.Barrett Department of Chemistry, Brunel University, Uxbridge, Middx., UB8 3PH, UK

SUMMARY

Temperature-programmed reduction using 6kPa H₂ suggests that a sample consisting of 3%Pt supported directly on SnO₂ is, under conditions of catalysis of CO oxidation used here, best represented as 3%Pt/SnO_x since the support is likely to partially reduced, probably in the vicinity of the metal/oxide interface. Catalytic measurements at 421-424K show that this 3%Pt/SnO_x is significantly more active per unit area of Pt than 6%Pt/SiO₂ in catalysing the oxidation of CO. In-situ micro-FTIR reveals that while the latter has predominantly linearly bound CO on the surface under reaction conditions, the Pt/SnO_x also has a species absorbing at 2168cm-1 which may be CO upon Pt in a positive oxidation state or weakly chemisorbed CO on zero-valent Pt. This may be directly involved in the low temperature oxidation of CO on the Pt/SnO_x since being weakly held the activation energy for its surface diffusion to the metal/oxide interface will be low; such mobile species could allow the high rates of surface transport and an increase in the fraction of the surface over which the CO oxidation occurs. FTIR also reveals carbonate-type species on the P/SnO_x surface.

INTRODUCTION

Earlier papers by the present authors (ref.1,2) have illustrated the use of calorimetric, catalytic-activity and micro-FTIR measurements during CO oxidation on oxide-supported Pt catalysts. Here some of these analyses are applied to Pt/SnO_x which are relevant to catalysts for the recombination of CO and O₂ in CO₂ lasers. It was a number of years ago that studies at Brunel (ref.3) showed that 2%Pd/SnO₂ was more active than 2%Pd/SiO₂ in that it achieved a given rate of CO oxidation at a temperature some 60K below that required on the silica-supported catalyst.

CATALYSTS

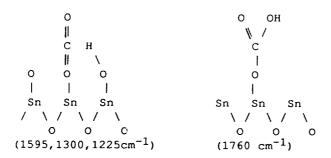
EuroPt-1 Pt/SiO₂ has been described elsewhere (ref4). 3%Pt/SnO_x was prepared by impregnation of the support with H₂PtCl₆ (Johnson Matthey); after equilibration for 24h at room temperature, the catalyst was dried at 393K for 18h and then calcined at 773K for 6h.

While 1g of the reduced Pt/SiO_2 sample chemisorbed 168-188µmol H_2 , only 14.2µmol H_2 were chemisorbed on the same weight of Pt/SnO_x , and furthermore this was very dependent upon the temperature of reductive pretreatment. This means that the Pt dispersion and surface area (58.2 m²/g) was rather modest for Pt/SnO_x and may in future be greatly increased. Temperature-programmed reduction showed that the Pt in this catalyst promoted the reduction of the support at temperatures below those where the support alone would have reduced to give Pt/SnO_x with x<2; it is likely that this reduction is predominantly at the metal-oxide interface.

METHODS

The CO oxidation reaction was followed at 421-4K over 0.06-0.01g catalyst in a microflow reactor with a stream consisting of 1.64kPa CO and 1.78kPa O₂ with a N₂ balance to 101kPa which flowed at 21.1cm³/min; in in-situ micro-FTIR analysis the reactant partial pressures and flow rates were within 1.67kPa CO and 1.86kPa O₂. Rates of CO oxidation were measured after reduction in H₂ at 423K for 30min and flushing in N₂ at the same temperature for 10min. Gas chromtography was used to determine product [CO₂] concentrations at 10min intervals.

A spectra-Tech FTIR-PLAN microscope was used in conjunction with a Perkin Elmer 1710 FTIR spectrometer. Reflectance IR spectra were measured with a resolution of 8cm⁻¹ within a field of view of 795µm and those for the surface before reaction subtracted.


RESULTS

From Table 1 it is clear that per surface Pt atom detected by hydrogen chemisorption Pt/SnO_x is significantly more active than Pt/SiO₂ at 423K.

<u>Table 1</u> Activities in CO oxidation (under conditions indicated in text)					
T(K)	t(min)	%conversion CO	molCO/gPt/min	molec/Pt _s /min	
			-		
424.1	20	8.72	1.31	0.26	
423.6	30	11.52	1.74	0.34	Pt/SiO ₂
423.2	40	17.80	2.67	0.52	- 40102
424.4	10	19.47	1.12	1.19	
421.5	20	29.23	1.69	1.79	
420.5	30	38.27	2.22	2.35	Pt/SnO _x
420.5	40	30.97	1.79	1.90	- 4
424.4	50	43.15	2.48	2.62	

CO catalysis and chemisorption on Europt-1 Pt/SiO₂ revealed a peak at 2080 cm⁻¹ corresponding to linearly-bound CO on the platinum surface (black band in Figure 1). However, in addition to this CO on Pt/SnO_x also showed a band at 2168cm⁻¹ (see hatched band Figure 1); in no case was there strong evidence of bridge-bound CO. This band at 2168cm⁻¹ on tin-oxide supported Pt is quite significant and further consideration will be given to this.

In addition during CO oxidation on Pt/SnO_x bicarbonate sbands (1775, 1726, 1676, 1595, 1580, 1440-1490, 1320-1300 and 1275cm⁻¹), were seen and these may correspond to bicarbonate species (ref.5) arising from adsorption of product CO₂ on the hydroxylated SnO_x:

DISCUSSION & CONCLUSIONS

It has been proposed (ref.3) that the mechanism of CO oxidation on Pd/SnO_x involves a synergy between the metal and the support with area around the interfacial contacts being active. CO may migrate from the metal to the oxide where additional oxidation occurs:

$$CO + O^2 - Sn^4 + O^2 = CO_2 + \Box - Sn^4 + O^2$$

where oxygen vacancies in the SnO_x are then removed on direct O₂ adsorption. The present Pt/SnO_x results are consitent with this picture and as a result per unit area of Pt,

Pt/SnO_x is more active in the CO oxidation reaction than Pt/SiO₂ alone. Hydrogen chemisorption reveals the close interaction between the Pt and the SnO_x with even mild reduction causing a loss of adsorption capacity as a result of SnO_x decoration of the Pt in essentially a low temperature SMSI type process. In this context it is interesting that the binding energy for Pt upon silica (i.e.Pt 4f(7/2)=71.4eV) is lower than on SnO_x (75eV), suggesting that the tin-oxide sustains the Pt thereon in a positive oxidation state. Equally, conductivity measurements show that Pt modifies the solid-state properties of the tin oxide.

Clearly from Figure 1 in various parts of the Pt/SnO_x surface the weakly-held CO has a concentration which is variable in comparison with the strongly-held CO, and so as one would expect there is surface heterogeneity. Consider now the mode of increase in CO oxidation activity and the surface species involved. FTIR reveals (in addition to linearly-bound CO (ref.6) an additional band at 2168cm⁻¹ which is close to that attributed to stretches for physically-held CO on Rh+ (ref.7) or indeed even gaseous CO (2143cm⁻¹); here we assume that this is weakly-held CO. It would be this CO which would *spillover* onto the supporting SnO_x most easily and with the smallest activation energy barrier. Thus a weakly bound surface species may be directly involved in the accelerated oxidation on Pt/SnO_x in line with earlier postulates (ref.8).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of VAS by SERC.

REFERENCES

- 1. P.A. Sermon, V.A. Self, M.S.W. Vong, A.T. Wurie and N.D. Hoyle, (1st NASA paper at 1989 meeting).
- 2. V.A. Self and P.A. Sermon, (2nd NASA paper at 1989 meeting).
- 3. G.C. Bond, L.R. Molloy and M.J. Fuller, J. Chem. Soc. Chem. Commun., 796, (1975).
- 4. A. Frennet and P.B. Wells, Appl. Catal., <u>18</u>, 243, (1985).
- 5. E.W. Thornton and P.G. Harrison, Trans. Far. Soc., year, vol, 461.
- A. Crossley and D.A. King, Surf. Sci., (1977), <u>68</u>, 528; Surf. Sci., (1980), <u>95</u>, 131; S.R. Bare, P. Hofman and D.A. King, Surf. Sci., (1984), <u>144</u>, 347; R.P. Eischens and W.A. Pliskins, Adv. Catal., (1958), <u>10</u>, 1; G. Blyholder, J. Phys. Chem., (1964), <u>68</u>, 2772.
- 7. J.T. Yates and G.L. Haller, J. Phys. Chem., (1984), <u>88</u>, 4660.
- 8. D.A. Dowden, Annual Reports on Progress of Chemistry C in, 1979, (1980), 76, 3, (RSC).

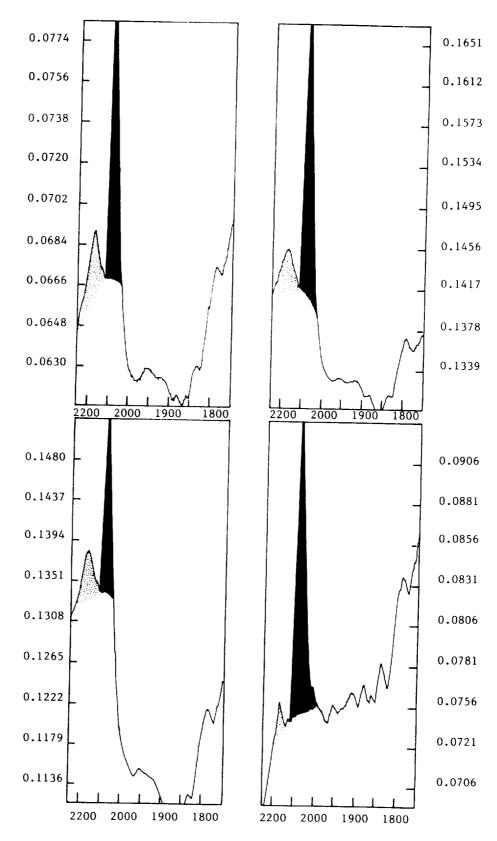


Figure 1 Reflectance FTIR for weakly-held (hatched) and linearly-bonded (black) surface-CO species during CO oxidation on Pt/SnO_x at measured in different segments of its surface