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ABSTRACT

In recent years there has been a push within NASA to use statistical
techniques to improve the quality of production. Two areas where
statistics is used is in establishing product and process quality control
of flight hardware and in evaluating the uncertainty of calibration of
instruments. The Flight Systems Quality Engineering branch is
responsible for developing and assuring the quality of all flight
hardware; the statistical process control methods employed are
reviewed and evaluated in the first section of this report. The
Measurement Standards and Calibration Laboratory performs the
calibration of all instruments used on-site at JSC as well as those used
by all off-site contractors. These calibrations must be performed in
such a way as to be traceable to national standards maintained by the
National Institute of Standards and Technology, and they must meet a
four-to-one ratio of the instrument specifications to calibrating
standard uncertainty. In some instances this ratio is not met, and in
these cases it is desirable to compute the exact uncertainty of the
calibration and determine ways of reducing it. A particular example
where this problem is encountered is with a machine which does
automatic calibrations of force. The second section of this report
describes in detail the process of force calibration using the United
Force Machine, identifies the sources of error and quantifies them
when possible, and makes suggestions for improvement.
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INTRODUCTION

Historically, quality assurance at NASA has not relied heavily on
statistical techniques because of the nature of the work done. The
equipment developed for space flight was so specialized that very few
like items were manufactured and thus one hundred percent
inspection was possible. However, since the advent of the Space
Transportation System with its reusable orbiter, and particularly since
the 51-L accident, there has been a push within NASA to apply trend
analysis techniques to maintain tighter control on the quality of flight
hardware. The first section of this report covers our examination of
the statistical process control (SPC) techniques which were being
used by the Quality Assurance and Engineering Division and our
suggestions for improvement.

A particular area of Quality Assurance which is prone to a variety
of statistical problems is the Measurement Standards and Calibration
Lab (MSCL). The MSCL is responsible for calibrating all of the
instruments used on-site as well as those of all off-site contractors.
These calibrations must be performed in such a way as to be traceable
back to national standards, to control the measurement process €rror,
and to meet a four-to-one ratio of the uncertainties of calibrated item
to calibrating standard. In some cases, the laboratory has been unable
to achieve the last two criteria. The second section of this report
presents our efforts to calculate the uncertainty associated with
calibrations done by a United Force Machine.

STATISTICAL PROCESS CONTROL

Quality control is maintained on each of ten divisions by the use
of separate control charts for each division. The data is obtained as
follows. When any type of test is to be performed, a Test Preparation
Sheet (TPS) must be filed. One TPS can cover an item as simple as a
single screw or as complex as an entire satellite. After the test, any
irregularities must be reported with a Discrepancy Report (DR).
These DR's fall into three categories--Type I (damage or potential
damage to hardware, persons, or both), Type II (deterioration of
performance), and Type III (incidental). It is possible to have more
than one DR for one TPS. Data consists of the number of TPS's and
DR's per division since January 1986, with the DR's being classified as
Type I, Type II, or Type III since January 1989.

The type of control chart which was being used was the p-chart
with constant control limits, as described in Feigenbaum (1984), pp.
432 - 435. The p-chart is used for plotting the fraction of defective
units out of n total units; constant control limits are used when the
sample size n remains the same for each inspection period. This is
not appropriate for this situation. The p-chart, which is based on the
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normal approximation to the binomial distribution, assumes that the
same number n of independent, identical units is being observed each
period, and each unit is being classified as either defective or
nondefective. In fact, the number of TPS's filed per month changes,
the TPS's are not identical, and it is possible to get more than one
defective per unit.

A more appropriate type of chart to use for this situation is the
u-chart with variable control limits, as described in Duncan (1965),
pp. 376 - 378. Using variable control limits will account for the fact
that the number of TPS's filed per month does not remain constant.
Furthermore, the u-chart, which is based on the Poisson rather than
the binomial distribution, plots the fraction of defectives per
(identical) unit rather than the proportion of defective (identical)
units. U-charts with variable control limits are now being employed.

The fact that the TPS's are not identical means that even u-
charts are not correct for this situation. The information gleaned from
these charts could be improved by weighting the TPS's according to
their complexity--for example, by the number of inspections actually
done for each TPS. Unfortunately, this information has not been
entered into the data base. The charts could also be improved by ,
weighting the DR's according to their criticality; this type of weighting
is discussed in Besterfield (1987), pp. 171 - 174. At present, not
enough historical data is available to set control limits based on
weighted DR's, but these weights will be implemented when sufficient
data has been recorded.

COMPUTING THE UNCERTAINTY OF FORCE CALIBRATIONS
The Measurement Standards and Calibration Laboratory

The Measurement Standards and Calibration Laboratory is
composed of three departments: Reference Standards
Laboratory/Metrology Engineering, which maintains the standards;
Instrument Calibration & Repair Services, which does the customer
instrument calibrations and repairs, and Metrology Information &
Management Services, which supplies technical and information
support. The MSCL is responsible for calibrating and repairing all of
the instruments used on-site at JSC, as well as all instruments used by
off-site contractors. It services over eighty customers, performing an
average of 18,500 calibrations and 1500 instrument repairs per year.
The calibrations require and average of 2.26 manhours per item, with
an average turn around time of 5.4 working days per instrument.

Each of these calibrations must be performed using a standard
which is traceable back to the national standards maintained by the
National Institute of Standards and Technology (NIST), formerly the
National Bureau of Standards. Furthermore, a check standard should
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be maintained--that is, repeated observations on an artifact, or
differences in artifacts, under all environmental and operational
conditions under which calibrations will be performed. The purpose
of the check standard is twofold. It gives an estimate of the random
error of the measurement process itself, which is a component of the
uncertainty, and it also allows one to use control charts to monitor the
stability of the measurement process. For more information on check
standards, see Croarkin (1984). Finally, the ratio of the specifications
of the customer test item to the uncertainty of the calibrating standard
must be at least four-to-one. For example, if the specification of an
instrument is accuracy to within 1%, the uncertainty of the standard
used to calibrate it cannot exceed 0.25%. ,

The MSCL uses standards calibrated by the NIST to assure
traceability. However, for many of the calibrations done, no check
standard is maintained, often due to time and financial constraints.
When no check standard is available, it becomes impossible to use
control charts to monitor the measurement process stability. It is also
not possible to estimate the random error and, therefore, the
uncertainty of the calibrated item. In cases where it is impossible to
compute an exact value, the uncertainty of a calibrated item is
arbitrarily assigned a value four times the uncertainty of the standard
used to calibrate it. However, when this is done, in some instances
the MSCL's standards no longer meet the four-to-one ratio. Thus it is
desirable to have a means of computing the exact uncertainty.

Calibration of Force Measuring Devices

Considered here are two types of devices which can be used to
measure force: proving rings and load cells. A proving ring is a metal
ring equipped with a micrometer which measures the actual
deflection of the ring when a force, either tension or compression, is
applied. A load cell is a device which outputs an electric current when
a force is applied. The particular situation examined here is the use of
a United Force Machine to do automatic calibrations of customers' load
cells.

""" In order to maintain traceability to national standards, all
calibrations begin with a primary standard which was calibrated by the
NIST. For force calibrations, the primary standard is a proving ring
which the NIST calibrates using dead weights of known mass. Thirty
data points are used--two repetitions each of fifteen known loads or
three repetitions of ten known loads--and ordinary least-squares is
used to fit the deflection (D) as a quadratic function of the load (L):

D =A+ BL + CL2,

Ordinary least-squares is appropriate for this situation because it can
be assumed that the exact values of the load are known without error.
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These calibrations are done at 23° C. The uncertainty associated with
the calibration is taken to be 2.4s, where s is the estimate of the

standard deviation of the residuals, o¢2.

The laboratory does not use the primary standards to calibrate
customers' instruments. Rather, they are used to calibrate the
laboratory's secondary standards, which are then used for customer
calibrations. For the MSCL force calibrations, the secondary standard
is a load cell. This standard load cell is calibrated by the United Force
Machine, using the primary standard to determine the values of the
loads applied. Because the ambient temperature may not be 23° C, a
temperature correction must be made to the deflection values of the
proving ring. The loads (L) as measured by the proving ring and
corresponding responses (R) of the load cell (in MV/V) are used to
obtain the least-squares fit

L =A + BR + CR2,

~ Least-squares is not entirely appropriate at this step because the

responses as well as the loads are measured with error. The
uncertainty of this calibration is taken to be four times the uncertainty
reported by the NIST for the proving ring.

Once the standard load cell is calibrated, it is then used to
determine the values of the loads to calibrate customers' load cells.
The process is similar to the previous step except that no temperature
adjustment is made, and the reported calibration equation is linear,
that is,

L=A+ BR.

The residuals, or deviations of each data point from the line, are
computed, and if none of the residuals exceeds the specified accuracy
of the load cell, it is said to be calibrated. However, if the specified
accuracy of the calibrated load cell is not a least four times as great as
the uncertainty of the standard load cell, the calibration does not meet
the ratio. When this occurs, the MSCL is required to give a full report
of the calibration procedure to the customer and inform him that the
ratio was not met.

Because of the increasing precision of customer load cells, it is
becoming more frequent for the MSCL to do force calibrations which
do not meet the four-to-one ratio. For this reason, it is of interest to
compute the actual uncertainty associated with the standard load cell,
rather than using four times the uncertainty of the proving ring.
Unfortunately, it will be impossible to compute the random error
component of the uncertainty because at present no check standard is
being maintained on the United Force Machine. However, other
sources of error can be identified and possibly reduced. The following
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sections describe in more detail the sources of systematic error
inherent in the calibration of the standard load cell.

Inverse Regression versus Classical Calibration

The first problem encountered in using the primary standard to
calibrate the standard load cell is obtaining values of the load from the
deflection of the proving ring. The equation supplied by the NIST
gives the deflection of the ring as a function of the load, yet the ring
must be used to obtain the values of the load as a function of the
deflection. This is known as the calibration problem, and there are
two approaches to solving it.

The classical method of calibration is to use the given equation,
D = A + BL + CL2, and simply solve it for L as a function of D. Since it
is a quadratic equation, there will be two solutions; the correct one is
the one which lies in the calibration range of the proving ring. Denote
the classical estimator of load by L¢. Then

Lc = [-B + VB2 - 4C(A - D)] / 2C.

The standard error of the classical estimator of L is different from o2,
the quantity currently being used by the MSCL; it will, in fact, be
larger because the least-squares equation is being used in the opposite
direction than the one in which the errors were minimized. Not

much work has been done on determining estimates of ¢, the
standard error of the classical calibration estimator, when the
response is quadratic.

The second approach to the calibration problem, known as
inverse regression, is to take the original data points supplied by the
NIST and use least-squares to fit the load as a quadratic function of the
deflection. Denote the inverse regression estimator of load by Lir.
Then

Lig = o + 8D + yD2,

where o, £, and y are the parameter ”estimgtes obtained uSlng ordinary
least-squares. As in the case of the classical estimator, little work has

been done in obtaining estimates of oir, the standard error of the
inverse regression estimator, when the response is quadratic. It will
not be simply the standard error of the residuals because one of the
major assumptions of least-squares has been violated: it is the
dependent variable, rather than the independent variable, which has
been measured without error. Inverse regression is the technique
currently being employed by the MSCL.

A serious question at this point is to ask which of the two
methods is "better.” This is a question which has been addressed
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extensively in the literature, although generally only a linear response
is considered. The first author to address the issue was Eisenhart
(1939), who concluded that the classical method is the only
reasonable one to use for two reasons. First, the classical method
minimizes the actual observed errors, while the inverse regression
method minimizes the "errors” in a variable that was measured
without error. Second, the classical method is asymptotically
unbiased, whereas the inverse regression estimator is asymptotically
biased. = T S

This seemed to be the final word on the subject until Krutchkoff
(1967) reopened the question with a simulation paper which
indicated that the inverse regression estimator has uniformly smaller
mean squared error (MSE) than the classical estimator, and is
therefore superior based on that criterion. In an ensuing letter,
Krutchkoff (1968) pointed out that the classical estimator will in fact
have infinite MSE if the linear slope term (or in our case, the
quadratic term, C) is allowed to be zero, and that truncating the
estimator will introduce a bias. Then, in Krutchkoff (1969), he
demonstrated that as the number of observations at each L value
increases, the MSE of the classical estimator decreases faster than
that of the inverse estimator and can in fact get smaller. The classical
estimator also gave a smaller MSE when there was an ignored
quadratic term.,

At this point more authors began to address the question.
Williams (1969) demonstrated that not only the classical estimator,
but any unbiased estimator will have infinite MSE and therefore MSE
is not a good criterion to use to compare the estimators. Berkson
(1969) claimed that classical estimator is consistent, whereas the
inverse estimator is inconsistent, and the inverse estimator should
thus never be used. Martinelle (1970) derived analytic results which
basically agreed with Krutchkoff's simulation results. Halperin (1970)
compared the two estimators using Pitman closeness, concluding that
the classical estimator is generally better. Hoadley (1970) approached
the problem from a Bayesian point of view and demonstrated that the
inverse estimator is actually Bayes with respect to a particularly
informative prior. For additional information on the calibration
problem, consult the bibliography.

Further research is required to determine which of the two
methods is better for use in force calibrations. Currently, inverse
regression is being used. Table 1. demonstrates the differences in the
estimates of load obtained using the two methods for determining
compression loads for the 100,000 pound proving ring. It can be seen
that the percent difference in the two estimators is not very large,
especially for the larger loads.
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TABLE 1.- ESTIMATES OF LOAD USING THE CLASSICAL AND
INVERSE REGRESSION ESTIMATORS

Load

Classical Inverse.
Deflection Method Regression
0 . -10.695 0.624
100 0919.771 9926.369
200 19826.557 , 19829.628
300 29709.660 , 29710.400
400 39569.465 39568.686
500 49405.969 49404.485
600 59219.176 59217.798
700 69009.461 69008.624
800 78777.219 78776.963
900 88522.055 88522.816
1000 08244.352 08246.182

Propagation of Temperature Errors

Another problem encountered when using the primary standard
to calibrate the standard load cell is the effect of differences in
temperature. The proving ring was calibrated at 23° C, and if it is
used at a different temperature, then the deflection readings must be
adjusted according to the equation

d23 = di[1 + kit - 23)],

where da3 is the deflection at 23° C, t is the current temperature, d; is
the observed deflection, and k is the expansion coefficient of the ring.
For the proving rings used by the MSCL, k = -.00027.

Unfortunately, the thermometer being used to determine the
temperature of the proving ring is only accurate to within + .95° F =
.53 ° C. For a temperature error of .53° C, the percent error in the
deflection, denoted %p, is computed as

%p = lActual do3 - Computed da3! / Actual d23,

and is approximately .00015, or .015% for temperatures near 23° C.
To determine the effect of this deflection error on the values of
the load, the error must be propagated through the expression

L =F(D) = o + 8D + yD2,
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The general propagation of errors formula as given in Ku (1966) is
Var (L) = [dF/dD]2 Var(D).

An estimate of Var(D) is required in order to use this formula.
One may be obtained by noting that the percent error in deflection is
the ratio of the error in the deflection to the deflection; but the error
in deflection can be expressed as the uncertainty, which is generally a

muitiple r of the standard deviation of deflection, op. (The NIST uses
r = 2.4.) Thus
%p = (error in D)/D = uncertainty/D = rop/D,
and
Var(D) = [D%p/r]2.

Using this estimate of Var(D) in the propagation of error formula
yields an estimate of the standard deviation of load values due only to

the .53° C error in temperature, oL t):
oLit) = D%plB + 2yD]/r.

Thus the percent uncertainty of load values due to this error in
temperature, %L, is

%L) = ror(y/(maximum load) x 100%.

For the 1000 and 100,000 pound proving rings, this error ranged
from .015% to .017%. These values are approximately equal to the
percent uncertainties associated with the calibration of the proving
rings themselves. Therefore the error due to inaccuracy of the
temperature readings is a significant contributor to the total
uncertainty of the standard load cell.

The Errors-in-Variables Model

When the proving ring is used to determine values of the load in
order to calibrate the standard load cell, there is error associated with
these load values as well as with the response values of the load cell.
Therefore, when the MSCL uses least-squares to fit the equation L = A
+ BR + CR2, this is not an example of inverse regression, but is rather
what is known as an errors-in-variables (EV) model. EV models result
when both of the variables are measured with error, and in this
situation even determining consistent estimators of the regression
parameters when one of the error variances or their ratio is unknown
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is an open problem. See Gunst and Lakshminarayanan (1984) for
more details on the EV model.

More research is required in order to determine the best
estimates of the parameters of the EV model and their associated
standard errors. Also, since the MSCL is currently using least-squares
to estimate the regression parameters, an estimate of the standard

error of load estimates thus obtained, ogv, is also a quantity which
needs to be determined in order to compute the uncertainty of the
standard load cell.

To compute the uncertainty associated with the standard load
cell, it is necessary to combine the systematic and random errors.
While it is still a source of contention as to how exactly this should be
done, the general consensus seems to be that independent systematic
errors can be added in quadrature, while correlated systematic errors
and random errors should be added linearly. Thus the uncertainty of
the standard load cell, uncertaintysyc, can be estimated as

uncertaintysic = 2.4[ Voir2 + oL(y2 + Ogv + OREl

where oRrg is the random error of the measurement process, as
determined by the check standard.

Calibrating the Customer's Load Cell

The problems encountered when calibrating customers' load
cells are similar to those of calibrating the standard load cell. Once
again, there is error in the values of the load determined by the
standard load cell, as well as in the response of the customer's load
cell, so this is also a case of an EV model. There is also an
uncompensated systematic error due to a drift in the response of load
cells at different temperatures. Thus the uncertainty associated with
the calibration will be a sum of the uncertainties of the standard load
cell, the temperature drift, the EV model, and the random error of
the measurement process.

DISCUSSION
Improving Use of the United Force Machine

Under current practices, a customer's load cell can be properly
calibrated only if its specifications are more than sixteen times the
uncertainty of the proving ring used to calibrate it. This is because the
MSCL takes the uncertainty of the standard load cell to be four times
that of the proving ring calibrated by the NIST, and the uncertainty of
the customer's load cell to be four times that of the standard load cell.
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If the actual uncertainty were computed, it may or may not be smaller.
However, it will not be possible to compute the uncertainty until some
of its component values are determined.

The most important step for the MSCL to take at this time is to
institute a check standard for the United Force Machine. This will
supply an estimate of the random error of the measurement process,
which is actually added twice into the overall uncertainty. It will also
enable the stability of the measurement process itself to be monitored
through the use of control charts, thus allowing a faster identification
of any problems with the process which may arise.

The uncertainty of the calibrations can be reduced by obtaining
more accurate measurements of the temperature of the proving rings
during calibration of the standard load cells. When considering more
precise measurements of the temperature, however, one is faced with
the problem of the temperature varying on different parts of the ring,
due to stress on the ring or changes in the ambient temperature. This
problem could be reduced if the proving rings could be stored and
used in a temperature-controlled environment. Using proving rings
with a smaller expansion coefficient would also reduce the error due
to inaccurate temperature readings.

The systematic error due to the temperature drift of the load
cells could be reduced by obtaining an accurate determination of the
drift from the manufacturer, if such is available, and incorporating the
temperature correction into the software. If this is done, the error in
temperature readings will become a factor, but this error should be
smaller than the full drift error.

Applications to Other Areas of the MSCL

The discussion here has centered on automatic force
calibrations using the United Force Machine. However, some of the
same principles can be applied to other calibration processes. In
particular, the use of check standards should be made on as many of
the processes as possible, especially those which are subject to large
variations and those where mistakes are most likely to be made. Not
only will this provide an estimate of the random error, but it will also
facilitate the identification of operator errors, changes in the values of
the reference standards, effects due to unusual environmental
fluctuations, etc.

A tighter control on the environment is also something which
should be sought. Many of the calibrations done in the MSCL are
affected by changes in temperature, pressure, humidity, etc. In some
cases these effects are compensated for, but even in these instances
errors in the readings can have significant effects on the final results.
The more stable the environment is, the more accurate the
calibrations will be.
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