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CHAPTER 1: INTRODUCTION

There has been a rapid growth in the use of polymers and polymeric-based materials in
recent years, and there is every indication that this trend will continue. Of particular interest has
been the use of polymers as the matrix component in structural composite materials. Polymers
may be roughly categorized as being either thermosets or themoplastics. Both thermosets and
thermoplastics are comprised of long molecular chains. However, the molecular chains of
thermosets are highly cross-linked, forming an extensive three-dimensional molecular structure.
Conversely, thermoplastics do not form cross-links. One of the ramifications of this difference in
molecular structure is that once a thermoset polymer has been polymerized (i.e., once the cross-
links have been formed) the thermoset cannot be melted. On the other hand thermoplastics can be
readily melted and remolded by the application of heat and pressure. Most thermoplastics have
glass-transition and meliing temperatures much lower than the glass-transition temperature of
thermosets, and thus thermoset resins have been used most often in structural composite materials.
However, recent advances in polymer materials technology have resulted in a new generation of
high-temperature thermoplastic polymers which are better suited for engineering applications.
Examples of these new-generation thermoplastics include poly-ether-ether-ketone (“PEEK”, with a
melting temperature of roughly 340°C) or a variety of polyimide resins (with a melting temperature
ranging from 230-350°C). Because of these thermal properties as well as the inherent toughness
and relative ease with which thermoplastics can be fabricated, recent research and developmental

efforts in structural composite materials have turned to thermoplastic-based matrices.

The expanding role of thermoplastic polymers in load-bearing structural applications has
prompted a need to develop a design methodology to predict the mechanical response of these

materials under complex loading conditions. In particular, prediction of yield and post-yield



behavior is of current technical interest. At present most of the design tools and concepts used in
the analysis of polymeric-based materials are based on the same principles used for metals and
metallic alloys. However, the atomic/molecular structure of polymers is entirely different from that
of metals. Metals are characterized by a highly crystalline atomic structure whereas polymers are
characterized by long molecular chains that may be amorphous or semi-crystalline at the molecular
level. Since the macroscopic yield and post-yield behavior of any material is fundamentally
governed by its atomic/molecular microstructure, it is unlikely that a design methodology used for
metals will apply equally well to polymers. Therefore, it may be necessary to develop new design
methodologies for polymers, or to modify existing design tools that had been developed for use

with metals.

Purpose

The purpose of this research is to study the yield and post-yield behavior of a thermoplastic
polymer subjected to biaxial stress states. In particular, experimental results will be compared with
theoretical predictions based on classical plasticity theories previously applied to metals. Of
particular interest is whether the yield or post-yield behavior of thermoplastic polymers is

influenced by the hydrostatic stress component.

The material chosen for study was high-density polyethylene. High-density polyethylene
has a melting temperature: of roughly 130°C, and is not considered to be a potential matrix material
for use in structural composites. Polyethylene was selected because (1) it is a semi-crystalline
thermoplastic, and hence its post-yield behavior may be representative of the general class of
thermoplastic polymers, (2) it is readily available in the form of thin-walled tubes, and (3) it is very

inexpensive as compared to new-generation thermoplastics such as PEEK or polyimides, and



hence a large number of tests could be conducted at modest cost

The study involved plane stress problems where thin-walled tubes of high-density
polyethylene were tested under combined tensile axial loads and internal pressures at room
temperatures. A rather specialized testing apparatus was developed during the study in order to
perform these tests. This testing system is now fully calibrated and operational, and will be used
to study the inelastic behavior of other new-generation thermoplastic resins of greater structural

interest during the coming year.



CHAPTER 2: BACKGROUND INFORMATION

THE PREDICTION OF YIELDING

Definition of the Yield Stress

Conceptually, the yield point of a material defines the transition from purely elastic to
elastic/plastic behavior. For some materials, the yield point is indicated by a sharp drop in stress in
a uniaxial stress-strain curve, followed by slowly increasing stress with increasing strain. In these
cases the near-discontinuity in stress makes identification of the yield stress very easy. For other
materials no such stress drop occurs, but instead the slope of the stress-strain curve gradually
decreases from an initial "elastic” value, which defines Young's modulus, to a lower value. In
these cases the identification of yielding becomes more problematic. A common method of
defining yield in this case is to use a permanent strain offset. For metals, this strain offset is

usually defined as 0.2% strain.

Defining yield in polymers involves complexities not normally encountered with metals.
Polymers are viscoelastic and therefore the measured yield stress is sensitive to the stress- or
strain-rate imposed. Researchers have attempted to define the yield stress of polymers in a variety
of ways. One method [Bowden and Jukes, 1972; Freire and Riley, 1980; Mears et al, 1969;
Whitfield and Smith, 1972] is identification of the point of load drop, as described above. Another
method [Carapellucci and Yee, 1986] is to perform a constant stress creep test, and to define yield
based upon the intersecticn of tangents drawn to the initial and final portions of the resulting strain
versus time curve. Probably the most common method is to apply a monotonically increasing axial
load at a constant rate, and to define yielding on the basis of a strain offset. However, no standard

loading rate or strain offset has been established. Offset strains ranging from 0.3% strain [Caddell



and Woodliff, 1977; Raghava et al, 1973] to as high as 2% strain [ Ely, 1967; Pae, 1977] have
been used.

Obviously, the cifferent methods to determine yield result in distinctly different values of
measured "yield strength” for a given polymer. Figure 2.1 compares various methods used to
determine the yield strength of a polymer, and indicates that distinctly different values of the "yield
point” can be deduced from the same experimental data. The inconsistency in the definition of
"yielding" makes comparison of results obtained during different studies difficult. A standard

definition, such as exists for metals, needs to be adopted for use with polymers.

The method used to define yielding during the present study will be discussed in detail in a
following section. At this point it is appropriate to note that yielding was defined on the basis of a
0.3% offset in the octahedral shear stress vs octahedral shear strain curve of polyethylene. A value
of 0.3% was selected because it is a widely used value of strain offset, at least within the polymers
technical community. Yielding was defined in terms of octahedral shear stress and octahedral
shear strain because this approach automatically accounts for biaxial loading effects. Also, all tests
were conducted under a constant rate in order to minimize rate effects . Specifically, the yield and
post-yield response of the polyethylene specimens was measured under a condition of constant

octahedral shear stress loading.

Yield Criteria

The yield criteria which have been developed for metals typically make the following

assumptions: (1) the initial compressive and tensile yield strengths are equal, (2) the hydrostatic

stress component does not contribute towards yielding (i.e., the deviatoric stress component
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governs yielding), and (3) the material is isotropic and homogeneous. If the third assumption is
relaxed the resulting yield criterion is suitable for use with anisotropic materials. The most
commonly used isotropic and anisotropic yield criterion will be briefly reviewed in seperate
sections below. Both "types" of yield criterion involve the hydrostatic and octahedral shear stress
levels. Hydrostatic stress (or "mean" stress) may be written in terms of the three principal stresses
as:

g1 +02+0
Ohyd = (o1 32 3) 2.1

The deviatoric stress level associated with some given stress state is characterized by the octahedral

shear stress. The octahedral shear stress may be written in terms of the principal stresses as:

Toct = % V(01-02)%+(02-03)2H03-01)2 (2.2)

Isotropic Yield Criteria: The isotropic yield criterion most widely used for ductile metals and
polymers is probably the Von Mises criterion. According to the Von Mises criterion, yielding

occurs when the octahedral shear stress in the material reaches a critical value:
(01— 02)2+ (02 - 63)2 + (03 — 61)2 = 2T2 (2.3)

where 61 > 62 > 63 and T is the uniaxial tensile yield strength of the material.

The Von Mises yield criterion is based on the assumptions that the hydrostatic stress
component does not contribute to yielding and that the compressive and tensile yield strengths are

equal. Experimental evidence indicates that many polymers violate both of these assumptions.



That is, polymers do in general have distinctly different compressive and tensile yield strengths and
furthermore their yield behavior is significantly influenced by the hydrostatic stress level. For
example, Christiansen, Baer, and Radcliffe [1971) found that the yield strength of polycarbonate,
polyethylene terephthalate, polychloro-trifluoroethylene, and polytetrafluoroethylene all increased
with increasing hydrostaric pressure. Mears, Pae and Sauer [1969] have reported similar pressure-
dependent yield behaviors for polyethylene and polypropylene. The same conclusions have been
reached for a variety of other polymers during studies by Ainbinder et al [1965], Pae and Mears
[1968], Sardar et al ([1968], and Spitzig [1979]. This experimental evidence indicates that yield
criteria which assume that the hydrostatic stress component does not influence the yield behavior,
and/or which assume that the initial compressive and tensile yield strengths are equal are not

applicable for use with polymers.

A modified version of the Von Mises criterion, in which these two assumptions are
relaxed, was first presented by Stassi-D'Alia [1967] and subsequently presented in a different form
by Raghava, Caddell, and Yeh [1973]. Raghava et al modified the Von Mises criterion in the

following manner:

(01— 02)2 + (02~ 63)2 + (03 ~ 61)2 + 2(C - T)(O1 + 63 + 63) = 2CT (2.4)

where C and T are the uniaxial compressive and tensile yield strengths respectively. This criterion,
known as the Pressure-maodified Von Mises criterion, is based on the assumption that yielding is a
function of both the hydrostatic and deviatoric stress states. The first three terms are equivalent to
the octahedral shear stress term of the original Von Mises criterion, while the last term is associated

with the hydrostatic stress component .



Note that effects of hydrostatic stress and differences in compressive/tensile strength are
not independent in the Pressure-modified Von Mises criterion. That is, if the compressive and
tensile yield strengths of a material are equal then the hydrostatic stress term disappears and the
Pressure-modified Von Mises criterion reduces to the original Von Mises criterion. It is interesting
to note that a similar interdependence between tensile/compressive yield strengths and hydrostatic
effects has been demonstrated for some metals. Spitzig, Sober, and Richmond [1976] have shown
that some sintered powder materials (e. g., sintered iron) exhibit significant differences in
compressive and tensile yield strength, and also that the yield behavior of these metals is influenced
by the hydrostatic stress component. Similar conclusions were reached by Betten, Frosch, and

Borrmann [1982] for the case of quenched and tempered steels.

The yield behavior of polymers has been compared to both the Von Mises and Pressure-
modified Von Mises Criterion. Polymers which have been studied include acrylics [Ely ; 1967],
polyester mixtures [Freire and Riley ;1980], and polycarbonate, polyvinylchloride, and
polyethylene [Raghava and Caddell, 1973; Raghava et al, 1973]. In all cases the Pressure-
modified Von Mises criterion was a better predictor of yield than the original Von Mises criterion,

indicating that the yield response of these polymers is sensitive to the hydrostatic stress level.

Anisotropic Yield Criteria: Anisotropic materials possess different material properties in
different directions. Untl recently, most research on the yield behavior of materials has focused
on isotropic models. However, many materials are anisotropic. In addition, when shaped by
manufacturing processes such as rolling or extrusion even materials which are initially isotropic
may become oriented at the atomic/molecular level and therefore become anisotropic at the

macroscale. This is particularly true of polymers since they are composed of long molecular chains
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which can easily become oriented in one direction, resulting in a polymer with distinctly different

stiffnesses and strengths in different directions.

The criterion used most often to model the behavior of anisotropic materials is the Tsai-Hill
yield criterion . Hill [1950] developed this criterion by selecting a form which would reduce to the
Von Mises criterion if the yield strengths were the same in all directions. Tsai has subsequently
applied this theory to composite materials, and the resulting theory is now known as the Tsai-Hill

yield criterion. It can be written in the following manner in terms of the principal stresses 6;, 07,

and o3:
H(o; - 062)2 + F(02-063)2 + G(03—061)2 =1 (2.5)
with: H+G=—-1-- H+F=L G+F=L
' T2 Tp? T2

Since the material is anisotropic, the coefficients in the equation are functions of the tensile yield
strengths in the 1-, 2- and 3- directions, T1, T2 and T3 respectively. If the material is transversely
isotropic, then T2 and T2 are equal and consequently G is equal to H. The Tsai-Hill yield criterion
is related to the maximum shear which exists in each principal plane; it includes no linear terms
which would represent the hydrostatic stress level, and also ignores any differences in initial
compressive and tensile yield strengths. Stassi-D'Alia [1969] modified the Tsai-Hill criterion to
include these factors, and Caddell, Raghava, and Atkins [1973] proposed a similar yield criterion
at a later date. The Pressure-modified Tsai-Hill criterion, as it is sometimes known, is defined as

follows:

H(o1 - 02)2 + F(02 — 63)2 + G(03 — 61)2 + K161 + K202 + K303 = 1 (2.6)
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with H+G=ﬁ H“F:c—le‘z' G"F:c—;ﬁ
_C1-T _C-To _C3-T3
Ki==om  Ke=om K3 =¢3Ts

The compressive and tensile yield strengths in the 1-, 2-, and 3- directions are denoted by C1, T,
C2, T2, C3, and T3. If the material is transversely isotropic then C2 and T? are equal to C3 and
T3, and therefore, G = H. If the compressive and tensile strengths are equal, Eq (2.6) reduces to
the original Tsai-Hill criterion, and if material properties are the same in all directions, it further

reduces to the original Von Mises criterion.

The few experimental studies which have been undertaken to investigate the yield behavior
of anisotropic polymers seem to validate the Pressure-modified Tsai-Hill yield criterion. Studies
by Rider and Hargreaves [1969] and Shinozaki and Groves [1973] followed methods suggested
by Hill in which the change in the tensile and compressive yield strengths of oriented polymer
sheets was measured as a function of the angle of orientation 8. Caddell and Woodliff [1977]
conducted a series of tests using highly anisotropic specimens of polycarbonate, polyethylene, and
polypropylene. The test specimens were oriented by applying a tensile load to a specimen until a
stable neck had formed. The final test specimens were then machined out of these necked regions.
A good correlation between experiment and theory was reported. Carapellucci and Yee [1986] also
conducted tests on anisotropic polycarbonate specimens and reported good agreement. Hence, it
appears that the yield behavior of anisotropic polymers is significantly affected by the hydrostatic

stress level.
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THE PREDICTION OF POST-YIELD BEHAVIOR

Post-yield behavior typically involves large deformations, such that the familiar definitions
of conventional "engineering" stress and strain no longer apply. Conventional engineering stress ¢

and engineering strain € may be converted to true stresses s and true strains e as follows:

s = O(e+1) 2.7

e =In(e+1) (2.8)

A true stress-true strain curve is often called a plastic "flow" curve because it gives the
stress which causes the material to flow plastically for any given strain. Post-yield theories are
typically developed in terms of the true stress and true strain, and in this report true stress and true

strain will be used to describe the post-yield behavior of polyethylene.

The post-yield theories considered during this study will be briefly reviewed below. Both
isotropic and anisotropic materials will be discussed. It is appropriate to note that, in contrast to
the yield criterion reviewed above, all existing post-yield criteria assume material incompressibility
during plastic flow. The possibility that the flow behavior of polymers is influenced by the

hydrostatic stress level has apparently not yet been addressed within the technical community.



13

Post Yield Behavior of Isotropic Materials

The assumption that plastic deformations are independent of the hydrostatic stress level
leads to the conclusion that the volume of a solid remains constant during plastic flow. Therefore,

during plastic flow the true strains are related by:

el +e2+e3=0 (2.9)

Equation (2.9) represents the "constancy of volume" assumption. Note that if v = 1/2, then a

similar relationship holds for engineering strains:

€] +€2+€3 = (1-2v)(0; + 02+ G3)/E =0 (whenv =1/2) (2.10)

For many metals undergoing plastic deformation induced by a uniaxial stress, the flow curve can

be expressed by the simple power law relation, also known as the Ludwik expression:

$ = Syijeld + Men (2.11)

where syjeld is the true stress at yield, M is the strength coefficient and n is the strain hardening
exponent. This equaticn is only valid for isotropic materials and is defined from the onset of
plastic flow to the maxirnum load at which the specimen begins to neck. Equation (2.11) provides

a simple mathematical expression to describe the post-yield flow curves of a material if constants M

and n are known.
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Equation (2.11) is appropriate for use under uniaxial loading conditions. In a complex
state of stress and strain it is more useful to relate invariant functions of true stress and true strain.
The invariant functions most frequently used to describe plastic deformation of metals are the
effective true stress and effzctive true strain [Dieter, 1986]. The effective true stress is defined as a
function of the principal true stresses:

1
1

5 = 5 (51522 + (sy:s92 + (35020 2.12)

The effective true strain is defined as a function of the principal true strains:

1
€= -32 [(e1-€2)2 + (e2-€3)2 + (e3-e1)2] (2.13)

<|

The power law relation can now be expressed in the form of effective true stress and effective true

strains:

§ = Syjeld + Men (2.14)
An assumption implied by Equation (2.14) is that the flow curve is independent of the hydrostatic
or mean stress component. That is, the post-yield behavior is assumed to be governed exclusively

by the deviatoric stress tensor.

The power law expressions (i.e., either Eqgs. 2.11 or 2.14) provide a simple mathematical

expression to describe the flow curves of a material, and the power law formulation has been
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widely applied because of this simplicity. However, these relations are entirely empirical and

deviations from the power law are frequently observed.

More rigorous expressions to describe the post-yield behavior of a material have been
developed. Two such systems of equations are the Levy-Mises and Prandtl-Reuss equations. In
either case two fundarnental assumptions are made: it is assumed that the material is elastic-
perfectly plastic, and further, it is assumed that the incremental change in plastic true strain induced
by an increase in true stress is proportional to the total stress deviator, rather than the incremental
change in the stress deviator. The elastic strains are neglected in the Levy-Mises equation, and
thus the Levy-Mises equations are only applicable when large plastic deformations occur such that
the elastic deformations can be entirely neglected. The Prandlt-Reuss equations include both elastic
and plastic deformations. In the present study the elastic deformations could not be neglected and

hence the Prandtl-Reuss equations were applied, as further described below.

Reuss assumed that the plastic true strain-increment, at any instant of loading, is
proportional to the instantaneous stress deviation such that:

p p p
dei _dey _de3 5 (2.15)

1 82 83

where de; are the plastic principal true strain increments, s} are the deviatoric true stress
components, and dA is a non-negative constant of proportionality which is not a material constant

but rather varies throughout the stress/strain history.
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Equation (2.15) implies that the incremental plastic strains depend on the total current
deviatoric stresses and not on the incremental change in deviatoric stresses. It is also implied that
the principal axes of stress and plastic strain increments coincide. Again, the hydrostatic stress

component assumes no role in the plastic deformation of the material.

For a given direction the total strain increment det is defined as the sum of the plastic deP

and elastic de€ strain increments:
t p e
de; = dej +de; (2.16)
The plastic strain increment deP is given by Equation (2.15), and hence [Slater, 1977]:

ds
SH

S

-

P_ .,
de; =s;

N W

dA = (2.17)

where s is the effective true stress defined in Equation (2.12) and H (also known as the “plasticity
modulus™) is the slope of the effective true stress-plastic strain curve. The elastic strain increment

dc? is dependent on both the deviatoric and hydrostatic stress components:

e dsi (1-2v
dej =55 +(—E—) dshyd (2.18)

where E is the Young’s modulus, v is the Poissons ratio, and G is the shear modulus. The shear

modulus is related to Young’s modulus and Poissons ratio:
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__E
T 2(14V)

G (2.19)

Combining Equations (2.17) and (2.18) gives the total strain increments for a given direction i:

t

3sids ds] (1-2v)
dei =3 R

o + dsh (2.20)
5 (26 TTE M

Equation (2.20) is the Prandtl-Reuss relation applicable for initially isotropic materials to describe

post-yield stress-strain behavior.

A method of experimentally verifying whether it is appropriate to apply the Prandtl-Reuss
system of equations to a given material was developed by Lode (1926). Lode introduced two
parameters, | and v, known as the Lode stress and plastic strain parameters respectively:

_2sp-81-53
T s1-83

(2.21)

p__p_.D
2¢p " €1 "€

p
C‘I)'CS

V=

In Equation (2.21), the stresses are the total principal stresses and the strains are the plastic portion

of total principal strains defined as :

P=c-e (2.22)

where ' and €° are the total and elastic principal strains respectively.
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Lode showed that if a material is elastic-perfectly plastic, then the Prandtl-Reuss equations
imply that the two parameters will be identical, i.e., . =v. The Lode parameters are a convenient
way to test whether a given material follows the Pandtl-Reuss equations. The Lode parameters
have been evaluated for a number of metals and metal alloys, including iron, copper, nickel,
aluminum, and steel alioys [Morrison and Shepard (1950); Taylor and Quinney (1951)]. Typical
experimental results are shown in Figure 2.2. As indicated, the correlation is usually not exact,
and often a consistent deviation from predicted behavior can be identified. This deviation from
theory is usually attributed to anisotropy of the test material and/or to experimental errors, although
it is also likely that the material is not completely elastic-perfectly plastic. Despite these
inconsistencies, the Prandtl-Reuss equations are considered to be one of the best theoretical

approaches to modeling post-yield behavior currently available.

)t-H) --8 ~-6 -4 -2 0
%
xe -2
°
x g “‘4
¢
¢
°
X _.6
o |®
o Coppe
: il ,
x x Aluminium
°
o Mild Steel
| o
v

Figure 2.2: Lode Variables Measured by Taylor and Quinney for Copper, Aluminum, and Mild
Steel Tubes Subjected to Combined Tension and Torsion (Taken from Hill [1950] pg
44).
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Post-Yield Behavior of Anisotropic Materials

An anisotropic form of the power law was applied to polyethylene during the present
study. The effective true stress and effective true strain for istropic materials have been defined in
Equations (2.12) and (2.13). These definitions no longer apply for anisotropic materials. Hill
[1950] modified these expressions for use with anisotropic materials. The effective true stress for

an anisotropic material in terms of the true principal stresses is given by:

2 2 2
§_,\FF(sz 53) +1?(:3(}SIJ)« };H(m -52) (2.23)

where:

1
H+G=— H+F=
T

Jhl=

and sy, s2, s3 are the principal true stresses. Because the material is anisotropic, the normal stress
coefficients F, G, and H are functions of the tensile yield strengths in the 1, 2, and 3 directions,

T, T2, and T3 respectively.

Similarly, the effective true plastic strain for an anisotropic material in terms of the true

principal strains is given by:

A

P P_HeP p
Geb-He}} Fef-Hef Fel-Ge)
+G (2.24)
4

D) 1
€ ="\ ’ 3 F+G+H)2 F
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where e‘l’, eg, and eg are the principal plastic normal strains and B = (FG + GH + HF). . Note that

if anisotropy is negligible then Equations (2.23) and (2.24) reduce to Equations (2.12) and (2.13),
respectively.

For an anisotropic material, the power law formulation may be used by the substitutions of
Equations (2.23) and (2.24) into Equation (2.14). That is, the flow law for an anisotropic material

is given by
s = gyleld + Men

where 5 is now given by the anisotropic form of the equivalent stress (i.e., is given by Eq. 2.23),
and € is now given by the anisotropic form of the equivalent strain (i.e., is given by Eq. 2.24).
Note that Eq (2.25) is identical to Eq (2.14); the variables have simply been redefined to account
for anisotropic behavicr. The anisotropic form of the power law expression was applied during

the present study, as will be described in a following section.



CHAPTER 3 - EXPERIMENTAL PROCEDURES

In this study thin-walled tubes of high-density polyethylene were subjected to
monotonically increasing axial loads and internal pressures. This biaxial loading produced both
hoop and axial stresses within the walls of the specimen. Loading was increased proportionaly at
user-specified rates, and the yield and post-yield response of the specimen was monitored

throughout each test.

Due to symmetrv the axial and hoop stresses were the principal stresses in all cases. The
axial and hoop stresses induced during a given test therefore define a radial "load path" in principal
stress space. The load paths used during the present study are summarized in Figure 3.1. A total
of 57 seperate tests were planned, involving three repeated tests along each of 19 load paths. The

load paths are oriented at five degree increments in the first quadrant of principal stress space.

The yield behavior of polyethylene is highly rate-dependent. As discussed in the preceding
chapter, in most yield- and post-yield criterion it is assumed that inelastic behavior is governed by
the octahedral shear stress. Therefore a constant octahedral shear stress rate was maintained during
all tests in order to minimize rate effects between individual tests and load paths. Note that
although the octahedral shear stress rate remained constant from test-to-test, the hydrostatic stress
rate, axial loading rate, and internal pressure rate all varied considerably from one load path to the

next.



Axial Stress

22

7 Load Path Number

10
11

12
13
14

15
16
17

18

19

Hoop Stress
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Derivation of Test Matrix

The axial load (L) was increased at a rate of kj and the internal pressure (P) was increased

at a rate of ky. Therefore at time t:

L =kt 3.1

P =kot (3.2)

Under this loading condition, the stresses induced in the walls of the tube are:

t ~k
CAXIAL =°1=7£—(——.7tr1 + kzr ) (3'3)
kort
GHOOP = 02 =7 (3.4)
D S
O'RADIAL=“2‘k2t =0 (3.5)

with: 1 = average radius of tube

¢ = wall thickness

Note that the radial stress has been equated to zero. This is an appropriate assumption for thin-
walled tubes, since the radial stress is typically an order of magnitude less than the hoop and axial

stresses.
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Normally, "1" denotes the algebraically greatest principal stress, "G," the intermediate
principal stress, and "03" the algebraically smallest principal stress. However, for purposes of
consistent identification this convention was ignored in this study. Instead, "G;" was used to

denote the axial stress, and "0," was used to denote the hoop stress, even though along some load

paths the hoop stress was in fact the algebraically greatest principal stress.

Substituting Eqs (3.3) and (3.4) into Eqs (2.1) and (2.2), the octahedral shear stress and

hydrostatic stress at any time t are given by:

t 2k;2
Toct = gg 7:7 + 6kp2r2 (3.6)
__t k k
Ohyd =3 (—L3m + 2r) 3.7)

The slope M of any load path shown in Figure 3.1 can be expressed as:

_o1i__1 g 2
M—02—21t2r2 o+ T ) (3.8)

The combination of load rates k; and ky which produce a desired slope M are given by:
ky = komr2 2M-1) (3.9)

Finally, given a desired octahedral shear stress rate, {Tocy/t), and slope M, the required axial load

rate and internal pressure: rate are given by:
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_(Toct 1) 4 ’ 2

ki -(———t )3n:rc (2M-1) ~_—_3+(2M-1)2 (3.10)
_ Toct \ 3C 2

ky= (—t )_r “\ /-—-—3_'—(2 2 @3.11)

An octahedral shear stress rate of 258 psi/min was selected for use since the axial loading rates and
internal pressure rates for all loading paths falls within the range of the equipment available. A test
matrix was defined in this fashion and is presented in Table 3.1. The numerical values given in
Table 3.1 were obtairied using Eqs (3.10) and (3.11), as well as the specimen dimensions

presented in the following section.
Specimen Preparation

The material selected for testing was high-density polyethylene. Driscopipe 1000
(PE3408) SDR26 high-density polyethylene tubing was purchased in 20 foot lengths from a
distributor in the Seattle area. Since the polyethylene tubes were produced by extrusion,
significant residual stresses were present in the as-received tubes. Therefore, each specimen was
subjected to a thermal annealing process prior to testing. To the authors' knowledge, there is no
accepted procedure for annealing high-density polyethylene. An appropriate annealing cycle was
determined by conducting several tests at different temperatures. Starting from an annealing
temperature of 90°C, annealing temperatures were increased in 10°C increments from one test to
the next until the melting temperature of roughly 130°C was reached. A Blue M forced air oven
was used. The oven was preheated so as to achieve a constant annealing temperature with minimal

thermal gradients throughout the oven chamber. The specimens were then placed in the oven and
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Table 3.1: Axial and Internal Pressure Loading Rates Required to Perform Constant Octahedral

Shear Stress Rate Tests
Load Path >xwm_m Wob»n Int. WMMmEo Toctt Ohyd/t
No | Slope (M) (b/min) (psi/min) | (psi/min) | (psi/min)
1 oc 900 0 258 186
2 11.43 * 895 5 258 210
3 5.57 885 10 258 236
4 3.73 867 15 258 260
5 2.75 838 21 258 284
6 2.15 795 27 258 310
7 1.73 734 34 258 331
8 1.43 657 40 258 348
9 1.19 560 46 258 357
10 1.00 449 51 258 365
11 0.84 328 54 258 357
12 0.70 202 57 258 348
13 0.58 83 58.2 258 331
14 0.47 -31 58.4 258 310
15 0.36 -143 57.7 258 284
16 0.27 -230 56.5 258 260
17 0.18 -311 55 258 236
18 0.09 -384 53 258 210
19 €.00 -449 51 258 186

* Tests along Load Path 2 not completed.
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annealed for one hour. The oven was then turned off and the specimens were slowly furnace

cooled over approximately 10 hrs.

The effect of annealing temperatures was evaluated by means of a destructive sectioning
technique. A 1 inch wide strip was removed along the length of a 12 inch tube to evaluate axial
residual stresses . For the hoop direction, a 1-1/2 inch long "ring" specimens was cut from the
tube, and a 1-1/2 wide section (corresponding to a 20° arc) was cut out of the circumference of this
ring. After a period of 72 hours (to allow for any time-dependent response to develop) the strip

and ring specimens were examined to determine whether any deformations had occurred.

It was found that large residual stresses existed in the tubes in the as-received condition.
Compressive residual stresses existed in the hoop direction, while axial residual stresses were
probably compressive at the outer diameter and tensile at the inner diameter. Figures 3.2 and 3.3
show the results of the various annealing temperatures on hoop and axial residual stresses. Note
that at 130°C, the specimen had been extensively deformed by the annealing process, which
indicated that the melting temperature had been reached. For the axial direction, the amount of
deflection from the center of the strip was measured as shown in Figure 3.4. For the hoop
direction, the angle of deflection from the center of the tube was measured as shown in Figure
3.5. Measured deformations were plotted functions of annealing temperature, and the results are
summarized in Figure 3.6 and 3.7. The results show that deformation of the axial strip was
minimized using an annealing temperature of approximately 115°C. However, higher annealing
temperatures resulted in a algebraic sign change (i.e., a reversal in the curvature of the strip),
indicating that axial residua;i stresses may still have existed in the tubes following an anneal at
115°C. Furthermore, the hoop deformations were not completely eliminated even at annealing

temperatures approaching the melting temperature of polyethylene.
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Figure 3.2 - Hoop Sections of Annealed Tubes at Various Temperatures
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Figure 3.3 - Axial Sections of Annealed Tubes at Various Temperatures
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Figure 3.4: Measuremernt of deformations due to axial residual stresses. (Note: A deflection was
defined as “positive” if the strip was concave with respect to the original centerline of
this tube.)
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Figure 3.5: Measurement of deformations due to hoop residual stresses. (Note: Total angular
deflection =20° —-0.)
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The annealing treatment finally selected for use consisted of a 2 hour anneal at 115°C
followed by a 10 hr furnace cooling. Itis believed that this annealing treatment minimized, but

perhaps did not completely eliminate, residual stresses present in the as-received tubes.

Specimens were cut from "parent” tubes in 15-1/2 inch lengths and annealed. Specimen
dimension measurements Were taken on six different sections of the annealed tubes in order to
determine average values. The average radius of the annealed tubes was 1.698", and the average

wall thickness was 0.157".

Axial Load and Internal Pressure Control

Figure 3.8 shows the fixture used to apply axial loads and internal pressures to the tubular
specimens. The specimens were mounted to two aluminum cylinders. The upper cylinder
extended into the specimen in order to reduce the volume of air required to pressurize the
specimen, which decreased the energy released in the event of catastrophic specimen failure. Two
ports were machined in the lower cylinder. One was the supply port for the pressurized air from a

bottled air cylinder and the other was the pressure transducer port for measuring internal pressures.

The tube specimens were seated on a shoulder machined in each aluminum cylinder. An O-
ring was used to insure proper pressurization with no leakage. After seating the tube on the
shoulder of each cylinder end, an aluminum clamp was attached at each end to firmly seal the tube
and cylinder surfaces. The clamp also helped prevent slippage of the tubes during testing by
pressing the specimen walls into the machined step of the cylinders, thus increasing the friction

force between the mating surfaces of the tube and cylinder.
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Axial loads were applied using an MTS electrohydraulic fatigue testing machine consisting
of a Model 308.01 loading frame, a hydraulic cylinder and pump, a Model 442 control unit, a
Model 410 digital function generator, and a Transducer Inc. Model WTC-FF42-CS-10K 10 kip
load cell. A Tektronix Model 2213 60 MHz oscilliscope was used to monitor and verify the axial
loading. Figure 3.9 illustrates the loading frame along with the load cell and specimen.

The MTS frame was used to apply a monotonically increasing axial load at a user-specified
rate. The required axial loading rates have been previously listed in Table 3.1. The applied load
rate was monitored throughout each test, and was maintained to within 5% of the desired load

rate in all cases.

A control system designed to produced a linearly increasing air pressure was developed
during this study. The system is shown schematically in Figure 3.10, and a photograph of the
assembled system is shown in Figure 11. The pressure regulation system involved two pressure
regulators mounted in series. First, a Victor mode SR4G regulator was mounted directly on the
stem of a compressed air bottle, and reduced the nominal air pressure from 3000 psi to 300 psi.
This was referred to as the "knockdown" regulator. Air flow was then directed to a Watts R11-
03D regulator. This second regulator was referred to as the "control" regulator. The control
regulator outlet pressure: can be adjusted from O to 250 psi. An angular rotation of the valve stem
of the control regulator results in a pressure change at the outlet. The measured outlet pressure was
found to be linearly proportional to the angular position of the valve stem. Thus, by rotating the

valve stem at a constant angular rate the outlet pressure was increased at a constant linear rate.

The control regulator was coupled to a Slo-Syn MO093-FD14 stepper motor. This motor

was controlled by an Anaheim Automation BLB driver, which was in turn regulated by analog



36

voltage pulses from an A/D board mounted in a Macintosh II computer. A single pulse from the
computer caused the stepper motor shaft to turn 1.8°. A pulse train of a given frequency would
therefore cause the mctor shaft to turn ata given angular frequency. Since the shaft was coupled
to a linear pressure regulator, a given pressure rate was produced. The entire system was
calibrated such that a specified pulse rate resulted in a known linear pressure rate. A computer
program was written which allows the user to produce a pulse train of a desired frequency.
Typical plots of pressure versus time recorded along load paths 5 and 10 are shown in

Figure 3.12.

Data Acquistion

A total of five analog measurement devices were used during any test. Axial strains were
measured using an MTS model number 632.25B-20 extensometer. Hoop strains were measured
using two diametrically opposed Applied Test Systems (ATS) LVDT displacement transducers,
with a range of 0.5 inch. Pressures applied to the specimen was measured using a Gulton GS616
pressure transducer. Finally, axial loads were measured using the load cell mounted to the MTS
frame, as previously described. All five analog voltage signals were monitored using a National
Instruments NB-MIO-16H A/D board mounted within a Macintosh II computer. The A/D board
was controlled using "Labview", a National Instruments graphical programming language. The
Labview package allowed scanning rates of up to 45000 samples per second and up to 8 double-
ended input signals. One potential difficulty with the scanning process was that all S channels
were not monitored at the same time but rather sequentially. A maximum time lag of 5 msec
occurred between scanning each channel. Since the load and strain rates imposed during all tests
were relatively low, the 5 msec lag between measurements was negligibly small, and all 5

measurements were treated as if obtained simultaneously.
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Figure 3.9 - Loading Frame along with Test Specimen.
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The scanning process created a binary data file. A computer program was then used to
convert the binary data to numerical voltages. A second program converted the voltage readings to
stress and strain values using calibration coefficients of the data measurement devices. Axial strain
was calculated by: (1) converting the voltage reading at t=0sectoa corresponding gage length,
(2) subtracting out the voltage reading at t = 0 sec from the entire set of voltage readings to
determine the change in voltage, and (3) multiplying the voltage readings by the calibration
coefficient 0.0992 inches/volt and dividing by the gage length for that test. Hoop strain was
calculated by: (1) subtracting the voltage reading for t = 0 sec from all voltage readings for each
LVDT, (2) multiplying the voltages for each LVDT by their corresponding calibration coefficient,
0.28457 inches/volt and 0.29379 inches/volt, to determine the displacement of each LVDT, (3)
adding the displacement for LVDT 1 at time t to the displacement of LVDT 2 at time t to determine
the total change in diameter of the tube at time t, and (4) dividing the change in diameter by the
average hoop diameter of 3396 inches. The pressure and axial load at any time t was calculated by
multiplying the voltage reading from the pressure ransducer and load cell at time t by their
respective calibration coefficients, 59.386 psi/volt and 1000 lbs/volt. The hoop and axial stresses
in the tube were calculated using thin-walled tube theory.

Summary of Test Procedure

Each specimen was mounted in the MTS frame, and a small offset preload (50 lbs) was
applied to allow the grips to set. The axial load was then rezeroed. The desired axial load rate was
entered into the MTS controller and all of the measurement devices and pressure hoses were

attached.
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Next, an offset pressure of approximately 7 psi was applied. The Labview program would
then begin the pressure ramp and data acquisition and the MTS axial load ramp would be started
manually. Although a small time offset existed between the start of the two ramps, the error
induced was small. An X-Y chart recorder was used to obtain an axial load versus axial strain
hardcopy plot, allowing for real-time monitoring of events. The test would end when the MTS

bottomed out, when the maximum pressure of the system was reached, or when the specimen

failed.

As mentioned, an offset pressure of approximately 7 psi existed in the specimen at the start
of the test. This pressure induced small strains and stresses in both the hoop and axial directions.
These strains were accounted for by plotting the hoop and axial strains versus the octahedral shear
stress, as shown in Figure 3.13. The strain values went through zero since the instrumentation
had been zeroed prior to the start of the test. The octahedral shear stress did not go through zero
since there was initially pressure in the system inducing hoop and axial stresses. The two curves
were linearly fit. An offset strain at time equal zero was then added to all strain values, shifting
the entire curve so that it passed through the origin. Appendix A contains plots of the experimental

hoop and axial stresses and strains obtained for each load path.
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CHAPTER 4 - DATA REDUCTION METHODS

Determination of Material Properties

Recall that load paths 1 and 19 (see Figure 3.1) define uniaxial stress tests, in which "pure”
axial and hoop stress, respectively, were applied. Four repeated tests were completed for these

two load paths. The stress and strain values recorded during these tests were used to determine

Young's modulus E and Poisson ratio v, in both the hoop and axial directions.

The experimentally determined material properties were:

E= 83,493 psi
Ep= 108,540 psi
vip= 0.39

va1= 0.52

As previously noted, the subscript "1" has been used to denote the axial direction, while the
subscript "2" is used to denote the hoop direction. Previously reported values for E and v range
from 60,000 psi to 180,000 psi and 0.31 to 0.6, respectively [Manufacturing Chemists
Association, 1957; Rodriguez, 1982; Ward, 1975]. Measurements obtained during this study

therefore fall within the range of previously reported measurements.

The measured properties show that the annealed high-density polyethylene tubes were
anisotropic. It can be shown that these properties should satisfy the following inverse relationship

[Jones, 1975]):
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221 (4.1)

Using the values of Ej, Ep, and v listed above, the expected values of v21 i1s 0.51. This
compares very well with the experimental value of 0.52. For consistency, the value of V21 in

subsequent calculations was forced to fit the inverse relationship, i.e., v21 was equated to 0.51.

Recall that the tubular specimens were produced by an extrusion process which resulted in
significant residual stresses in the as-received tubes. It is likely that the extrusion process also
caused the pronounced anisotropy in mechanical properties. The specimens were all subjected to a
thermal annealing treatment prior to testing, so as to relieve the residual stresses. It had been
hoped that the annealing process would also reduce or eliminate any anisotropic material behavior.
This result was not achieved. The annealing process minimized residual stresses, but had little

impact upon the anisotropy of the material.

Prediction of Yielding - Isotropic Model

Although the rest material was clearly anisotropic, it was first modeled as an isotropic
material. This approach may be of practical interest, since it avoids the additional mathematical
complexities associated with anisotropic constituitive models. Average values were assigned to E

and v, 96000 psi and 0.46 respectively, and were assumed constant throughout the material.

Yield was based upon a 0.3% strain offset on the octahedral shear stress- octahedral shear
strain curve. Octahedral shear stress and strain were used rather than individual axial and hoop

stress and strain components in order to determine one value for the yield point and to bypass the
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need to average values found on the individual stress-strain curves. This approach is in contrast to
the method used by previous researchers [Raghava et al, 1973; Ely, 1968] wherein yield is defined
based on axial stress and hoop stress versus effective strain curves. This latter approach results in
two measurements of yield strength, which are subsequently averaged. A 0.3% offset was used
because it was the most common offset in previous yield studies on polymers [Raghava and

Caddell, 1974; Raghava et al, 1973].

The octahedral shear stress was calculated using Equation 2.2, repeated here for

convenience:

toct = 5\ (61-02)2 + (62-03)2 + (03-01)2 4.2)

Octahedral shear strain is a similar function of the three principal strains:

Your=53V (1622 + (e2:€3)? + (3-€1)2 “.3)

Since no measurement of €3 was made during testing, it was necessary to determine €3asa
function of €] and €. Assuming that a plane stress state existed in the thin-walled tube, €3 18

related to the two measured strains in the following manner:

-V .
€3 =—1[e1+€2] (4.4)
1-v

Octahedral shear strain can now be written:
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2 V. -v24+4v-1
Yoct =3 '\[(2+(1—_\-‘)2)(el +€22) + 2162 )2 (4.5)

It can be shown [Semeliss, 1990] that the slope of the octahedral shear stress vs octahedral shear

strain curve, assuming isotropic material behavior, is given by:

il:-= E = G
ay 2(v+1)

(4.6)

That is, the slope of the curve is independent of load rates and is simply equal to the shear modulus
G. This simple relationship does not hold for anisotropic material behavior, as will be shown in a

following section.

The procedure used to identify the yield point was as follows. Three repeated tests were
conducted along each load path. All measurements for a given load path were combined into a
single data set, and a fifth-order polynomial was fit to the data. The yield point was then identified
by calculating the point of intersection between a 0.3% strain offset with a slope equal to G and the
fifth-order polynomial. A typical result is shown in Figure 4.1. This numerical approach
eliminated any need for estimating the intersection visually, and defined the yield point
conveniently and consistently from one load path to the next. Since the axial stress to hoop stress
ratio was constant for each test, the axial and hoop stresses which correspond to the yield point
could be calculated based upon the octahedral shear stress at yield. Appendix B contains plots of
octahedral shear stress versus octahedral shear strain for all load paths.
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Isotropic Assumption: Axial Load Rate = 885 Ib/min, Pressure Rate = 10 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 236 psi/min.
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Prediction of Yielding - Transversely Isotropic Model

Hooke's law for an orthotropic (or transversely isotropic) material subjected to a plane
stress state and referenced to the "principal” material coordinate system can be written [Jones,

1975]:

£ S11 312 O o
€ |=[S12 S22 O (7)) 4.7
Y12 0 0 S T

€3 = §1301 + S2302 4.8)

V12
Su=g; Sw2=Sa=-g Si3=Su=-

2

1 v
S2=§, Sz3=S32=--]§

It was assumed that the material was transversely isotropic, and hence v13 = v23, E2 = E3, and S13

= S12. Finally, v23 was equated to the value of the average Poisson ratio in the axial and hoop

direction, i.e., v23 = 046.

The radial strain was calculated assuming plane stress conditions:

&3 = -E1vi2 (1+v23) €1 - (Eavi22 + Eva3) €2
Ej - Eavy2?

4.9)
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Octahedral shear strain for the transversely isotropic model can now be calculated as:

2
3(E1 - Eavi2?)

Yoct = v Aei2 + Beje + Cep? (4.10)

where:

A =2E12 (v122v32 + 2v122va3 + Va2 + Viavp3 + V12 + 1) - 2E1E) (Vi23va3

+ v123 + 2\‘122) + 2E22V124

B =2E;2 (2vi2v232 + 3v12va3 + V12 + Vo3 - 1) + 2E1Ep (V123va3 + Vi3

- V12223 + 3vi22) - 4Ep2v ot
C =2E12 (v232 + v23 +1) +2E1E3 (V122v23 - v122) + 2Ep2vy 0%

Note that retention of the anisotropic material properties has a dramatic effect on the calculated
value of octahedral shear strain. This fundamental difference between isotropic and anisotropic

models will result in a difference in the measured yield point, as will be pointed out below.

It can be shown [Semeliss, 1990] that the predicted slope of the octahedral shear stress

versus octahederal shear strain curve along each load path is given by:

EE2 k12 R 3r2k,2
ot 2V2 2m2r2 2

df  Dk,2 + Fkik, +Gkp2

(4.11)

where:
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Ez2 (vip + 1)2

D=
4rin2

1
F= o [E22 (-v122 + 1) + E1Ej (-v12 + V12va3 + V23 - 1)]

2 E 2 (v.,2 2 (V92
=7 [E2” (vi2® - 2via +1) + 2E1Eg (V12 - V12v23 + V23 -1) + 4E; 2 (vo3

+ Vo3 +1)]

Unlike the isotropic case (i.e., Eq 4.6), the slope of the stress-strain curve for a transversely

isotropic material is a function of load rates and therefore of load path.

The yield point was determined for the transversely isotropic model using the same
procedure as described for the isotropic model. However, the slope is now a function of load
path, and the octahedral shear strain values differ. Appendix B contains plots of octahedral shear

stress versus octahedral shear strain for all load paths.
Prediction of Post-Yield Behavior
Power Law Models

Isotropic Form: The power law expression was given by Equation (2.11), repeated here for

convenience:

v
Il
w

yield + Men (4.12)
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where:

1
§= —\%2 [(s1-52)2 + (s2-53)2 + (s3-s1)2] 2 @.13)
1
€= {32 [(e1-e2)2 + (e2-€3)2 + (e3-e1)2) (4.14)

are the effective true stress and effective true strain defined as a function of the principal stresses
and strains respectively. Assuming plane stress, then s3 = 0, and Equation (4.13) can be

simplified:
1
T = [s12 + 522 + 515212 (4.15)

Also by assuming the constancy of volume, Equation (4.14) can be rewritten as:
1

g =i +e? +eredl? (4.16)

The true strains used in Equation (4.16) are the plastic portion of the total true strain defined earlier

and repeated here:

t ©

P=e-¢ @.17)

where ¢! and e are the total and elastic true strain components respectively. The total true strain et

are the experimentally recorded values and the elastic true strains € are defined using the biaxial



54

form of Hooke’s law. The principal stress and strain components in Equations (4.15) and (4.16)

correspond to the axial and hoop directions, due to loading and specimen geometry symmetry.

Taking the logarithms of both sides of Equation (4.12) gives:

log(s-syield) = n loge + logM (4.18)

which is in the form of a linear equation:

where y = log 5-Syield, x = loge and b = logM. Thus, a log-log plot of S-Syield versus € can be
used to determine the constants M and n, where M is the y-intercept and n is the slope of Equation

(4.19).

A polynomial curve-fit was used to achieve a smooth curve after shifting the individual
tests to the isotropic yield points. A *“new” data set consisting of axial stress strain and hoop stress
strain values was generated using the polynomial curve-fitting equation. The effective true stresses
and effective plastic strains were then calculated using Equations (4.15) and (4.16). A log-log plot
of s-Syield versus € was performed and a linear curve-fit was used to achieve the best correlation
coefficient. This linear curve-fitting equation provided easy calculation of the constants M and n,

the strength coefficient and strain hardening exponent, respectively.

Anisotropic Form: For the anisotropic case, the power law relation is defined in the same way

as the isotropic case given by Equation (4.12). On the other hand, the effective true stress and
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are very different

nder complex loading condtions
and 2.24).

2.12 and 2.13 with Equations 2.23

only a biaxial stress state exists and the material is transversely

However, if it is assumed that
isotropic, then Equations (2.23) and (2.24) can be simplified as:
Fsd + Gs} + Hs1s2)”
- 3
s= N2 FG+H (4.20)
\]?;—ZF+G+H)[F{GC2+H(e1+e2)}2 - G{Fe1+H(c1+c2)}2 + H{Fe1-Ge2}?]
N
= FG + GH‘+"H"'F““"/ 421
where:
1
H+G=—5—"
Tzaxial
H+F=—F"
hoop
H=G
axial and

The coefficients, F

hoop directions.

Using Equations (4.12), (4.20)

using a linear ¢

, G, and H, are now functions of

urve-fit of a 10g $-Syijeld Versus lo

the tensile yield strengths in the

and (4.21), the constants M and n can again be found

g € curve.
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Prandti-Reuss Model

The Prandtl-Reuss equation for an isotropic material was given in Equation (2.20),

repeated here for convenience:

t 3s]
dei=§ “3G6 Y E dshyd (4.22)

where § is the isotropic form of the effective true stress defined by Equation (4.15). Equation
(4.22) gives the incrernental change in total true strain associated with an incremental increase in
stress. Note that by definition the plastic true strains equal zero at the yield point. Therefore the
total true strain induced by a given stress state beyond the yield point equals the sum of the elastic
response (including any strain offset associated with the definition of yielding) plus the sum of
incremental increases in strain calculated using Equation (4.22). The given stress state is
represented by the effective true stress 5, the deviatoric stress , and the hydrostatic true stress

Shyd.

In order to apply the Prandtl-Reuss equation in practice, one must determine the material
constants E and v, as well as the plasticity modulus H. In the present case E and v were assigned
average values of 96000 psi and 0.46. The plasticity modulus H was determined using data
collected along the two uniaxial stress load paths, specifically load path 1 (pure axial stress) and
load path 19 (pure hoop stress). Four repeated tests were performed along both of these load
paths. The resulting eight data files were combined into a single data set and a plot of effective

plastic true strain versus effective true stress was generated, as shown in Figure 4.2. The data was
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the Plasticity Modulus H.
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then curve-fit using a fifth-order polynomial such that the derivative of this equation represents the
inverse of the plasticity modulus H:
1 _de?

1 (4.23)
H g

As mentioned above and described in a preceding section, yielding was defined in terms of

a 3% offset in octahedral shear strain, and the axial and hoop strain components associated with

this strain offset were added to the calculated elastic strains.

Lode Parameters: The Lode parameters, 1 and v, provide a simple check to determine if the
Prandtl-Reuss equations are valid for a given material. If the equations hold, then p and v are

equal, as previously shown in Figure 2.2. For plane stress conditions the Lode parameters reduce

to:

2572 - 8]
H= s1
&

V= >

2c:]1)+e3

where in the present case the principal stresses and strains correspond to the axial and hoop
directions. The stresses in Equation (4.26) are the total stresses, while the plastic strains were
derived also from experimental values using Equation (4.17). The parameters p and v were
calculated for the the entire post-yield history, and then an average value was determined for each

particular load path.



CHAPTER 5 - RESULTS AND DISCUSSION

YIELD PREDICTIONS

Isotropic Models: The two isotropic yield criterion considered in this study were the Von Mises
yield criterion and the Pressure-modified Von Mises yield criterion. Experimentally determined
yield points are listed in Table 5.1, and are compared with predictions in Figure 5.1 Note that the
shape and size of the theoretical Pressure-modified Von Mises locus is a function of the
compressive to tensile yield strength ratio (see Eq 2.4). Since the compressive yield strength of
polyethylene was not measured during this study, it was neccessary to use literature reference
values for the compressive to tensile yield strength ratio (C/T) for high-density polyethylene. Two
values have been reported in the literature for (C/T): 1.3 [Raghava and Caddell, 1973] and 1.08
[Raghava et al, 1973; Caddell et al, 1974]. Thus, the compressive yield strength is typically higher
than the tensile yield strength.

The comparison presented in Figure 5.1 shows that the experimental measurements were
not well predicted by either of the two isotropic yield criterion considered. The theoretical loci
were symmetric with respect to the 45° line, while the experimental yield locus was skewed. This
discrepancy is of course due to material anisotropy. As previously stated, the isotropic analysis
was conducted because isotropic models avoid the additional mathematical complexities associated
with anisotropic constituitive models, and hence are easier to apply in practice. The results
represented by Figure 5.1 show that very significant errors are introduced by the assumption of

isotropy.
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Table 5.1 - Experimental Yield Stresses for the Isotropic and Transversely Isotropic Models

Isotropic Model Transversely Isotropic Model
Load Path | Axial Stress (psi) | Hoop Stress (psi) | Axial Stress (psi) | Hoop Stress (psi)

1 931 0 1143 0

3 835 147 1127 199
4 748 200 1074 288
5 871 317 1205 438
6 906 421 1238 576
7 981 567 1295 749
8 1043 729 1325 926
9 1099 923 1288 1082
10 1283 1283 1262 1262
11 1209 1439 1243 1480
12 1024 1463 984 1406
13 928 1600 846 1459
14 735 1564 664 1413
15 644 1789 586 1627
16 424 1572 375 1390
17 323 1794 281 1560
18 116 1293 110 1220
19 0 1438 0 1279
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It was concluded on the basis of these results that the yield behavior of high-density
polyethylene cannot be adequately modeled using isotropic yield criterion. Further, this conclusion

is likely to be true for the general class of semi-crystalline thermoplastic polymers.

Anisotropic Models: The two anisotropic yield criterion considered in this study were the Tsai-
Hill criterion and the Pressure-modified Tsai-Hill criterion. Experimentally measured yield points
based on the transversely isotropic model are listed in Table 5.1. A comparison of the
experimental yield locus and the predicted loci of the two anisotropic models is shown in Figure
5.2. Once again, the compressive to tensile yield strength ratio was needed to define the theoretical
Pressure-modified Tsai-Hill yield locus (see Eq 2.6). In this case both hoop and axial strength
ratios are required. The same values for the strength ratios mentioned above were used (i.e., C/T

= 1.3, 1.08), and the ratios were assumed to be the same for both hoop and axial directions.

Comparing Figs 5.1 and 5.2, it is immediately obvious that the anisotropic models predict
the experimental behavior much better than the isotropic models. However, by inspection alone it
is difficult to determine whether the Pressure-modified Tsai-Hill yield criterion or the Tsai-Hill
yield criterion best fit the experimental results. A calculation based on the standard deviation
between measurement and prediction was conducted to determine which criterion correlated best
with experimental results. The procedure is fully described in Appendix C. Briefly, the standard
deviation was based on the difference between the radial distance to an experimentally measured
yield point and the radial distance to the corresponding point on the theoretical yield locus defined
by the Pressure-modified Tsai-Hill criterion and some given C/T ratio. In essense, the procedure
determined the particular C/T ratio which resulted in the best fit between measured and predicted

yield response.
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The standard deviation as a function of the C/T ratio is shown in Figure 5.3. The results
indicate a minimum standard deviation when the strength ratio was 1.11. As discussed above, C/T
ratios for high density polyethylene equal to 1.08 and 1.3 have been reported. Hence, the C/T
ratio deduced from the data collected during this study is in close agreement with previously

reported values.

To summarize, the yield response of annealed high-density polyethylene is best predicted
using the Pressure-modified Tsai-Hill criterion, with a C/T ratio of 1.11. This criterion adequately
models both the anisotropic nature of polyethylene, and also accounts for the effects of hydrostatic

stress on yielding.

POST-YIELD PREDICTIONS

Power Law Model

Isotropic Form: Plots of log S-Syield versus log € curves for load paths 1 and 19 of the isotropic
case are shown in Figures 5.4 and 5.5 respectively. The straight line is the linear curve-fit of the
experimental data points. The equation shown in the figures is the equation of the straight line and
the corresponding corrzlation coefficent R2. The correlation coefficient for all load paths achieved

a value of 0.99 or better.

Figures 5.6 and 5.7 show the experimentally obtained values of M and n for all load paths.
As indicated, the values of M and n varied substantially with load path. These large variations
imply that the plastic flow of polyethylene cannot be adequately modeled using the isotropic power

law, since M and n must be independent of load path. The values of the strength coefficient M
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range from about 15,000 psi to over 40,000 psi , while the values of the strain hardening exponent

n range from about 0.36 to about 0.46.

Since both M and n varied substantially with load path, the isotropic form of the power law

was not further pursued during the study.

Anisotropic Form: A plot of the experimentally determined values of M and n versus load path
for the anisotropic power law are shown in Figures 5.8 and 5.9 respectively. Once again, M and n
do not have the same values for all load paths, although the deviations in M and n are less than in
the corresponding isotropic analysis. Values range from M = 4500 psi to 9000 psi, and n = (.38
to 0.42. Although the anisotropic power law showed improvement over the isotropic version, the
agreement between lcad paths was still considered poor. In particular, the deviation in M was
considered excessive. As discussed in Chapter 2, the power law is essentially an empirical
relationship, and even for initially isotropic materials deviation from the power law are common.

The lack of agreement in the present study is therefore not suprising.

Since both M and n varied substantially with load path, the anisotropic form of the power

law was not further pursued during the study.

Prandtl-Reuss Model

Calculation of the Lode Parameters: An evaluation of whether the Prandtl-Reuss relations
are appropriate for use with polyethylene was first performed by calculatin g the Lode parameters
for each load path. As discussed in Chapter 4, a material is suited for use with the Prandtl-Reuss

equations if the Lode parameters are equal. The Lode parameters calculated during this study are
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compared with results measured during three repeated tests (exceptions are Figs 5.11 and 5.28,
which show results for four repeated tests along load paths 1 and 19, respectively). Finally, note
that all strains are plotted as positive values. The actual algebraic sign in each case is noted in the

figure caption.

The comparison between measurement and prediction is considered suprisingly good, since
these predictions are based on the Prandtl-Reuss equations, which are strictly valid only for
initially isotropic materials. Nevertheless, in most cases the predicted response falls within the data
scatter. The greatest errors are the hoop strain predictions for the first few load paths (i.e., part b
in Figure 5.11 through 5.15, corresponding to load paths 1 - 6). In these cases the predicted hoop
strains at high stress levels fall below the measured hoop strains. It is believed that these
discrepancies are due to necking of the specimen. That is, for near-uniaxial loadings and at high
stresses the specimen began to neck, resulting in an unstable increase in the measured hoop strain.
The Prandtl-Reuss equations do not account for the necking phenomena, and hence the predicted

hoop strains are lower than measured in these cases.

Discussion of Pre- and Post-Yield Behavior

On the basis of the results discussed above, it has been concluded that the pre-yield behavior of
high-density polyethylene in extruded tubular form is anisotropic (i.e., transversely isotropic), and
yet the post-yield behavior is effectively isotropic. Two hypotheses which may explain this
behavior have been considered. In the first hypothesis the polymer is visualized as consisting of
stiff crystalline regions, completely surrounded by relatively flexible amorphous material. Upon
the application of elastic stress levels, motions/distortions occur at the molecular level in both the

amorphous and crystalline regions of the polymer. Since the crystalline regions were oriented
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during the extrusion process, the initial elastic response is anisotropic. Now, as the load is
increased and plastic stress levels are induced, the molecular motions in the crystalline regions
reach a maximum. All additional strains are associated with molecular motions which occur within
the amorphous regions alone. Hence, the post-yield behavior is isotropic. If this hypothesis is
valid, then no increase in the degree of crystallinity would occur as a result of the strain levels
imposed, although the crystalline regions may become reoriented. Orientation of the crystalline
regions due to high levels of stress (or strain) certainly occurs for polyethylene; the initial
orientation of the as-received tubular specimens was induced during the extrusion process, for
example. However, the strains levels induced during this study (which in all cases were < 20%)
are relatively modest compared to those encountered in the extrusion process (in which strains on

the order of several hundred percent are typically imposed).

In the second hypothesis the elastic response is again due to molecular motions within
amorphous and crystalline regions of the polymer, and hence the elastic response is anisotropic .
However, as plastic stress levels are reached additional stress- (or strain-) induced crystallization of
the polyethylene molecular structure occurs, such that initially amorphous regions become
crystallized. In this second hypothesis the crystalline regions are oriented along the prevailing
maximum stress or strain direction, and hence the post-yield response is identical for all load paths.
If this second hypothesis is valid, then the degree of crystallinity would increase as a result of
plastic deformation. Stress-induced crystallization of polyethylene is well documeted [Rodriguez,
1989, pg 299]. However, the stress- and strain-levels associated with these documented cases are
far higher than those imposed in this study. Thus, it is unclear whether this mechanism can

account for the isotropic post-yield behavior observed during the present study.



CHAPTER 6: SUMMARY AND CONCLUSIONS

This study was devoted to an experimental and analytical evaluation of the yield and post-
yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was
selected for study because it is very inexpensive and readily available in the form of thin-walled
tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such
that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress
rate was imposed during all tests. The measured yield and post-yield behavior was compared with
predictions based on both isotropic and anisotropic models. Of particular interest was whether

inelastic behavior was sensitive to the hydrostatic stress level.

The major achievements and conclusions reached during the study are itemized below.

(1) A suitable testing facility was designed, fabricated, assembled, and fully calibarated during
the course of the study. One of the unique features of the testing apparatus is a pressure control
system which allows the internal pressure to be increased at a user-defined rate, such that the
octahedral shear stress induced in the tube wall is increased at a user-defined rate. A data
aquisition system utilizing Labview software package and Macintosh II computer was developed
and used to collect data automatically. The system is fully operational, and will be used during the

coming year to study the mechanical behavior of other engineering thermoplastic polymers.

(2) An annealing process for use with extruded high-density polyethylene tubes was
developed. Experimental measurements show that the annealing process reduces the residual
stresses induced during the extrusion process to minimal levels. However, the annealed

polyethylene specimens were found to exhibit a pronounced anisotropy. A 30% difference in
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Young's modulus for the axial and hoop directions existed in the annealed specimens, for example.
Thus, the annealing process removed residual stresses, but did not remove or minimize anisotropic
material behavior. The anisotropic elastic behavior of high-density polyethylene is clearly due to

the semi-crystalline nature of molecular structure of this polymer.

(3)  An effort was made to determine whether relatively simple isotropic yield criterion could be
used to predict yielding to within engineering accuracies. Predictions obtained using the Von
Mises and Pressure-Modified Von Mises criteria were compared with the measured data. Neither
of these models adequately predicted the experimental results. It is likely that this conclusion will
hold for other semi-crystalline thermoplastics of current structural interest (e.g.,

polyetheretherketone or polyamide), which can also exhibit a pronounced anisotropy.

4) The tubular specirnens were subsequently treated as transversely isotropic materials, with
the principal material coordinate system defined by the axial and hoop directions. Predictions
obtained using two anisotropic yield criteria (the Tsai-Hill and Pressure-modified Tsai-Hill criteria)
were then compared with the measured data. Yielding was best predicted by the Pressure-
Modified Tsai-Hill criterion, which indicates that the yield behavior of high-density polyethylene is
both anisotropic and sensitive to the hydrostatic stress state. It was deduced that the compressive-
to-tensile yield strength ratio of high density polyethylene is 1.11, which compares very well with

previously reported measurements.

) An attempt to model the post-yield behavior using the power law were made. Both an
isotropic form as well as an anisotrpic form was used. Neither power law formulation adequately
modeled the post-yield behavior; in both cases the strength coefficient M and the strain hardening
exponent n varied substantially, depending on load path.

(ol
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(6) The post-yield behavior was best predicted using the isotropic form of the Prandtl-Reuss
equations. This was an unexpected and suprising result, since the initiation of yielding was
sensitive to both the anisotropic nature of the polyethylene tubes and the hydrostatic stress level.
Neither of these factors are included in the Prandtl-Reuss formulation. The post-yield behavior of

polyethylene is essentially isotropic, even though the initial elastic response is anisotropic.

Two possible explanations of the isotropic post-yield response have been proposed. In the
first hypothesis it is suggested that molecular motions associated with plastic strains occur
primarily within the amorphous regions of the polymer, and hence the post-yield behavior is
effectively isotropic. If this hypothesis is valid, then no increase in the degree of crystallinity

would occur as a result of plastic deformation.

In the second hypothesis it is suggested that stress-induced crystallization of the amorphous
regions of the molecular structure occurs, and further that during the loading process the crystalline
regions become oriented in the prevailing direction of maximum stress or strain. Therefore the
post-yield response would be identical for all load paths considered during this study. If this
second hypothesis is valid, then the degree of crystallinity would increase as a result of plastic
deformation. Monitoring the degree of crystallinity before and after testing, as well as the

orientation of the crystalline regions, may provide a means of determining whether either of these

hypotheses is valid.
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APPENDIX A - EXPERIMENTAL STRESSES AND STRAINS
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Figure A.1 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 1: Axial Load Rate = 900 Ib/min, No Pressure, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 186 psi/min.



Hoop Stress (psi)
0 176 352 528
0.06 -
0.05
0.04
E 0.03
1w
0.01
0.00
0 1000 2000 3000
Anxial Stress (psi)

(a) Axial Strain versus Axial Stress or Hoop Stress

Hoop Stress (psi)
0 176 352 528
0.01
0.00 4
:’E -0.01
-0.02
-0.03
0 1000 2000 3000
Axial Stress (psi)

(b) Hoop Strain versus Axial Stress or Hoop Stress

Figure A.2 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 3: Axial Load Rate = 885 Ib/min, Pressure Rate = 10 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 236 psi/min.
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Figure A.3 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 4: Axial Load Rate = 867 1b/min, Pressure Rate = 15 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 260 psi/min.
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Figure A.4 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 5: Axial Load Rate = 838 Ib/min, Pressure Rate = 21 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 284 psi/min.
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Figure A.S - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 6: Axial Load Rate = 795 Ib/min, Pressure Rate = 27 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 310 psi/min.
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Figure A.6 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 7: Axial Load Rate = 734 Ib/min, Pressure Rate = 34 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 331 psi/min.
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Figure A.7 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 8: Axial Load Rate = 657 Ib/min, Pressure Rate = 40 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 348 psi/min.
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Figure A.8 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 9: Axial Load Rate = 560 1b/min, Pressure Rate = 46 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 357 psi/min.
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Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 10: Axial Load Rate = 449 1b/min, Pressure Rate = 51 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 365 psi/min.
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Figure A.11 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 12: Axial Load Rate = 202 Ib/min, Pressure Rate = 57 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
348 psi/min.
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Figure A.12 - Ax:al Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 13: Axial Load Rate = 83 1b/min, Pressure Rate = 58.2 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
331 psi/min.
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(b) Hoop Strain versus Axial Stress or Hoop Stress

Figure A.13 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 14: Axial Load Rate = -31 1b/min, Pressure Rate = 58.4 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
310 psi/min.
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(b) Hoop Strain versus Axial Stress or Hoop Stress

Figure A.14 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 15: Axial Load Rate = -143 lb/min, Pressure Rate = 57.7 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
284 psi/min.
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(b) Hoop Strain versus Axial Stress or Hoop Stress

Figure A.15 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 16: Axial Load Rate = -230 Ib/min, Pressure Rate = 56.5 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
260 psi/min.
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(b) Hoop Strain versus Axial Stress or Hoop Stress

- Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 17: Axial Load Rate = -311 Ib/min, Pressure Rate = 55 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
236 psi/min.
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(b) Hoop Strain versus Axial Stress or Hoop Stress

Figure A.17 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 18: Axial Load Rate = -384 1b/min, Pressure Rate = 53 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
210 psi/min.
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Figure A.18 - Axial Strain and Hoop Strain versus Axial Stress or Hoop Stress for Load
Path 19: Axial Load Rate = -449 1b/min, Pressure Rate = 51 psi/min,
Octahedral Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =
186 psi/min.
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APPENDIX B - YIELD POINT DETERMINATION FOR ISOTROPIC AND

TRANSVERSELY ISOTROPIC MODELS
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Octabedral Shear Strain (0.01 in/in)

y= -48.48 + 4.4059%¢c+4x - 1.1832e+6x"2 + 2.24326+T2A3 - 2.2119e+8x"4 + 8.1402¢+8x"5 R"2 = 0.998

(a) Isotropic Model

&— Yicld Stress = 539 psi
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Octahedrsl Shesr Strain (0.01 in/in)
y= - 48747 + 4.63820+4x - 1.3165¢+6x"2 + 2.63866+7x"3 - 2.7521e+8xM + 1.0730e+9xA5 R"2 = 0.998

(b) Transversely Isotropic Model

Figure B.1 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 1: Axial

Load Rate = 900 1b/min, No Pressure, Octahedral Shear Stress Rate = 258
psi/min, and Hydrostatic Stress Rate = 186 psi/min.
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(a) Isotropic Model
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y = - 49.490 + 4.1457e+4x - 9.47T7e+5x72 + 1.4607¢+7x*3 - 1.15536+8x"4 + 3.2980e+8x"5 R”2 = 0.999

(b) Transversely Isotropic Model

Figure B.2 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 3: Axial
Load Rate = 885 Ib/min, Pressure Rate = 10 psi/min, Octahedral Shear Stress
Rare = 258 psi/min, and Hydrostatic Stress Rate = 236 psi/min.
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(a) Isotropic Model
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(b) Transversely Isotropic Model

Figure B.3 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 4: Axial
o Load Rate = 867 1b/min, Pressure Rate = 15 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 260 psi/min.
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(a) Isotropic Model
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(b) Transversely Isotropic Model

Figure B.4 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 5: Axial
Load Rate = 838 1b/min, Pressure Rate = 21 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 284 psi/min.
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(a) Isotropic Model
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(b) Transversely Isotropic Model

Figure B.5 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 6: Axial
Load Rate = 795 Ib/min, Pressure Rate = 27 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 310 psi/min.
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(b) Transversely Isotropic Model

Figure B.6 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 7: Axial
Load Rate = 734 1b/min, Pressure Rate = 34 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 331 psi/min.
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1000

900 -

800 ~

700 +

Octahedral Shear Stress (psi)
1

jeld Stress = 555 psi

®  QOctahedral Shear Stress
= Elastic Line
- 0.3% offset

0 05 10 1S5 20

25 30 3.5 40 45 50

Octahedral Shear Strain (0.01 in/in)
y = -32.372 + 4.07160+4x - 7.62550+5xA2 + 9.1073e+6x"3 - 5.371Te+7xA4 + 7.2984e+7x"5 RA2 = 0.994

(b) Transversely Isotropic Model

Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 8: Axial
Load Rate = 657 Ib/min, Pressure Rate = 40 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 348 psi/min.
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(b) Transversely Isotropic Model

Figure B.8 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 9: Axial
Load Rate = 560 Ib/min, Pressure Rate = 46 psi/min, Octahedral Shear Stress
Rate = 258 psi/min, and Hydrostatic Stress Rate = 357 psi/min.
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(b) Transversely Isotropic Model

Figure B.9 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 10:
Axial Load Rate = 449 Ib/min, Pressure Rate = 51 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 365 psi/min.
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(b) Transversely Isotropic Model

Figure B.10 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 11:
Axial Load Rate =328 Ib/min, Pressure Rate = 54 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 357 psi/min.
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(b) Transversely Isotropic Model

Figure B.11 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 12:
Axial Load Rate = 202 1b/min, Pressure Rate = 57 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 348 psi/min.
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(b) Transversely Isotropic Model

Figure B.12 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 13:
Axial Load Rate = 83 Ib/min, Pressure Rate = 58.2 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 331 psi/min.
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(b) Transversely Isotropic Model

Figure B.13 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 14
Axial Load Rate = -31 1b/min, Pressure Rate = 58.4 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 310 psi/min.
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(b) Transversely Isotropic Model

Figure B.14 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 15:
Axial Load Rate = -143 1b/min, Pressure Rate = 57.7 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 284 psi/min.
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(b) Transversely Isotropic Model

Figure B.15 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 16:
Axial Load Rate = -230 1b/min, Pressure Rate = 56.5 psi/min, Octahedral
Shear Stress Rate = 258 psi/min, and Hydrostatic Stress Rate =260 psi/min.
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(b) Transversely Isotropic Model

Figure B.16 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 17:
Axial Load Rate = -311 Ib/min, Pressure Rate = 55 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 236 psi/min.
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(a) Isotropic Model

Octahedral Shear stress (psi)
g

Figure B.17 - Octahedral Shear
Axial Load Rate =

Yield Stress = 551 psi

Octahedral Shear Strain (0.01 in/in)
y = - 43.009 + 4.87040+4x - 1.3261e+6x*2 + 2.54490+7x73 - 2.5794e+8xA4 + 9.58420+8x75 RA2 = 0.997

(b)Transversely Isotropic Model

Stress versus Octahedral Shear Strain for Load Path 18:
-384 1b/min, Pressure Rate = 53 psi/min, Octahedral Shear

Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 210 psi/min.
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(b) Transversely Isotropic Model

Figure B.18 - Octahedral Shear Stress versus Octahedral Shear Strain for Load Path 19:
Axial Load Rate = -449 Ib/min, Pressure Rate = 51 psi/min, Octahedral Shear
Stress Rate = 258 psi/min, and Hydrostatic Stress Rate = 186 psi/min.
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APPENDIX C - STANDARD DEVIATION CALCULATION

The Pressure-modified Tsai-Hill is given by:

H(o] - 62)2 + F(07 - 63)2 + G(03 - 61)2 + K101 + K202 + K303 = 1 (C.1)
ith H+G=ro— H+F=mi— G+F=po=
wit o =Em =CTs =CiT3
G-y _C2-Tp _C3-Ts
Ki= CiTy Kz = CrTy K3 = C3Ts

testing was completed under plane stress conditions, 63 =0, therefore:
(H+G) ¢12+ (H +F) 622 - 2Ho107 + K101 + K202 = 1 (C.2)

Substituting the coefficients defined in Equation (C.1) into Equation (C.2) results in:

612 2?2 0102 C;-Ty Cp-Tp . _
CiT; T GT; " CT; T CT; Sl &, %2=1 (C.3)

It is assumed that the material exhibits the same compressive strength to tensile strength

ratio (S) in the 1- and 2- directions. That is, it is assumed that:

w2

1]
Clle

]
SIS

(C4)

Under this assumption, Equation (C.3) reduces to:
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612 o2 o102 S-1 (01 02)
- +2- 2+ = =1
sT2 52 st ST T

For a given load path of slope M, the following substitution can be made:

c1=Mo»

Therefore:

ST12 STp2 STi2 S \T T2)™

Rearranging the previous equation results in the following:

SIT2Z2 12 12)7 %S \Th " Tz)°

(C.5)

(C.6)

(C.7)

(C.8)

If the C/T ratio (S) and slope of the load path (M) are given, one can use the quadratic

equation to solve for the values of hoop stress (62) which will satisfy the above

relationship. The values of hoop stress which are the roots of the above equation

correspond to the intersections of the Pressure-modified Tsai-Hill locus with a C/T ratio

equal to S and the load path with the slope M. In other words, the roots of the above

equation are the yield stresses for a given load path predicted by the Pressure-modified

Tsai-Hill. Once the predicted hoop stress value (62) is known, the predicted axial stress is

equal to M times the hoop stress.
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Example:

Given: (1) Consider Load Path 4. The slope of this load path is M = 3.73.

(2) Consider the Pressure-modified Tsai-Hill with a strength ratio of S = C/T =
1.08.

(3) The tensile yield strengths in the 1- and 2- directions are T1 = 1143 psi, and
T2 = 1279 psi, as given in Table 2.

Substituting these values for M, S, Ty, and T3 into Equation (C.8) results in the following

expression:
7.783e6 072 + 2.996447¢4 0, - 1 =0 (C.9)

This results in a value for hoop stress at yield of 340 psi, and therefore the predicted axial

stress at yield is 1268 psi.

The experimentally measured values at yield along Load Path 3 were 288 psi (G7)

and 1074 psi (0}). The standard deviation was based on the radial distance from the origin

to the point represented by the two stress values in principal stress space. The radius is

defined as:

Radius =V 62 + 652 (C.10)

Therefore the experimental radius and theoretical radius as predicted by the Pressure-

modified Tsai-Hill with a C/T ratio equal to 1.08 are:
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Radiusexp = 1112
Radiuspred = 1312
The deviation from experimental is then:

Radiusexp - Radiuspred
Radiu Sex p

Deviation := (C.11)

For this example, the deviation would be equal to -18%. The deviation of predicted from
experimental yield stress was calculated for all 19 load paths. The standard deviation of the
predicted yield locus based on the Pressure-modified Tsai-Hill from the experimental yield

locus was calculated using the following relationship:

2
STD = 4\/ Z(Deviation<) (C.12)

n-1

where n is the number of load paths. The variation of the standard deviation with the C/T

ratio is summarized in Figure 5.3.



