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INTRODUCTION

The increasing interest in minimum weight designs for aeronautical and aerospace structures has
generated substantial interest in the analysis of the elastic stability and postbuckling behavior of
structures subjected to inplane compressive loads. For thin homogeneous plates, classical plate theory
predicts deformations and inplane stresses that are comparable to those of three-dimensional elasticity.
Transverse stresses in thin plates are generally small compared to inplane stresses, and thus, both
classical theory and first-order shear deformation theory give satisfactory results. However, since both
theories are two-dimensional, they are not accurate enough to predict transverse stresses directly.
Accurate nonlinear theories are required for the analysis of thick plates in which these transverse

stresses become more significant.

It is often sufficient to use an accurate nonlinear two-dimensional theory to solve some three-dimensional
nonlinear elasticity problems. However, when through-the-thickness effects become more dominant, it
is important to use a nonlinear theory that takes into account such effects. One such theory has been
derived in reference 1 for laminated and thick plates with three-dimensional flexibility effects. This theory
can predict directly the transverse stresses as well as the inplane stresses by using trigonometric terms in
addition to the usual constant and linear terms representing through-the-thickness variation of the
displacements. However, this theory cannot satisfy the surface boundary conditions of a plate.

The purpose of the present paper is to present the results of an investigation of the buckling and
postbuckling response of orthotropic plates loaded in compression. Classical nonlinear von Karman
theory using the Kirchhoff assumptions and three nonlinear transverse shearing theories are used to
predict results for different values of plate width-to-thickness ratios in tﬁe postbuckling range. The
nonlinear transverse shearing theories are: first-order shear deformation theory, references 2 and 3;
higher-order shear deformation theory, reference 4: and three-dimensional flexibility theory, reference
1. The idea of satisfying exactly the static tangential or surface boundary conditions on the external
planes of the plate (or shell) was used in references 5, 6, and 7. The first papers dealing with
postbuckling where the static tangential or surface boundary conditions on the external planes of the
plate were satisfied are references 8 and 9. The present derivation of the higher-order shear
deformation theory has the advantage of having nonlinear through-the-thickness terms without
contributing additional unknowns to the first-order shear deformation theory. In addition, it satisfies the
surface boundary conditions of the plate. The essential difference between the higher-order shear
deformation theory and the three-dimensional fiexibility theory is that the higher-order shear deformation
theory is a two-dimensional theory that uses cubic terms, whereas the three-dimensional flexibility theory
is a three-dimensional theory that uses trigonometric terms in addition to the constant and linear terms
that represent the through-the-thickness variation of the inplane displacements. The paper presents the
derivation of the nonlinear plate equations for buckling of plates loaded in axial compression for both



higher-order theories. This paper also presents postbuckling results for the average longitudinal
compressive direct stress resultant and maximum stress resultants as a function of the applied
displacements, and maximum out-of-plane displacement as a function of the applied end-shortening
displacement. The plates considered in this paper are infinitely long with side edges simply supported
and are loaded in uniaxial compressive end shortening. The side edges are free to slide along the edges
to allow constant longitudinal strain. Results for the four theories are presented for aluminum plates and
for composite plates with a symmetric lay-up composed of many layers of thin +45° plies.

SYMBOLS

A11, Aq2. A22, A33, Plate extensional stiffnesses

A44. Ass. Aee

a b h Dimensions of the rectangular plate paraliel
to x, y, and z axes, respectively

Cq1, Cq2, C22, Ca3, Stiffnesses used in Hooke's Law

Ca4. Cs5. Cep

D11, D42, D22, Dgg: Plate bending stifinesses

E Young's modulus

Ha4., 144, J12. J22. Jg6: Plate stiffness components, defined in equation

K12, K22, Kgg (A14) in Appendix

Lx. Ly, Lz, Lyz, Lxz, Lxy. Moment resultants in the plate

My, My, Myy

Nx. Ny, Nyy Inplane stress resultants in the plate

Nyz. Nz Transverse stress resultants in the plate

Nxav Average compressive load per unit length

Nycr Value of Ny, at buckling

Q, Qy Functions of y defined in the Appendix

U Applied end shortening

Uer Value of U at buckling

u v, w Displacements inx, y, and z directions,
respectively

X, Y, Z Plate coordinates

By, B2 Functions of y defined in the Appendix



e, &y €20 Yyzo Yxzo Yxy Strains in the plate

A Buckle half-wavelength

) Poisson's ratio

Ox, Oy, Oz, Tyz: Wz Txy Stresses in the plate
THEORY

A brief outline of the derivation of the four different theories compared in this paper is presented in
this section. The derivation of equations using classical von Karman-Kirchhoff theory has been
presented in reference 9. The derivation of equations using first-order shear deformation theory has
been presented in references 2 and 3. The derivation of the equations for the two higher-order
theories are not given in detail elsewhere, so they are presented in the appendix. The general
approach used in deriving the equations to be solved is the same as in reference 10. First, the
displacement functions for each theory are identified. Then the nonlinear strain-displacement
relations are written to include the assumption that the displacements are sinusoidal along the length
of the infinitely long plate. Stress-strain relations are defined for a "specially orthotropic™ plate.
Application of the principle of virtual work leads to ordinary differential equations and variationally
consistent boundary conditions which are solved using a procedure based on Newton's method as

discussed in reference 11.
The displacements considered for each theory are:
Classical K Kirchhott t

u(cy.2)=u(cy) - W,k
V(X,y,Z) = vo(xry) - wr;(x!Y) ';" (1)

wix.y,2) =w ()
ity onier shear deformation

U(X,y,Z) = uo(x!y) +Uu a(x|Y) ‘rzT
v(x,y,z) = Vo(x,y) + va(x,y) z

" (2)
wixy2) =w ()



Higher-order shear def on 1

2
.0 _4h ua(x,) o z\ |z
uxy.2) =u(cy) +[uey) - 20 (—Lh +w,x(x,y)) (h) 2

2
_\° 3,y - 40 (v L0 )5 z )
V(X.Y:Z)"V (X’Y)"' v (X-Y) 3 ( h +wvy(le) (h) h

wix,y,2) = wo(x,y)

Three-di ional flexibility tt

ulx,y,z) = wl(xy) + ua(x,y) ﬁ +uS(x.y) sinllhl
v(xy.2) = vo(xy) + Va(X.y) -;— +Vv3(x,y) sin % @

w(x,y,2) = w°(x,y) + wc(x,y) coS 1;‘-

in this paper the zero superscripts correspond to the constant-in-z terms, the a superscripts
cormrespond to the algebraic-in-z terms, and the s and ¢ superscripts correspond to the

trigonometric-in-z terms.

Both the classical von Karman-Kirchhoff and the first-order shear deformation theories have inplane
deformations u and v which are linear in z. Classical theory, however, has the additional assumption
that there is zero transverse shearing (yxz = Yyz = 0), thus eliminating u@ and va@ in favor of

derivatives of wo.

The higher-order shear deformation theory considers inplane deformations u and v which are cubic
in z. As explained in reference 10, the squared-in-z term vanishes and the cubic term does not
introduce any new variables beyond those that appear in first-order shear deformation theory if the
boundary conditions are satisfied at z = £ V2. The three-dimensional flexibility theory considers
trigonometric terms in u, v, and w beyond the expressions considered for the deformations of first-
order shear deformation theory.

To account for the applied displacement U,

0 o]
u (xy)=— Ug +Us(xy)



o o 0 ©
v (xy) =voly) +Vao(xy)

where numbered subscipts for loads, displacements, and curvatures indicate a y dependence only.
To satisfy the assumption that the displacements are sinusoidal along the length

o o
U2 = u2(y)sin2—l’51
(6)
o 0
Vy = vz(y)cosgf—x

All the other u coefficients can be expressed as functions of y multiplied by cos nx/A, where A is
the half-wavelength of the buckled plate. All the other v and w coefficients can be expressed as
functions of y multiplied by sin mx/A. The strain-displacement relations used are

1 2
€ X =U, X + Ew, X

1 2
€ y =V, y+ Ew, y
€z= Wz
‘YyZ=le+ w!y (7)
Yxz=U,z + Wix

'ny= u,y+ V,x+ w,xw,y

Hooke's law that relates stresses to strains for a "specially orthotropic" plate is used here

og| [CyyCqp 0 0 0 0 || %
Oz = 0 0 033 0 0 0 &2 (8)
Tyz 0 0 0 C4q 0 O Tyz
Txz 0 0 J 0 055 0 Txz
Wwy| | 0 0 2 0 0 Cggll¥xy

Ordinary differential equations and variationally consistent boundary conditions are derived using the
principle of virtual work, and the equations are solved by Newton's method. The principle of virtual
work applied to the internal forces of a three-dimensional body considered here is

a rb ~h/2
8H=f f f (“XSEX + 0y5€y + Gzaﬂz + 1y28'sz + szanz + ‘thS‘ny)dZ dy dx (9)
0 Y0 “-h2



with simple support boundary conditions aty =0 andy = b.

The half-wavelength A of the assumed deformations for the infinitely long plates considered is
chosen to minimize the buckling load for each given applied deformation.

The principle of virtual work requires that the geometric boundary conditions be satisfied. Including
additional terms in the representation of the through-the-thickness variation of the inplane
displacements will lead to convergence and satisfaction of natural boundary conditions in the limit if a
complete set of terms is used. An attemate approach is to use terms that satisfy the natural boundary
conditions directly. A complete set of these terms also leads to convergence. For the present problem,
the three-dimensional flexibility theory uses terms that do not satisfy the natural boundary conditions.
For the higher-order shear deformation theory, coefficients of u and v in the assumed displacements of
equation (3) are chosen such that v, =0 and yy; = 0. The coefficients are written in terms of the
existing unknowns ud, v&, and wP in a form which satisfies the natural boundary conditions at the top
and bottom surfaces of the plate. Comparisons of results are valid whether or not natural boundary

conditions are satisfied.

RESULTS AND DISCUSSION

The results obtained in this study for long aluminum plates with the geometry shown in figure 1 are based
on values of Young's modulus E = 10.7 x1 06 psi and Poisson's ratio u = .33. The results obtained in
this study for infinitely long composite plates with a symmetric lay-up composed of many layers of thin
+45° plies are based on the stiffness properties

Aqq= Apo= 620340 Ib/in.  Aqp= 446060 Ib/in.  Agz= 59000 Ibvin.
A44= Ass= 50000 Ib/in. Agg= 483520 Ibfin.
Dyy= Dyo=518.6 Ib in. Dyp=372.91 lbin.  Dgg= 404.23 Ib-in.

for h = .1 in. and for any value of b.

Buckling results given by the four theories are presented in figure 2 for finite aluminum plates and the

results show the variation of the buckling stress coefficient with width-to-thickness ratio b/h for a range of
length-to-width ratios a/b. Asymptotes to the curves in figure 2 give N, for plates of infinite length.

The differences in the buckling results for aluminum plates with width-to-thickness ratios less than ten,



illustrate the need for including the effects of transverse shear deformations when determining the
compressive buckling stress of these plates.

Results in the form of average axial stress resultant Ny, versus applied end-shortening U, for the four

theories and different values of the width-to-thickness ratio b/h, are presented in figures 3a and 3b for
aluminum plates and composite plates, respectively. In figure 3a, only one curve is shown for a b/h value
of 100 since the corresponding results for each theory are approximately the same. Even for the thicker
aluminum plates there are only slight differences in the results given by the different theories. The
results presented in figure 3b illustrate the nature of the more compliant +45° composite plate. The more
pronounced separation in the postbuckling branches of the curves for a given value of the b/h ratio
indicates the lower transverse shear stiffness in the composite plates.

The results show that the higher-order shear deformation theory gives a better approximation of the
effects of shear deformation in thick plates than the first-order theory, but it is still a two-dimensional
theory. Significant improvement beyond that already obtained with the higher-order theory requires a
three-dimensional theory. The three-dimensional fiexibility theory is an attempt to meet this requirement.
However, the present formulation of this three-dimensional theory has limitations associated with the
assumptions made on the w displacement of equation (A10). Although it does include a trigonometric
term in z, this term does not satisfy the bounding conditions at the upper and lower surfaces of the
plates, and therefore does not aliow o, to have its proper influence on w. Additionally, the assumption
that the nonlinear terms involving wC could be neglected because they were small in comparison to
similar ferms involving only w® may be questionable. A secondary effect is the choice of the specially
orthotropic material which foregoes the influence of €, on Oy- Neither of these two effects becomes
significant until the effects of shear deformation become more dominant. Evidence of these limitations
are especially noticeable for results of the three-dimensional flexibility theory at a b/h value of 20 in
figures 4b, 5b, and 6b.

The results presented in figures 4a and 4b for the aluminum and composite plates show that the higher-
order shear deformation theory gives the lowest value of normalized compressive Nymax for higher
values of normalized end-shortening U . In figure 4b, the results for the three-dimensional flexibility
theory at a b/h value of 20 exhibit nonlinear behavior in the postbuckling range. These results suggest
an increase in the importance of the unsatisfied bounding conditions at the upper and lower surfaces of
the plate. Similar behavior for the three-dimensional flexibility theory at a b/h value of 20 is shown in
figures 5b and 6b.

The results presented in figure 5a show that the normalized Nxymax as a function of normalized end-
shortening U is nearly independent of the width-to-thickness ratio b/h for the aluminum plates, whereas
figure 5b shows that the effect of the width-to-thickness ratio b/h is more significant for the composite



plates. Results for the normalized maximum deflection wmax presented as a function of normalized end-
shortening U in figures 6a and 6b, for aluminum plates and composite plates respectively, show that the
value of the deflection becomes increasingly dependent upon the width-to-thickness ratio b/h as the
value of the normalized end-shortening U increases. These results indicate that shear deformation
effects are more dominant for the composite plates, especially at lower values of the width-to-thickness
ratio b/h.

Present results indicate that three-dimensional flexibility theory gives lower buckling loads than the other
theories, and produces acceptable results except when the effect of the missing nonlinear terms
involving w€ and the influence of the bounding conditions become dominant. The three-dimensional
flexibility theory has the potential for permitting the development of a rigorous approach for obtaining
direct through-the-thickness stress components without the current limitations caused by using
additional trigonometric terms in z in the expansion of the transverse displacement w and by retaining
the currently neglected nonlinear terms involving wC. Higher-order shear deformation theory has the
advantage of fewer unknowns than the three-dimensional theory and yet it gives comparable results to
those given by three-dimensional flexibility theory. For the +45° composite plates, results show more
pronounced nonlinear behavior in the postbuckling range as the plate width-to-thickness ratio b/h
decreases. This more pronounced nonlinear response is a direct result of the increase in shear flexibility
of the more compliant +45° composite plates. The difference in the order of the approximation of the
four theories is most evident for the +45° composite plate results, particularly for the average axial stress
resultant Ny, as a function of the applied displacement U, and for the maximum out-of-plane

displacement w as a function of the applied displacement U.

CONCLUDING REMARKS

This paper presents buckling and postbuckling results for aluminum plates and +45° composite plates
subjected to longitudinal compressive end-shortening displacements. The side edges of the plates are
simply supported and free to slide along the edges to allow constant longitudinal strain. The effects of
varying plate width and thickness on the buckling stress coefficient is described. The buckling results for
aluminum plates with width-to-thickness ratios less than ten, indicate that including the effects of
transverse shear deformation is important when determining the compressive buckling stress and these
effects should be included. Postbuckling results for plates with transverse shearing flexibility are
compared to results from classical theory for various width-to-thickness ratios. Characteristic curves
indicating the average longitudinal direct stress resultant as a function of the applied displacements are
calculated based on four different theories: classical von Karman theory, a first-order shear deformation
theory, a higher-order shear deformation theory that satisfies the bounding conditions at the upper and



lower surfaces of the plate, and a three-dimensional fiexibility theory that can predict the transverse and

inplane stresses directly.

Present results indicate that the three-dimensional flexibility theory gives the lowest buckling loads for
the four theories considered, and produces acceptable results except when the effect of the missing
nonlinear terms involving the coefficient wC of the trigonometric term in the expansion of the transverse
displacement w and the influence of the bounding conditions becomes dominant. The three-
dimensional flexibility theory has the potential for permitting the development of a rigorous approach for
obtaining direct through-the-thickness stress components without the current limitations caused by
using additional trigonometric terms in z in the expansion of the transverse displacement w and by
retaining the currently neglected nonlinear terms involving wC. The higher-order shear deformation
theory has fewer unknowns than the three-dimensional flexibility theory but cannot predict transverse or
inplane stresses. The figures presented show that, for postbuckling of aluminum plates, small
differences occur in the average longitudinal direct stress resultant, in the maximum values of the other
stress resultants, and in the maximum transverse displacements calculated when the effects of
transverse shear flexibility are included in the various theories. For the +45° composite plates, results
show more pronounced nonlinear behavior in the postbuckling range as the plate width-to-thickness
ratio b/h decreases. This more pronounced nonlinear response is a direct result of the increase in shear
flexibility of the more compliant +45° composite plates. The difference in the order of the approximation
of the four theories is most evident for the +45° composite plates results, particularly for the results for
the average axial stress resuftant N, as a function of the applied displacement U, and for the maximum

out-of-plane displacement w as a function of the applied displacement U.



APPENDIX

Goveming differential equations are derived in more detail in this appendix for the two higher-order theories

considered in this paper.
Higher-order sl o tion tt

The displacements used in this theory are given by equations (3) as

2
ot et

2
0 a . an|vixy .. ° ) 2\ 2 (A1)
v(x,y,Z) =V (x,y)+[v (x.y) 3 ( b +w,y(x,y) {h) ]h

w(x ,y.Z) = wO (x IY)

Substitution of equations (3) into equation (7) gives the strain-displacement relations

sx=u,g+g- o +u,xh 5(1) (u,x+w h

0 02 _4(z
&y = "'y+ Wy + 'yh ‘(3 H"'y*“"w“)
o 0 0w zZ_4/(z
Tay = Uny + Vig + Wiy +(u +v,x)h S(h) (u +V, "’2‘”'xy) (A2)

wef oS-
e 55 - )

The assumption that the displacements are sinusoidal along the length leads to

u = - UX + u(y) sin 2B v° = Vgly) + Valy) cos 2K
u? = () cos X , v = ily) sinZX (A3)

w® = wi(y) sinﬂf-

10



Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and
moments are determined by the following integrals through the thickness

21X - h/2
Nx +NX2COS—n— = Gde
° A --h/2

21X h/2
Nyo+ Nyzsln—— =f cydz

h/2
h/2
Ny, sin®X = 1ol 1-22 laz
YZo™ Ty yZ h2
-h/2
h/2 (A4)
Ny, cos®X = 1| 1-22_]dz
XZq -~ Xz —2—
h
-h/2
h/2
. 2TWX _
ny2 smT -fh/21xydz
h/2
M, sin®X = ox2dz
° A -h/2
h/2
R X / 4 23
MX1SIDT= —é-hox(ﬁ) dZ
-h/2
- h/2
Myosm— =f hlzo 2dz
h/2
X _ _4 z
MY1S'"T' 5'h°y F) dz
-h/2
x h/2
h/2
X _ _4 z
MXY1COST = §h ‘txy(—h—) dz



Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the

variation leads to the differential equations

Nuy
ug’=_1£v2 1wlp,E +—22
A 22 172 g

1p,%- XE(” 25, 108 (m)),,ﬁa

V =

2 A22

a, Va

Ui __ Vix (M Dgg +B, th )/

L= -1 (Myyg ~(Des +Bg6)2% B2 066+2066+366)

"3'=[§ (Myo—My, ) -D +(D4»Bsy— D45 D. )_111+

——=|Ba2(My, ~ My, ) ~D22 My, +1D12822 = D12 Dopt 4
(12822 -B12 D22)(u1 e (ZL) ﬂ/ D22 Baa - D22)

o 2 A 02 N
Vo'=—1_[32 —_E(—U.q.lw,‘ {E) )4._&
4 Aso 4 A Aoo
1_27‘:
Nay2 =5 Nxz
/__21{
Nyg ==5—Nxy;
a
r u On
a
P Vi
Myo = iMxy1+A44 -rT"'ﬁZ

(5 0 5 + Al R o g

‘= -1 1 On .21 (_1 )_

A
N _ D
where  Dii=-—tl.in.  Bjj=-—10L-in?
) 5b Y 2tn

and the superscript (') denotes differentiation with respect to y.

The stiffnesses of the plate are given by

(AS)

(A6)

12



where the Cij are the stiffnesses in equation (8). Using the definition B2 = w10’ gives the following two

differential equations, which complete the set of equations (14 equations with 14 unknowns) without
squares of derivatives of the unknowns as required in the solution procedure (reference 11).

a

a
A 5 CPRMAL:
By =——— - 022(MYO-MY1)_ 022MY1+(022D12—-022D12)———+
h h A (A7)

DBy Dyp — Dop Byg) [-L B 1”/ 2
(Dgp Dyz - Dp2 12( +w1( (022 322-022)

The boundary conditions at y=0and y=b are

=0, Wl=0,M, =M, =0

(o] a
us=u$=0, N,. =N
2= ™ Yo N1 (A8)

y° y2

Three-dimensional flexibility t

The displacements used n this theory are given by equations (4) as

u(y.z) = uO(xy) + u3(xy) ﬁ+ uS(x,y) sin Ehl
v(x,y,2) = v°(x,y) + va(x,y) §-+ vs(x,y) sin 1:1-2_ ‘ (A9)

wix,y.z) = wo(xy) + we(x.) cos I

Substitution of equations (4) into equations (7) and neglecting the nonlinear terms involving wC gives the

strain-displacement relations

€ = Uiy +lw°2+uaﬁ +U, smiﬁl

0.1 vaz nz
ey = v,y+ w.y yh+v,ys|n -
Z=—1tfw sin&Z
- o o0 a_,az S . S cinkZ
Txy u,y +V + W, w,y+(u,y+v.x)h +(u,y+v.x) sin H (A10)
=W, +U- + Wiy CimuS)cosiZ
Tz = h Wty yeos

=y_ (o] S C nz
Yz - +w,y+(i1v +w.y)cos .

13
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The assumption that the displacements are sinusoidal along the length leads to

uC=- UX + ud(y) sinziﬁ vO = Bly) + V3(y) cosz;lfl
%= u§(y) cos 2 VA= Vi) sin 2%
u® = () cos X v® = Vi) sin 2 (A11)

w® =wi(y) sinl%
we =wﬁ(y) sini%

Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and
moments are determined by the following integrals through the thickness

M, = LNZ ca(l) + cys sinﬁhl)-rszz (A12)

r h/2
Ly, = arz\, oS 'nz) inEZ dz
X1 J_h/2(c:,( (h)+cx siniZ ) sinfiz
( h2
Ly, =J m(cﬂﬁ) +op sinEhL) sinnhl dz



h/2
Lz, =J o5 sin2Ehldz

-h/2
r 2.
Lyzq = 7 cos2EZ dz
J-h/2
r h/2
LXZ1 = ‘txcz COSzﬂl dz
J-hi2 h
r h/2
Lxyq = (’txay (l) +Txy sinf_‘hl) sin% dz
J-h/2

where the form of the stresses are

Oy = °x + cal +GSSIn1Ft—]Z— Tyz = Tsz +T(y:20055—z-
Z ,g’sinke Tyy = T + OOSE—
0\ G2 cfent: = e i
= i = Z
= o’ismﬂhl ‘txy ‘t)a(y + ﬁysm

Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the
variation leads to the differential equations

=223 - 1wl gyl g
2 Ags
V3’ _131 %12_u°211+1w°2(m))
22! © *

51_=__"111 (M )

e Ke b1 De;es--ﬁ-eL

a- (L M

V_1_=[ Y1 _ ¥y (J12 D12) (K12 J12) 51]/(%2_022)
h [Kop Joo \Kpz Jaa/h A Koo Jo2 Koo Y22

L M
P +(ﬁ1___x11_)/ [fssdsn (A1)
A Jes Dse/ \Jee Des

L, M a
v§'=[ Y1 _ Y1+(J12_D12}U1g (K12 J12) smV(Kaz J22'
Joo Doo oo Dapfh A WJaz Do Jao '322
a [N
w=-Y1, Nyzy by (A44_H44
h \Hgq I44/ \Haqa l4a

15



N L
w§ = -5y - ( ¥Zq _ Yz1)/(144 _Has
“2 Aga Haa) \Has Agq

Nxyz'=<ENxp
Nyo' = ‘afoyz
Mxyy= Nxzq ~Myxq
Myy"=Nyzq +Mxy, 2
Lxyq" = Lxzq B - Lxg

: il
LYZ1 LXZ1 A LZ1 h

Ly, = l'!/Z1h +L xyu

Ny ) 2
Q'=(N 0 +—2wl(E)" +1N 4N, &
X0 T2 1()‘) *’2 xy2[317L XZ4)
The stiffnesses of the plate are given by

hf2 h/2 h2 2.,
A--=f Ci.dz Hij=J Ci cosE—dz Kjj= f C,lsm L2 4z (A14)
- h/2 h

h/2 h/2 2
= J Ci zsmﬂldz L= f o G; jCOs Erfudz
- /2

where the Cij are the stiffnesses in equation (8). The definition B4 = w42 * is not used in this theory due to
differences in the formulation of the theories. Instead, the following definition of B4 is used

a N

v r4 A H A H

B, ={_ ; +{H1 a-1n, " LV 1V(H44 44} {1 - ;2/(H44 - 44)} 15
44 I44 44 144 44 44 lag

16

which results in the completely defined set of equations (16 equations with 16 unknowns) without squares of

derivatives of the unknowns as required in the solution procedure.

The boundary conditionsused at y=0and y=b are

—Am

=0, Ny =N, ,=0 vP_w1_0M =Ly, =0

c
NO

(A16)
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Fig. 2 Critical axial stress resultant, Nx or + Versus plate length-to-width ratio, a/b, for different
width-to-thickness ratios, b/h, and different theories for aluminum plates of finite length.
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