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ABSTRACT

The study focuses on the axisymmetric deformation response of unsymmetrically lami-
nate cylinders loaded in axial compression by known loads. A geometrically nonlinear anal-
ysis is used. Though buckling is not studied, the deformations can be considered to be the
prebuckling response. Attention is directed at three 16 layer laminates: a (90,/0,);; a
(0s/90,)+; and a (0/90),,. The symmetric laminate is used as a basis for comparison, while the
two unsymmetric laminates were chosen because they have equal but opposite bending-
stretching effects. Particular attention is given to the influence of the thermaily-induced pre-
loading deformations that accompany the cool-down of any unsymmetric laminate from the
consolidation temperature. Simple support and clamped boundary conditions are considered.
It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly
larger than the radial deformations of a symmetric laminate. For both symmetric and unsyms-
metric laminates the large deformations are confined to a boundary layer near the ends of the
cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the
applied load; (3) The sign of the radial deformations near the supported end of the cylinder
depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric lami-
nates, ignoring the thermally-induced preloading deformations that accompany cool-down re-
sults in load-induced deformations that are under predicted; and (5) The support conditions
strongly influence the response but the influence of the sense of asymmetry and the influence

of the thermally-induced preloading deformations are independent of the support conditions.

INTRODUCTION

Composite cylindrical structures are known for their efficiency. In addition, they are well
suited for fabrication by automated fiber-placement techniques such as filament winding.
Axial loadings are common, as are pressure, and to a lesser extent, torsional and bending

loads. Cylinders subjected to axial end loads are susceptible to buckling or collapse if the



load reaches significant levels, or if the cylinder contains imperfections in the form of out-of-
roundness, variations in thickness, material flaws, or combinations of these. In addition to
their structural efficiency, composite cylindrical structures are somewhat more tolerant of un-
symmetric lamination sequences than flat laminates. Despite the tendency of an unsymmetric
laminate to deform significantly when cooled from its processing temperature, cylindrical
forms must remain cylindrical due to the axisymmetric nature of the basic geometry. in many
applications involving cylinders with hundreds of layers in the cylinder walls, the stacking ar-
rangement is often unsymmetrical simply because it is easier to continue a winding sequence
through the wall rather than reverse the sequence half way through the wall. For the many-
layered case, the degree of asymmetry is small and is not generally accounted for in design

and analysis procedures.

There is the general feeling that having any degree of asymmetry is not good. However,
there is an increasing interest in unsymmetric laminates for structural applications. Unsym-
metric laminates may indeed be the minimum weight design, the addition of more layers to
make the laminate symmetric simply adding weight to the structure with no increase in per-
formance. Also, manufacturing issues, just mentioned, may dictate that an unsymmetric
laminate is less expensive to fabricate. And finally, there is a considerable degree of elastic
coupling in unsymmetric laminates that is not present in symmetric laminates. For structural
tailoring, these couplings may prove beneficial. This reports details the finding of a very basic
study focused on determining some of the characteristics of unsymmetrically laminated cyl-
inders, in particular, unsymmetrically laminated cylinders subjected to axial compressive
loads. Considerable work has been done by others in the area of axially-loaded composite
cylinders. However, in numerical examples in the past work that have involved unsymmetric
laminates, no attention has been given to the fact that when an unsymmetrically laminated
cylinder is actually constructed, the temperature change from the processing temperature to,
say, room temperature results in a cylinder that has a deformed shape before it is even loaded

[1-3]. That is, there is a preloading deformed shape that, when loaded, deforms further. When
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considering prebuckling deformations in a buckling analysis, for example, or the response in
a collapse analysis, does inclusion of these thermally-induced preloading deformations have
an effect on the predicted result? The purpose of the work here is to begin to accurately
model this thermally-induced deformation in unsymmetric laminates and determine if the
thermally-induced preloading deformations, in addition to the presence of the bending-
stretching of unsymmetric laminates, 1) has an influence on response, and; 2) can be used to
advantage. As an example of point 2, it might be possible that bending-stretching coupling
could be used to increase the buckling load, or aiter the sensitivity of the cylinder to post-

buckling collapse.

The particular work reported on here focuses on a derivation of the equations governing
the prebuckling deformations, including thermal effects, and the equations governing buckling.
For the present, only perfect cylinders are considered, i.e., perfectly round, uniform material
properties, etc. Buckling and collapse are not addressed. The next sections define the ge-
ometry, coordinate system, and nomenclature used to study cylinder response, and then pro-
ceed to derive the equilibrium and buckling equations. Though the latter are not used here,
they are derived for future use. The derivation is based on variational principles and total
potential energy. The first variation of the total potential energy is used to establish the
equilibrium conditions, while the second variation, through the Trefftz stability criterion, is
used to develop the buckling equations. Following the derivation the axisymmetric
prebuckling responses of several simple unsymmetrically laminated cylinders to an axial
compressive load are studied. The influence of the thermally-induced preloading defor-
mations, and the influence of changing the sign of the bending-stretching coupling effects are
studied. This prebuckling study is limited in that only three different cylinders are studied.
These are: a (0,/90,), laminate; a (90,/0), laminate; and a (0/90),s laminate. The first two lami-
nates exhibit extremes in asymmetry, while the third laminate is a simple symmetric laminate
with the same thickness and the same number of layers with fibers in both the axial and

circumferential directions as the two unsymmetric laminates.



GEOMETRY AND COORDINATE SYSTEM

The cylinder is assumed to be oriented in a global rectangular coordinate system with the
X axis coincident with the centerline of the cylinder, as illustrated in fig. 1. The global Z axis
is up, and the global Y axis is to the right. The origin of the coordinate system can be at the
midspan of the cylinder, or at one end, depending on which location is convenient for the
particular analysis. Here it shall be at midspan. The cylindrical coordinates used in the
analysis consist of the axial coordinate, x, which is coincident with the X axis, §, which is
measured positive from the +Z axis toward the +Y axis, and r, which is measured outward
from the X axis. The cylinder has mean radius R, measured to midwall, and thickness H. The
coordinate z is measured outward from the mean radius. The displacement in the axial di-
rection is denoted u(x, 8,r), that in the circumferential direction (positive in the direction of
+6) as v(x, 8,r), and that in the radial direction (positive outward) as w(x, 8,r) . The temper-
ature change considered is assumed to be spatiaily uniform and is denoted as AT, AT being
positive for temperature increases. Though interest here will be with applied axial end loads,

the equations will be derived ‘or the case of appiied end torsional and applied radial loads.

DERIVATION OF EQUILIBRIUM AND STABILITY EQUATIONS

The total potential energy of a cylinder deformed by known applied loads, and subjected

to preloading deformations, is written as

em [ [ (o et (o= of)i+ (o = Calralrcborax s (9
r X

where 7, is the potential of the applied load. The stress components superscripted with a

~p* denote preloading effects. They could be due to imperfections in the cylinder geometry,
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for example, or due to thermally-induced deformations, as another example. They will be

defined shortly. Using Donnell’s assumptions for the kinematics of deformation,

u(x, 8, r) = u’(x, 8) + z8(x, 6)
v(x, 8, r) = v°(x, 0) + zB3(x, 6)
w(x, 8, 1) = w°(x, 8).

(2)

In the above, as mentioned earlier,

z=r—R

and the superscript zero, as usual, signifies the displacements of the cylinder’s reference
surface (i.e., the surface at mean radius R), and the f’s are the reference surface rotations

given by

Q

g2
0 ow° ¥
Bo=—Ra5

It should be noted that the displacements u°, v°, and w° are measured relative to the perfectly
round cylinder, not the initial shape of the cylinder due to any preloading effects. The perti-

nent strain-displacement relations in polar coordinates are

sx=6_u+%(6_W)2

X X
av W 1 aw \2
_—— [ 4
‘0 r60+r+2(r60) ®
- ov du + ow  Ow
Y= 5 T 88 T 768 ox

Substituting egs. 2 and 3 into eq. 4 and considering only thin shells so that the approximation

r =R can be made with sufficient accuracy, the strains become



&y = sg + z;c:'
£g = Eg + ZKg (5)

Yio = Vup + ZK3g »

with

A 1 o
£x='—a'x—+ > i’
o_ av° lv:_ 1 0
¢ = R30 + R + 2 Bo (6)
o =a\!°+ ou® _*_Boo
Y6 =55 T Rag T e
o B o O o 5 O
x“ 9x ' T RAG ' ¥ 9x  RaS
The stresses are given by the relations
—_ [+ —_ p - P
oy = Qﬁ(ax - ex) + Q12(59 - 89) + Q1s(Yxo - an)
gy = 612(5)( - 5:) + 622(’:8 - 8;) + 625(}”‘9 - }':9) (7)

Ty = 616(81 - Ci) + 626(80 - 8;) + —Q—SS(yw - yiﬂ) !

where ¢°, €%, and y%, are the strains due to preloading effects. Equation 7 can be rewritten as
= = = P
oy = Qq1€x + Q289 + Que¥up — Ox
= = = P
0y = Quaex + Q289 + Q2679 — % (8)
= = = P
Tyg = Qie6x + Qoeg + QesVno — Txa »

where

p P, = P,= P
a5 = (Quex + Quap + Quevis)

p P, = P, = P
05 = (Quzex + Qg + Quevss) 9

P P = P, = P
10 = (Quetx + Quetp + Qes7xs) -

If the preloading effects are due to thermally-induced deformations, for example, then



G: =a,AT
£ = apAT (10)

Yo = 0,4 AT

where a,, a,, and a, are the coefficients of thermal expansion in the cylindrical coordinate

system. If this is the case, then the stress-strain relation of eq. 7 can be written as

ax = Quiex = 2 AT) + Qileg — 2pAT) + Quglryp — 2,AT)
Og = 612(8)( - axAT) + 622(89 - QgAT) + 626()',(0 - angT) (1 1)
Ty = 615(8,‘ - GXAT) + 626(89 - agAT) + _Q.GG(Y)(B - aonT) y

or
= = = T
0y = Qq4&x + Q89 + Qqe¥yg — 0,
= ey = T
99 = Qqa6x + Q269 + Qog¥eg — 9 (12)
5 = = T
Ty = Qieex + Qaegp + QesVng — Txg »
where

UI = (Qy1o, + Qo + Que,g)AT
05 = (Quaay + Qqo09 + Quptteg) AT (13)
g = (Qugay + Que%g + Qusltyg)AT .

In this situation the superscript "T" denotes the fact that the preloading effects are thermally-
induced. The stresses o], g, 1, would then have the physical interpretation of being the

stresses at a point if the composite is fully constrained from any deformation.

For the case of known axial loads applied at either end of the cylinder

gy = L N;(e)u°( -<, o)Rdo - J; N:(e)u°( =, e)Rde . (14)



The quantity N;(8) is the load at x = —-12‘— and N;(8) is the load at x = +-!5-. The integrals are

taken around ends of the cylinder and the dimension of the N,s is force per unit
circumferential length. For the case of a known torsional load applied at either end of the

cylinder,

Rioaq = LN;B(G)V°( -+, 6>Rd0 - L N;;(e)v°( =, 0>Rd0 , (15)

and for a known outward radial load

Mioad = — J J a(x, 9)w°(x, O)Rddx. (16)

In general, the end loads can be functions of § and the radial load can be a function of
x and & The N,’s are tangential load per unit circumferential length, and q(x, 6) is a load per
unit area. Other loadings on the ends of the cylinder can be included, e.g., an applied mo-

ment, but they will not be considered here.

Substituting the expressions for the strains, eq. 5, into the energy expressions for the

cylinder, eq. 1, and including the three loading terms being considered, results in

m(u®, v°, w )=--".J I ax (cx+zxx)+( —-o;)(s;+zxg)
+ (19 — Tog) (V0 + zxxg))Rddedx
+ J{GN;(G)UO( - -;— e Rd6 — _[N 6)u ( = e)Rde -
+ J{gN;B(e)\P( - —'5— ,0)Rdf — LN;,(G)W( =, e)Rde

- {]J. q(x, O)w°(x, B)RdOdx .

-

in the above use has been made of the facts that



r=z+R=~R
dr=dz (18)

and the integration on r has been replaced with integration on z . Integrating on z leads to

a(u°, Vo, wo)=-;_ J; f ((Nx = NZ)ex + (Ng = N§)ep + (N = Nig)y% + (M — ME)k2
X
+ (Mg — Mg)i§ + (Mg — M5, )%, )RdOdx
-avef _ L | nFravef L
+J;Nx(0)u (— : ,e)Rde J;Nx(e)u ( : .e)Rdo (19)
+JN' 9v°(-£,9 RdB—J-N*' ow°( L, 0)Rds
Na(@(— 5 0)Ra0 - | NG01"( . 0)

-fJ a(x, 0)w°(x, 6)Rdfdx .

The stress resultants in eq. 19 are defined as

H/2
NXEJ' 0,4z = Aiex + Aggep + Asglog + ByyxS + Biakg + Bigiyg — N:

—=H/2

Hj2
Ny= j 0942 = Aqge3 + Agpg + Agevig + Biak + Byykg + Bogiing — Nj
—H2

H/2
Non," Txgdz = A168: + Azssg + Assygo + B16Kg + Bzng + 856’(:3 - Nso
M2 (20)
_ — (o} (] 0 (o} o o P
Mi=|  zoydz = Byyex + Byagg + Bigyyg + Digicy + Dygiig + Dygieg — M,
—H/2

H2 o o o o o o P
MOE Za'odz = 8128x + 82259 + Bze)’xa + D12Kx + 022x9 + D25KX0 - Mg
-Hj2

H/2 (o} o (o] (o] (o] (o} P
MXEE foodz = B16€x + 82889 + Bse}’xg + D16KX + Dstg + DBSKXO e Mxo '
—~H/2

H being the cylinder wall thickness. In the above
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H
p_["2
Nx " oydz = J (_118x + Qaep + Quovyg)dz

= j_
’ f_

>y

:
a“

nl:r

2 P = = P
Ng H Godz = J‘ (—128)( + 02283 + st}’xﬂ)dz

I NII

p_|2 P, = P, = _P
Nyg= J " 790z = (—165x + Qustq + Qes¥ag)d2

H
MzEJ 2 axzdz —J‘
H

2

l\‘l
I NII

P,.= P, = P
(Qr1ex + Qraty + Quevrg)292

aqx

Mg J BZdZ = I (—1282 + 62255 + —0_26')’29)Zdz

MEGEJ. 2 ‘tigZdZ =I
H
-4

s
2

I MII

(—168)( + 02689 + st}’xg)ZdZ

These expressions are the so-called equivalent preloading stress resultants

preloading effects are therma:ly induced,

H H
Ne = NIEJ 2H 0,dz = 2H (Qqyax + Qra%g + Quottyp)ATdZ
7 -2
H H
P T_| 2 2 -
Ng = N0=J H Gadz j H (—12ax + Q22a9 + staxg)ATdZ
) )

H L
T2 T2
H H
Mj = MIEJ 2H o.zdz = J 2H (Qyqax + Quotg + Quateg)AT2dZ
Tl -7
H H
M; = M;EJ. 2 UgZdZ _J 2H (Q-‘zax + Q22a9 + azaaxg)ATZdZ
) )
H H
M:a = MIBE H TmZdZ = 2H (_1sax + Q,.saa + staxo)ATZdZ
7 -7

Again,

(21)

if the

(22)
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In this case these expressions are the so-called equivalent thermal stress resuitants.

The notation

n = a(u®, v° w°) (23)

is being used to emphasize the fact that the total potential energy is a function of the dis-
placements (here the cylinder reference surface displacements). The governing conditions
will be derived by examining variations in the total potential energy. These variations in the
total potential energy will be due to variations in these displacements. To this end, consider
the increment, or variation, of the total potential energy due to increments, or variations, in the

displacements. Specifically,
Weud; vP4ev);  wlaew (24)

where ¢ is a small parameter and the quantities u¢, v¢, and w? satisfy all the kinematic re-

quirements of the problem. Using the notation

n+ An = n(u® + eu, v° + evy, WO +ew)) (25)

the incremented total potential can be expanded using eq. 19 as follows:
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n+An= -;— J j [N+ AN, = NP)(ex + Aeg) + (Ng + ANg — Ng (g6 + Acg)
fvx

+ (Nyg + ANy — NE)(v3g + Ar%g) + (My + AM, — M)(k5 + Axc)
+ (Mg + AM, — M5 )(ic§ + Ax§) + (Mg + AM, 5 — Mig)(sc3p + Ax;’o)}Rdedx

+ LN;(@){LP( ~+.6) vaud( -5 6)}Rd9
_ L N;(e){u°( £ 0+l 0)}Rd8
ol 0o 5.
_ L%(@){W(%, 0) +evi( 5 0)}Rd0

- J- I q(x, 8){w°(x, 8) + ews(x, 6)}Rdfdx .
xve

(26)

it should be noted that the equivalent preloading stress resultants do not have increments
because they depend only on material properties and initial displacements (or perhaps the
temperature), not the displacements due to the applied forces. Subtracting eq. 19 from eq.

26 leads to an expression for the increment in the total potential energy, namely

An=—+ J j {(N, — N)Aes + ANyes + AN, Acg
xve

+ (Ng — N§)Ac) + ANgeg + ANgA + (Nyp — Nig)Avsg + ANgrs + ANypAYS
+ (My = MD)AKS + AM, xS + AM,Ax;, + (Mg — M)Ak + AMgic + AMgAicg
+ (Mg — ME)AKS, + AM, 6% + AM,;AKS, RdOdx
27
+e|N (e)u1 -% 8 )Rd6 — _[N’f(e u1(— B)Rd()} (@7)

—¢ J. Jq(x 8)w(x, 9)Rd9dx}

{ ng(e)v1 . 0>Rd6 - f N;‘,,(o)v:’( < B)Rdo}
8
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The various increments in eq. 27 are given by substituting the increments in the dis-

placements, eq. 24, into the basic definitions of strain and curvature, eq. 6. That substitution

leads to, for &3,

A(u° + eud)

S+ag=—— L (2 e

Dropping the superscript for convenience,

3 dus 1 1
sx+Aax=a—z+e-ﬁ+3ﬂi+eﬁxﬁ,‘1+3-52/3§1.

Then, using eq. 6,

du, 1 2,2
A£X=C(E-+ﬂxﬂx1)+?£ Bx, -

This can be written as

where &, and £, are defined to be

In a similar fashion,

o(v+evy) wHew,
RAG T R

80 + AEo = + _;- (ﬂe + €ﬂ91)2

ov ov, w

=TRa6 T° RO TR

Wy

: 1 52 1 2,2
+¢ R +?ﬂ0+8ﬁ9ﬁ91+'§8ﬂ91,

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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or

where

Also,

This results in

where

Finally,

2
Aeg = egg + 789, -

0 d
o+ Brg = L) JOEZ) (5t By + o)

_Ov v, du du,
Yap + Brxg =G+ -+ oog tepag + Bdbe

+ &(B.Bo, + BoBy,8) + & Bx,Bs, -

2
Ayyg = vy, + £ V5,

®<._ m:,_
Y, =\ 3% T Rae + BBy, + Bobx,

v.xmn = uxahmﬂ

Axy=cexy: Axg=tkg; Ak,g=EKyy

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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where

aﬂx1
Ky =37 i (45)
0B,
%o, = Req (46)
c‘;’/ig1 6[3,(1
Kxo1=( aX + R60 ) . (47)
In the above use has been made of the definitions
ow, ow,
==+ Bo=—Tae - (48)
In terms of the strain increments, the increments in the stress resuitants are:
ANX = A11A£x + A12A59 + A16AVX8 + B11AKX + B12AK9 + B16AKX9
ANO = A12A£x + A22A50 + AzsAyxe + B12Axx + BQQAK@ + 826Axxg
ANXB = A15A£x + A26A80 + A66A7xﬂ + B16AKX + B26AK9 + BSGAKXE (49)

AMX = B11A8x + B12A89 + B16Ay)(0 + D11AKX + D12AK9 + D18AKxo
AM@ = 812A8x + BzzAﬂo + stAyxg + D12AKX + DQzAKo + DZGAKXB
Ang = B16A8x + stACa + BSGA)’X& + D16Axx + DZSAKO + DGGAKXE

It is convenient to expand the increments in the stress resultants, and redefine those incre-
ments in terms of powers of . From eq. 49, incorporating the definitions for the strain incre-

ments, eqgs. 28-47, the stress resultant increments are

AN, = Ay (eg,, + szsx,‘) + Aqg(eeq, + 82892) + Asg(ersg, + 52Yxo,)

(50a)
+ B118Kx1 + B128K91 + 5165)’)(91 .

These terms can be redefined to give
AN, =N, + &N, (50b)

16



where

Ny, = Aqsex, + Argeg, + Asgryg, + Braky, + Brakg, + Brgsg,

and

Nxz = A118x2 + A12892 + A16})x02 .

Expanding for future reference,

Ju, ovy Wy
Ne = Al T+ B ) + Al g + R Ao,
dvy  Ou,
A 3x +Rog T P, t Fobx,
3B, 3B, 3By, 0By,
+ B T Bz TP 5 *Ree

and
Ny, = 1 A2 -{»—-—1 Ay + A
=\ 1By, 2 1285, 16:Bx1B91 .

Using this procedure for the remaining stress resultants,

2 2 2
ANy = A12(€£x1 +e ex2) + A22(8891 +¢ 892) + Azs(syw1 +¢ on,)
+ 81281(,(1 + B228K01 + stekm1 .

Redefining,
ANO = ﬁNo1 + £2N02 ’
with

Ng, = Arzts, + Aggtg, + Agelsg, + Biraky, + Baaky, + Bagkyg,

(50c)

(50d)

(50e)

(51a)

(51b)

(51c)

17



and

Ngz = A128x2 + A22£02 + A26Yx02 . (51d)

Expanding for future reference,

and

Likewise,

or

where

and

Wy

du ov
Ng, = A12( a—; + ﬂxﬂ&) + Azz( -R—alg' +R Tt ﬂgﬂa,)

av du
A o+ g+ B, + Bab (5te)

aﬂx,, aﬂa, aﬂ91 aﬁx1
B +Bapgg Bl 3+ R

1 1
Ny, = (? AvoB, + r Azzﬁg, + Azsﬂx,ﬂo,) . (51

AN, = Aw(atzx1 + sza,(z) + Azs(t:tzo1 + 82532) + Aes(’-')'xa, + s2yw2)

+ Buigeky, + Bagtig + Bestkxg, » (52a)
ANy =N,y +£°N,yg, (52b)

Nyg, = Arglx, T Aget, + Acs¥ug, + Bigkx, + Bagitg, + Begiyg, (52¢)
Nyg, = Avgtx, + Azsts, + AgsYa, - (52d)

18



Expanding,

Wy

du, dv,
Nx91 = A?ﬂ —6x— + ﬂxﬂx" + A25 W + R + ﬂgﬂg1

66 dx + RO xﬂt?, 01)(1 (528)

5 9By, 5 9B, 5 3By, N B,
+Bis 35 T BwTRge T Pe\ T3x T Rog

and
1 2 1
Ny, = (‘2_ Aoy, + o Azsﬂg, + Assﬂ&ﬁo,) . (52d)

The increments in the momenrts can be similiarly defined, namely,

AM, = B11(££X1 + ezs&) + 812(8891 + 52592) + 815(5}:,“5.1 + 82}’:«92)

+ Dysex,, + Distky, + Digekyg, (53a)
or
AM, =M, +£2M,, (53b)'
with
M,, = Bys&,, + Bigtg, + Bigrug, + Draxy, + Di2kg, + Diskyg, (53c)
and
My, = B11€x, + Biagg, + Big¥ss, » (53d)
where

19



and

In a similar manner,

du, A7 w,
M,, = 511(a—x+ ﬂxﬁ)q) + B’2<W+'R—+ Boﬂo,)

dv, duy
+Biel 35+ Rag T A, + ﬂeﬁx,>

aﬁ)q aﬁo, aﬂo, 6Bx1
P tDugg t 16( 3x ' Ro6 )

1 2 1 2
My, = (? Br1bi, + 7 Braflo, + B1Sﬁ*1ﬁ"1> '

AM, = B12(8€x1 + ezexz) + 822(8591 + 52592) + Bz,,s(z:y,“«,1 + 52Yxaz)

or

with

+ D128Kx1 + 022£K01 + DQSCKXE1 .

AMG = CMo1 + €2M92 ’

Mg, = Bugey, + Bagtg, + Baglug, + Digky, + Dagkg, + Dogiyg,

and

where

Mg, = Bigtx, + Bty + Bogvsg, -

(53e)

(531)

(54a)

(54b)

(54c)

(54d)
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aU1 . ' aV1 W1
Mg, =Bao{ 5+ ﬂxﬂx, +Bol gt R T BoBe,
)
+ B26< _a;— Raf) Y ﬂxﬂﬂ, + Boﬁx,>

B, 385, 36a, OBy
+ D15~ + P22 555 + Pos| 55+ Rz

and
My, = (i B1aBi, + + By2B5, + BasBy,Bo ) :
2 2 ) 1 X" 0y
Finally
AMyy = 816(88x1 + 828,(2) + 525(8801 + 52592) + Bss(Eon, + e2yx92)
+ Dygexy, + Dagticg, + Destiug,
where
AM,, =eM,, + azsz
with
Mg, = Bigty, + Bagtp, + BesYxg, + D16kx, + Daskg, + Deskxs,

and

ngz = B168X2 + stsgz + Bss}’xoz .

Expanding for future reference

(54e)

(54f)

(55a)

(55b)

(55¢)

(55d)
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du, ' T OV Wy
Mxg, = Bre| 52—+ By, | + Bas Rag TR 1 Pebs,

B ﬁ ou, 8
T Beo\ Tx + Rag T ALt Bobs, (85¢)
aﬂx1 aﬂe,

D D Ousf Lo, P
+ 516 5+ Das 575 + Des\ 51+ Rag

and
1 2 1 2
My, = (? Biefix, + 5 Baslo, + Bssﬂx,ﬁo,) . (55f)

With the various increments defined and expanded, the definitions can be substituted into eq.

27. This results in

A= %L L [(Ny = N2) (et + £28,) + (eNy, + 2N, )t
+ (e:Nx1 + t;"’N,(z)(sz:,(1 + czsx:) + (Na - N;)(csa1 + 82802)
+ (st + ezNaz)ea + (£N9‘ + ezNoz) (8891 + 82892)
+ (ng - N::,,)(t:y,‘ﬁ,1 + ezyxoz) + (e:Nw1 + szNwz)yw
+ (e:N,‘g1 + sszgz)(ayw1 + szywz) + (Mx — M,':)e:;cx1
+
+
+

(
(Me - M;)e:x‘91 + (&:M,,1 + CzMaz)Kg + (sMo' + £2M92)8}C91 (586)
(

My — MEB)CKXB' + (e:M,a,1 + szsz)xxo + (::M,d,1 + szsz)sxxoi}Rdex

+ e{ J; N;(e)u:’( -= o)Rdo - J; N:(e)u;’( <. O)Rd()}
+ 5{ L N;a(e)vﬁ’( -+ e)Rde - L WOYES O)Rde}

- s{f jq(x, )wi(x, 6)Rd0dx} .
xve

Expanding and regrouping in powers of ¢ leads to
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1 P P
An=— L L [s{(Nx — N§ ey, + Ny + (Ng — NoJeg, + Ny 2
P P
+ (Nxo = Ny, ¥y, + ng1yxg + (Mx - M,‘);cx1 + My Ky
Py, P
+ (Mg - MO)'{G1 + M91K0 + (Mxo - MXB)KXB1 + MXB‘KXO}
2 P P
+ (N, = Ny Jex, + Ny + Ny g, + (Ng — Ng)eg, + Ng,g + No £g,
+ (Nep = NigI7sp, + Nug,7xs + Nug,Yss, + Mt + My fex,
+ Mgzxg + M,;1K91 + ngszg + MXB,K)(O‘}

3
+ £ {Ny &x, + Ny jx, + Ng 29, + Ng,£g, + Nug,Vxs, + Nyg,Vx8, (57)

4
+ My, Ky, + Mg kg, + ngzxx&} + £ {Ny £x, + Ng,t0,

+ Nyg,s0,} JRAOCX

+ s{ I N;(e)uﬁ’( -+ e)Rde - f N:(e)u‘;( =, 0>Rd0}

8 ]
+ e{ J;N;B(O)v?( -< e)Rde _ J;N:},(B)v?( <, 0>Rd9} -
- c{[ Lq(x. B)W3(x, 8)Rd6dx} .

The increment in the total potential energy can be written as
An=¢my + 527:2 + 531z3 +é*ny. (58)

The quantities =,, 7,, 7y, and r, are defined to be the first, second, third, and fourth variation,

respectively. The equilibrium conditions for the cylinder are obtained from the condition
ny(uq, vy, Wq) =0, (59)

where the notation indicates =, is to be made stationary with respect to the displacements
u, vy, W,. These displacements are the variations in the equilibrium displacements. The sec-

ond variation is used to examine stability of the equilibrium displacements. According to the
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Trefftz stability criterion, transition from a stable equilibrium configuration to an unstable one

is characterized by
57!2(“1, V1, W1) =0. (60)
This states the second variation of the total potential energy should be stationary with respect

to variations in u,, v,, w,. The above two conditions will now be examined.

First Variation

The first variation can be isolated from Az and is

=] 0N Naa (= N,

+
+ (Mg = Mg, + Mg kg + (Myg — Mip)icup, + Myp 1 }RUGGX

- L + of L
+{J;Nx(O)uﬁ’(—?.O)RdB—LNX(O)m ?,O)Rde} (61)
NSOV -1, RdO—J‘N*' ow( L0 Rde}
{ O =5 0)Ra8 - | NGoN3( 5. 0)

_ { f L a(x, O)wi(x, 6)Rd0dx} .

A more useful form of the first variation can be obtained by substituting for
Ny + N o Ng,» M, . M, . and M, from eqs. 50e, 51e, 52e, S3e, 54e, and 55e. If this is done

and the various terms in this expanded form of =, regrouped, the result is
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4 =J‘ J;{le)q + N9£01 + ng'yxg' + Mxxx1
X

+ Mgk, — MygKyg, RO

{JN u1 -= .e RdO — f e)u,(—- B)Rde} -
+ { I N OV -5 6 )Rd6 - LN;,(G)V:’( <, B)Rde}
o
- {f J'q(x, g)wi(x, G)Rdde}.
xve

Note the quantities NP ,... M5 have disappeared, as has the factor of 1/2.

If the strain and curvature increments &, ,... Kq, are written in terms of the displacement

increments, using egs. 32, 37, 42, and 45-47, the first variation takes the form

N Ca AR Ce STy

N 5 1 CU1 M aB)q M aﬂ01
+No| 33t Rag T Ao, Fobu | ¥ M5 -+ Mo

R | P (63
Mo\ ax T Rao X )

J{N u, —'5— ) - N:u1( = .0)}Rd0
+ J;{N;Bw( - e) - Nfov,(-%- , 6)}Rd0 - J Lq(x)w,(x, B)Rdde}

This is one of the fundamental forms of the first variation for determining the response of a
cylinder. This form can be used directly in approximate schemes such as the Rayleigh-Ritz
method. However, here we are interested in the governing equilibrium equations and asso-

ciated boundary conditions. The steps to derive these follow:
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To determine the equilibrium equations, and the associated boundary conditions, differ-
entiation of u,,v,, and w, with respect to the sbatial variables x and 8 must eliminated. This
is done using integration by parts on the various terms in eq. 63. This shall be done in the

following term by term:

first term

d -+
IJ‘inRdde=J‘(qu1)lx 2 Rde
xvé4 ox (] :c=:—2L

(64)
ON,
—j j —— u,Rdfdx.
xJg Ox
second term
Jijﬂxﬂ&Rdex—f IN ——-—Rd()dx
L
X —
= () [ e <es>
X'-T
[ [ 2 (2 Yurmaan
In the above use has been made of eqs. 3 and 48.
third term
] 6=+
ffN,, 1 Rdedx=f(N,,v1)| "dx
xve Rae X fe—n
(66)

fj N, Rdéd
_— v X .
«Jg RGO
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Because the cylinder is complete, the response is a continuous function at the spatial variable

8. Thus

Np(x, + m) = Ny(x, — )

va(X, + 1) = va(x, — 7). (67)

As a result the first integral on x in eq. 66 sums to zero and we are left with the third term as

aN,
J. J'Ng R36 Rdfdx = J-XJ.O-R_6§-V1Rd6dX' (68)

fifth term

_Ow_ ow
NoBof Rdedx=J JN ——— Rdfdx
.Uo orers, 9°RA6 Rae

='.H R90 (N" R36 )"“Rdedx'

where use has been made of egs. 3 and 48, and the fact that the first terms normally on the

(69)

right when using integration by parts is zero because the cylinder is complete.

sixth term

aV1 X= ?L
ijw—Rdde=J(va1)l Rd#
xvd 0x 4 -t
2 (70
—-J RdOdx .
xvé
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seventh term

IIN 01 d6d jf MNew | rdod
- X=— u X
xJp ¢ RO J RAO U1

eighth term
ffogﬂ,ﬂa Rd0dx—f INm Ix R66 Rdé@dx
j! RGO (Nxo x >w1Rd9dx
ninth term
ow
IJNWﬂoﬂMRdOdX_J INMR—ae—a;—Rdex
L
_Ow_ Xt o=
I(Nx,, =26 ) - Rdé
ff ax ( % R36 )W1Rd0d"
{
tenth term

Bx,Rdbdx

(71)

(72)

(73)

(74)
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These terms can be expanded further. Specifically, using eq. 48, the second term on the right
side of eq. 74 becomes

oM, aM aw1
[ ] 2 ot |

(75)

Using integration by parts once more yields

J’J‘@Mx
”ax

L
X=4 5

L

B ,[ M,
- g ax W1 X=—

, (76)
°M,

—'J‘ ‘[ . 2 W1Rd9dx
xvJ9 Ox

Rd@

The tenth term can thus be written as

)

0Bx,
x 9

L

oM A\ x=+—L-
+ f( = W, )| 2 Rd6
[’} ax / X::——lz'—

M
- _[ 2" RdfAdx .
xve 6x

ow =+t
- I(M,—-—’-)lx 2 Rd8
9 0x X==

(77)

eleventh term

3B,
L LMQWRdde j j o Bs,Ra0dx, (78)

where continuity of the cylinder has been used. The expression on the right can be further
integrated by using the definition of §, from eq. 48, i.e
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-[ [ =

ow
M, 1
Rdex ff R36 Ra8 Rd@dx

(79)
= —f J w1Rd0dx
Thus the eleventh term becomes
f f M, 1 d0d f f oMy Rd6d (80)
X=— —_—W X
xJg  ROO xJ9 R%06%
twelfth term
36, —
ijwTRdodx=j(Mwﬂo1), . Rd6
xve 8 Xm— -
2 (81)
oM,
—J J' By RdOdx .
xJg OX 1
The second term on the right can be further integrated as
—J;J; 3 ﬁo1Rd9dx—jf Ix Ea—e-Rdedx
(82)

-—jj R60 w1Rd0dx

where again completeness of the cylinder has been used. Hence the twelfth term becomes

aﬂ01 x=+%
Mo —5 - RAOdx = | (Mo Rd0
x Yo X ) x=—%
(83)

j j O My Rd6d
~J J, Ragax V1merex-
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The first term on the right in this resulting equation is special. It can be integrated by parts

one more time. Considering the integral at x =+ L/2, the term becomes

L
LMX,,(+%.0>B91(+-%-,0)Rd0=—I9Mw(+-%-,9) aw1(:602 ’6) RdO (84)

Integrating by parts

L
6W1(+—,+7t>
L L L 2
Ion(+?.e>ﬂg1(+?,e)Rd0=—ng(+_,+ﬂ)

2 RO6
P

+J aMxo(+-l2=‘.0> w1<+_|-_
é

R3O 2" G)Rde

Because of completeness of the cylinder, the first two terms on the right sum to zero. The

same procedure can be used at x=—L/2. The result is

j M |x=+_iL’° Rd0 f Mg lm_;' RdO 86
o( xB)Bo,) x"-z‘:. - 0 Rae Wy x=——2L— . ( )

Thus the final form for the twelfth term becomes

X==mr

j I Rads WIRdOx.

_”M — Rdé faM” H%Re
" dx—o Wy H d

(87)

31



thirteenth term

f j M o Rdéd f J Mg Rd6d 88
Jp @ Rap "X ="] | Rag AuRddx, (88)

where completeness of the cylinder has been used once more. The term on the right can be

further integrated by the fact that

M, 0w,

[ ], Res- oot - [ ], 7es- G et
M, 4 )x=+—;-
=|| =W Rd6
L( Rog 1 lxg_% (89)

j f RBGow WiRdOdx

The thirteenth term thus becomes

aﬁ)q ang x=+?L
LLM""—Rae Rdde=f<-——Rae w1), H Rd6

X=m—

(90)
f j Rafax WRO0x

Using egs. 64, 65, 68, 69, 70, 71, 72, 73, 77, 86, 87, and 90 in the expression for the first vari-

ation, eq. 63, and combining boundary terms (i.e., integrals on 8), results in
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| aNxG

m=] [ N Nl f Me Tl
YL, ax  Ra | ax  Ro6 |
D AL My Mo 5 [ aw>_ 5 (N aw)
52 2 Rd6ax  Rige?  ox \ * ox ) T Rao \'? Ro6

9 ow 3 aw Ny
~Ra6 (N*” ax )' ax (N*f’ Ra0 >+ R ‘q}"‘“]Rdedx

aw

X=34

oM, dw
( ax +Nx

L

Xzz— —2-

d =+
—Mx-%)lx 2}Rd9.

N , Mg
+Nogag T4 TRas /™

(
(ol +5
(-5 )55 )
(
(

] [ Y

Xam—

For the first variation to be zero, each individual term in each of the integrals must be zero,

the Euler equilibrium equations coming from the two-dimensional integral, and the boundary

conditions coming from the one dimensional integral with respect to 6. Thus, the three gov-

erning equilibrium equations are

ON,
ax

aNxO

ax

ON,g
Rap (922)
N,
Ra6 (920)
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My "My + My g (N' aw)

T “Robox T Riggr T ax \Mxax
d (No2w N, 0 (\ dw\., o (y ow 02
*+Rao (Nﬁ R36 )+ R30 (N’“’ ax )+ ax (Nxﬂ R36 ) (92)
N9
"R *ta=o0

as

N, N,
% * Roo = ° (93a)
N aN
a;” +5 a; =0 (93b)
o°M, aZMxo 52M0 *w Pw
o T2 Ragax t Rize% T o T 2N Rapox (930
C
N Pw Ny +q=0
® R%6? R

The variationally consistent boundary conditions at the ends of the cylinder are:

atx = -L/2

i) Ny=N, or u must be specified,
) Ny =N, or v must be specified,

L OMy dw w M,y . (94a)
iii) Em + Ny ™ + N,y R30 + 2 ¥ =0 or w must be specified ,

iv) My=0 or g—: must be specified .
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atx = + L/2

i) Ny= NI or u must be specified,

ii) Nyg= N:g or v must be specified,

L OMy ow aw Mg o (94b)
iii) I + N, Ix + Ny R30 + 2 230 =0 or w must be specified,
iv) My=0 or —%—\;{— must be specified .

Second Variation

With the equilibrium conditions established, attention now turns to the stability of these
conditions. As stated by the Trefftz criterion, stability information can be obtained by exam-
ining the first variation of the second variation, m,. The second variation can be isolated from

Ar of eq. 57 and is given by

my = -;—j Jo[(Nx - Nz)sh + Nyex + Nty + (Ng — Ng)ge2
X

P
+ Nazao + N01€01 + (NXB - ng)'yxgz + ngzyxg + Nx91}’x91 (95)
+ szKx + M&Kx‘ + MgzKO + M91K91 + MXBZKXB

+ M, Kyp, RAOdX .

A more useful form of m, can be obtained by substituting for
Ny, » No,o ) M,,, My, and M, from egs. 50f through 55f{. Doing this, and regrouping

terms, results in

Ty =J I [Nxsxz + Ne&gz + Nxo}’xgz
xve

1 6
+ ? (Nx1€x1 + N91€01 + NX01YX0, + Mx1’<x1 + M01K01 (9 )

+ M, %,5.) [RAOdx
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Again note the disappearance of N? ,N?, and N&, and_ the algebra with the factor of 1/2. Since
the variational process involves kinematic variébles, here u,,v,, and w,, the increments in the
strains, curvatures, and stress resultants should be written in terms of these kinematic vari-
ables before the variational process begins. To that end, using the expressions for

N M,, from egs. 50e through S55e, £y 1o Kig, from egs. 32, 37, 42, and 45-47, and

ST

£y 9, and y, from eqs. 33, 38, and 43,

1 2 1 2
T, =J‘ J;[? Nxﬁ)q + _2' Ngﬁo1 + Nx8'8x1501
X

1 du, ovy Wy
7| Al T BB |+ Al REe R T Babs,

v,  du, ap,, 9By,
+ A W‘*‘W*’ﬂxﬂa, + BgBy, | + Byy % T B2 R3O
9By, Iy, du
B1s< 6x1 + R3O )}{ : 5xﬁx‘}
1 ou, ov, w,y
2 A”(W*ﬂxﬂxf * A\ Rag TR T Aebs,
dv,  du, aBy, 0By
+ Azs(—xl + =35 R60 + BBy, + ﬁoﬁx,) + By ax T Bz Raf;
aﬂ01 aﬂx1 aV1 W1
B25< ox T R ) { R TR T /’9"01} (97)
du ov w
* {A"‘(a_): * f’xﬂx«) * A%‘(Ea:? Rt ﬁo"m)

dvy  du, 0B, 7
+ Assl 55 +W+ﬂxﬂ01+ﬂaﬂx1 +Bis 35 +526W

9By, 9By, dv,  du,
+Bsﬁ< ax ' RGO ) { ox t Ra +ﬂ*ﬂ91+ﬂ0ﬁ*1}

1 au1 3V1 W1
o 0.) s g e e )

v,  du, OB, 9P,
ax _Rao + BB, + ﬁ@ﬁx,) + D15~ +Dx, R0

(&
( 085, 9., )} o8,

ax T TRa0 /{ ox

16
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1 m:.: . m<a Wy
+7 TSA ek Furv + mBA =5 TR T ?usv

V, m—.:

0By, 0By,

+ mnmﬁlmxl +*Ree T BxBg, + \wmu}v + D3+ D22 175

5 9By, 0By, 3By,
+Das\ 5% T Rae /( Ra6

d AwC._ m<4 i._
+ | Brel Tx * Aubu )+ Basl Rgg TR F Ao,

m<4 m_..:

3B, 3B,

—_—+

mh? mhx. mhx\_ mh?
0x Ro6 RJ6 dx

+ + W RdOdx

Taking the variation of eq. 97 with respect to u,, v;, and w, results in

omy = W._> ._.Q_HNme}m.mx, + NthP%hm. + NmeAhx_uuP + \wm.%hx,v
X

m%r_;_ m%/\a nm<<a
+ >a; @X u.,ThX%QX; +>4M mm% +|Iml+bwmu®a

mmmr
ox

ax Rd6
5 368y,  00P,, du,
+Bw| 3% T Roo dx + Bubx,

du ov w
+ >:Almm.+ FFV + >5A =5+t Rt u%_v

G, u o, s,
+>3A mx+m% +P§.+$Fv+m: L+ By g

0By, By, \){ G6u,
+P,,,A ox m%v w ox i@FM

déu. v,  Owy
+ M2l 51 -+ BxOBx, ) + A2\ B3 + -+ Bad8Bs,

36,

d6v,  96u,
+ Asg + + By3Bg, + BgdBx, | + Bas

ox RO +hx§®.+uhux‘_v+oém Ox +Onm RGO

868,

+ B =

Rd6

(98)

36,

aov déu
+ >wQA mx; + wm% -+ ux&h} + h%%‘%}v + mgn % + mnm ﬂ@l
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aé a6 : .
+mumA hma + \wxa v w mf +.<MI‘_+§m\wPM

ox Ra6 Ra6
du, ovy  w,
+ < Az ﬂ.,ruxh} + Az R30 +|_..~|+umhm_

m<a mCa muf mhba
+ >3mﬂ| +m%+§s+ \irv +msmx+m3m%

0By, 9By, v, Ow,
+m8A + v Wm% +—R +$ﬁ§.w

0x Rde
ddu oév ow
+ >4GA mXA + hx%hx‘v + >MQA mm%,_ + Im._l + h@%heiv
doév déu mmu} 06B,
+ >QQA mx._ + mm% + ux%hQa + um%hv:v + mam mx + mmm D%Q.

8 m%hwa m%h} m<4 m_.:
+ B\ 3% T Roe ax T Rag T PP, Boby,

duy ov, W,
+ >4m ﬂ.T&%x; +>nm mmm +|ﬁ|+.®m§?

m<a m54 mhx4 mhﬁa
A.ﬂ.,r Rag T+ Bxbs, +$P.v +Bis 3 tBxsw3,

%s%f &5&5
+m$A ox m%v ﬁ 5x T R +P§.+§FM

mCA m<._ Wy
+ 4B .ﬂ+.wx§} + By, ROO +R 1 Bobe,

m<._ mr: muxd mhma

9By, OBy, 868, ddu,
+oaA 3 +m%v ax t m:A 3 +§Pv
ddv ow dév ddu
+m5A mmm +Im|d+umm3rv+maﬂ mx. + mmm, +F§P+?umrv
o by 0 36k 03, \) 3By
TP o TP Ree TP ot R ) o
duy ovy Wy
48 G+ 08) B et e

m<a mr: mmv: muw‘
+mnm ..wx|+mmm+uxm9+5ur+os mx+0- mmm
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souf e g ) o+ ol e ) ol g+ R0

N 526< aax ?jaué - b +ﬁ96/3x1) L 36y, + b, bo, 6:53;.

o s e e o Benan) sl B+ 50
o

+
080, 3By, \( 0Bo, 0B 2
2 X >}<l A o }+{B16('6_L‘;L+ﬂxﬁxq>

ax | RoO
w1 ) av1
Rae TR T ﬁoﬁo,l) +Bes| 31~ R69 =35+ BB, + Bobx,
LT %o, o [ Lo, O 90bs, , 298% 1| paee
18 5% T “%R3e ' "%\ ax ' RO 3x RO X

Using the definition of N, N,,, ...,

Jx

dév déu _ 06

+ Bss( 8x1 + '5571' + 08y, + /305/3;(1) Die =55
%4

ox

M,,, and combining terms leads to an important form of eq.

98, namely,

o]
57!2 =J. J;{pr&éﬂx“ + Naﬂgiéﬁ& + ng(ﬂ,q(sﬂ& + ﬂthéﬁ)(,) + Nx1<—a—£1— + ﬁxéﬂx‘>

ddv,  w, dvy  Oduy
+Ng1 —R-5-9—+_F\T-+ﬁoéﬁo +N,‘£,1 —6_x—+ Ro0 +ﬂx5ﬁ9,+ﬁeéﬂx1 (99)

95, 365, 360, 288,
+ M, s+ Myg | —5- + =g | pRalx.

+ My, —— Ix

Since stability is studied by the condition én, =0, the above integral is equated zero. Then
this form of én,=0 can be used for approximate solutions to the stability conditions. A

Rayleigh-Ritz formulation can start from this form of on, = 0.

To determine the differential equations, and associated boundary conditions from which

to study stability, integration by parts is used to eliminate differentiation of the variables of
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u,,vy, and w, with respect to the spatial variables x and § This is done, as before, on a term

by term basis as follows:

first term

N 5 dw, aéw1
B, ﬂ,qude- N, % dx Rdfdx (100)

X=+4

é’w1 +
f f N, By, 66, Rdfdx = f (Nx 6w1) ? Rdf
xvo 9 ox X -

| d aw,
—LL -~ (Nx = )5W1Rd0dx

(101)

second term

ij 5B, RdOd —IJN Owy 00wy o o 102
(dp oPo0PoRdbdx= | | No 55 Rag RO (102)
ffNoﬂg1éﬁg Rd0dx——ff 50 (N,, 36 )aw,Rdedx (103)

where continuity of the cylinder has been used.

third term

ffN .58 Rdodx_ffN ow, ﬂRdedx (104)
x8F %P6 5% RO
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J‘J‘ngﬂﬁéﬁ Rdfdx = — JJ =30 ( X 5 >5w1Rd0dx

fourth term
6W1 a(SW1
J‘xLNxﬂﬁf%‘thdedx"LJ‘Nw =30 ox Rd@dx
J-J‘N 54, RdOd J NALIP |x'+';' Rd6
o x089.0Bx Rdddx = | { Nyp o —t
JJ Ix ( X9 * R39 >6W1Rd6dx
fifth term
35 9 X=+;
IJN ——Rd@dx—J‘(N,qém)l 2 Rdo - JJ
K — 2
sixth term

Ny B8 Bx,RdOdx = W 271 Rdfdx
J [ pesnomanoc= [ [, 2222

~ Su,Rdfdx

(105)

(106)

(107)

(108)

(109)
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' L
aw Xt o=
fx J; Ny 808y, Rd0dx = f (Nkﬁéw‘,)l 2 R

==z

IJ. FM ( X o >6W1Rd0dx

seventh term

ffN LALI ff ONa, Sv.RdOd
X=— —=0v X
xJg ' RGO L J, RO V1

ninth term
adw
J o otpapanax=] [, - manos
J j N fodb, Rdedx'f J R0 (Nf% R0 )‘5W1Rd9d"
tenth term

65V1 x=+%
J;J;Nxo' I Rdfdx = J;(N,‘915V‘|)|,(’._2L Rd6

N
—f f %1 5v,Rdfdx
xve ox

(110)

(111)

(112)

(113)

(114)
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eleventh term

ddu, Nyg,
J;J;}N,w1 =38 Rdfdx = II

50 du,Rd6dx

(115)

twelfth term

JIN 88, RdOd —JIN ow 0% o i 116

«Ja xﬂ,ﬂx ﬂB, X= «Ja ¥ 3x RGO X ( )

jJNw Budh Rd@dx——f_[ ¥ ( 0y 5 )5W1Rd0dx (117)
thirteenth term

_ _ow_ dow 00w
LLN"“‘B"‘S[;"'RdedX_LJ.N"”* 50 6x RdfAdx (118)

L
_ow_ X=+ 7"
L LN,‘&BaéBx‘Rdde— _[ (N,(,,1 o 5w1>|  Rdf

=7

(119)
f .[ % (N"f" R0 )‘5‘”1Rd9dx

fourteenth term

J.J.M,q a‘;ﬂ RdeX—J(M 5/3x1)|

M,
Rde-LJ;——-ax 5,,RdOdx (120)

rolr- er—



Using the definition of ﬂ,,, and interchanging the 6 and differential operators, the second term

on the right hand side becomes

M, 36
-j Rdex—jf M w’ (121)
xvg 6

or

aMx1 )(=“'2L
f f 5/3x‘Rd0dx —f( > Rd@
0 x==-2L
(122)
f f 6w1Rd6dx
With this the fourteenth term becomes
é =+ L
_”M —Rdedx——jMéi R
o\ ox x,__;_
123
oM, — &M, (129)
9 0x xa—TL xv¢ OX
fifteenth term
6M,,1
f IM91 W Rdfdx = J;J; YR 5ﬂ91Rd0dx (124)
Using the definition of /3,1, and interchanging operators, the right hand side becomes
f f ——L 68, Rdéd j f dow, ~———Rdfd 125
Rog OPaRdbdx=| | w=o- o X (125)



or

&*M,,
f J 530 6[39 Rdfdx = J L 7302 ~ §w,Rdfdx

(126)
Therefore, the fifteenth term becomes
9*My,
f JMo Rae L Rdfdx = J. J; o7 ow,Rdfdx (127)
sixteenth term
+L
JIM,(,; I(Mw15ﬂ6,)| 2 Rdo

2

128

My, (128)

—J I - 6, Rd@dx
xJg OX 1

Both of these integrals can be expanded by using the definition B,.. The first integral becomes

X=4 =

JM 5 |x'+% Rd6 = JM aowy
0( x84 B01) x,,_.aL. == x84 Rae

2L Rd6 (129)
@ Xm—
x=+-E- ang x=+-l=-
(M,.68,) 2 Rd0=J.<—-—-L<Sw> 2 Rd6, (130)
J; "é1 R Ix——% 0 RO 1 x--'-zL-

where continuity of the cylinder has been used once again. The second integral on the right
hand side of eq. 128 becomes

oM M,g, 35
_Ij 1 58,R dedx__[_[ 00, 00W1 o d0dx (131)
L J, "o RG0
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or

ff — 8, Rdde-—ff R 80 =55 W Rdldx

Hence the sixteenth term becomes

L

255, Mg, \ etk

ff e 69 — dw,Rdfdx

seventeenth term

Mg,
ffo@' R0 LLT@O_W*«R"M"

Rewritting S, ,

My, 36w,
IIM*"'WR“""_II TRE6 ax ovdx.

the seventeenth term becomes

déB,, IM,p, x=+%
J;J;Mw1—R—aTRd0dx=J;< R30 6w1) x=--2£ Rd6

J.J‘ Raed L 5w,Rdfdx

(132)

(133)

(134)

(135)

(136)

Using the results from egs. 101, 103, 105, 107, 108, 110, 111, 113, 114, 115, 117, 119, 123, 127,

133, and 136, the variation of n, becomes
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N, ON N, N
_ _ 4 % X6y 84
‘5"2‘ij9{{ x  RaG }‘5“”’{ x  RaO }‘5‘"
d oW, i oW, d oW,
+{" Ix (Nx ox )“ R0 (Nf’ R0 )" R3O (N”’ ox )

3 0w, 3 aw 3 aw 3 oW
(N )‘ ax (N’% ax )" R40 (Nﬁ% R36 )“ Ro6 <N*91 ax )

~ ox \ * Ro6
oM, M o°M N
d ow X4 0, x84 6,
~ dx (N"”1 Ra0 )_ ¢  R236° ~2Ra6ox T R }5w,}Rd0dx (137)
x=+_L_ =+t
+J‘(N,<1 6u1)‘ 2 +(Nx916v1)| 2
[’] X=m— = x=——2-
aW1 5W1 aW aW aMX, 6Mx91 x__.+_l2-.
+J;{{Nx ax +Nx0 R60 '}'Nm| ax '{"ng1 R69 -+ aX +2 Rae 6W1 |x=—% Rde
aW1 X=l+';‘l)*'
—J MX1<5 | Rdf =0
0 ox e
2
Based on the above variation, the Euler equations are
oN oN
ot x84
I + Y]] =0 (138a)
Mo, + i =0 138b
ax TR0 (138b)
2 2 2
"M, +26M,«,1 +aM01
NG RBGx = R256%
3 ow, 0w, aw aw
L2 —_— — ALY IW_ 8
*ox (N* ox T NwRae T Nu o T Mo Rag ) (138¢)
2 Ows aw, aw ow i\lfL_
+Ro6 (N9 roo T N T5x T Na g N Tax )‘ R ~°

Using the first two equilibrium equations from setting 7, = 0, eqs. 93a and b, and the first two

of the above in the third equation above, the three Euler equations from ér, = 0 can be written

as
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T R30 =0 (139a)
0N, ON,
6x1 + Ra(; =0 (139b)
&M, , M.y, N My,
Ix2 + Rdfdx = R2542
62w, *w, 62w1
—_1 139c¢
+Nx ==+ 2Ny g+ No oo (138c)
w 3w o*w No
+ Ny, Py + 2N, RI03 0 a0 R =0
The variationally consistent boundary conditions are:
atx=+1/2
i) Ny, = 0 or u; must be specified
i) Ny, = 0 or v, must be specified
aw, aw, ow aw aM& aMX&
" (N" ox "N Ras *Nu o TNeRag T okt 2 Rag ) =0 (140)

or w, must be specified

ow
vi) M, =0or

6x1 must be specified

Equations 139, or the alternative form eq. 138, are referred to as the buckling equations. They

along with the boundary conditions of eq. 140 provide the conditions that must prevail when

the cylinder passes from a stable equilibrium configuration to an unstable configuration. Sol-

ution of eqgs. 139 satisfying eqs. 140 leads to the value(s) of the applied load(s) that cause in-

stability. Solution of these equations also gives the buckling shapes relative to the equilibrium

configuration.
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SIMPLIFICATION OF THE EQUILIBRIUM EQUATIONS DUE TO THE CONDITIONS

OF AXISYMMETRY

The studies here will focus on the case of axisymmetric end loads and axisymmetric re-

sponse. For this situation

(141)

( ) being any response quantity. With this condition, the kinematic relations simplify con-
siderably. Specifically, using eqgs. 3 and 6, and reintroducing the superscript ‘o’ notation

where applicable,

du® 1 o w° dv®
83-_- dx +-2- ﬁg y &g = R ' Y:B = dx (142)
d Le]
xg= dﬂxx ; x3=0, x29=0
As a result of eq. 141, the equilibrium equations, eq. 93, simplify to
M o 143
dx - ( a)
dN,,
O = 0 (143b)
d2Mx d2W NB
+ N - +q=0. (143c)
dx? * dx? R

The accompanying boundary conditions are



atx = -L/2

i) Ny=Ng or u® must be specified ,
ii) Ny =Ny or v° must he specified,
X dw®

dM
i)~ + N =0 or w® must be specified, (144a)

o
iv) My=0 or ddV: must be specified .

atx = + L/2

) Ny=NJ or u® must be specified,

ii) Ny =Ny or v° must be specified,
dM 0 .
il) ——=+N, ddv; =0 or w® must be specified , (144b)

dx

. dw® op
iv) My,=0 or dx must be specified .

Equations 143 and 144 will be the focus of the remainder of the study. In the next section the

solution of these equations for the case of a known axial end load will be derived.

SOLUTION OF EQUATIONS FOR THE CASE OF AN AXIAL END LOAD

The first equilibrium equation of eq. 143 integrates to become

N, = constant . (145)

Since the axial load is known at the end of the cylinder, this constant is the applied end load.

It will be referred to simply as N. The second equation of eq. 143 integrates to

N,s = another constant . (146)

Since in the present work there will be no torsional loading on the end of the cylinder, the

shear N, is zero there and thus this constant must be zero, i.e.,
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N = 0. (147)

To solve the third equation of eq. 143 it is most convenient to express all quantities in that
equation in terms of w°. This is accomplished by using the definitions of the stress resultants,
eq. 20. Here the preloading condition is thermal. Thus eq. 22 is used in conjunction with eq.
20. In using these equations it convenient to consider only cylinders that will not experience
a global twist due to the application of axial end loads, i.e., consider the case of A,;and Ay,
equal to zero. This is a valid assumption for most applications of cylinders. With this situ-

ation, using the definitions of the stress resultants and the simplified kinematic relations,

[¢] d2 Wo T

= o N SwW_ _NT=
Ni=Anex + Az By4 e Ny=N
(o] 2.0
w d'w T
Ng = Aty + A~ ~ 512-";2— —Ng
2.0 (148)
o d'w T
N =Age¥ug — Bis=——7~ —Nw=0
dx
o 2.0
¢ w d'w T
My = Bysele + Biz—x~ + Big¥gg — D11—% — My.
dx
Solving the first equation for ¢,
s°=_-1-— N+N —A _W_°-+B _Cfl‘i. (149a)
A x T2 R gl )
and the third for yg,
o Bis d’w® + Nu (1490)
Yxg = .
X0 Ags  dx’ Ags

Substituting these into the expressions for N, and M, yields
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A1z T T
+—AT1—(N+NX)—N9
By4A o B? B2 2.0
M. =[ B, — =12 | w D 16 1\ d'w
X " Ars R " As Ay dx?
By T T, B 1
W (N+NJ) — Mg+ el

(150a)

(150b)

For the three laminates of interest, i.e., the (0,/90,),, the (90,/0y):, and the (0/90),¢ laminates,

T
Ba = —Byyi Byy = Byg = Byg = Bgg =Ny = 0.
The expressions for N, and M, simplify to

2
No = A — Al w’ + A12Byq4 d’w®
¢ 2 Ay )R A1 dx?

A12 T T
* A (N+Ng) = Ng

Mo=( —PuBu\we (L Bl dwe
* A1 R Ay dx?

By4 T T
+A—11(N+Nx) - M,.

(151)

(152a)

(152b)

Substituting these into the third equilibrium equation, and considering the case of q =0, leads

to the equation governing we. This equation is

(153)
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This equation is a linear differential equation with constant and known coefficients. The
applied axial load N is known, as are the matérial properties, equivalent thermal loads, and

geometry. This structurally nonlinear problem results in a mathematically linear problem.

Having addressed the three equilibrium equations, attention focuses on the boundary
conditions. Two of the four on each end have been specified. |n particular, statements have
been made regarding N, and N,. These satisfy eq. 144a and b, i and ii. To be considered are
eq. 144a and b, iii and iv. Regarding these two remaining conditions, within the context of the
admissible conditions, three physically plausible boundary conditions can be imposed on the
ends of the cylinder. These are:

1 - lubricated boundar:es;
2 - simply supported boundaries; and,

3 - clamped boundaries.

For lubricated boundaries the shear force and moment at the ends are zero. For simply
supported boundaries the radial displacement and the moment are zero. For the clamped
boundaries the radial displacement and the slope are zero. The terminology ’lubricated’
comes from the fact that the radial displacement has no resistance, as if a highly lubricated
flat plate were pushing axially against the ends of the cylinder. This lubricated flat plate would

not resist rotation of the ends either.

For a lubricated boundary, the conditions are formally, from eq. 144,

dM, dw®
dx N dx 0
and (154)
M, =0,

while for a simple support the conditions are
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w "=é) | (155)

M, =
For a clamped support the conditions are
wl=0
0 (156)
dw =0
dx
in terms of we, for the three laminates of interest the lubricated support conditions are
531 d’w® A12B44 dw®
D11 - 3 + - N = 0
A11 dx RA11 dx
and
B? 2,0 A,.B (157)
Dy, — 1 \1d v: + 12511 )wo
A | dx RAq4
—ﬁ(N+NT) + My =0
A11 X X *
For a simply supported boundary, the conditions are:
w’=0
and
Bl \ d®w® A12B11 \ o
D4y — + w
( 11 A11 dX2 RA” (158)
-3”—(N+NT) +M =0
A11 X X *

For a clamped boundary the conditions are as given in eq. 156. Here interest will focus on

simply supported and clamped boundaries.

PRELOADING RESPONSE DUE TO THERMAL EFFECTS

Cylinders are generally fabricated on a mandrel and are consolidated at an elevated

temperature. After consolidation the temperature is lowered to the ambient temperature and
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the finished cylinder is removed from the mandrel. Assuming that the fabrication and con-
solidation are axisymmetric, the shape of the cylinder can be determined using the governing
conditions from the previous section. Specifically, since there are no loads applied to a cyl-
inder that has been removed from the mandrel, eq. 153 with N equated to zero governs the

response. That is,

2
D.. — Bis | d'w° + 2A12B11 d*w®
" dx* AR gy

2 T
Y Atz \w® _ No  An 1
2 An ) R? R RAy 7

With the cylinder simply in the ambient environment, the ends of the cylinder are traction free.

(159)

Thus the two other boundary conditions, N, =0 = N, being the first two, are

=M,=0. (160)

In terms of displacements, the boundary conditions at x = +L/2 are

B2 3 0 AsBae 0
Dy — 1 d v: + 12511 dw -0
A11 dx RA11 dx

and
B.. — BY ) a®w® + A1gBa1 ) o (161)
" Ay dx? RA4
Bir 7 T
~ ANy = My =0

The complete solution to eq. 159 consists of homogeneous and particular parts, i.e.,
Wo(x) = Wgomo(x) + Wpan(x) . (162)

By inspection, the particular solution is
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R(A14Ng.— ApNy) T '
wgan(x) = AA A2 = Wpart » (163)
11722 — Az

where the notation w],, denotes the particular solution to the thermal problem. Note that it is

not a function of x.

The homogeneous solution is of the form
Whomo(X) = A e (164)

Substituting this assumed form into eq. 159 results in the characteristic equation, namely

2A,.B AqgsA,, — A2
(D11A11—B$1)A4+(%‘>22+<—L2R2—2—£)=0. (165)

The four roots to this equation are

—A12Byy + \/A11(D11A32 + AgpBYy — A11Az,Dy,)
1234 = :t\/ (166)

R(Ds1A ~ B3,)

These four roots are of the form

Aae= T a % iB, (167)

@ and f real and positive. It should be noted that the characteristic roots are strictly functions
of the elastic properties and geometry. Thermal effects, in terms of material expansion coef-

ficients or temperature, are not involved. At this point in the analysis « and f§ are known.

Because of eq. 167, the complete solution for the thermally-induced response is given by
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w?(x) = A1 e(a+l,6)x + A2 e(a—lﬁ)x + Aa e(—a+lﬂ)x
R(A1sNG — AsaNy) (168)
2 '
AsrAz — Atz

+ ATy

where A, are the four unknown constants of integration and the subscript ‘T" with we(x) is used

to denote the fact the solution is for the case of thermally-induced preloading.

Since the boundary conditions, eq. 161, are the same at each end of the cylinder, the
thermally-induced response is expected to be an even function of x. Using this fact, the odd

functions of x of solution eq. 168 can be eliminated to yield

T T
R(A11Ng = AroNy)
2
AnAg — A

w3(x) = F cosh(ax) cos(fx) + G sinh(ax) sin(fx) + (169)
The unknown A, are combined to form unknown constants F and G. By substituting the sol-
ution form eq. 169 into the boundary conditions, constants F and G can be solved for. With F
and G known, the displacement wi(x) is known. (Obviously with evenness of the solution be-

ing enforced, the boundary conditions are enforced at one end of the cylinder only.)

Numerical results for the three laminates of interest are illustrated in figs. 2-4. The cylin-
der geometry and material properties used to obtain numerical results, in these figures and
throughout, are as follows: The cylinder radius R is 10 in., the cylinder length is 30 in.
(L/R = 3, a short to intermediate length cylinder), and the cylinder thickness H is 0.080 in.

(R/H =125, athin laminate). The material properties are

E, =20 Msi; E,=1.3Msi; G;;=1.03Msi
v4, =0.3; h (lamina thickness) = 0.005 in. (170)

ay =-~0.167 x 107°[°F; ay=156 x 1078/°F .

In terms of laminate properties, for the (90,/0,); laminate
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A11 = A22 = 857,000; A12.= 31,400 lb/in.
By1 = 15,100 Ib/in.; D,y = 457 Ib/in.? (171a)
Ny = Nj = —259 Ib/in./°F; M = 3.94 Ib/in.2/°F |

For the (0,/90,), laminate,

Ayy = Ay = B57,000; A,, = 31,400 Ib/in.
Byy = —15,100 Ib/in.; D,, = 457 Ib/in.2 (171b)
Nx = Ng = —259 Ib/in./°F; M] = —3.94 Ib/in.2/°F .

For the (0/90),, laminate,

Ay = Ay =857,000; A,, = 31,400 Ib/in.
Byy=0; Dy, =532 Ib/in.? (171¢c)
Ny = Ng = —259 Ib/in./°F; Ml =0.

To neglect thermally-induced preloading effects, NI, N] and M] are set to zero. Note that for
all three laminates the elements of the A matrix are identical. The quantity B,, is of opposite
sign for the two unsymmetric laminates. Of course By = 0 for the symmetric laminate. Since
the 0° layers are on the extreme outside and inside of the cylinder wall, the value of D,, is
greater for the symmetric laminate. The quantities NI and Nj are the same for all three lam-
inates, whereas M] is opposite in sign for the two unsymmetric laminates and zero for the
symmetric case. The rearrangement of the 0° and 90° layers in the three laminates only in-
fluence the out-of-plane, or bending, properties of the laminate. A temperature change of
AT = —280°F is used to represent the temperature change from a 350°F consolidation tem-

perature to an ambient temperature of 70°F,

The radial displacement, wi(x), as a function of length along the cylinder for the (90,/0,),
laminate is shown in fig. 2. The displacements have been normalized by the laminate thick-
ness while the axial coordinate has been normalized by the cylinder length. Several inter-

esting characteristics of the thermally-induced response are illustrated in the figure. These
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will be parﬁcularly interesting when compared with results for the (04/90,); laminate, to be
discussed shortly. From the figure it is seen that over the majority of the length of the cylinder
the displacement is uniform and inward, i.e., W < 0. Near the end, x/L > 0.4, there is a rapid
change in the radial displacement, the displacement becoming more inward at the end of the
cylinder (x/L =0.5). This behavior is due to the unsymmetric nature of the laminate, in par-
ticular, the thermally-induced moment generated within the laminate. Away from the ends of
the cylinder the moment has no effect on the displacement. Thermal expansion in the x and
g directions, as well as the elastic properties in these directions, control the displacements
away from the ends. At the ends of the cylinder there is no material to react the thermally-
induced moment. The cylinder responds as if the ends were being subjected to an applied

moment. The ends of the cylinder ‘curl’, producing a boundary layer effect.

If the stacking arrangement is reversed and a (0,/90,), laminate is considered, the cylinder
deforms as shown in fig. 3. Interestingly enough, the central portion of the cylinder, away from
the ends, moves radially inward the exact same amount as the (90,/0,); cylinder. Near the
ends there is the rapid change in radial displacement. in this case, however, at the end the
cylinder deforms outward. This is opposite the situation for the (90,/0,); laminate. The direc-
tion the ends of the cylinder ‘curl’ is a function of the sign of the thermally-induced moment.
The sign of the thermally-induced moment is a function of the stacking arrangement. The sign
of the thermally-induced moment is opposite in the two cases, resulting in opposite bending
deformations. The point to be made at this time is that before any loading is applied to the
cylinder, there is a nonuniform radial displacement along the length of the cylinder. The lack
of a uniform displacement, particularly since it is concentrated in a boundary layer near the
ends, where the loads are applied, and particularly since the specific displacement is

laminate-dependent and sign-sensitive, is an important point.

For completeness, the thermal deformations of a (0/90),, laminate are illustrated in fig. 4.

For this symmetric laminate the radial deformation due to the temperature change is uniform
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along the length. The inward radial displacement is identical to the inward radial in the central

portion of the (90,/0;); and (0,/90,), laminates.

A note of interest: The deformation in the central portion of the cylinders, for any lami-
nation sequence, is given by the particular solution, we,«(x). The response near the ends is
controlled by the homogeneous solution. For the symmetric (0/90),s laminate the homogene-
ous solution is zero. For the other two cases the homogeneous solution is a major influence.
Since the particular solution is the same for each of the three laminates, the inward radial

displacement is the same away from the ends for each of the three laminates.

Of interest is the response that results when an axial compressive load is applied to the
(90,/0,); and (0,/90), thermally-deformed cylinders. Is inclusion or exclusi;)n of this thermally-
induced preloading deformation important for predicting the load-induced response of the
cylinder? These issues are discussed next. With or without the thermal preloading condition,

calculating the response to an applied load is a more complicated problem.

SOLUTION OF EQUATIONS FOR THE CASE OF THERMAL EFFECTS AND

AN AXIAL END LOAD

The combined problem of thermal and mechanical loads is governed by eq. 153 and
boundary conditions eqgs. 154, 155, or 156. As with the thermal-only problem, the solution

consists of a homogeneous part and a particular part, i.e.,

wo(x) = W:omo(x) + wgart(x) . (172)

The particular solution is again determined by inspection to be

R(AssNg — Agy(N; +N))

(o]

wpan(x) = > = Wpart - (173)
A11hze — Alp
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Note that this particular sclution is also independent of x. The homogeneous solution to
this problem is taken to be of the form given by eq. 164. For this case, the characteristic

equation is given by

2A.,B.4 — ARN AqiAy, — A2
2,4 12211~ A1 11722 — A2
(D11A11 - B11)/l -+ ( R )/12 + <_—'E2"_—) = 0 N (174)

Note the applied axial load appears in the characteristic equation. The level of applied load
will be specified and hence all coefficients of A in the above equation are known. The four

values of A are thus known at this point.

The roots to the characteristic equation are given by

11.2.3,4 =

\/(AHRN —2A1Byy) £ \/(A11RN —2A1B41) = 4(Aq1Az — AT))(D11Ars — BY)
2(Dy1A45 — BI1)R

(175)

Though it is not totally obvious, there is an interesting character to the roots to eq. 175. This
is due to the dependence of the roots on the level of applied load, N. The character of the

roots can be examined by studying A? instead of 4, i.e.,

2
_ (A1RN — 2A;,Byy) £ \/(A11RN —2A1,B44)" — 4(A11A22 - A$2)(D11A11 - B$1)

12
2(011A11 - 831)R

(176)

The first important character to observe is that at a certain level of applied load the
discriminant will be zero. In particular, the discriminant is zero when N =N, N° being given
by
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N* = ﬁ s \/(A11A22 - Afz)(DﬁAu - 831) + A12B11} ’ (177)

For a symmetric laminate B,, =0 and the determinant only vanishes for negative N*, a
compressive load. For unsymmetric laminates, though it is unlikely, the determinant could
vanish for positive N*, depending on the magnitude of Ay, A,,, Ay, B,,, and D,,. Here the

negative sign will be assumed in eq. 177 and interest will focus on negative N*.

Returning to eq. 175, for N = 0, the roots to A2 are, in general, complex. The roots to 1 are

thus of the form
A1234= % a« %if. (178)

If the laminate is symmetric, N = 0 leads to two purely imaginary roots for 12. The roots for A

are still of the form of eq. 178.

For N increasing compressive the roots to A2 remain complex, the roots for A being given

by eq. 178. When N = N*, 12 has negative real repeating roots. In particular,

O Y (179)
(D11A¢y — B;)R?

The four roots for 4 are then two repeating pure imaginary roots of the form

Aip3e= L i, L ip. (180)

For N increasing in compression beyond N*, the roots for A2 are distinct and negative real.

The roots for 1 are of the form

'{1.2.3.4= i iﬁh i iﬂz. (181)
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Because of these three different forms for the roots, depending on the value of N relative

to N*, the functional form of the x dependence of the homogeneous solution depends on the

value of N. This fact leads to a dependence on N of the deformed shape along the length of
the cylinder. The amplitude of the deformed shape also depends on N. For the linear prob-
lem, shape of the deformation does not depend on N. Only the amplitude of the deformation
depends on N. This difference in the dependence on N between the linear and nonlinear

cases is important.
The functional dependenca of homogeneous solution on x is as follows:
For [N] < |N*|, from eq. 178
Whomol(X) = A,eBHA% L A g% Ayel A 4 AT x (182)
This is the same form as for the thermally-induced preloading deformations.
For |N| = |N*|, from eq. 180
WhomolX) = (Aq + Azx)em X+ (A + A4x)e'w *. (183)
For |[N] > [N*|, from eq. 181,

Woomo(X) = Aq cos(B4x) + Ay sin(B4x) + A, cos(f,x)

+ A, sin(Bx) . (184)

Combining these solutions with the particular solution, eq. 173, and considering only the

portion of the solution that is symmetric in x, the three forms are:

For |N| < [N*],
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w’(x) =F cosh(ax) cos(fx) + G sinh(ax) sin(8x)
s R(A11Ng — Ap(NE +N)) (185)
A11A22 - A$2

For |[N] = |N*],

R(A14Ng = Ay(N; +N))

w®(x) = F cos(Bx) + G x sin(fx) + (186)
AyiAg — Al
For IN| > N[,
T T
wo(x) = F cos(B;x) + G cos(f,x) + R(AuNs = An(Ny +N)) (187)

2
A11A22 - A12

The constants F and G can be determined by the application of bou ndary conditions. The case
of thermally-induced preloading deformations (N =0), eq. 179, is a subcase of the solution

given by eq. 185.

With the above solution, the response of a cylinder to an axial end load in the presence
of the thermally-induced preloading deformation can be determined as a function of N*. With
the thermally-induced preloading the boundary conditions must be carefully interpreted. In
particular, since the ends of the cylinder are already deformed due to the thermal preloading,

the simple support conditions become

(4)-i(%)

Bl | &?w° A12B11 \ o By T T
Dyy — + W - N+N) + M, =0. 188
( 1" A11 ) dx2 RA" A" ( + x) x ( )

For a clamped boundary the conditions are
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w(5)=4(2
() o

dx

)

) (189)

2

Any experimental set-up that is simulating simple support or clamped conditions would
resist any end displacement beyond to the preloading value. Clamped conditions would pre-
vent any rotation beyond the preloading value. Simple support and clamped conditions for the
(90,/0,); cylinder are depicted n figs. 5a and b, respectively. The situation for the (0/90),¢ cyl-
inder is shown in figs. 6a and b. For unsymmetric laminates the load N* is applied eccen-
trically relative to the midsurface of the cylinder wall. This could have a large influence on the

response of the cylinder near the ends.

NUMERICAL RESULTS FOR THE CASE OF THERMAL EFFECTS AND
A COMPRESSIVE AXIAL END LOAD

The primary reason for the current study is summarized in the figures to follow. Results
from the closed-form solution of the radial displacement as a function of length along the cyl-
inder for increasing compressive axial load levels are presented. The load levels examined
are normalized by N*. Note that N* is independent of boundary conditions and thermal pre-
loading. The value of N equal to N* has been interpreted as the value of N to cause buckling.
Flugge [4] discusses this in connection with isotropic cylinders but the point is not pursued
here. As will be seen, the response of the cylinder when N = N* suggests that N* may be

associated with an instability.

Simply-supported boundary conditions

The deformed shape of a simply-supported (90,/0;), cylinder for N =0 is shown in fig. 7.

As before, in this and subsequent figures the radial displacement has been normalized by the
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thickness of the cylinder wall, H. The axial coordinate is normalized by cylinder length, L .
Figure 7 is identical to fig. 2 except the radial diéplacement at the end of the cylinder is defined
to be the location of zero displacement. In reality the radial displacement of the end of the
cylinder is w;(L/2). This shift of coordinates is strictly cosmetic. If thermally-induced pre-
loading deformations are neglected, the radial displacement is represented by the line
w/H = 0. That the cylinder is assumed to be simply supported is irrelevant for this figure.
The figure would be identical if the supports were considered clamped. Experimentally the
cylinder would be mounted in the fixturing so as to effect the simple supports or the clamped
supports. Since, in theory, no loads are involved in mounting the cylinder in the fixture, the
preloading shape of the cylinder would not be influenced by the support conditions. Obvi-

ously, when loads are applied to the cylinder, the support conditions become very important.

The radial response of the simply-supported cylinder when the load is 10% of N* is shown
in fig. 8. The response when the thermally-induced preloading deformations are incorrectly
neglected in the analysis is indicated by the dashed line. This situation will be discussed.

For the (90,/0,),
N* = —2460 Ib/in. (190)

At the 10% level, the response due to the applied load is not too different than the thermally-
induced preloading response, fig. 7. When the compressive load reaches 50% level, fig. 9, the
applied load causes considerable response (note the vertical scale compared to fig. 8). The
central portion of the cylinder has moved outward some, but the major effect is at the end of
the cylinder. Atthe end of the cylinder the magnitude of the radial deformations has increased
considerably, and though not detectable from the figure, the length of the boundary region has
increased somewhat. The rapid change in magnitude at the cylinder end could clearly gen-
erate significant bending strain. When the load is increased to 90% of N*, fig. 10, the boundary
layer has clearly lengthened. The oscillatory nature of the deformations encompass one-half

the cylinder. In addition, the magnitude of the deformations has become severe. |n particular,



the cylinder wall has displaced one wall thickness. Since there are high localized curvatures
associated with this level of deflection. The level should cause concern. The oscillatory na-
ture of the displacements is such that at points (e.g., x/L = 0.44) the cylinder radius is less
than the undeformed radius, despite the fact that axial compression causes the cylinder, in
general, to become larger in diameter. The stresses and strain that accompany these dis-

placements are not reported cn here.

As mentioned above, the dashed lines in figs. 8-10 represent the predicted response if the
thermally-induced preloading deformations are not included in the analysis. As can be seen
by examining the figures, neglecting the thermally-induced deformations results in a predicted
displacement that is less than is predicted when the thermally-induced displacements are in-
cluded. At N = 0.5N* the predicted peak displacements at x/L = 0.47 are different by a factor
of two. At N =0.9N* the peak displacements computed by neglecting the preloading thermal

effects are about 40% lower than if preloading effects are included.

The response of the simply supported (90,/0;); cylinder when the applied load equals N*
is shown in fig. 11. It is clear that the magnitude of the deformation is essentially unbounded
at this load level. The deformations are oscillatory, the spatial frequency being given by eg.
179. As stated previously, the present work will not investigate the relationship of this load
level with the buckling load level. With the load increasing to 1.1N" the response of fig. 12
res_ults. The amplitude of the deformations has decreased considerably relative to the
N = N* level. There are two basic frequencies to the oscillatory character of the response,

these two frequencies being given by eq. 181.

That the boundary layer increases in length as the load is increased is an important non-
linear effect. For a linear analysis, the length of the boundary layer does not depend on the
level of applied load. For this nonlinear problem, the length of the boundary layer and the
level of applied load are related through the characteristic roots A, of eq. 179. In particular, the

length of the boundary layer is related to the recriprocal of the real part of 4, namely 1/a. The
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values of 1/a as a function of the load level for the (90,/05)s laminate of figs. 7-10, and for the

other laminates to be discussed shortly, are presented in Table 1.

Table 1

Boundary Layer Length, 1/a, for the Three Laminates

N (905/0;) (04/90;), (0/90),

0 0.56 1/in. 0.54 0.71
0.1N* 0.59 0.56 0.74
0.5N* 0.79 0.76 1.00
0.9N"* 1.77 1.70 2.23

As can be seen, for the (90,/0,), laminate, the boundary layer triples in length as the load level

changes from zero to 0.9N*.

As a contrast to the response of the (90,/0,); cylinder, consider the response of a simply-
supported (0,/90,), cylinder. The characteristics for this cylinder are illustrated in figs. 13-18.
The radial displacement at the condition of no axial load is shown in fig. 13, the displacement
at the end of the cylinder again being taken as the zero displacement location. Figures 13 and

3 differ only by a shift of origin. For the (0,/90,); cylinder

N* = —2681 Ib/in. (191)

The sign of B,, is responsible for the difference between N* for the (90,/0,); laminate and N* for

the (0,/90,), laminate.

As the load is applied to the (0,/90,), cylinder, the central portion of the cylinder moves

outward, as it did with the (90,/0,); laminate. However, the boundary layer region develops
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large inward deflections. At the location x/L = 0.47, the cylinder wall has moved in about one
wall thickness when the load level reaches 90% of 'N'. Again the boundary layer region has
grown considerably and developed rapid oscillations which could lead to large stresses. The
length of the boundary layer, given in Table 1, is similar to that of the (90,/0;); laminate. It is
interesting to compare figs. 16 and 10. In the boundary region, the rapid changes in the dis-
placement of the (0,/90,), faminate are exactly opposite in sign to the rapid changes in the
displacement of the (90,/05) laminate. The sign of B,,, which is opposite for the two laminates,
is directly responsible for this feature. The response at N = N* is illustrated in fig. 17. The
response is essentially unbounded at this load level. Comparing the response of this cylinder
at N = N* with the response of the (90,/0,), cylinder at N = N* , fig. 11, it is clear that the re-
sponses of the two cylinders are exactly out of phase. This again is due to the sign of By,.
Since the values of N* are not the same for these two cases, the load is not the same in these
" two cases. The response for the case of N = 1.1N" is shown in fig. 18. The amplitude of the
deformations has decreased relative to the N = N* level, and two basic frequencies are again

evident.

Since the unsymmetric laminates exhibit considerable radial deformation when com-
pressed axially, it is of interest to study the radial deformations of a symmetric laminate. The
response of the (0/90),s laminate is shown in figs. 19-24. The preloading radial deformations
due to thermal effects are simply a spatially uniform displacement inward, as was shown in
fig. 4. This uniform radial displacement is shown again in fig. 19 with the reference for zero
displacement shifted, as has been done with the other two laminates. For this symmetric
laminate the shifted preloading radial displacement coincides with the w = 0 line for all x.

For the (0/90),s laminate
N* = — 4270 Ib/in. (192)

This is significantly higher than the values of N* for the other two laminates.
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The radial displacement for a load of N equal 1_0% of N* is illustrated in fig. 20. The de-
flection is everywhere outward. For the 50% ahd 90% levels, figs. 21 and 22, respectively, the
deflections increase, and the boundary layer increases in length. The deflections at N* and
1.1N* are shown in figs. 23 and 24, respectively. The deflections, though increasing with in-
creasing N, do not reach the magnitudes that were observed for the two unsymmetric lami-
nates. In addition, by comparing the values of N* for the three laminates, the loading on the
symmetric laminate at 90% of N* is considerably higher than the loading on the unsymmetric
laminate at 90%. Yet the displacements are a factor of 20 less with the symmetric laminate.
Referring to Table 1, the boundary layer for this symmetric laminate is greater than for either
unsymmetric laminate. When the thermally-induced preloading deformations are ignored in
the analysis for the symmetric laminate, the response is predicted to be the same as when
they are included. The lack of difference between the two situations can be attributed to the
fact that the preloading deformations are spatially uniform for the symmetric laminate. There

is no initial eccentricity at the ends of the cylinder where the load is applied.

Clamped boundary conditions

Since the simply supported unsymmetric laminates exhibited large, rapidly changing dis-
placements near the end of the cylinder as the load level increased, it is legitimate to ask if
similar behavior would be observed for other boundary conditions. It would seem that
clamping the boundary would restrain the deformations considerably. The response of the
(90,/0y); laminate with clamped ends is illustrated in figs. 25-30. The case of N = 0 is shown
in fig. 25, this being a repeat of figs. 2 and 7. This figure is repeated here for convenience.
When a load of N equal 10% of N* is applied, fig. 26, the central portion of the cylinder moves
outward and the deformations near the boundary begin to grow. As the load level is increased
to 50% and 90% of N*, figs. 27 and 28, respectively, the boundary layer grows in length and
the amplitude of the deformations in the boundary layer increase significantly, as they did for

the simply-supported conditions. However, compared to the simply-supported case, figs. 8-12,
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the clamped conditions sharply restrict the boundary layer deformations. At N = 0.9N*, the
deformations in the boundary layer for the cla‘mped condition are one-fifth the deformations
in the boundary layer for the simply-supported condition. The lengths of the boundary layers
for the two support conditions are the same. The lengths of the boundary layers, given in
Table 1, do not depend on the boundary conditions. At N = N*, the magnitude of the re-
sponse of the clamped cylinder, fig. 29, is much less than for the simply supported case. |If
N* is associated with buckling, based on a comparison of figs. 11 and 29, it would have to be
more closely associated with buckling for the simply-supported conditions than for the
clamped conditions. For the clamped cylinder, at N = 1.1N", fig. 30, the amplitude of the de-
formation i§ greater than for N = N*. This was not the case for the simply supported cylin-

ders, the response decreasing rapidly for N > N*.

The dashed line in figs. 25-30 represent the predicted deformations when the thermally-
induced preloading deformations are neglected for the clamped case. Neglecting the pre-
loading deformations for the clamped case seriously under predicts the amplitude of the
oscillating behavior in the boundary layer. At the 90% level the peak-to-peak amplitude of the
oscillations of w/H is predicted to be over 0.1 if the preloading deformations are included, as
they should be. If the preloading deformations are neglected, the peak-to-peak amplitude of

the oscillations is quite small in comparison.

Clamping the boundaries of the (0,/90,); laminate, figs. 31-36, produces a similar reduction
in the amplitude of the osciilations in the boundary layer when compared to the simply-
supported case. At the 90% load level the peak-to-peak amplitude of the oscillations is again
about one-fifth the magnitude of the peak-to-peak amplitude of the oscillations for the simply-
supported case. As with the comparison between the (90,/0,); and the (0,/90,); laminates with
simply supported boundaries, the sense of the boundary oscillations of the (03/90,); laminate
are opposite those of the (90,/0,) laminate. At the x location where the radial displacement is

most outward with the (90,/0;),, the radial displacement of the (0,/904); is most inward. Also,
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for the (0,/90,); laminate, neglecting the preloading deformations leads to considerably differ-
ent predictions for the response due to load. In fact, if the preloading deformations are neg-
lected, the response of the (0,/90,); and the (90,/0,); are practically identical, as can be seen

by comparing the dashed lines in figs. 25-30 with those in figs. 31-36.

The effects of clamping the boundaries of the (0/90),s are shown in figs. 37-42, fig. 37 being
trivial and a repeat of previous figures. As with the two unsymmetric laminates, clamping
greatly reduces the amplitude of the oscillations in the boundary layer. Atthe 90% leve! and
for simple supports, fig. 22, the peak-to-peak amplitude of the oscillations is about 0.05.
Clamping, fig. 40, reduces the peak-to-peak level to less than 0.015. In addition, compared fo
the clamped unsymmetric laminates, the magnitude of the peak radial displacement of the
clamped symmetric laminate is considerably less. Hence symmetric construction of the lam-
inate reduces the displacements in the boundary layer indep‘endent of boundary conditions.
Boundary conditions, however, have a significant influence on the displacements in the
boundary layer. In this regard, it is important to note that boundary conditions have no in-
fluence on the radial deformations in the central portion of the cylinder, away from the
boundary layer. A close look at all the figures just discussed will show this to be the case.
As mentioned before, the deformations in the central region are determined primarily by the

particular solution to the problem.

Before concluding this study, a comment should be made regarding the axial displace-
ment. While attention has been focused on the radial displacement, the axial displacement
can be easily determined. Using eq. 142 in eq. 149a and integrating, an expression for u*(x)
can be obtained. By applying the condition that, for example u®(0) = 0, a complete expression
for u°(x) results. The functional form of the integration depends, of course, on the value of N

relative to N*.
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CONCLUSIONS

From the results presented, several important conclusions can be drawn. First, the
inclusion of the thermally-induced preloading deformations in the analysis of response due to
axial load has a significant inf:uence on the predicted response. In general, if the thermally-
induced preloading deformations are not included in the analysis, the predicted deformations
are less. The specific amount less depends on the laminate, the boundary conditions, and the
load level. A second conclusion is that unsymmetric lamination sequences result in much
larger radial deformations than with symmetric laminates. The differences can be as much
as an order of magnitude. Third, the sense of the lack of symmetry in the lamination sequence
(i.e., the sign of the B, components) determines to a large degree the sign of the radial def-
ormations. This is particularly true for the sign of the oscillatory deformation, near the
boundary layer. Forth, for this nonlinear problem, the length of the boundary layer is a func-
tion of the applied load level. In addition, the length of the boundary layer for the symmetric
laminate is greater than the length of the boundary layer of either unsymmetric laminate.
Finally, clamped boundary conditions suppress the radial deformation considerably relative to
the simply supported case. The effects of asymmetry and thermally-induced preloading are,

for the most part, independent of the support conditions.
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Fig. 25 - Radlal Deformations of the Clamped (90,/0,); Cylinder, N = 0.
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Fig. 26 - Radlial Deformations of the Clamped (90,/0,), Cylinder, N = 0.1N*.
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Fig. 27 - Radial Deformations of the Clamped (90,/0,); Cylinder, N = 0.5N".

101



w/H

x/L

Fig. 28 - Radial Deformations of the Clamped (90,/0,); Cylinder, N = 0.9N".

0.2
015 T
0.1 T including thermal deformations
0.05 +
"~ ignoring thermal deformations ﬁ
0 S
-0.05 : : : t
0 0.1 0.2 0.3 0.4 0.5

102



w/H

0.25
02 + including thermal deformations /
0.15 +
0.1
0.05
_ _
o \ L. ‘ ll ‘\ fl
ignoring thermal deformations \ <
0 0.1 0.2 0.3 0.4 05
x/L

Fig. 29 - Radial Deformations of the Clamped (90,/0,); Cylinder, N = 1.0N*.
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Fig. 31 - Radial Deformations of the Clamped (04/90,); Cylinder, N = 0.
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Fig. 32 - Radial Deformations of the Clamped (0,/90,), Cylinder, N = 0.1N".

108



w/H
0.05
ignoring thermal deformations
0 -
1(
-0.05 T
including thermal deformations
0.1 T
-015 T
-0.2 ; : % :
0 0.1 0.2 0.3 0.4 0.5
x/L

Fig. 33 - Radial Deformations of the Clamped (0,/90,); Cylinder, N = 0.5N".
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Fig. 34 - Radial Deformations of the Clamped (0,/90,),

Cylinder, N = 0.9N*.
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Fig. 35 - Radlal Deformations of the Clamped (0,/90,); Cylinder, N = 1.0N".
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Fig. 36 - Radlal Deformations of the Clamped (0,/90,), Cylinder, N = 1.1N".
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Fig. 37 - Radial Deformations of the Clamped (0/90),, Cylinder, N = 0.
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Fig. 38 - Radlal Deformations of the Clamped (0/90),s Cylinder, N = 0.1N".
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Fig. 39 - Radial Deformations of the Clamped (0/90),, Cylinder, N = 0.5N".
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Fig. 40 - Radlal Deformations of the Clamped (0/90),, Cylinder, N = 0.9N*.
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Fig. 42 - Radlal Deformations of the Clamped (0/90),s Cylinder, N = 1.1N".
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