View metadata, citation and similar papers at core.ac.uk

L=
*
brought to you by .. CORE

provided by NASA Technical Reports Server

N90-25563

The Application of NASREM to Remote Robot Control

Michael W. Walker, Joe Dionise, Al Dobryden

Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109

Abstract
This paper describes the implementation of a remote robot con-
troller, wherein the distance to the remote robot causes signifi-
cant communication time delays. The NASREM telrobot control
architecture is used as a basis for the implementation of the sys-
tem. Levels 1 through 4 of the hierarchy were implemented. The
solution to the problems encountered during the implementation

and those which are unique to remote robot control are described.

1 Introduction

Remote robot control is becoming an increasingly important dis-
cipline in robotics. Undersea exploration, mining, and salvaging
operations, and the inspection and maintenance of nuclear power
plants are examples of terrestrial based applications. Space ap-
plications include the construction of large space structures, the
in situ maintenance and repair of satellites, and the exploration of
the planets and their moons. This relatively new area of robotics
is characterized by large distances between the operator and the
remote robots.

A testbed has been built for identifying and finding solutions
to problems unique to this type of system. The operator station
is located at Grumman Aerospace Corporation in Bethpage, New
York. The remote robots are located at the University of Michi-
gan, Ann Arbor, Michigan. Thus, the system is truly a remote
robot control system.

This paper presents the design of the testbed. Although,
the testbed has just been completed, some problems which have
already been identified will also be discussed. We begin with a
description of the control architecture. This gives a framework
from which to describe various components in the system and to
specify their modes and methods of interaction. The following
sections present some of the details of the construction of the
system. The final section concludes the paper.

2 Control Architecture

We have adopted the NASREM architecture for telerobot con-
trol [1]. The reference document defines the functional require-

ments and flight level specifications of the control system for the
NASA Space Station IOC Flight Telerobot Servicer. We have
used this document as a guideline for the development of the
control system architecture. However, the physical remoteness
of the robots begin controlled requires some extensions to this
architecture. The problem basically stems from the communica-
tion delays between the local site where the operator is stationed
and the remote site where the robots are located. This section
presents a brief description of the NASREM architecture and the
required extensions.

2.1 The NASREM Architecture

The NASREM architecture is a six level hierarchical control sys-
tem as shown in figure 1. The outputs of cach level are the inputs
to the next lower level in the hierarchy. The inputs at each level
of the hierarchy are:

1. Level 6 - Operations Control Level
Inputs are commands to schedule the servicing of satellites.

2. Level 5 - Service Bay Control Level
Tnputs are commands to a service bay manager to perfor,
aperations on specific spacecraft.

3. Level 4 - Object/Task Level
Inputs are commands to perform a task on an object in or-
der to achieve a desired relationship of that object relative
to other objects in the world.

4. Level 3 - E-move Level
Inputs are symbolic names of "elemental” movements (E-
moves), typically expressed as commands to achieve "key-
frame” poses in coordinate system of choice.

5. Level 2 - Primitive Level
Intermediate trajectory poses which define a path which
has been checked for obstacles and is guaranteed free of
collisions and kinematic singularities.

6. Level 1 - Servo/Coordinate Transfer Level
Tuputs are evenly spaced trajectory points for manipula-
tors, grippers, transporters, and sensor platforms in a con-

PRECEDING PAGE BLANK NOT FILMED

https://core.ac.uk/display/42822955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Global Memory

eoelsiu| Joleled)

Figure 1: NASREM Telerobot Control Architecture

venient coordinate frame.

The output from Level 1 are commands to physical devices
such as D/A converters. As one moves up the hierarchy the
commands become less specific and more mission oriented,

At each level of the control hierarchy there are three different
types of modules, the sensory processing module (S), the world
modeling module (M), and the task decomposition system (H).
The sensory processing system is used to sense physical processes
in the FTS system. The world model uses this information to es-
timate the state of the system and to predict future states. Also,
the world model is used to evaluate plans which are produced by
the task decomposition system.

The operation of the task decomposition system at each level
is characterized by an H-module. These modules convert higher
level task descriptions into sequences of lower level subtask. Thus,
the operation of the controller is basically defined in terms of the
operation of the task decomposition system, or H-modules. Each
H-module has three components: the Job Assignment, JA, which
partitions the input task command into distinct jobs to be per-
formed by physically distinct mechanisms; Planners, PL, which
convert each job created by JA into a sequence of subtasks; and
the Executors, EX, which execute the subtasks created by the
planners.

2.2 Extensions to NASREM

To handle the problem of remoteness of the robots, we have di-
vided NASREM into two parts which are called: Local NAS-
REM, and Remote NASREM, Figure 2. The remote component
is identical to standard NASREM except that the operator in-
terface is replaced by a remote communications link. The local
component contains the operator interface as well as an addi-
tional world modeling system and a local planning system. A
significant difference is the addition of the world modeling sys-
tem at the local site which is used for planning. This addition
is important as the long communication delays imply more re-

cent knowledge about the robot’s world at the remote site than

_is available for planning at the local site.

552

Communication to the remote site can occur at any level down
to level 3 of the hierarchy. Below that level the feedback loops
are of such a high bandwidth to preclude closing the loop at the
local site.

The final difference is the introduction of the Level 0 con-
troller to indicate hard wired systems below Level 1 of the NAS-
REM hierarchy. For example, a Level 0 controller is used to
control the torque produced by the manipulator actuator.

The function of levels 0 through level 3 at the local site is
to simulate the future operation of the remote site at levels 0
through 3 for the purpose of operator evaluation of plans pro-
duced by level 4 at the local site. In the current system, only
level 3 of levels 0 through 3 at the local site are in place. Thus,
the operator can view motions planned before the commands are
sent to the remote site. However, because of the lack of the re-
maining levels at the local site, the operator can not preview
forces which will be generated at the remote site.

The current configuration of the system is shown in figure 3.
Only those components drawn in solid have been implemented.
The following sections describe the design of these components
of the system.

3 Local - Level 4

The language TROL (TeleRObot Language) was developed for
operator input to Level 4. It was implemented using the yacc
compiler-compiler which is available on all UNIX systems. The
language provides a simple way of commanding motions to the
robots.

The problems we have encountered are mainly the result of
our limited view of the functionality of the robots at the remote
site. In developing a robot programming language one is inclined
to define a language in which only the motion of a robot can be
specified. In retrospect, the language should specify the the way
in which changes are to be made in the robot’s environment. The
language should only implicitly specify the motion of the robot,
This would not only make it easier to integrate higher levels in
the control hierarchy, but it would also simplify the operation of
the servo controller at the remote site. As discussed in section 6
several control laws are available for selection. Examples include
adaptive and compliant motion control laws. The appropriate se-
lection should be based upon the particular task to be performed
by the manipulator. In other words, the type of changes which
are to be made in the robot’s environment.

4 Local - Level 3

Level 3 of the hierarchy converts key-frame poses obtained from
level 4 into sequences of positions which are free of kinematic
singularities and collisions. We have found there are few solutions
to this problem, and they are all computationally intensive [2].

It is much easier to determine if a given path is free of col-
lisions than it is to numerically determine a collision free path.
Therefore, our approach to this problem is to display the pose
of the system at each key-frame pose. After viewing these po-

Remote Nasrem

Gilobal Memory

Local Nasrem

esepeiu| Jojeiedo

Global Memory
- K|k R R

Figure 2: Extended NASREM

sitions, if a collislon has occurred, the operator is compelled to
create a new plan. He has to reenter a new program at level
4. Thus, the difference between the operation of our system and
the NASREM system is the requirement of human interaction to
provide collision free paths.

5 Remote - Level 2

Level 2 control is a simple a path interpolator [3]. Trajectories
are composed of sequences of straight line segments connected
together by smooth arcs. The positions obtained from Level 3
specify the end points of these line segments. For a trajectory
having m segments, the m — 1 intersection points of every two
adjacent segments are denoted by the 6 x 1 vectors p;, i = 1.m—

1, Accordingly, po and p,, denote the initial and final points,
respectively.

During the execution of the i — th segment, the manipulator
is either in transition from the i — 1st segment, or on the i — th
segment, or in transition to the i + 1st segment.

The acceleration is choosen to be zero when the manipulator
is in the middle of a segment and a constant non-zero value during
transition to or from an adjacent segment. Since the acceleration
is zero along the middle portion of a segment, the velocity, vi(t),
is constant. For example, in the middle of the i — th segment

v(t) =v;

where
v = (pi - Pi-)/Ti
T; is the time duration required to go from points p;_; to p;.
During the transition from one segment onto another the accel-
eration is
v(t) = o,
where
B = (vig1 — i)/ (27)

27;, the time required to accelerate between segments iand i+ 1.

The equation describing the position of the manipulator is:

dp
T T ()
dv ;

i @

where © is either the null vector, corresponding to the time in-
terval where the hand is in the middle of a segment, or ®; corre-
sponding to the time interval when the hand is in transition from
the 1 — 1st segment.

The position and velocity of the hand are computed as a
function of time by integrating Equations 1 and 2. Since the
acceleration during any one sample period is always constant,
this equation can be most easily solved by converting it into a
sampled data equation. The resulting equations are:

plk+1) p(k) + v(k)At + 1/20(k)(A1)? (3)
o(k+1) = wv(k)+v(k)At (4)

where k represents the k — th sample time, and At is the sample
period.

Although Equations 3 and 4 are exact equations for com-
puting p(k) and v(k), the procedure does suffer from round off
errors and will tend to drift from the correct position and veloc-
ity. Thus, the numerical values of p(k) and v(k) are corrected
for errors at the beginning of each straight line segment.

Note that the acceleration, velocity and position along the
initial starting and the final stopping segment can also be speci-
fied by using this method. To do this, an additional segment of
zero length is appended to the beginning and another to the end
of the trajectory. This results in an initial and final velocity of
zero and a start up time of 2ry and a stopping time of 2Tpm—1-

553

Remote Nasrem

Global Memory

eoepelu| Joeled)

Figure 3: Current System Configuration

6 Remote - Level 1

The manipulator is modeled as a graph structured system con-
sisting of m+1links, r > 0 closed kinematic loops, and n primary
joints whose motions are independent of the remaining joints.
Note that if » = 0 then n = m, and the manipulator is a serial
link manipulator. However, we have found that true serial link
manipulators are nearly nonexistent. Even the PUMA 560 ma-
nipulators we use, which are usually considered serial link manip-
ulators, are really graph structured systems, due to the internal
gearing.

We use the spatial notation popularized by Featherstone,
[4, 5, 6] for the modeling and control law formulation. This no-
tation is convenient not only for analysis purposes, but also in
simplifying the implementation of the controller, Since Ada was
used in writing the software of the controller, we can overload
the operators such as multiplication and addition to apply to the
spatial quantities defined by Featherstone. Thus, the syntax of
the software developed for the controller is very similar to the
notation used in the analysis of the robot dynamics and control.

6.1 Kinematic Constraint Equations

Since, in general, the manipulator is graph structured, there exist
constraints in the relative position of each of the joints of the
manipulator. These constraints can be represented by a set of
equations of the following form:

o a=U@Q) (%)

where Q is an nx 1 vector containing the positions of the primary
Joints, The primary joints are a set of joints such that their
position uniquely determines the position of all other joints in
the manipulator. Note that, for each Q; there is a g; such that,
Qi =g;.

Since there are n primary joints, there must be at least n
actuators in the manipulator. If the manipulator has more than

554

n actuators it will be redundantly actuated [7]. That is, there
would be more actuators than are required for motion. Although
it is acceptable to choose the primary joints to be those where
the motor armatures are located, it is not a requirement. Other
joints are usually better. For example, the six primary joints
of the PUMA 560 manipulator are those located between the
end-effector and the base of the manipulator. Thus, all solutions
of the inverse kinematics problem for the PUMA 560 have been
presented for these joints of the manipulator. However, motor
number four is kinematically coupled to joints four, five and six.
Thus, changing any of these joint positions causes motion of the
fourth motor.

Given U(Q), @, and Q, the velocity of all the joints can be
determined.

¢=EQ)Q (6)
where U (Q)
EQ)= —9q (7
The acceleration is given by:
i=EQ)Q+EWQ)Q (8)

For a given manipulator these equations are usually fairly simple.
Often the matrix E(Q) is constant. For example, it is a constant
6 x 6 matrix for the PUMA 560 manipulator. However, for some
manipulators these equations can become complex. For these
manipulators we have found that the ¢-algebra is very convenient
for evaluating the time derivatives of the joint positions (8]. Using
this algebra one only has to program the solution to Equation 5,
change the order of the algebra and automatically obtain the
solution to equations 6 and 8. N

6.2 Feedback

Feedback signals used by the control come in two forms: spa-
tial feedback vectors, ﬁ',-, which are associated with the links of
the manipulator and scalar feedback functions, f);, which are as-
sociated with the joints in the manipulator. These can be any
functions of the desired state and the actual state of the manip-

ulator. The method used to calculate the required primary joint
forces is as follows.

1. The values of the spatial feedback vectors, f'_;, are Com-
puted for each link, and feedback functions, #);, are com-
puted for each joint of the manipulator.

2. The primary joint forces, 7;, are computed using the F,-
and #; as in the equation:

n4r .
= _(esifl; + 8 F;)
j=1
where e;; is the ji — th column of the matrix E(Q), and
s;; is the spatial velocity of link j due to a unit velocity
of the i — th primary joint. An algorithm for the efficient
evaluation of the 7; has been presented, [6].

Thus, the controller simultaneously encorporates feedback at
the joint level and at the Cartesian level. The choice of the FJ
and 1); dictate the character of the controller being implemented.
For example, adaptive controllers for a single manipulator [6] and
for dual arms [9] have been presented.

An important property of this controller is that regardless
of the choice of these feedback functions, they all satisfy the
following property.

m+r . m+r . .
S ®(F+Iig)+ §m;) = 3 (5F+4;0;) (9)
i=1 i=1

where F; is the actual inertial force on link j, I; is the spatial
moment of inertia matrix, g is the spatial acceleration due to
gravity, n; is the joint j friction force, the §; are any joint veloci-
ties which are consistent with the constraint equations and o; is
the resulting link spatial velocity. This property is very useful for
showing stability of the some feedback functions. Bas:cal]y, it is
simply a restatement of the principle of virtual work. If the qJ are
the same as the actual joint velocities, ¢;, then the term on the
left is the rate at which energy is absorbed by the manipulator
and the term on the right is the rate at which energy is delivered
to the arm by the actuators. In fact, by thinking of the F and
f); as inputs to the system, equation 9 is simply another form of
the equations of motion. That is, the equations of motion are:

m+4r m+r

2(31. F + IJg) +€;im;) = Z(SIJF +eIJTIJ)
j=1 i=1

i=1...n

Thus, Level 1 of the controller calculates the spatial feedback
functions F and the scalar feedback functions #j;, converts them
to eq\uvalent primary joint torques, T, and outputs 7 to the
Level 0 controller. As described in the next section, the Level 0
controller converts these to the equivalent motor actuator torque,
and then controls the current in the motor to attain that desired
torque.

The software of the controller is organized so that adding new
feedback functions only requires the user to add two new proce-
dures called, forward and backward. At each sample period,
these procedures are called once for each link of the manipulator.
The procedure forward is used to update any local state infor-
mation such as local digital filters that are used by the feedback
function. The procedure backward evaluates and returns the
values of the spatial feedback functions F; and the scalar feed-

555

back functions ;. Again, the particular feedback function used
is dependant upon the task being performed by the manipulator.
For example, adaptive control requires dnﬂ'erent feedback than
compliant motion control.

7 Remote - Level 0

Level 0 is the hard wired control of physical devices to make them
look like the model of the devices used in the formulation of the
controller at level 1. For the case of the manipulator controller,
all level 1 controllers assume they are controlling a manipulator
with motors at the primary joints. However, because of the use
of gearing in most manipulators, The motor armatures are not
located at the joints chosen as primary joints. The primary joint
positions and the motor armature positions are related by e
following equation.

Q = R(g,)
where g, are the motor armature positions. Given 7 from the

level 1 controller, the level 0 controtler converts this to an equiv-
alent motor torque by the equation:

Tm = B(qm)TT
where ()T indicates the transpose of the matrix and

OR(q,,)

B (qm) -) '

The level 0 controller then drives the current through the DC
motor used for actuation to produce the desired motor torque.
There are two types of motor actuation systems that could be
used. The PUMA 560 manipulator is an example of the first
type. In this system the only sensory signals are the current
flowing through the armature and the position of the motor. It
is an indirect control of the torque produced by the motor. The
torque is controlled by directly controlling the currents through
the motor armatures. The torque is the assumed proportional to
this current. The Robotics Research Arm [10] is an example of
the second type. This arm has a sensors to measure the output
torque produced motor in addition to the motor position. The
control of torque in the Robotics Research Arm is a direct control
since the output torque is directly measured and fed back to the
input of the motor.

8 Hardware

The connections to the Level 0 control are through the same
umbilical utilized by the standard PUMA 560 to connect to the
VAL 1I system controller. Thus, the Level 0 hardware, in effect,
replaces the controller hardware which comes standard with the
PUMA 560. Between the PUMA 560 and the Level 0 controller
hardware is the robot interface box. This box contains all the
electronics specific to the manipulator being controlled. It con-
tains the arm power supply, the joint amplifiers, the encoder sig-
nal conditioning circuitry, and the brake release circuitry. Digital
signals between a VME system and the robot interface box use
differential transmitters and receivers for noise immunity, and to
allow a large distance between the two systems. The joint am-
plifiers are PWM-type power amplifiers. The signals from this
box are then directly connected to the digital I/O, and D/A and

A/D converts resident in the VME chasis. A Motorola 68020
based single board computer is used to implement the Level 0
controller algorithms. All software written for this computer is
in the C programming language. C was chosen because of the
low cost of the compiler (Alycon Corp.), the speed of the Clan-
guage and the simplicity and relatively small size of the software
developed at this level.

Level 1 and 2 of the controller were implemented on a Com-
paq 386/20 computer using Ada as the programming language.’
The interface between Level 1 and Level 0 controls is through
a 64k shared memory block. Thus, the Compaq simply writes
out torque commands by writing to a specific location of the
shared memory block and the Motorola 68020 presents the sen-
sory information such as primary Jjoint positions and velocities
by writing to the same shared memory block. Thus, a very fast
communication mechanism is used between these two levels.

The world modeling system and levels 3 and 4 of the local
system reside on a Silicon Graphics 4D-GT graphics work sta-
tion. This graphics work station is fast enough to simultaneously
present a graphic display of the current operation of the remote
robots and also a second display of the Plans that are being devel-
oped for future operation of the robots. The only real video that
is used is though a video telephone, which transmits pictures at
about a 5 second frame rate. The real video is only used by the
operator for verification of the operation of the remote robots.

9 Remote Communication

The current system allows commands to be sent to the remote
robots via two transmission mediums : the Internet Network
and the common telephone line. This section describes this im-
plementation.

8.1 The Internet Transmission Control Protocol

For hosts on the Internet Network, the Internet Transmission
Control Protocol (TCP) provides a convenient medium of passing
commands between the manipulator and the controlling agent.
At its highest level of abstraction, the TCP protocol provides
a potentially reliable, sequenced, full-duplex cornection-based
byte-stream. This communication protocol is referred to as the
socket stream. A socket stream must be connected before any
data can be sent or received on it. Hence, the controlling agent
who wishes to control the manipulator, must first make a re-
quest for connection. If the manipulator grants the request, then
a full-duplex stream of commands may be passed between the
two agents. These commands are encoded into fixed sized com-
mand packets and then sent over the socket stream. The agent
on the opposite end of the socket stream, will then decode the
command packet and take the appropriate action. When the ses-
sion is over, both agents will close their end of the socket stream,
and the manipulator will reset and listen for further connection
requests.

9.2 Serial Socket

For those controlling agents not on the Internet Network, a method
of communication over the standard phone lines was developed.
At the heart of this serial communication is a protocol dubbed

556

the serial socket. The serial socket is a protocol which imple-
ments socket-like attributes over a standard RS-232 serial line.
Specifically, the serial socket provides a potentially reliable, se-
quenced, full-duplex byte stream over a serial line, or with the
aid of a pair of modems, over a standard telephone line. Similar
to the socket stream, the serial socket must be connected before
any data can be sent or received on it,

The controlling agent requires minimal hardware and soft-
ware :

® A computer running Unix BSD 4.2 or Unix System V.

o A 2400-baud Hayes-compatible modem supporting the full
AT-command set.

o The serial socket and associated software.

s A reliable phone line.

Connection with the manipulator is achieved in a similar manner
a8 the socket stream, except that the controlling agent must first
utilize the serial socket software to dial the phone number of
the telephone at the remote site. If the connection request was
granted, then a full-duplex stream of commands may be passed
between the two agents over the serial socket.

As mentioned above, the serial socket shares the high level at-
tributes of the socket stream. To achieve this level of abstraction,
a three layer communication protocol was developed. The lowest
layer of the protocol directly interacts with the serial port. Rou-
tines in this layer set the baud rate of the port, read bytes from
the port, write bytes to the port, etc. Similar to the Kermit pro-
tocol, the serial socket library makes only minimal assumptions
about the serial port over which the transfer occurs; namely that
the port is capable of sending and receiving all printable ASCII
characters. It also requires that the system be able to send and
receive a SOH control character. Most Unix systems provide this
facility by incorporating the serial port as a special file,

The middle layer in the serial socket communication proto-
col involves the transmission and reception of fixed size packets
over the serial port. By default, the size of these packets is 128
bytes. Included in the packet are fields for the packet type, se-
quence number, encoded data, and check value. To meet the
requirement mentioned above, only printable ASCII characters
are allowed to reside in the packets. To this end, the binary data

to the serial port, and decoded back to binary when it is read.
This mapping is the same as that used in the Kermit file transfer
program. To detect errors during the transmission of a packet,
a check value fleld is included in each packet. By default, a 16-
bit Cyclic Redundancy Check (CRC-16) is used. The CRC is
good at detecting all kinds of errors (single-bit, double-bit, odd-
numbered, etc), but especially those that occur in bursts over a
relatively long time.

The topmost layer in the serial socket communication proto-
col implements the automatic repeat request (ARQ) packet pro-
tocol. An error detected in a received packet or an unacknowl-
edged packet automatically results in the retransmission of that
packet. A high level description of this protocol follows. Dur-
ing transmission, the binary data is packetized by surrounding
it with service fields. The entire packet is then transmitted with
no flow control, after which the sender waits for the receiver to
acknowledge its receipt. The receiver inputs the packet and, after

verifying that the packet is in the correct sequence, computes a
local checkvalue on the data portion of the packet. If this check-
value matches the one in the packet, the receiver acknowledges
by sending an acknowledge (ACK) packet. If the packet was in
error, then a negative acknowledge (NAK) packet is transmitted.
Upon receipt of an ACK, the sender transmits the next packet; if
a NAK was received, then the same packet is transmitted again.
Transmission proceeds in this manner until the serial socket is
closed.

10 Conclusion

The design of a testbed for the control of a remote robotic system
has been presented. The NASREM control architecture was used
as a basis for the system development. Because of the remoteness
of the robots some extensions to the NASREM architecture were
proposed.

In the current operation of the system we have observed that
the limitations of our system basically stem from the deficien-
cies of our communications language and the side effects of com-
mands.

The communications problem stems from our basing the com-
munications scheme on an enumerate of all possible commands
to the remote system. We are now in the process of designing a
system which uses the Ada programming language as the com-
munications language. Thus, we are, in effect, using an Ada
interpreter for the implementation of level 4 at the remote site.
This will give us the capability of doing such things as defining
a variable for the location of an object and then referring to the
Jocation of the object through the name of that variable. Thus,
the local site need not know the exact location of the object. It
can refer to this exact location which is stored at the remote site
through the variable it defined for that purpose. Also, by using
Ada as a basis for communications we will derive all the benefits
of a well defined language. Any person who knows Ada could
program the robot.

The other main problem with our control is the problem with
side effects. That is , many commands which are issued to the
remote site may or may not have side effects which are different
that the primary effect intended for that command. An exam-
ple is the command Close Gripper. The primary effect of this
command is to actuate the fingers which may or may not cause
something to be grasped. If something is grasped, then there will
be a side effect in future motions of the end-effector. Specifically,
the position of the grasped object will change with a change in
position of the end-effector. In addition, if the object is attached
to another object, as for example, a door handle connected to a
door, then as the manipulator end-effector s moved, the location
of the door is moved. Whats more, this side effect places con-
straints on the motion of the end-effector. The controller designer
must include these constraint effects in his controller design.

Our current effort is directed towards providing a communi-
cations language which better describes the desired changes in
the robots environment and to modify the robot controller to
carry out those desired changes.

557

Acknowledgement

This work was supported by a grant from the NASA sponsored
Center for Autonomous and Man-Controlled Robotics and Sens-
ing Systems at ERIM, Ann Arbor, ML

References

[1] J. S. Albus, H. G. McCain, and R. Lumia, “Nasa/nbs stan-
dard reference model for telerobot control system archi-
tecture (nasrem),” Technical Report NASA:SS-GSFC-0027,
National Bureau of Standards, March 13 1987.

9] T. Lozano-Perez, “A simple motion-planning algirithm for
g alg
general robot manipulators,” IEEE J. Robotics and Automa-
tion, vol. RA-3, pp. 224-238.

[3] R.P.Paul, Robot Manipulators: Mathematics, Programming
and Control, MIT Press, Cambridge, Mass, 1981.

[4] R. Featherstone, “The calculation of robot dynamics using
articulated-body inertias,” The Int. J. of Robotics Res., vol.
2, no. 1, pp. 13-30, Spring 1983.

[5) R. Lathrop, “Constrained (closed-loop) robot simulation by
local constraint propagation,” In LE.E.E. Int’l Conference
on Robotics and Automation, San Francisco, CA, 1986.

[6] M. W. Walker, “An efficient algorithm for the adaptive con-
trol of a manipulator,” In LE.E.E. Int'l Conf. on Robotics
and Automation, Philadelphia, Pennsylvania, April 1988.

[7] J. Gardner, V. Kumar, and J. Ho, “Kinematics and con-

trol of redundantly actuated closed chains,” In LE.E.E.

Int’l Conf. on Robotics and Automation, Scottsdale, Ari-

zona, May 1989.

M. W. Walker, “Manipulator kinematics and the epsilon al-
gebra,” In LE.E.E. Int’l Con/f. on Robotics and Automation,
Raleigh, North Carolina, 1987.

(8]

[9] M. W. Walker, D. Kim, and J. Dionise, “Adaptive coordi-
nated motion control of two manipulator arms,” In LE.E.E.
Int’l Conf. on Robotics and Automation, Scottsdale, Ari-
zona, May 1989.

[10] “Specification for type 1 & type 2 motion controller
servo-level interface,” Technical Report OPS SLI-02888-1A,
Robotics Research Corporation.

