
N90-25563

The Application of NASREM to Remote Robot Control

Michael W. Walker, Joe Dionise, A1 Dobryden

Artificial Intelligence Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109

Abstract

This paper describes the implementation of a remote robot con-

troller, wherein the distance to the remote robot causes signifi-

cant communication time delays. The NASREM telrobot control

architecture is used as a basis for the implementation of the sys-

tem. Levels 1 through 4 of the hierarchy were implemented. The

solution to the problems encountered during the implementation

and those which are unique to remote robot control are described.

1 Introduction

Remote robot control is becoming an increasingly important dis-

cipline in robotics. Undersea exploration, mining, and salvaging

operations, and the inspection and maintenance of nuclear power

plants are examples of terrestrial based applications. Space ap-

plications include the construction of large space structures, the

in situ maintenance and repair of sateUites, and the exploration of

the planets and their moons. This relatively new area of robotics

is characterized by large distances between the operator and the
remote robots.

A testbed has been built for identifying and finding solutions

to problems unique to this type of system. The operator station

is located at Grumman Aerospace Corporation in Bethpage, New

York. The remote robots are located at the University of Michi-

gan, Ann Arbor, Michigan. Thus, the system is truly a remote

robot control system.

This paper presents the design of the testbed. Although,

the testbed has just been completed, some problems which have

already been identified will also be discussed. We begin with a

description of the control architecture. This gives a framework

from which to describe various components in the system and to

specify their modes and methods of interaction. The following

sections present some of the details of the construction of the

system. The final section concludes the paper.

2 Control Architecture

We have adopted the NASREM architecture for telerobot con-

trol [1]. The reference document defines the functional require-
.r

mellts and flight level specifications of the control system for the

NASA Space Station IOC Flight Telerobot Servicer. We have

used this document as a guideline for the development of the

control system architecture, tIowever, the physical remoteness

of the robots begin controlled requires some extensions to this

architecture. The problem basically stems from the communica-

tion delays between the local site where the operator is stationed
and the remote site where the robots are located. This section

presents a brief description of the NASREM architecture and the

required extensions.

2.1 The NASREM Architecture

The NASREM architecture is a six level hierarchical control sys-

tem as shown in figure 1. The outputs of each level are the inputs

to the next lower level in the hierarchy. The inputs at each level

of the hierarchy are:

I. Level 6 - Operations Control Level

Inputs are commands to schedule the servicing of satellites.

2. Level 5 - Service Bay Control Level

Inputs are commands to a service bay manager 1o p,,rf,,r_

,,potations on sp,_rific _pac_,crafl.

3. Level 4 - Object/Task Level

Inputs are commands to perform a task on an object in or-

der to achieve a desired relationship of that object relative

to other objects in the world.

4. Level 3 - E-move Level

Inputs are symbolic names of "elemental" movements (E-

moves), typically expressed as commands to achieve "key-

frame" poses in coordinate system of choice.

5. Level 2 - Primitive Level

Intermediate trajectory poses which define a path which

has been clacked for obstacles and is guaranteed free of

collisions and kinematic singularities.

6. Level 1 - Servo/Coordlnate Transfer Level

Iuputs are evenly spaced trajectory points for manipula-

tors, grippers, transporters, and sensor platforms in a con-

551

PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19900016247 2020-03-19T22:38:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42822955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure I: NASREM TelerobotControlArchitecture

venientcoordinateframe.

The output from Level 1 are commands to physical devices

such as D/A converters. As one moves up the hierarchy the

commands become less specific and more mission oriented.

At each level of the control hierarchy there axe three different

types of modules, the sensory processing module (S), the world

modeling module (M), and the task decomposition system (H).

The sensory processing system is used to sense physical processes
in the FTS system. The world model uses this information to es-

timate the state of the system and to predict future states. Also,

the world model is used to evaluate plans which are produced by

the task decomposition system.

The operation of the task decomposition system at each level

is chaxa_terized by an H-module. These modules convert higher

level task descriptions into sequences of lower level subtask. Thus,

the operation of the controller is basically defined in terms of the

operation of the task decomposition system, or H-modules. Each

H-module has three components: the Job Assignment, JA, which

partitions the input task command into distinct jobs to be per-

formed by physicaily distinct mechanisms; Planners, PL, which
convert each job created by JA into a sequence of subtasks; and

the Executors, EX, which execute the subtasks created by the
planners.

2.2 Extensions to NASREM

To handle the problem of remoteness of the robots, we have di-

vided NASREM into two parts which axe called: Local NAS-

REM, and Remote NASREM, Figure 2. The remote component

is identical to standard NASREM except that the operator in-

terface is replaced by a remote communications link. The local

component contains the operator interface as well as an addi-

tional world modeling system and a local planning system. A

significant difference is the addition of the world modeling sys-
tem at the local site which is used for planning. This addition

is important as the long communication delays imply more re-

cent knowledge about the robot's world at the remote site than

is available for planning at the local site.

Communication to the remote site can occur at any level down

to level 3 of the hieraxchy. Below that level the feedback loops
are of such a high bandwidth to preclude closing the loop at the
local site.

The final difference is the introduction of the Level 0 con-

troller to indicate hard wired systems below Level 1 of the NAS-

REM hierarchy. For example, a Level 0 controller is used to

control the torque produced by the manipulator actuator.

The function of levels 0 through level 3 at the local site is

to simulate the future operation of the remote site at levels 0

through 3 for the purpose of operator evaluation of plans pro-

duced by level 4 at the local site. In the current system, only

level 3 of levels 0 through 3 at the local site are in place. Thus,

the operator can view motions planned before the commands are

sent to the remote site. However, because of the lack of the re-

maining levels at the local site, the operator can not preview

forces which will be generated at the remote site.

The current configuration of the system is shown in figure 3.

Only those components drawn in solid have been implemented.

The following sections describe the design of these components
of the system.

3 Local- Level 4

The language TROL (TeleRObot Language) was developed for

operator input to Level 4. It was implemented using the yacc

compiler-compiler which is available on all UNIX systems. The

language provides a simple way of commanding motions to the
robots.

The problems we have encountered axe mainly the resultof

our limitedview of the functionalityof the robotsat the remote

site.In developinga robotprogramming languageone isinclined

to definea language in which onlythe motion of a robot can be

specified.In retrospect,the languageshould specifythe the way
inwhich changes axeto be made inthe robot'senvironment.The

language should only implicitlyspecifythe motion of the robot.

This would not only make iteasierto integratehigherlevelsin

the controlhierarchy,but itwould alsosimplifythe operationof

the servocontrollerat the remote site.As discussedin section6

severalcontrollaws areavailableforselection.Examples include

adaptiveand compliantmotion controllaws.The appropriatese-

lectionshouldbe based upon the particulartaskto be performed

by the manipulator. In other words, the type of changes which
are to be made in the robot'senvironment.

4 Local - Level 3

Level 3 of the hierarchy converts key-frame poses obtained from

level 4 into sequences of positions which are free of kinematic

singulaxities and collisions. We have found there are few solutions

to this problem, and they axe all computationally intensive [2].

It is much easier to determine if a given path is free of col-

lisions than it is to numerically determine a collision free path.

Therefore, our approach to this problem is to display the po_

of the system at each key-frame po6e. After viewing these po-

552

RemoteNasrern LocalNa_em

i

(.>___

....... >___

!

L5

L4

L1

:¢

Figure2: Extended NASREM

sitions,ifa collisionha_ occurred,the operator iscompelled to

createa new plan. He has to reentera new program at level

4. Thus, the differencebetween the operationof our system and

the NASREM system isthe requirementofhuman interactionto

providecollisionfreepaths.

5 Remote - Level 2

Level 2 controlisa simplea path interpolator[3].Trajectories

are composed of sequencesof straightlinesegments connected

togetherby smooth arcs. The positionsobtained from Level3

specifythe end pointsof theselinesegments. For a trajectory

having m segments, the m - 1 intersection points of every two

adjacent segments are denoted by the 6 x 1 vectors p_, i = 1..m-

1. Accordingly, P0 and pm denote the initial and finM points,
respectively.

During the execution of the i - th segment, the manipulator

is either in transition from the i - Ist segment, or on the i - th

segment, or in transition to the i + 18t segment.

The acceleration is choosen to be zero when the manipulator

is in the middle of a segment and a constant non-zero value during

transition to or from an adjacent segment. Since the acceleration

is zero along the middle portion of a segment, the velocity, vi(t),

is constant. For example, in the middle of the i - th segment

_(t)-- ,,,

where

,--(p-p__I)/T_

T_ isthe time duration requiredto go from pointsp__] to p_.

During the transitionfrom one segment onto another the accel-
erationis

where

i = (,.,+1 - ,,)/(2r)

2r_, the time required to accelerate between segments i and i+ 1.

The equation describing the position of the manipulator is:

dp
-- = _ (])
dt
dv

d-7 = _ (2)

where/7 is either the null vector, corresponding to the time in-

terval where the hand is in the middle of a segment, or/_ corre-

sponding to the time interval when the hand is in transition from

the i - 1st segment.

The position and velocity of the hand are computed as a

function of time by integrating Equations 1 and 2. Since the

acceleration during any one sample period is always constant,
this equation can be most easily solved by converting it into a

sampled data equation. The resulting equations are:

p(k + 1) = p(k) + v(k):,t + l/2_(k)(A0_ (3)

(+ _) = _(_)+ _(_)At (4)

where k representsthe k - th sample time,and At isthe sample

period.

Although Equations 3 and 4 are exact equationsfor com-

putingp(k) and v(k),the proceduredoes sufferfrom round off

errorsand willtend to driftfrom the correctpositionand veloc-

ity.Thus, the numerical valuesof p(k) and v(k) are corrected

forerrorsat the beginningof each straightlinesegment.

Note that the acceleration,velocityand positionalong the

initialstartingand the finalstoppingsegment can alsobe speci-

fiedby usingthismethod. To do this,an additionalsegment of

zerolengthisappended to the beginningand another to the end

of the trajectory.This resultsin an initialand finalvelocityof

zero and a start up time of 2r_ and a stopping time of 2rm_l.

553

RemoteNurem

! J-3 _"
'

s',,' w ,,." P ',

°. .-.= S :-_ W ,, p ,

- "-_ S ,-_ W_-_ P :

(.......)__.

(........)_._

(.......)___

C.......

LocalNssr_m

! • ! I

,.LA. .

:o

,-,w:-', P

L1%_

"_ W _'* P i

Figure 3: Current System Configuration

6 Remote - Level 1

The manipulator is modeled as a graph structured system con-

sisting ofm+ 1links,r > 0 closedkinematicloops,and n primary

jointswhose motions are independent of the remaining joints.

Note thatifr = 0 then n = m, and the manipulator isa serial

linkmanipulator. However, we have found that trueserialllnk

manipulatorsaxe nearlynonexistent.Even the PUMA 560 ma-

nipulatorswe use,which areusuallyconsideredseriallinkmanip-

ulators,are reallygraph structuredsystems,due to the internal

gearing.

We use the spatialnotation popularized by Featherstone,

[4,5, 6]forthe modeling and controllaw formulation.This no-

tationisconvenientnot only for anMysls purposes,but alsoin

simpllfyingthe implementationof the controller.SinceAds was

used in writingthe softwareof the controller,we can overload

the operatorssuch as multiplicationand additionto apply to the

spatialquantitiesdefinedby Featherstone.Thus, the syntax of

the software developedfor the controllerisvery similaxto the

notationused in the analysisofthe robotdynamics and control.

6.1 Kinematic Constraint Equations

Since,ingeneral,the manipulator is graph structured,thereexist
con_ltraints in the relative position of each of the joints of th_

manipulator. These constraints can be represented by a set of
equations of the following form:

q = u(q) (5)

where Q is an nX 1 vector containing the positions of the primary

joints. The primary Joints axe a set of joints such that their

position uniquely determines the position of all other joints in

the manipulator. Note that, for each Q_ there is a qj such that,

Since there are n primary joints, there must be at leut n

actuators in the manipulator. If the manipulator hu more than

n actuators it will be redundantly actuated [7]. That is, there
would be more actuators than are required for motion. Although
it is acceptable to choose the primary joints to be tthose where
the motor axmatures are located, it is not a requiremenL Other

joints axe usually better. For example, the six primary joints
of the PUMA 560 manipulator are those located between the

end-effector and the base of the manipulator. Thus, all solutions

of the inverse kinematics problem for the PUMA 560 have been

presented for these joints of the manipulator. However, motor

number fourisklnematicMly coupled tojointsfour,fiveand six.

Thus, changing any of thesejointpositionscausesmotion of the
fourthmotor.

Given U(Q), Q, and Q, t_e velocityof allthejointscan be
determined.

= E(q)q (6)

where
ou(q)

The accelerationisgivenby:

= _(q)Q + E(Q)Q (8)

For a givenmanipulator theseequationsaxe usuallyfairlysimple.

Often the matrix E(Q) isconstant.For example, itisa constant

6 x 6 matrix forthe PUMA 560 manipulator.However, forsome

manipulators theseequations can become complex. For these

manipulatorswe have found thatthe t-algebraisveryconvenient

forevaluatingthe time derivativesofthejointpositions[8].Using

thisalgebraone only has to program the solutionto Equation 5,

change the order of the algebra and automaticallyobtain the

solution-to equations 6 and 8.

6,2 Feedback

Feedback signalsused by the controlcome in two forms: spa-

tialfeedback vectors,_j, which axe associatedwith the linksof

the manipulator and scalarfeedback functions,_._,which axe as-
sociated with the jointsin the m_tlpulator. These can be any

functionsof the desiredstateand the actualstateofthe manip-

854

ulator.The method used to calculatethe requiredprimary joint

forcesisas follows.

1. The values of the spatial feedback vectors, _'i, are com-

puted for each link, and feedback functions, f/j, are com-

puted for each joint of the manipulator.

2. The primary joint forces, ri, are computed using the Fj

and 0j as in the equation:

n+r

j=l

where eji is the ji - th column of the matrix E(Q), and

sj_ is the spatial velocity of link j due to a unit velocity
of the i - th primary joint. An algorithm for the efficient
evaluation of the Ti has been presented, [6],

Thus, the controller simultaneously encorporates feedback at

the joint level and at the Cartesian level. The choice of the Fj

and ¢}j dictate the character of the controller being implemented.
For example, adaptive controllers for a single manipulator [6] and

for dual arms [9] have been presented.

An important property of this controller is that regardless

of the choice of these feedback functions, they all satisfy the

following property.

m+r m+r

___(_i(Fj+Xig)+_fllj)= _ (n;Pi + #fflj) (9)
j=l j=l

where Fj is the actual inertial force on link j, lj is the spatial

moment of inertia matrix, g is the spatial acceleration due to

gravity, _ is the joint j friction force, the _j are any joint veloci-

ties which are consistent with the constraint equations and _j is

the resulting link spatial velocity. This property is very useful for

showing stability of the some feedback functions. Basically, ;t is

simply a restatement of the principle of virtual work. If the _j are

the same as the actual joint velocities, qj, then the term on the
left is the rate at which energy is absorbed by the manipulator

and the term on the right is the rate at which energy is delivered

to the arm by the actuators. In fact, by thinking of the _'j and

f/j as inputs to the system, equation 9 is simply another form of
the equations of motion. That is, the equations of motion axe:

m+r m+r

__(s_i(F j + lift)+ ejit}j)= _ (s_jPj+ eij#._) i= 1...n
j=l j=l

Thus, Level 1 of the controller calculates the spatial feedback

functions _'i and the scalar feedback functions Oj, converts them

to equivalent primary joint torques, v, and outputs v to the
Level 0 controller. As described in the next section, the Level 0

controller converts these to the equivalent motor actuator torque,

and then controls the current in the motor to attain that desired

torque.

The software of the controller is organized so that adding new

feedback functions only requires the user to add two new proce-

dures called, forward and backward. At each sample period,

these procedures axe called once for each link of the manipulator.

The procedure forward is used to update any local state infor-

mation such as local digital filters that are used by the feedback

function. The procedure backward evaluates and returns the
values of the spatial feedback functions _i'i and the scalar feed-

back functions _i. Again, the particular feedback function used

is dependant upon the task being performed by the manipulator.

For example, adaptive control requires different feedback than

compliant motion control.

7 Remote - Level 0

Level0 is the hard wired control of physical devices to make them
look like the model of the devices used in the formulation of the

controller at level 1. For the case of the manipulator controller,

all level 1 controllers assume they are controlling a manipulator

with motors at the primary joints. However, because of the use

of gearing in most manipulators, The motor armatures are not

located at the joints chosen as primary joints. The primary joint

positions and the motor armature positions are related b_ '):-

following equation.

O = R(q_)

where qm are the motor armature positions. Given _" from the
level 1 controller, the level 0 controller converts this to an equiv-

alent motor torque by the equation:

•1"m = B(qm)Tv"

where ()T indicates the transpose of the matrix and

The level0 controllerthen drivesthe currentthrough the DC

motor used for actuationto produce the desiredmotor torque.

There are two types of motor actuationsystems that could be

used. The PUMA 560 manipulator is an example of the first

type. In thissystem the only sensory signalsare the current

flowingthrough the armature and the positionof the motor. It

isan indirectcontrolof the torque produced by the motor. The

torqueiscontrolledby directlycontrollingthe currentsthrough

the motor armatures.The torqueisthe assumed proportionalto

thiscurrent.The Robotics Research Arm [10]isan example of

the second type. This arm has a sensorsto measure the output

torque produced motor in additionto the motor position.The

controloftorquein theRobotics Research Arm isa directcontrol

sincethe output torque isdirectlymeasured and fed back tothe

inputof the motor.

8 Hardware

The connections to the Level 0 control are through the same

umbilical utilized by the standard PUMA 560 to connect to the

VAL II system controller. Thus, the Level 0 hardware, in effect,

replaces the controller hardware which comes standard with the
PUMA 560. Between the PUMA 560 and the Level 0 controller

hardware is the robot interface box. This box contains all the

electronics specific to the manipulator being controlled. It con-

tains the arm power supply, the joint amplifiers, the encoder sig-

nal conditioning circuitry, and the brake release circuitry. Digital

signals between a VME system and the robot interface box use
differential transmitters and receivers for noise immunity, and to

allow a large distance between the two systems. The joint am-

plifiers are PWM-type power amplifiers. The signals from this

box are then directly connected to the digital I/O, and D]A and

555

A/D converts resident in the VME chasls. A Motorola 68020

based single board computer is used to implement the Level 0

controller algorithms. All software written for this computer is
in the C programming language. C was chosen because of the

low cost of the compiler (Alycon Corp.), the speed of the Clan-

guage and the simplicity and relatively small size of the software
developed at this level.

Level 1 and 2 of the controller were implemented on a Com-

paq 386/20 computer using Ads as the programming language. _

The interface between Level 1 and Level 0 controls is through
a 64k shared memory block. Thus, the Compaq simply writes
out torque commands by writing to a specific location of the
shared memory block and the Motorola 68020 presents the sen-

sory information such as primary joint positions and velocities
by writing to the same shared memory block. Thus, a very fast
communication mechanism is used between these two levels.

The world modeling system and levels 3 and 4 of the local

system reside on a Silicon Graphics 4D-GT graphics work sta-

tion. This graphics work station is fast enough to simultaneously

present a graphic display of the current operation of the remote

robots and also a second display of the plans that are being devel-
oped for future operation of the robots. The only real video that

is used is though a video telephone, which transmits pictures at

about a 5 second frame rate. The real video is only used by the
operator for verification of the operation of the remote robots.

9 Remote Communication

The current system allows commands to be sent to the remote
robots via two transmission mediums : the Internet Network
and the common telephone line. This section describes this im-

phmentatlon.

9.1 The Internet Transmission Control Protocol

For hosts on the Internet Network, the Internet Transmission
Control Protocol (TCP) provides a convenient medium of passin_

commands between the manipulator and the controlling agent.

At its highest level of abstraction, the TCP protocol provides

a potentially reliable, sequenced, full-duplex connection-based

byte-stream. This communication protocol is referred to as the
socketstream. A socketstream must be connected beforeany

data can be sentor receivedon it.Hence, the controllingagent

who wishes to controlthe manipulator,must firstmake a re-

questforconnection.Ifthe manipulatorgrantsthe request,then

a full-duplexstream of commands may be passed between the

two agents.These commands are encoded intofixedsizedcom-

mand packetsand then sentoverthe socketstream. The agent

on the oppositeend of the socketstream,willthen decode the

command packetand takethe appropriateaction.When the ses-

sionisover,both agentswillclosetheirend ofthe socketstream,

and the manipulator willresetand listenforfurtherconnection

requests.

9.2 Serial Socket

For those controlling agents not on the Internet Network, a method

of communication over the standard phone lines was developed.

At the heart of this serial communication is a protocol dubbed

the serial socket. The serial socket is a protocol which imple-

ments socket-like attributes over a standard RS-232 serial line.

Specifically, the serial socket provides a potentially reliable, se-
quenced, full-duplex byte stream over a serial line, or with the
aid of a pair of modems, over a standard telephone line. Similar

to the socket stream, the serial socket must be connected before
any data can be sent or received on it.

The controlling agent requires minimal hardware and soft-
ware "

• A computer running Unix BSD 4.2 or Unix System V.

I A 2400-baud Hayes-compatiblemodem supportingthefull
AT-command set.

• The serialsocketand associatedsoftware.

• A reliablephone line.

Connection with the manipulator is achieved in a similar manner

as the socket stream, except that the controlling agent must first
utilize the serial socket software to dial the phone number of

the telephone at the remote site. If the connection request was

granted, then a full-duplex stream of commands may be passed

between the two agents over the serial socket.

As mentioned above, the serial socket shares the high level at-
tributes of the socket stream. To achieve this level of abstraction,

a three layer communication protocol was developed. The lowest

layer of the protocol directly interacts with the serial port. Rou-

tines in this layer set the baud rate of the port, read bytes from
the port, write bytes to the port, etc. Similar to the Kermit pro-
tocol,the serialsocketlibrarymakes only minimal assumptions

about the serialportoverwhich the transferoccurs;namely that

the portiscapable of sending and receivingallprintableASCII

characters.Italsorequiresthat the system be ableto send and

receivea SOH controlcharacter.Most Unix systems providethis

facilityby incorporatingthe serialportas a specialfile.

The middle layerin the serialsocketcommunication proto-

colinvolvesthe transmissionand receptionof fixedsizepackets

overthe serialport.By default,the sizeof thesepacketsis 128

bytes. Included in the packet are fieldsfor the packet type,se-

quence number, encoded data, and check value. To meet the

requirement mentioned above, only printableASCII characters

are allowedto residein the packets.To thisend,the binarydata

isencoded to a purelyprintableform when a packet iswritten

to the serialport,and decoded back to binary when itisread.

This mapping isthesame as thatused in the Kermit filetransfer

program. To detecterrorsduring the transmissionof a packet,

a check valuefieldisincludedin each packet. By default,a 16-

bit CyclicRedundancy Check (CRC-16) is used. The CRC is

good at detectingallkindsoferrors(single-bit,double-bit,odd-

numbered, etc),but especiallythose thatoccurin burstsovera

relativelylongtime.

The topmost layerin the serialsocketcommunication proto-

colimplements the automatic repeat request(ARQ) packetpro-
tocol.An errordetectedin a receivedpacket or an unacknowl-

edged packet automaticallyresultsin the retransmissionof that

packet. A high leveldescriptionof thisprotocolfollows.Dur-

ing transmission, the binary data is packetized by surrounding

itwith servicefields.The entirepacketisthen transmittedwith

no flowcontrol,afterwhich the sender waitsforthe receiverto

acknowledgeitsreceipt.The receiverinputsthe packetand,after

556

verifyingthat the packet isin the correctsequence,computes a

localcheckvalueon the data portionofthe packet.Ifthischeck-

valuematches the one in the packet,the receiveracknowledges

by sending an acknowledge (ACK) packet.Ifthe packetwas in

error,then a negativeacknowledge(NAK) packetistransmitted.

Upon receiptof an ACK, the sendertransmitsthe next packet;if

a NAK was received,then the same packetistransmittedagain.

Tra_smission proceedsin thismanner untilthe serialsocketis

closed.

Acknowledgement

This work was supported by a grant from the NASA sponsored
Center for Autonomous and Man-Controlled Robotics and Sens-

ing Systems at ERIM, Ann Arbor, MI.

10 Conclusion

The design of a testbed for the control of a remote robotic system

has been presented. The NASREM control architecture was used

as a basis for the system development. Because of the remoteness

of the robots some extensions to the NASREM architecture were

proposed.

In the current operation of the system we have observed that

the limitations of our system basically stem from the deficien-

cie_ of our communications language and the side effects of com-
mands.

The communications problem stems from our basing the com-

munications scheme on an enumerate of all possible commands

to the remote system. We axe now in the process of designing a

system which uses the Ada programming language as the com-

munications language. Thus, we are, in effect, using an Ada
interpreter for the implementation of level 4 at the remote site.

This will give us the capability of doing such things as defining
a variable for the location of an object and then referring to the

location of the object through the name of that variable. Thus,
the local site need not know the exact location of the object. It
can refer to this exact location which is stored at the remote site

through the variable it defined for that purpose. Also, by using
Ada as a basis for communications we will derive all the benefits

of a well defined language. Any person who knows Aria could

program the robot.

The other main problem with our control is the problem with

side effects. That is , many commands which are issued to the
remote site may or may not have side effects which are different

that the primary effect intended for that command. An a.,cam-

pie is the command Close Gripper. The primary effect of this
command is to actuate the fingers which may or may not cause

something to be grasped. If something is grasped, then there will
be a side effect in future motions of the end-effector. Specifically,

the position of the grasped object will change with a change in

position of the end-effector. In addition, if the object is attached

to another object, as for example, a door handle connected to a

door, then as the manipulator end-effector is moved, the location

of the door is moved. Whats more, this side effect places con-

straints on the motion ofthe end-effector. The controller designer

must include these constraint effects in his controller design.

Our current effort is directed towards providing a communi-

cations language which better describes the desired changes in

the robots environment and to modify the robot controller to

carry out those desired changes.

References

[1] J. S. Albus, H. G. McCain, and R. Lumia, "Nasa/nbs stan-

dard reference model for telerobot control system archi-

tecture (nasrem)," Technical Report NASA:SS-GSFC-0027,

National Bureau of Standards, March 13 1987.

[2] T. Lozano-Perez, "A simple motion-planning algirithm for

general robot manipulators," IEEE d. Robotics and Automa-

tion, vol. RA-3, pp. 224-238.

[3] R. P. Paul, Robot Manipulators: Mathematics, Programming

and Control, MIT Press, Cambridge, Mass, 1981.

[4] R. Featherstone, "The calculation of robot dynamics using

articulated-body inertias," The Int. J. of Robotics Res., vol.

2, no. 1, pp. 13-30, Spring 1983.

[5] R. Lathrop, "Constrained (closed-loop) robot simulation by

local constraint propagation," In I.E.E.E. Int'l Conference

on Robotics and Automation, San Francisco, CA, 1986.

[6] M. W. Walker, "An efficient algorithm for the adaptive con-

trol of a manipulator," In I.E.E.E. lnt'l Conf. on Robotics

and Automation, Philadelphia, Pennsylvania, April 1988.

[7] J. Gardner, V. Kumar, and J. Ho, "Kinematics and con-

trol of redundantly actuated closed chains," In I.E.E.E.

Int'l Conf. on Robotics and Automation, Scottsdale, Ari-
zona, May 1989.

[8] M. W. Walker, "Manipulator kinematics and the epsilon al-

gebra," In LE.E.E. [nt'l Conf. on Robotics and Automation,

Raleigh, North Carolina, 1987.

[9] M. W. Walker, D. Kim, and J. Dionise, "Adaptive coordi-

nated motion control of two manipulator arms," In LE.E.E.

Int'l Conf. on Robotics and Automation, Scottsdale, Ari-
zona, May 1989.

[10] "Specification for type 1 & type 2 motion controller

servo-level interface," Technical Report OPS SLI-02888-1A,

Robotics Research Corporation.

557

