
N90-25569

A MODEL FOR A KNOWLEDGE-BASED SYSTEM's LIFE CYCLE

Peter A. Kiss
BDM International, Inc.
950 Explorer Boulevard
Huntsville, AL 35806

ABSTRACT

The Amerlcan Institute of Aeronautics and
Astronautics has initiated a Committee on
Standards for Artificial Intelligence.
Presented here are the initial efforts of
one of the working groups of that
committee. The purpose of this paper is
to present a candidate model for the
development llfe cycle of Knowledge Based
Systems. The intent Is for the model to
be used by the Aerospace Community and
eventually be evolved Into a standard.

The model is rooted In the evolutionary
model, borrows from the spiral model, and
is embedded In the standard Waterfall

model for software development. Its
Intent is to satisfy the development of
both stand-alone and embedded KBSs. The
phases of the life cycle are detailed as
are and the review points that constitute
the key milestones throughout the
development process. The applicability
and strengths of the model are discussed
along wlth areas needlng further
development and reflnement by the
aerospace community.

1.0 INTRODUCTION

This paper presents a model for the llfe-
cycle development of knowledge-based
systems. The Artificial Intelligence
Software Engineering (AISE) Model is an
outgrowth of an effort by an AIAA
committee on standards for AI. This
committee was convened in early 1989 to
explore the potential for developing
various standards or gu|dellnes for AI.
Three working groups were formed to
explore deflnltions and lax|con compila-
tion, tools standardization feasiblllty,

and development of Ilia-cycle guidelines.
The course of our approach is to develop
candidate guidelines, disseminate to the
community for feedback, and slowly evolve
to standards as acceptance of the

products grows. It is In that spirit
that this paper presents the AISE model
to the aerospace community for its
feedback.

During the past ten years, the Knowledge-
Based System (KBS) branch of Artificial
Intelligence (AI) has matured con-
siderably. Many small prototype systems
have been successfully developed and
implemented. Larger KBSs are much more
complex and have been implemented at a
slower rate. The organizations at the
leading edge of using AI, ones that have
been developing KBSs and applying them,
are looking at the integration of KBSs
into the mainstream of their computing
environments. This is taking a more
traditional total systems approach to AI,
making the KBS an integral part, not a
standalone tool. With the perspective of
a systems approach comes the need for
more rigorous development and integration
methodologies. This need, coupled with
general community's desire to control
costs and schedules, is the impetus for
the AISE model.

The objective of the AISE model is to
provide a flexible framework for the
development of a KBS (either standalone
or integrated) with meaningful milestones
and reviews that support the control of
technical, cost, and schedule dimensions
of a program. To achieve this objective,
the model borrows the best attributes of
the evolutionary software development
model and some of the spiral model
concepts and embeds them in the Waterfall
model for software development.

2.0 SOFTWARE DEVELOPMENT MODELS

Several basic phases are inherent parts
of any software (including AI)
development program: Problem conceptual-
ization/definition;system design;

system development; testing; integration;
and maintenance and enhancement. The

605

PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19900016253 2020-03-19T22:38:28+00:00Z



_ _ L_

sequence in which these are carried out,
the amount of emphasis/effort given each
phase, and the controls associated with
execution of the work combine to define a

life-cycle model.

The Waterfall model, shown in Figure 1,
is the most widely used in one variation

or another. In the concept definition
phase, studies and trades are conducted
to define the system to be built. As a

result, thls phase culminates In a
minimum of system requirements, top-level
design specifications, and an operational

concept. Next, a Preliminary Design
Phase fleshes out the specifications and
top-level design. Interfaces and data
bases are specified, critical methods
(such as special algorithms) are
addressed, and test plans are conceived.

The Preliminary Design is followed by a
Detailed Design phase that finalizes the
design and specifications. Simulations
and prototyplng are used to test the
design, and test plans and operations

_wER

DEFINITION _F
PRELIMINARY COR/D,-/ y

/ / .<<E.--,,

I"'T/

Figure I. Standard Software Development
Life-cycle

manuals are developed. Once design Is
complete, the software is coded/developed
according to it and the specifications.
As the software components are developed,
they are tested and hierarchically

validated and integrated to form the
overall system. Once the system is
accepted by Its users, there Is usually a
long life of maintenance and upgrades

during its operation.

DETERMINE

OBJECTIVES,

ALTERNATIVES,

CONSTRAINTS

EVALUATE ALTERNATIVES:

IDENTIFY, RESOLVE RISKS

COMMITMENT

PARTITION

PLAN

NEXT PHASES

DEVELOP. VERIFY

NEXT-LEVEL PRODUCT

FROM A _RAL MODEL OF SOFTWARE

Figure 2. Spiral Model of the Software Process

The Spiral model, developed at TRW and
shown in Figure 2, follows a different
sequence. Once a problem is conceived, a

series of prototypes Is used to address
the areas of highest rlsk in order of
difficulty. Once all the parts of the
system are well understood and the
prototypes have developed a preliminary

design, thls model picks up the back
phases of the Waterfall model to finish
the product. A key characteristic of the
Spiral model is the non-uniform
maturation of system parts.

Another methodology for software
development, one often used for AI, is
the Evolutionary Model. Under this

model, software Is developed and tested
incrementally for most of its life cycle.

Figure 3 provides a comparison of the
models discussed. Given are the most

appropriate situations for the

application of each of the models, along
with their strengths and weaknesses. If
we examine the chart in light of some key
characteristics of an aerospace KBS

606



development, we are le_d to the
conclusion that a hybrid model ts needed.
Three characteristics of KBS development
are essential for aerospace appltcatfons:
1) There is usually uncertainty in the
scope of the problem and Its appropriate
solution; 2) the knowledge engineering
process ts inherently an evolutionary
process; and 3) projects tend to have

tight cost and schedule budgets, These
three items point to a model that has
flexibility and is evolutionary in nature
while at the same time has a firm
structure to control the development
process. The Artificial Intelligence
Software (AISE) model is designed to meet
these needs.

MODELS APPLICABILITY STRENGTH WEAKNESS

WATERFALL

(SPECIFICATION

nRrVEN)

SPIRAL

(RISK DRIVEN)

EVOLUTIONARY

(PROTOTYPE

DRIVEN)

• LARGE SCALE DEVELOPMENT

• WELL DEFINED PROBLEMS

• CONSTRAINED RESOURCES

• GOVERNMENT REQUIREMENT

• MEDIUM SIZE DEVELOPMENT

• KNOWN I_SKY AREAS

. UNCONSTRAINED
RESOURCES

• SMALL TO MEDIUM SIZE

• ILL DEF1NED PROBLEM6

• UNCONSTRINED RESOURCES

' RIGOROUS STRUCTURE

' WORKS TO CONSTRAINTS

• GOOD DEVELOPMENT

_nmlUW

• ACCOMOOATES NON

UNIFORM DEVELOPMENT

• CONCENTRATE OR CRITICAL

COMPONENTS
• AOJUTrlVE TO OTHER

MODELS

" INCREMENTAL BUILD
• EASY TO CHANGE DIRECTION

OIFRCULT TO CHANGE

UNIFORM PROGRES OF ALL

COMPONENTS

DOES NOT ACCOMOOATE

EVOLUTIONARY DEVELOPMENT

LIMITED COST AND SCHEDULE

CONTROLS

• UMITEO DEVELOPMENT OF

MILESTONES AND REVIEWS

• LIMITED SPECIFICATION AND

DOCUMENTATION DEVELOPMENT

• L_MITED COST AND SCHEDULE

CONTROLS

• LIMITED CONTROL OF REOUIREMENTS

• DIFFICULTY SCALING UP

• NO VISIBILITY iNTO PROCESS

Figure 3. Software Development Models

3.0 ARTIFICIAL INTELLIGENCE
ENGINEERING (AISE) MODEL

SOFTWARE

The AISE model, shown in Figure 4,
focuses on the KBS element of a system as
an area of high risk. It drives the
development to be at the same level of
maturity for Its components at each major
milestone, thus providing for process
control.

The AISE phases and their relations to
each other are _hown in Figure 4. In the
following sections, we discuss the
objectives, activities, and results of
each phase.

ACCEPTANCE/DELIVERY

/x

=R
Z_ I TEST

IDE"L 'NT ORA"I

/_,_ ...................._. .............,.
_R °"'"'°,,.,°OCR

ZX
ME_I| RIIOI_ICT"-- / iI=_Tq_'YI_ PROTOTYPE

ZX ZX ,_
RPGR IDPR IPPR

Figure 4. The AI Software Engineering
(AISE) model

3.1 Problem Identification

Objectives: Analyze and define problem
elements that are sultable for KBS
solutlon.

Activities:

Q Isolate problem areas that are
potentially suitable for KBS
Solution

2. Perform trades to determine whether
KBS ts the best solution compared to
other techniques

3. Perform cost/beneflt analysis

4. Draft development plans, includlng
key participants needed

Results/Products: A well defined and
Justified KBS application with a plan for
Its development

3.2 Prototyptng

Objective: Develop a full-capabillty
prototype of the KBS element along with a
detalled deslgn for Its target
implementation

607



Activities: A series of three

prototyplng iterations and six reviews

I. Evolve a prototype to a full
knowledge set

2, Test prototype during development

3. Develop documentation

4. Design target environment

5. Review prototyplng progress

Results/Products: A fully developed

product prototype of the KBS, the design
for its target environment, and the
associated support documentation.

The prototyplng phase Is the most
critical in building a KBS, and
accordingly it is the heart of the AISE
model. The content and control of the

work done in this phase will determine
the success of the system being built.
Figures 5, 6, and 7 show details of the
review milestones associated wlth each of

DEVELOPMENT

REQUIREMENT5

PROTOTYPE

CONCEPT REVIEW

A

DEVELOPMENT

RPCR PURPOSE:

ACERTAIN WE KNOW ALL

THE PIECES NEEDED

,

DESIGN

CONCEPT

REVIEW

/x

TEST !

DCR PURPOSE:

EVALUATE DESIGN CONCEPTS AND

INITIAL PROTOTYPE

- REQUIREMENTS SET COMPLETENESS

- KE PROGRESS

- TOOLS SELECTION

- RISK IDEI'_rlFIGATIOH

- OPERATIONAL CONCEPT

- FUNCTIONAL BREAKDOWN

- INrrlAL INTERFACES

- REQUIREMENTS FOR Kh}OWLEDGE SET,

TOOLS AND PERFORMANCE

Figure 5. Requirements Prototype

11_'I3AL DESIGN

PROTOTYPE

REVIEW

A

OI_'I'A_ DESIGN FEED_kCK FROM

uSERS AND REVIEWERS

m:
- INITIAL DESIGN

- PREUMINARY INTERFACES

- _ MITW3AIION

- DEVELOPMENT pROCESS

/

PRELIMINARY

DESIGN

REVIEW

/x

PDR PURPOSE:

EVALUATE FULL DESIGN AHD ITS

READINESS FOR PRODUCT

PROTOTYPING

- FUNCTIONAL PROTOTYPE

- FULL KBSDESIGN

- UEER INTERFACES

- SYSTEM INTERFACES

- UPDATED OPS CONCEPT

- TEST PLANS

Figure 6. Design Prototype

VA_I'IA L PRODUCT

PROTOTYPE REVIEW

/x

ASSESS PROOUCT OAPASIUTY TO

UE_i"_EQUmm_

/

CRITICAL

DESIGN REVIEW

A

REVIEW FULL CAPABILITY PROTOTYPE

- PRODUCT PERFORMANCE

- TEST PROCEDURES

- ENHANCEMENT NEEDS

EVALUATE:
- PRODUCT PROTOTYPE

- TARGET ENVIRONMENT DESIGN/IMPLEMENTATION

PLAN

- INTEGRATION PLAN

- UPDATED OPS CONCEPT

- USER DOCUMENTATION

Figure 7. Product Prototype

508



the prototyplng stages and the contents
expected at each review,

3.3 Development/Integratlon:

Embed the KBS into its target

Port KBS to intended host
environment (and, if applicable,
language)

2. Integrate wlth system components
that are external to the KBS through
interfaces (I/F)

3. Implement integrated user I/F

4. Develop documentation

Results/Products: An integrated KBS in
Its target environment

3.4 Test and Evaluation

Objective: To ensure that the overall
system works according to specifications
and meets its requirements

Activities:

I. Perform hierarchical tests wlth

greater levels of integration

2. Perform regression tests to check
against standalone KBS prototype
results

Objective:
environment.

Activities:

1.

3. Evaluate overall system performance

4. Validate that the system meets

requirements

5. Perform acceptance testing

Results/Product: Completed system ready
for delivery to user

3.5 Operations and Maintenance:

Objective: Apply system to its intended
use

Activities:

1. Routine operation of system

2. Debugging as required

3. Enhancements as the needs come up

Result/Product:
system

A gracefully maturing

The life-cycle of the AISE model has been
planned to be compatible with the
Waterfall model. This was done
deliberately since many aerospace
programs are mandated to use a variant of
the Waterfall model (many are requested
to use the 2167A standard). Figure 8
shows how the AISE model folds into the
Waterfall. The review milestones align
precisely with the completion of the
prototyping phases and the two merge
during the development phase.

WATERFALL MODEL

I CONCEPT
DEFINmON

PROB.

DCR

_7
PDR

_7

PRELIMINARY
DESIGN

PROTOTY_NG

O'T"L'OI DESIGN

I ACCEPTANCE/DELIVERY
DEVELOPMENT V

/ I I TEST I MAINTENANCE I

DEVELOPMENT/ IINTEGRATION

I

AI SOFTWARE ENGINEERING MODEL

Figure 8. Integrated/EmbeddedMethodology

609



4.0 CONCLUSIONS

In order to integrate KBSs into the
mainstream of software development and
aerospace appllcations, a more rigorous
development methodology Is needed. The
most popular software development models
have been examined for their

applicabillty and characteristics. A new
hybrid, the AISE model, is proposed for
KBS development. The AISE model provides
flexibility up front for evolution of a
knowledge base. At the same time, It
provides visibility into development
through a series of reviews. One of the
features of the AISE model is the uniform
(at milestones) development of all
components of the KBS. This uniformity
allows for meaningful development of
requirements and specifications for the
whole system, which in turn provides the
mechanisms for technical, cost, and
schedule controls. Finally, the AISE
model can be neatly merged with the
Waterfall model making the AISE model
appllcable and compliant wlth most
Government software acquisition
requirements.
.F

S'O ACKNOWLEDGEMENTS

This work is an outgrowth of the AIAA
committee on standards for AI. The
continued support of the following
members Is greatly appreciated: Robert
Savely, Chuck Hall, Greg Swietek, Carol
Russ,, Guy Olney, Brad Allen, Mike
Freeman, and Bruce Bullock. Also
appreciated Is the work of Nancy Seawe11,
with whom we formulated the early
concepts of KBS development.

6.0 REFERENCES

1. B, Boehm, A Spiral Model for
Software Development and
Enhancement, ACM Sigsoft Software
Engineering Notes, August 1988.

o

J

4.

51

o

DOD STD 2167A and associated
Software Specifications documents.

Dr. M. Freeman and P. KIss, Issues
In Management of Artificial
Intelligence Based Projects, Fourth
Conference on AI for Space
Applications, November 1988.

F. P. Brooks, The Mythical Man-
Month, Addison-Wesley, 1975

R. Pressman, Software Engineering,
McGraw-Hill, 1987.

B. Boehm, Software Engineering
Economics, Prentlce-Hall, 1981.

r--

610


