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Summary

The ability of feed-forward neural network architectures to

learn continuous-valued mappings in the presence of noise was

demonstrated in relation to parameter identification and real-

time adaptive control applications. An error function was

introduced to help optimize parameter values such as number

of training iterations, observation time, sampling rate, and

scaling of the control signal. The learning performance

depended essentially on the degree of embodiment of the

control law in the training data set and on the degree of

uniformity of the probability distribution function of the data

that are presented to the net during a training sequence. When

a control law was corrupted by noise, the fluctuations of the

training data biased the probability distribution function of the

training data sequence. Only if the noise contamination is

minimized and the degree of embodiment of the control law

is maximized, can the neural net develop a good internal

representation of the mapping and be used as a neurocontroller.

A multilayer net was trained with back-error-propagation to

control a cart-pole system for linear and nonlinear control laws

in the presence of data processing noise and measurement

noise. The neurocontroller exhibited noise-filtering properties

and was found to operate more smoothly than the teacher in

the presence of measurement noise.

Introduction

A major challenge for intelligent control (ref. 1) of complex

Advanced Propulsion Systems (APS), such as the Space Shuttle

Main Engine, is the real-time analysis of a massive amount
of diverse sensor data. Such analysis can be used to directly

perform low-level, real-time adaptive control, to diagnose

faults, or to send real-time descriptions of the dynamic state

of the APS to a high-level controller. In the first case, the low-

level controller has to compute the control signal adaptively

and in real time so that it can be applied to the controlled

process for a given set of sensor data. In the second case, the
sensor information must be translated in real time into one

of several parameters which characterize specific failure modes

of the APS. In the third case, the dynamic state needs to be
identified in real time in order to allow an accurate health

condition monitoring of the APS.

In most instances however, it is difficult, if not impossible,

to derive realistic models of the physical phenomena and

feedback mechanisms which govern the evolution of systems

as intricately complex as APS, and the only information

available often consists of experimental data collected in flight

or during ground tests. Moreover, the presence of noise in

such systems makes it even more difficult to extract the

information contained in the experimental data and to perform

accurate fault diagnosis and condition monitoring.

It is a major asset of neural networks to be able to extract

features from finite sets of input and output data which

are representative of arbitrary, unknown continuous-valued

mappings (refs. 2 to 4). As arrays of simple computing

elements, neural networks are easy to implement, and benefit

from attractive real-time processing capabilities due to their

massive parallelism (refs. 5 and 6). They store the extracted
features in the distributed network of their interconnections,

which gives them the fault tolerance desired in hostile or

remote environments. Such cost-performance advantages make

neural networks well fitted for the data processing of fault

diagnosis and conditioning monitoring of the APS.

This report analyzes the ability of neural networks to learn

continuous mappings and serve as parameter identifiers or real-

time adaptive controllers when the data used for training have

been corrupted by noise during sensor measurements and/or

off-site data transmission. In the case of adaptive control, the

noise incurred through sensor measurements corrupts the

actual values of the state variables (as well as the control signal

given by the actuator), and it alters the dynamic evolution that

the controlled process would have had otherwise. This will

be called plant or measurement noise. On the other hand, noise

incurred during the (analog) processing of the sensor data only

corrupts the description of the dynamic evolution of the

controlled process. This will be called data processing noise
and will be analyzed first for simplicity.

In the section Training Architecture With Data Processing

Noise, a training architecture is proposed to analyze the

possibility of learning from a teacher-controller in the presence

of data processing noise. In the section Controlled Cart-Pole

System, this training architecture is computer simulated on

the cart-pole system for linear and nonlinear control laws. In

both cases, the training sequences are analyzed in detail with

noise-free and noise-corrupted training data. In the section

Example of Neuromorphic Learning of Nonlinear Control
With Measurement Noise and Data Processing Noise, the

results are applied to the most general situation where the

data representing the dynamics of the controlled process are
corrupted with both types of noise.



Training Architecture With Data

Processing Noise

In order to identify the factors and parameters which

influence the neuromorphic learning of continuous-valued

mappings from noise-corrupted data, it is simpler to consider

frst the effect of data processing noise. The continuous-valued

mapping is chosen to be a control law: that is, a mapping from

the space of state variables onto the space of control signals.

As mentioned in the Introduction, such a mapping can

be viewed from the perspective of identifying a collective

parameter associated with several sensor data, or from the

perspective of real-time adaptive control. Whereas the first

case would apply to situations of fault diagnosis and component

degradation, the second case would apply to situations where

a neurocontroller would be used in place of a human teacher,

a rule-based automated expert, or a natural servomechanism.
In the presence of data processing noise, the state 5 of the

controlled process and the applied control signal C which are
transmitted to the neural net are

and (1)

C = Cex + nc

where the noises h_ and nc are simulated as independent,

normally distributed, zero mean processes. For a high signal-

to-noise ratio of the input signal; that is,

max!!TSexll
>>i

the function _b that represents the control law _(Ze_) = Ca can

be approximated, by using a Taylor expansion, as

When the noise-to-signal ratio remains small, trying to learn

the mapping _b from sets of noisy input and output vectors

(5, C) is equivalent to trying to learn _ from sets of input and
output vectors (Zcx, C,i where only the control force is

corrupted by the effective noise:

C. = Gx + h (3)

where h is the independent, normally distributed, zero

mean process

h = hc- h5 (5 = Zex) (4)

When the input and output data transmitted to the net are

corrupted by noise, the factors and parameters which influence

learning can be studied by analyzing the learning perform-
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Figure l.--Training architecture for neuromorphic learning with noisy

data processing.

ance of the net as a function of the signal-to-noise ratio

max[Ce_[/_ of the output signal only.

The first phase of the training consisted of sampling, at
various times tk, the state Z_x(tk) of the controlled process

(fig. 1) and the control signal C,(tD given inequation (3).
In the second phase, the set of training data [Z_(tk), 6", (tk)]

was organized in input-output subsets before being applied to

the neuromorphic controller as described below.

Controlled Cart-Pole System

The controlled process of figure 1 was chosen to be the cart-

pole system (refs. 4, 7, and 8) represented in figure 2. Training

data were recorded by placing the cart pole at arbitrary initial

positions IX(0), 0(0)] with zero velocities and by driving it

to the origin (X = 0, 0 = 0) with a control force. While the

cart pole was returned to its equilibriu .m position, the four-
dimensional state vector 5(0 = [X(t), X(t), O(t),/_(/)l and

the control force F(t) were regularly sampled over a certain

period of time. Sampling rate and observation time were

considered to be parameters of the training. In the first part
of this section, a method based on the simple example of a
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Figure Z--Cart-pole system. The control force is applied to the cart in the

presence of friction. Mass of cart, M, 1 kg; mass of pole, m, O. 1 kg; distance

between base of pole and center of gravity of pole, L, 1 m; friction force

applied to cart, _, 5 kg/sec; acceleration due to gravity, g, 9.81 m/see 2.



linear control law is derived to optimize learning from noise-

corrupted data. In the second part, it is applied and tested on
a nonlinear control law.

Linear Control Law

For small deviations of the rod around its equilibrium

position 0 = 0, the dynamics of the cart pole can be linearized

and are given by

x=#

and t (5)

4L (gO X) ._

A linear controller that stabilizes this dynamic system to the
origin (X = 0, 0 = 0) is (ref. 4)

F(Z) = kxX + kxX + koO + k00 (6)

where the coefficients are kx= 11.01, kx= 19.68,

k o = 96.49, and k0 = 35.57.

Throughout this work, the term "neuron" is used to

represent a simple processing element whose input and output

response curve is a sigmoid that can be modeled as

1
output = (7)

1 + exp(-input)

Although the output of a neuron can take any value in the

interval [0, 1], learning performance is known to be enhanced

(ref. 9) when the asymptotes of the activation function given

in equation (7) are eliminated by restricting the information

domain of a neuron output to the interval [0.1, 0.9]. Thus,

the_neuromorphic learning of the continuous-valued mapping
F(Z) requires the scaling and offsetting of the last layer output

On:

F
u = ----- 2.50, - 1.25 (8)

F0

where Fo is a constant parameter that normalizes the control

signal over [-1, + 1]. It is essential to emphasize that the choice

of Fo defines the domain where the mapping is to be learned,

and it influences the neural computation as well. Equations

(7) and (8) show that the net output cannot match values of

F such that IFI > 1.25Fo (practically, the net can only match

accurately the domain iFi _< F0). When a control law or a

continuous-valued mapping is to be learned, it is imperative

to first determine the range of variations, Fma×, of the control
signal before F0 is chosen. The value of F0 that satisfies

F0 -> ;Fmaxiand corresponds to the best approximation of the

continuous-valued mapping by the neural net can be obtained

by minimizing an error function.

The neuromorphic architecture of figure 3 consists of a

single neuron in the output layer and four fan-out units in the

input layer. Each input unit feeds into the net one component
of the state vector Z = (X, ._, 0, 0). Like the chemical voltage

of a biological neuron is modulated by its synaptic connections
before it contributes to the excitation or inhibition of another

neuron, each signal of the input layer is subsequently

modulated by a weight w and contributes to the total input
signal of the output neuron:

/net = wxX + w_f( + woo + wfl9 + wth (9)
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Figure 3.--Perceptron architecture to learn the linear control law F = kxX + kxX + koO + koO from noise-free and noise-corrupted data;

= ½ (o n -- o,)2; o,, = !1.25 + F(Z)/Fol/2.5



where %h represents the "synaptic" weight connecting the

output neuron to an input neuron that is permanently "on"

(i.e., with an output signal of + 1). With the neuron activation

function given in equation (7), wth represents the threshold of
external excitation below which the neuron is inhibited and
above which it is activated.

Whether the architecture of figure 3 can learn the linear

control law given in equation (6) is subject to the possibility
of finding a set of weights w x, wy;, wo, Wo, and Wth that
satisfies the condition

F
1.25 + --

F0 1

2.5 I + exp(-inet)
(10)

over the domain of variations of the control force F. For

IF!/Fo < 1, the Taylor expansion of equation (10) around the
origin leads to the condition

O Fthet ---- 1.6 -- + (11)
F0

which is equivalent to

and

= 0 Fw x -- k x +
F0

W_h= 0

with
x:x,Y_,o, 1

(12)

The above equations are formally satisfied over a finite domain

of variations of the control force F only if the limit F0 -- oo,
where O(F/Fo) -- oo, is taken. However, as will be demon-

trated in the next subsection, finite values of F0 lead to a...goo2:l-
approximation of the weights that map the pairs [F(Z), Z]
for lFI < F0.

The results presented hereafter were obtained by imple-

menting the back-error-propagation (BEP) algorithm on a
VAX 8800 at the NASA Lewis Research Center. The initial

values of weights and thresholds were chosen to be randomly

distributed in the interval [-0.1, +0.1] to break symmetries
that could eventually lead to spurious modes and bias the

learning.

Learning from noise-free data.--In the absence of noise,

learning is accomplished by training the network with a
training data set. If the training data set covers only a limited

region S l of the state space So of the control law (i.e.,

Si C So), the neural net can, in general, only extract the

input/output relation over SI: it cannot generalize it over So.

Consequently, the control law would be only partially
embodied in the training data set Sl, and the neural net would

only approximate the control law over S_. In addition, the

accuracy of the neural approximation of the control law over

$1 depends on how uniformly the available data can be

ordered by magnitude throughout the dimensions of SL. The

ordering of the training data has to be uniform to prevent the

net from focusing on any part of S_ to the exclusion of the
remainder.

One way to obtain a high degree of embodiment of the

control law in the training data set is to observe many responses

of the cart pole to random displacements from its equilibrium

position. The degree of embodiment of the control law in the

training data set grows (and subsequently converges) with the

number of such motions Nmotions, the length of observation

time T, and the sampling rate f_. The values of Nmotions, T,

andf_, leading to a sufficiently representative training data set

depend on the application, and, in general, have to be deter-

mined numerically. For this analysis, the pool of all cart-pole

responses is called the training data set and consists of

NmotionsTfs data points. Since the state of the cart pole was

sampled at regular, fixed intervals until it returned to the

origin, the distribution of the forces F used for training the
net (as shown by a histogram of the number of occurrences

versus magnitude, e.g.) was peaked around the origin. The
distribution became more peaked as the observation time T

increased. Clearly a random ordering of the training data

would not be uniform and would bias the training to the origin,

thus preventing the net from learning the control law for large

displacements of the cart pole. Before training began, data

were organized by dividing the interval [-1, +1] of

the normalized force u = F/F o into NFo subintervals
Ik(k = 1, NFo) of equal size. An approximately uniform
ordering of the training data set could then be obtained from

the random sampling of an interval Ik followed by the random

sampling of the normalized force u e Ik. Once selected, u and

its corresponding state Z were then presented to the net as

training data. Each (u, Z) pair presented to the net represented

the information required for one update, or training iteration,

of the network weights. The sequence of all pairs presented

to the net is called a training data sequence. The update
procedure is given in the next paragraph.

For a randomly selected input state vector, the resulting

network output o,, was compared with the target output

o,, = (u + 1.25)/2.5. At each training iteration, the error
= 1/z(on- tin)2 between the target output oN and the network

output J,, was back-propagated through all the net layers to

update weights and thresholds by a steepest descent mini-
mization of E;. The BEP update of the network was iterated

until convergence. For a single-layer, feed-forward net, the
changes 6w _n) of the weights at the n th iteration were

tS_
6w<nl = __ __ + 136wtn - 1) (13)

tSw

In this equation, the first term is directly proportional to the
gradient of the error, and the second term (or momentum term)



modulatesthesteepestdescentupdate.For the perceptron of

figure 3, weights and thresholds were updated by

and

,_w_(") = ,_(o. - ,_.)o.(1 - 6-.)_ + 3,_w{" - 1_

(n)
w,h = o_(o° - 5_)g.(l - b-.) + t_6w_' - "

1
(14)

When mapping features are to be extracted, it is well known

that any a priori knowledge, such as symmetries, can effi-

ciently improve the net performance when it is incorporated

explicitly in the neural computation. Since the control force
changes as F -- -F when the state vector changes as Z-- -Z,

the ensemble of training data was chosento be symmetric under
the transformation T-= [(Z, F)- (-Z, -F)] by randomly

distributing the initial position and angle of the car/pole over

the domain Dxo = [-2 m, + 2 m] × [-20*, +20*].

Since all subintervals (Ik) were treated with equal

probability during training, there had to be enough training

data to provide as uniform a representation of the control law

over each Ik as possible. In addition, the degree of embodi-

ment of the control law in the training data set depended on the

sampling rate f_, which determined the degree of relatedness
between the successively sampled data points [F(Z), Z]. To

optimize FS from an information-theoretic point of view, one

can analyze the control law in the frequency domain. If fc

represents a cutoff frequency above which the spectral

components of the control signal and the state vector are small

(and can be neglected), f_ can be chosen to be equal to the

Nyquist frequency, fNyquist _ 2f_. Iff_ << fNyquist, information
relative to the features between the state vector and the control

signal will be missing in the training data set. Iff_ >> fNyquist,
the training data set will contain redundant information

resulting in unnecessarily large memory space. The state space

where the control law is to be learned will be bounded by the

maximum value Fmax of the control force needed to bring the
cart pole back to the origin from an arbitrary position in Dxo

and with zero initial velocities. The value of Fmax could be

estimated from the training data set itself. For the parameter

values of figure 1 and equation (6), the training data set was

constructed by sampling 200 motions at the frequency rate f,

of 20 Hz, over a period T of 10 sec, leading to the estimate

Fmax = 60 N.
Evaluation of learning performance without noise.--To

evaluate the learning performance, we divided the interval

[-1, + I] of the normalized force F/Fmax, which represents

the state space where the control law is to be learned, into

NFmax subintervals .I, k = 1, NFmax ) of equal size. After the
net was trained with a given value of the parameter F0, the

accuracy of the neural approximation of the control law could
be characterized by the total mean-squared error e 2

NFma x

E
e 2 _ k = I (15)

NFma x

where e_ is the mean-squared error over the subinterval I_.'

n(k)
target] 2

e_ = i=1 n(k) _F]_ / (16)

In equation (16), u(i)target = F_g¢__x -_x /Fo is one of the noise-

free data values used for training and u (/)net = Fnet/Fo is the
output of the net corresponding to the same state variable. The

error e_ is averaged over the n(k) normalized forces

Ftarget/b" contained in 1_.. This definition of the error
_.t [* max

makes it possible to compare the learning performances

corresponding to different values of F0 and to choose the

optimal value of F0 >--Fm, x for which e 2 is minimal. The

convergence of the algorithm can be estimated from the change

in the error e 2 (eq. (15)) as the number of iterations

increases. Here e 2 is obtained while an attempt is being made

to reproduce the data used for training. Similarly, the accuracy
of feature extraction can be estimated from the magnitude of

the error e 2 obtained while trying to predict the control forces

corresponding to state vectors that were not presented to the

net during training. When both errors are small, the neural net

has developed a good internal representation of the mapping.

Because of the statistical nature of the training, the internal

representation of the mapping may vary from one training

sequence to another. The reliability of the net to learn the same

linear law from two or more training sets is therefore an

important criterion of the neural computation and is called

learning reliability. Learning reliability was tested by esti-
mating the fluctuations of the total mean squared error e 2 (eq.

(15)) over a set of 10 training sequences. For each training

sequence, a "learning error" was estimated by calculating

equation (15) over the full training data set. Similarly, a

"generalizing error" was estimated by calculating equa-
tion (15) over a new training data set obtained by randomly

generating 200 new motions of the cart pole sampled at the

same rate and over the same period of time.
In Figure 4, parts (a) and (b) show the mean values and

standard deviations of learning errors and generalizing errors,

respectively, as functions of the number of update iterations.

After 5000 iterations, the average values of the learning error

and generalizing error are both small, with small standard

deviation, indicating that iterative convergence has been

reached. Figure 5 shows the generalizing error of the percep-
tron after 10 000 iterations for different values of the parameter

F 0 (30, 60 (= Fn_x), 120, and 180 N). To maintain a similar
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Figure 4.--Estimation of mean-squared error e2 and its standard deviation,

in training the perceptron to learn the linear control law from noise-free

data. Ten training sequences; control signal normalizing factor, F0, 60 N;

steepest descent parameter, (x, 0.2; momentum coefficient, /3, 0.9.
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Figure 5.--Estimation of mean-squared error e2 (generalizing mode) and its

standard deviation versus control signal normalizing factor, F0, after

training the perceptron to learn the linear control law from noise-free data

for several values of F0. (Error calculated over newly generated data that

were not used to train the perceptron.) Ten training sequences, 10 000

iterations per sequence; steepest descent parameter, o_, 0.2; momentum

coefficient, 13, 0.9.

respectively. For F0 = 30 N, the error was significantly

higher than for F 0 _> Fn_ = 60 N, since the net can only map

the control law over a limited region of the state space: it is

not able to generalize it on the remainder. As expected from

equation (12), the error decreased as F 0 departed from Fmax

since the approximation of a linear control law by the

perceptron improves as F0 -- oo. The rest of this subsection

describes training for F 0 = Fm_x = 60 N.

Consequently, the learning performance of the net was tested

in three different configurations. First, the learning open-loop

configuration tested the ability of retrieving F from a state
Z that was used for training (learning error). In this case, the

net was essentially used as an analog memory. Second, the

generalizing open-loop configuration tested the ability of the

net to generate a control force from a state vector that was

not used for training (generalizing error). In this case, the net

was used as a parameter estimator. Third, the generalizing

closed-loop configuration tested the ability of the net to

stabilize the cart-pole process for a motion that was not used

for training. In this case, the net was used as a real-time

adaptive controller.

Convergence of the training sequence occurred after 10 000

training iterations, with (x = 0.2 and/3 = 0.9. In the learning
open-loop mode, estimates of the total mean-squared error e 2

(eq. (15)) and its standard deviation over a random set of 10

training sequences were 0.00017 and 0.00008, respectively.
In the generalizing open-loop mode, estimates of e 2 and its

standard deviation were 0.00022 and 0.00008, respectively.
In the generalizing closed-loop mode, estimates of e 2 and its

standard deviation were 0.00019 and 0.00008, respectively.

These results indicate the excellent performance of the
neural net.

The dynamic characteristics of the cart pole controlled

by the trained neural net were simulated for the initial state
vectors Z(0) = (-0.7 m, 0, -17 °, 0) and Z(0) = (1.8 m, 0,

-17", 0). As expected, the results obtained from the neuro-

morphic controller and the teacher were in perfect agreement.

Learning from noise-corrupted data.--Just as in the noise-

free case, learning in the presence of noise was accomplished

by constructing a representative training data sequence. How-

ever, the presence of noise limited the degree of representation

that could be transferred from the original data into a training

data sequence. This can be seen by studying the ordering

process used to construct a uniform span of the state space

as explained in the following paragraphs.
In the presence of noise, the normalized values of the control

forces used as targets are no longer the exact values since

ut,arget = uex + h (17)

resolution of the ordering of the training data, we organized

the interval [-1, + 1] of the normalized forces u = F/Fo used

for training into subintervals of equal size (Nr0 = 7, 11, 21, 31)
corresponding to F0 = 30, 60 (= Fro,x), 120, and 180 N,

However, the mapping F(Z) can still be learned by BEP if the

training data set consisting of utarget(i'_n,,,, is representative of the

state space of the control law. Given the statistically averaged,
error-squared function (IF(_ + nF -- G(_!2', ' over the entire



statespace,theBEPyieldsafunctionG(Z) that minimizes

the error as shown variationally in equation (18):

= 0 = c(_ = F(_ (18)

In the absence of noise, it is important to construct a uniformly

distributed, training data sequence to increase the high degree

of representation of the underlying function to be learned. This
enables the net to reproduce the features of the function, rather

than "memorize" the data, which is even more crucial in the

presence of noise since the target data are not the exact values

of the force. It is even more imperative not to learn any

particular target data, but instead to minimize the error uni-

formly over the entire training data set.

Noise fluctuations tend to bias the learning through "data
contamination" between the subintervals lk. Because of

noise, target data are likely to lie in subintervals that do not

contain their exact data counterpart. This tendency implies that,

unless the exact data are uniformly distributed throughout the

state space (which in practice occurs rarely), the sampling by

subintervals as described in the previous section will result
in a less uniform distribution as the noise increases.

This phenomenon is illustrated in figures 6 to 8, which show

the probability distribution function of the data actually pre-

sented to the net during training for various noise-to-signal

ratios, N/S = _/F,-oax, and for different observation

times T of the cart-pole motions. As expected in the absence

of noise, and because of the construction approach used, the

data presented to the net during training (fig. 6) are, within a

very good approximation, uniformly distributed throughout

the state space. This uniformity does not depend on the length

of observation (e.g., T = 0.25, 2.5, or 25 sec).

As shown in figure 7 in the presence of noise, the probability
distribution function becomes less uniform as Tincreases. As

noted earlier, the density distribution function of the forces

F(Z) sampled from the teacher was more peaked around the

origin as the observation time increased. In addition, the

number of exact data that left their subinterval Ik E [-1, + 1]

because of the noise fluctuations was proportional to the

number of data contained in Ik. As a result, the most highly

populated subintervals increasingly populated their neighboring

subintervals as T increased. Since the training data sequence

was generated from the random sampling of a subinterval lk

followed by the random sampling ofa u EIk, the probability

distribution function of a training sequence was more peaked
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as T increased. In figure 7, for N/S = 0.1, it is interesting to

note that there is a relative depletion of the subintervals 14,
15, 17, and 18 surrounding 16. Here, the small N/S ratio limited

the spreading of the data of the overpopulated subinterval 16

to its neighboring subintervals. Furthermore as N/S increased,

the repopulation was no longer limited to a range of one or

two subintervals, but it spread throughout the whole state

space. In figure 8, for N/S = 0.5 and T = 25 sec, the prob-

abil:.ty distribution function of the data presented to the net

during a training sequence reduced to that of the overpopu-

lated subinterval /6, which would clearly prevent effective
learning.

As T becomes smaller, the probability distribution of a

training data sequence becomes more uniform. However, as
T becomes smaller, the control law is less embodied in the

training data set since less of the state space is included in the

data available for training. On the other hand, long observa-

tion times cause the noise repopulations to bias the training
sequence by overemphasizing the contribution of the small

amplitude motions of the cart pole: that is, F = 0. Conse-

quently, an optimal value of T should be determined to mini-

mize the noise contamination of the training data set and to

maximize the degree of representation of the control law by
the training data sequence.

Evaluation of learning performance in the presence of

noise.--Prior to evaluating the learning performance with

noisy training data, the boundaries of the (exact) state space
where the control law is to be learned have to be estimated.

In contrast to the noise-free case, where Fmaxcan be obtained
by direct observation of the training data set, an estimate of

Fm_x is best obtained by training the net for several increasing

values of F0 and by subsequently analyzing the boundary

changes of the state space spanned by the net output after it

has been presented with the data used for training. An estimate

of Fmax is reached when the boundary of the state space of

the net output does not change as F0 increases. By using the
same ordering technique as in the noise-free case, one can

divide the estimated state space of the normalized control law

F/F_x into NFmaxsubintervals of equal size. To optimize the
parameters of the computation in the presence of noise, we

introduced an error function to estimate the degree of accuracy
to which the neural mapping approximated the exact unknown

mapping

NFmax

E (e2°ise)t
2 k=l

enois e =

J_/Fmgt x

(19)

2 ) is the mean-squared error over the subinterval lkwhere en°ise k

re(k)

t El target ]2

(e:°ise), : ": [u(i)net--u(i)nn'seJ ( F22 _
m(k) \ Fmax )

(20)

In equation (20), , .,target b-,targetUti/no_se =--no,_e (i)lFo is one of the
noisy data values used for training, and u (i) net = F(i) net/F0

is the output of the net corresponding to the same state variable.

After training, however, the control force F(i)net output by
the net is expected to be closer to the exact value than the

(noisy) target value used for training. As a result, in contrast

to the noise-free case, a better performance evaluation is

expected by averaging the error over the m (k) normalized

forces F(i)net/Fma x contained in /k-

In the statistical limit where m(k) -- oo and for perfect

learning, e 2ois_would be minimal and equal to var (h) IF2max.
For this reason, we found it more convenient to grade the

learning performance of the net by the quantity

-2 2 var(h)
e noise = enoise 2 (21)

Fmax



This quantity goes to zero in the limit of perfect learning. Clearly,
minimizing E_e with respect to the parameters of the system

is equivalent to minimizing e2ise .

It is essential to choose small values for the steepest descent

parameter c_ in order to minimize the effect of the noise

fluctuations. For a large a, samples with large deviations tend

to overcontribute to the adjustments of the weights, and they
mislead the search for the minimum. For a small a, the effect

of such deviants tends to be balanced towards the average since

samples with small deviations occur with a higher probability.

From a geometric point of view, the fluctuations drastically

complicate the topology of the error surfaces by creating more

irregularities and increasing the possibility of the net getting

trapped in local minima or fiat spots. Small values of o_ favor

adiabatic changes of the weights towards paths of the energy

surface which correspond to averaged values of the training data:

that is, funtarget)= (u_x + h) = u_. In the absence of noise (i.e.,

when the target values are the exact values), the momentum term

speeds up the convergence process by amplifying the weight

adjustments. In the presence of noise, a momentum term would

amplify the undesired weight changes resulting from the highly
deviant data, which would make adiabaticity more difficult to

maintain. For this reason, the momentum coefficient /_ was

chosen to be zero. The price to pay for a small steepest-descent
coefficient and a zero momentum term is, of course, more

iterations to reach convergence.

At each BEP iteration, the weights (including thresholds)

were updated through equation (14). Like with noise-free data,

the cutoff frequency fc could be estimated from the spectral

analysis of the training data set, since the addition of white

noise amounts to a constant shift of the power spectra. For

N/S = 0.1, the neural net was trained with a training data set

of 15 000 randomly generated cart-pole motions sampled at

fs = 20 Hz over T= 0.5 sec. Figure 9 shows the noise-

corrupted control force of an arbitrary cart-pole motion for

this noise-to-signal ratio. For each training sequence, the BEP

algorithm was run for 1 million iterations with the values of
ot = 0.006, /_ = 0, and with the parameter F 0 = Fmax = 60 N.

of e noise (eq. (21)) andFor 10 training sequences, estimates -2

its standard deviation were 0.0037 and 0.0091, respectively.

'_.0 m

EXACT

w _ EXACT +NOISE (N/S - 0.1)

.0 .5 -

-.2 I I I I I
0 2 4 6 8 10

TIME, T, sec

Figure 9.--Typical control forces applied by the linear teacher to stabilize

the cart pole, and their noise-corrupted values used to train the network.

Noise-to-signal ratio, N/S, O. 1; control signal normalizing factor, F0, 60 N.

By direct comparison with the exact data, estimates of e 2

(eq. (15)) and its standard deviation were 0.0035 and 0.0001,

respectively, in the generalizing open-loop mode. In the

generalizing closed-loop mode, estimates of e 2 and its

standard deviation were 0.0025 and 0.00006, respectively.

The dynamic characteristics of the cart pole controlled by

the perceptron of figure 3, trained with noisy data are illus-

trated in figures 10 and 11 for Z(0) = (-0.45 m, 0, -18 °, 0)

and Z(0) -- (-1.9 m, 0, 13", 0), respectively. The agreement
with the teacher is excellent.

For N/S = 0.5, the neural net was trained with a training

data set of 35 000 randomly generated cart-pole motions

sampled atfs --- 20 Hz during a shorter period, T = 0.4 sec.

Figure 12 shows typical noise-corrupted data of the cart-pole

motions. In each training sequence, the BEP algorithm was
run for 10 million iterations with the values of a = 0.002

and _ = 0 and with F0 = 60 N. For 10 training sequences,
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Figure 10.--Performance of the perceptron after 1 million training iterations

with noise-corrupted data of the linear control law; initial state vector,

Z(0) = (4).45 m, 0, -18", 0). Noise-to-signal ratio, N/S, 0.1; control

signal normalizing factor, F0, 60 N; steepest descent parameter, c_, 0.006:

momentum coefficient, _3, 0.
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estimates of e _oi_ and its standard deviation were 0.006 and

0.002, respectively. By direct comparison with the exact data,
estimates of e 2 (eq. (15)) and its standard deviation were

0.006 and 0.0006 in the generalizing open-loop mode,

respectively. In generalizing closed-loop mode, estimates
of e z and its standard deviation were 0.004 and 0.0004,

respectively. Typical curves for the cart pole controlled by

the neural net are shown in figures 13 and 14. Even with such

a high noise, the perceptron learned the process of returning

the cart pole to the origin very well.

Nonlinear Control Law

The methodology developed for the linear controller was

applied and tested on a nonlinear control law (ref. 4). The exact

dynamical evolution of the cart pole (fig. 2) is given by the
equations of motion

= h I - h2X

2- h3+ F(_)
h4

1o
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where

3
hi = _ g sin 0

4L

3
h 2 - -- cos 0

4L

3
h 3 = m(L sin 002 - _ g sin 20

(22)

3
h 4 = M + mill - _ cos20)

The control force F(Z) was generated by applying a feedback

linearizing and decoupling transform (ref. 10)

h4

F(Z)=h2 (h, +k,O+k20+ qX+ c2.._) -h 3
(23)

where k I = 25, k 2 = 10, c I = l, and c2 = 2.6. Training data

were generated by integrating equation (22) with the initial

condition Z(0) = IX(0), 0, 0(0), 0], where X(0) and 0(0) were

an arbitrary position and angle in the domain Dxo extended

to [-4 m, +4 m] × [-50", +50*]. The neural architecture

chosen to approximate the nonlinear control law F(Z) was the

feed-forward net represented in figure 15. The input layer,

which had four linear neurons, fanned out the continuous

values of the state variables Z = (X, Jr, 0, 0) to the 16 neurons

of the first hidden layer. Each neuron of the first hidden layer

was connected to all four neurons of the second hidden layer.

The neurons in the second hidden layer were all connected

to a single neuron in the last layer, As shown in figure 15,

each neuron input was connected to a fan-out unit that was

permanently "on" (threshold term). The output signal of each

neuron was modulated linearly by the (synaptic) weights before

it excited or inhibited another connected neuron.

The layers were labeled by the index p from 0 to 4, p = 0

denoting the input layer. Layer p had v (p) elements consisting

of [_,(p)- 1] neurons and one fan-out unit which was

permanently "on" and used to define the thresholds of the

neurons of the (p + 1) th layer. The weight connecting the ith

neuron of the pth layer to thej th neuron of the (p + 1) th layer

was represented by _/, (p+l).'i,p" The threshold of the jth neuron

of the (p + 1) th layer corresponded therefore to _4),(p+l);_,(p), p.

L

_n

= _1 ( On _G_ )2
2

ADJUSTMENT t

• OF WEIGHTS
AND

THRESHOLDS

Figure 15.--Feed-forward neural network architecture with two hidden layers

to learn the nonlinear control law (eq. (23)) from noise-free and noise-

corrupted data (o_ = J1.25 + F(Z)(+ noise)/Fo] /2.5 :,.
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At the n th iteration, the weights were updated as

(n) - _,,, (n-I)

14_/.(p+lj;i.p ---- ogOi,pAj,(p+l ) "_ pOWj, (p+l);i,p (24)

where the signal errors _ (p+_) at the (p + 2) th layer were
back propagated to the (p + 1) t_ layer to give the signal error

Aj.ip+l ) at the (p + 1) th layer

Aj.(p+I) =Oj,(p+l) [1 --(_.(p+l)]

X Ak.(p+2)Wk,(p+2),j(p+ 1) (25)

If 5,, is the network output, and o, the (noise-free or noise-

corrupted) target output, the error signal A_.4 at the output

layer is the gradient of the error given (as in eq. (14)) by

al.4 = (o, - 5,,) 5,,(1 - 5,,) (26)

In contrast to the linear case where perfect learning was

obtained in the limit F0 -- oo, the only way to find the optimal
value of F0 for a nonlinear control law is to train the net for

several values of F0 larger than Fmax and compare the
learning performances.

Learning from noise-free data.--Owing to the symmetry
of the problem, it is assumed that the control force F(Z)

changes as F -- - F when the state vector changes as Z-- - Z.

Therefore, the ensemble of training data was chosen to be

symmetric under the transformation T-= [(Z, F)

-- (-Z, - F)] by randomly distributing the initial position and

angle of the cart pole over the domain Dxo = [-4 m, +4 m]
x [-50°, + 50 °i.

In the general case of a nonlinear control law, a spectrum

analysis of the training data set provides only a gross estimate
of the cutoff frequency. This value could be used as an

educated guess for the optimization off_ in minimizing the
error e 2 (eq. (15)).

An upper bound for the control force needed to bring the

cart pole back to the origin from a position in Dxo, and
without initial velocities, is Fma x = 120 N. In this section,

training was performed over 200 motions sampled atfs = 20

Hz during T-- 10 sec. The steepest descent coefficient and

the momentum term of the BEP algorithm were c_ = 0.2 and
/3 = 0.9. In learning the mapping F(Z) (eq. (23)) and using
it to control the cart pole, the neuromorphic controller was

able to stabilize the pole to 0 = 0, but it would occasionally

return the cart to an equilibrium position fluctuating in the

vicinity of X = 0. To circumvent this numerical difficulty due
to the existence of a local minimum or flat spot, we fine-tuned

the controller by augmenting the training with data randomly

sampled in the subinterval 16, which is symmetric under the
T- transformation.

The mean-squared error was calculated for several values

of F 0 > Fn_x over a random set of 10 training sequences,

which consisted of 99 000 gross-tuning iterations and 1000

fine-tuning iterations. Analyzing the error as a function of F0

indicated that a minimum was reached for F0 = FmaX. With
F o = 120 N, estimates of the total mean-squared error e 2 in

the learning open-loop mode (eq. (15)) and its standard

deviation were 0.0005 and 0.00017, respectively. In the
generalizing open-loop mode, estimates of e 2 and its standard

deviation were 0.00084 and 0.00037, respectively. In the
generalizing closed-loop mode, estimates of e 2 and its
standard deviation were 0.0007 and 0.00032. The results of

the computation are shown in figures 16 and 17 for the initial
state vectors Z(0) = (-1 m, 0, 45 °, 0) and Z(0) = (3 m, 0,
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-35 °, 0), respectively. The neural net was able to return the

cart pole very satisfactorily to the origin from large angles

and large displacements. This demonstrates that the internal

representation that the net developed during training is a very
good approximation of the mapping defined in equation (23).

Learning from noise-corrupted data.--The mapping to be

extracted and learned by the net was assumed to be symmetric

with respect to the T- transformation, and the initial position

and angle of the cart pole were also randomly distributed over

Dxo. Towards the end of the training, the net was fine-tuned

by training it with data sampled only from the subinterval 16

symmetric with respect to T-. Training data were generated

by integrating the equations of motion (eq. (22)) and adding

to the control force a noise normally distributed around zero.

The probability distribution functions of the data that were

actually presented to the net of figure 15 during training were

plotted for different observation times T and various noise-
to-signal ratios. The characteristics of these probability densi-

ties are the same as those of the probability densities of the

linear control law plotted in figures 6 to 8. For large values
of T, the noise contamination of the sampled data prevented

the construction of a uniformly distributed training data

sequence. For small values of T, the data sampled from cart-

pole motions were not sufficiently representative of the control
law. Consequently, the mean-squared error e_oise(eq. (19))

was expected to be minimum for intermediate values of T. This

is demonstrated in figure 18(a) for a noise-to-signal ratio N/S
of 0.1. For comparison, the exact mean-squared error e 2

(eq. (15)) is plotted in figure 18(b) as a function ofT. In fig-

ure 18, the errors were computed over a pool of data sampled

from cart-pole motions over Tmax = 100 sec, after training

the net from data sampled from cart-pole motions over

T_ Tmax. For larger noise-to-signal ratios, these "wells"

would be more pronounced since the errors would significantly

increase for larger values of Tbecause of noise contamination.

With a noise-to-signal ratio of 0.1, training data were

generated by sampling 1000 cart-pole motions atf_ = 20 Hz

during T = 5 sec. With this set of parameters and following

the approach described in the section Learning from noise-

corrupted data, an upper bound for the (exact) state space of

the nonlinear control law was Fmax = 120 N. The intensity of

the noise is shown in figure 19. The convergence of the training
-2 -2

is illustrated in figure 20, which shows e_oi_ -I-t_enoi_ and
e 2 4- 6e 2 as functions of the number of BEP iterations. A

training sequence consisted of 490 000 gross-tuning iterations

followed by 10000 fine-tuning iterations, with the
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Figure 18.--Estimations of mean-squared errors e'2noise and e 2 and standard

deviations after training the four-layer neural network to learn the nonlinear

control law with a noise-to-signal ratio, N/S, of 0.1. The statistics refer

to a set of five training sequences of 500 000 BEP iterations. Steepest descent

parameter, c_, 0.02; momentum coefficient, _, 0; control signal normalizing

factor, F0, 120 N.
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parameter values a -----0.02, _ = 0, and Fo = Fmax. For a set

of five training sequences, estimates of _2noi_ and its standard

deviation were 0.013 and 0.0003, respectively. By direct

comparison with the exact data, estimates of e 2 (eq. (15)) and

its standard deviation were 0.0068 and 0.0004 in the

generalizing open-loop mode. The dynamic characteristics of

the cart pole controlled by the net of figure 15 are shown in

figures 21 and 22 for Z(0)=(3m, 0, -35 °, 0) and

Z(0) = (-1 m, 0, 450, 0), respectively.

For N/S = 0.2, 4000 cart-pole motions (fig. 23) were

sampled at f_ = 20 Hz during T = 2 sec to train the net. The

BEP parameters were o_ = 0.01 and/3 = 0, and 950 000 gross-

tuning and 50 000 fine-tuning iterations were used in each

training sequence with F 0 = Fmax. For five training

sequences, estimates of e_oi_ and its standard deviation were

0.016 and 0.001, respectively. By direct comparison with the

exact data, estimates of e 2 (eq. (15)) and its standard devi-

ation were 0.009 and 0.0008 in the generalizing open-loop

mode. The dynamic characteristics of the cart pole con-

trolled by the neural net are shown in figures 24 and 25 for

Z(0) = (3 m, O, -35", 0) and Z(0) = (-1 m, 0, 45", 0),

respectively. For these two examples, the learning perfor-
2 withmance could be further enhanced by minimizing e_oi_¢

respect to the scaling factor, F 0 > F_nax, and the sampling

rate f_.

These results show that, in spite of a significant amount of

noise, the net was able to learn the control law (eq. (23)) within

sufficient accuracy to return the cart pole satisfactorily to its

equilibrium position.
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Figure 21.--Performance of the four-layer neural network after 500 000

training iterations with noise-corrupted data of the linear control law; initial
state vector, Z(0) = (3 m, 0, -35 °, 0). Noise-to-signal ratio, N/S, 0.1;

control signal normalizing factor, F0, 120 N; steepest descent parameter,
c_, 0.02; momentum coefficient, /3, 0.
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Figure 22.--Performance of the four-layer neural network after 500 000

training iterations with noise-corrupted data of the linear control law; initial

state vector, Z(0) = (-1 m, 0, 45", 0). Noise-to-signal ratio, N/S, O. 1;

control signal normalizing factor, F0, 120 N; steepest descent parameter,

e_, 0.02; momentum coefficient, B, 0.
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Figure 23.--Typical control forces applied by the nonlinear teacher to stabilize

the cart pole, and their noise-corrupted values used to train the neural

network. Noise-to-signal ratio, N/S, 0.2; control signal normalizing factor,

Fo, 120N.
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Figure 24,--Performance of four-layer neural network after 1 million training

iterations with noise-corrupted data of the nonlinear control law; initial state

vector, Z(0) = (3 m, 0, -35", 0). Noise-to-signal ratio, N/S, 0.2; control

signal normalizing factor, F 0, 120 N; steepest descent parameter, _, 0.01;

momentum coefficient, _Y, 0.
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vector, Z,(0) = (-1 m, 0, 45", 0). Noise-to-signal ratio, N/S, 0.2; control signal normalizing factor, F0, 120 N; steepest descent parameter, _, 0.01;

momentum coefficient, B, 0.

Example of Neuromorphie Learning

of Nonlinear Control With Measurement

Noise and Data Processing Noise

The ability of the feed-forward net to map a nonlinear control

law was tested further by introducing the training architecture

shown in figure 26. Here the dynamics of the cart pole

controlled by the teacher were corrupted by noise. In addition,

the representation of the cart-pole motions transmitted to the

net was corrupted because of a noisy data communication link.
In the first phase of collecting the training data, cart-pole

motions were generated from various initial positions randomly

distributed over Dxo = [-4 m, +4 m] x [-50", +50*]. If the

four-dimensional vector nz represents the noises associated
with the measurement of the actual state vector Z a, the value

of the state vector _s passed to the teacher is

Z_ = Z_ + hz (27)

Although the teacher knows the exact transfer function
F[Z(t)], noise may occur during the physical application of

the force and creat_e a discrepancy between the force applied
by the actuator, F a and the desired force F(Z),

= _(_)+ _ (28)

DATA COMMUNICATION

NEUROMORPHIC tCONTROLLER

A

• m" Z

,,_

I

I
I
113

tO
lu-

'°I

I _ II DATA COMMUNICATION
t

_._+.4 LINK (

LINK [

CONTROLLED

PROCESS !

FEEDBACK FROM SENSORS

l

Figure 26.--General training architecture for neuromorphic learning with noisy sensor measurements (noise within control loop) and noisy data processing

(noise on the data communication links).
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In contrast to the training architecture of figure 1, for the

architecture of figure 26 noise was included within the control

loop itself. As a result, for the same initial conditions, the

architectures of figures 1 and 26 led to different motions of

the cart pole. In this numerical application, an N/S of 0.02
Aa As _s As _$

was chosen for the fluctuations of nF, nx, nx, no, and n0.

Figure 27(a) shows the normalized control force actually

applied by the teacher-controller to the cart pole for the initial
state vector Z(0) = (-1 m, 0, 45*, 0)..The actual values of

the corresponding position X a (t) and angle 0a (t) are shown

in figures 27(b) and (c), together with the noise fluctuations

h,_ and h_. Their comparison with the noise-free trajectories

of the cart pole, as given by the solid lines of figure 16, shows

the existence of small low-frequency oscillations around the

equilibrium position, especially for 0.

In the second phase of collecting the training data, the values
of the force F _ applied to the cart pole and the values of the
state variables Z$ measured by the sensors were stored off-

line through data communication links. Noise that mayoccur
during the analog signal processing of the state vector Z s was

simulated by a four-dimensional vector hz $ normally
distributed around zero

2 training (t) = ZS(t) "_ tlzS (29)

The noise that may be added to the force during the data
* C

processing was simulated by a normal distribution n,_"

/_training (t) = fin(t) + hF _ (30)

In this simulation, N/S = 0.04 was chosen for the noise

fluctuations incurred during data processing: that is,

Fma_ maxlZ_J
=0.04

The effects of such measurement noise and data processing
_training and state vector,noise of the values of the force, , (_) ,

_raining used for training are illustrated in figure 28 for thet) ,

initial condition Z(0) = (-1 m, 0, 45 °, 0).

In the third phase, the noise-corrupted data were used to

train the neural net according to the method developed in

the previous section. After 1 million training iterations with

= 0.01 and/3 = 0 (requiring 1 hr of VAX 8800 CPU time),

the performance of the net was compared with the performance

of the teacher. Figure 29(a) shows the force applied by the

neural net controller to return the cart pole to its equilibrium
position from the initial state Z(0) = (-1 m, 0, 45 °, 0). For

that motion, the values of the position X_(t) and angle O"(t),

measured by the sensors, are shown in figure 29(b) and (c)

together with the actual values X_(t) and O_(t). A corn-

parison of figure 27(b) and (c) and with figure 29(b) and (c)

shows that the motion of the cart pole was smoother, and more

stable, when it was controlled by the net than when it was

controlled by the teacher. These findings are illustrated further

in figure 30 (teacher) and figure 31 (neural net) for the initial
state vector Z(0) = (3 m, 0, -35", 0). (Compare, in particular,

figs. 30(c) and 31(c).)
In effect, the statistical nature of the procedure used to

construct a training data sequence allows the net to overcome

noise fluctuations, and to return the cart pole to its equilibrium

position. A very interesting characteristic of the neurocon-

troller is the attenuation of the low-frequency fluctuations

created by the presence of noise within the control loop.
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Figure 27,--Dynamics of cart pole controlled by the nonlinear teacher in the

architecture of figure 26 and operating in the presence of noise; initial state

vector, 2,(0) = (-I m, 0, 45*, 0). Sensor noise-to-signal ratio, (N/S)sen_or _,

0.2; control signal normalizing factor, F0, 120 N.
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Figure 29.--Dynamics of cart pole controlled by the neural network, trained

from the noise-corrupted data in figure 26. and operating inthe presence
of noise after 1 million BEP iterations; initial state vector, Z(0) = (-1 m,

0, 45", 0). Sensor noise-to-signal ratio, (N/S)_nsors, 0.02; control signal

normalizing factor, F0, 120 N; steepest descent parameter, a, 0.01;

momentum coefficient, 13, 0.
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Figure 30.--Dynamics of cart pole controlled by the teacher and operating

in the presence of noise; initial state vector, Z(0) = (3 m, 0, -35", 0).

Noise-to-signal ratio, (N/S)sensors , 0.02; control signal normalizing factor,

go, 12o N.
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Figure 3 l.--Dynamics of cart pole controlled by the neural network, trained

from the noise-corrupted data in figure 26, and operating in the presence
of noise, after 1 million BEP iterations; initial state vector, Z(0) =

(3 m, 0, -35*, 0). Noise-to-signal ratio, (N/S)_,,_nsor _, 0.02; control signal

normalizing factor, F o, 120 N; steepest descent parameter, or, 0.01:

momentum coefficient, _, O.

of the original data. In the absence of noise, uniform distribu-

tions can be constructed by randomly sampling subintervals

of the state space. However, the presence of noise mixes the

populations of these subintervals, limiting the uniformity of

the data distribution in the state space. Application of the varia-

tional principle to an error function determines the parameter
values that minimize the effect of this noise contamination

while maximizing the degree of embodiment of the mapping

(control law) in the training data set.

Topics of further research would include the use of a time-

dependent sampling rate and the use of neuromorphic classi-
fiers in order to reduce the effect of the noise contamination

and improve the neuromorphic learning of control laws. In

the first case, decreasing the sampling rate as the controlled

process returns to its equilibrium position would favor a more

uniform probability distribution of the exact training data set,

and thereby a more uniform distribution of the training se-

quence. In the second case, a neural architecture could be used

as a noise-filtering preprocessor to selectively construct a

training sequence that would be more uniformly distributed.

The neural computation was not only found to filter the
noises and allow the neurocontroller to substitute for the

teacher-controller, but also to provide a smoother mode of

operation than the teacher. This means, for example, that a

neural net could be trained off-line by observing a conventional

digital microprocessor perform control operations in a very
noisy environment and could be used as a substitute neuro-

controller to improve the quality of the control in terms of

stability. Besides the multiple advantages of the neural
computation and of its practical implementation discussed in

the introduction, the latter property may lead to new noise-

filtering applications for neural network technology.

Conclusions

These results demonstrate that neural networks can

satisfactorily extract a continuous-valued, nonlinear mapping

between input and output data even when the training data are

corrupted by measurement noise and data processing noise.

In order to learn such a mapping (control law) on a certain

region of the state space, the training data set must have the

features that represent the mapping (control law) on the same

region. In addition, the data of the training set must be ordered

by magnitude to generate a training data sequence that is

uniformly and randomly distributed throughout the state space
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Appendix--Symbols

C

Dxo

e 2

2
enoise

--2
e noise

F

Fmax

F0

F _

fc

g

hl,h2,h3,h4

Ik
inet

k

L

M

m

gmotions

o( )

On

On

P

applied control signal

domain of initial position and angle of the

cart pole

total mean-squared error between targets

and neural net outputs

total mean-squared error between noisy

targets and neural net outputs
2

normalized expression for e noise going to

zero in perfect learning

control force applied to cart

range of variations of the control signal

(force)

constant that normalizes the control signal

over [-1, +1]

force applied to the cart pole by the

actuator in the presence of noise

cutoff frequency above which the spectral

components of the control signal and the
state vector are small

sampling rate of control signal and state
variables

variable of an error function

acceleration due to gravity

auxilliary expressions for the nonlinear

dynamics of the cart pole

subinterval of [-1, + 1]

total input signal of a neuron

coefficients of various parameters

distance between the base of the pole and

the center of gravity of the pole

mass of cart

mass of pole

number of subintervals of the control force

normalized in [-1, +1]

number of observed responses of the cart

pole to random displacements from its

equilibrium position

noises (independent, normally distributed,

zero mean processes)

higher order terms

target output

network output

pth layer

So

$1

T

tk

u

var

W

Wth

X

o/

Ai,p

6

_7

0

_,(p)

¢

Subscripts:

ex

i

J
k

H th

entire region of the state space of the
control law

region of the state space of the control law

that is covered by the training data set

length of observation time of a cart-pole

response

times at which samples are taken

normalized control force applied to cart

(F/Fo)

variance

"synaptic" weight connecting two neurons

"synaptic" weight connecting a neuron to a

neuron that is permanently "on" (defines

its threshold)

axial location of the cart pole

linear velocity of cart pole

linear acceleration of the cart

state vector of the controlled process

state vector measured by sensors

steepest descent parameter

momentum coefficient of the steepest
descent

signal error backpropagated to the i th

neuron of the pth layer

error between target and neural net output

force of friction acting on cart

angle of pole displacement from the vertical

angular velocity of the pole

angular acceleration of the pole

number of neurons of the pth layer

exact mapping to be learned by the neural
net

values that the state vector or control signal
would have in the absence of noise

(different from actual value due to the
nonlinear effects of measurement noise)

ith neuron

jth neuron

value over the subinterval Ik

iteration number
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Superscripts:

a

c

s

actual value

data communication

sensor measurement

target

training

value to be matched as closely as possible

by the neural net

value used to train the network

normalized value
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