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CHAPTER I

INTRODUCTION

The interaction and propagation of high - energy heavy ions in extended matter is a

subject of much current interest and activity. Transport studies are applicable to several

diverse research areas including shielding against heavy ions originating from either space

radiation or terrestrial accelerators, cosmic rays propagation studies in the galactic medium,

or radiobiological effects resulting from workplace or clinical exposurest. For space

application, carcinogenesis or damage to nonregenerative tissues resulting from

accumulated exposure to galactic heavy ions may ultimately limit an astronaut's career. In

terrestrial radiation therapy and radiobiological research, knowledge of the clinical

composition and interaction necessary to properly evaluate the effects on human and

animal exposures dictates the need for suitable transport codes with sufficiently accurate

input p,'u'ameters to carry out the intended applications.

A, Scope of Thesi_

In the present work, attempts to model the transport problem for heavy ion beams

in various targets, employing the current level of understanding of the physics of high-

charge and - energy ( HZE ) particle interaction with matter are made.

This work represents an energy independent transport model, with the most

simplified assumptions and proper parameters. The first and essential assumption in this

case (energy independent transport) is the high energy characterization of the incident

beam. The energy independent equation wilt be solved and application will be made to
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high energy neon (20No) and iron (_Fc) beams in water. The numerical solutions will be

given and compared to the numerical solution of reference 23 to determine the accuracy of

the model. The lower limit energy for neon and iron to be high energy beams is calculated

due to Barkas and Burger theory by LBLFRG computer program developed by J. W.

Wilson (NASA Langley Research Center). The calculated values in the density range of

interest (50 glcm2) of water are: 833.43 MeV/nuc for neon and 1597.68 MeV/nuc for

iron.

The analytical solutions of the energy independent transport equation gives the flux

of different collision terms. The fluxes of individual collision terms are given i_t.lrembles

and the total fluxes are shown in graphs relative to different thicknesses of water. The

values for fluxes are calculated by the ANASTP computer code.

B. Background

It has been known for some time that there are several intense sources of radiation

in space that pose a hazard to manned space flight. If man is to venture into space,

adequate shielding against these radiations must be provided. To determine the shielding

required, it is necessary to consider the nature and strength of the radiation, the interaction

of the radiation with the shield materials, and the effect of the radiation that leaks through

the shield on the astronauts2. In addition, knowledge of the nature of radiation interaction

with matter is necessary for radiobiological and medical therapy purposes. The detailed

explanation of the indicated areas requires further special research, that is outside of the

scope of this work. So each area will be discussed very briefly, only.

a. Radiation Sour¢¢:_

It is not necessary to give an exhaustive discussion of the radiation sources in
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space. Here only the general features of the sources which are of significance to the

transport problem will be discussed. There are in general, three sources of radiation in

space: galactic cosmic rays, solar cosmic rays, and trapped radiation in the earth's

magnetic field.

Galactic Cosmic Ray

The galactic cosmic rays are the familiar cosmic rays in the earth's atmosphere that

have been studied for many years. They are composed of electrons, protons, alpha

particles, antiprotons, and small admixtures of heavier elements. According to Mc Donald

these cosmic rays are high energy charged panicles3. The energy spectrum of these

p,'u'ticles decreases rather rapidly with increasing energy but extends to very high energies.

Fortunately the intensity of these cosmic rays is not large [ ='2 panicles/(cm2 sec)] and the

dose an astronaut will receive from them is of the order of 10 (rad/year) without

shielding2. 4, 5. This dose rate may be neglected unless very long missions are

contemplated. So our consideration of these kinds of cosmic rays are very important for

the career exposure of future astronauts.

Solar Cosmic Rays

Solar cosmic rays are high energy particles emitted when solar flare events take

place on the sun. These particles present a major radiation hazard for space travel outside

the earth's magnetic field. The panicle flux is composed of protons, a varying number of

alpha particles, and a small admixture of heavier nuclei2 or the flux of these particles have

the same composition of the galactic cosmic rays but compose the solar wind. The

intensity of these panicles in the vicinity of the earth builds to a maximum within the order

of hours and then slowly decreases. In some cases the intensity remains above the galactic
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cosmic ray background for days. During the early stages of such events, the particles

angular distribution is quite anisotropic, but the distribution rather rapidly tends toward

isotropy and is roughly isotropic during most of the life of the event. An extensive

compilation of data on solar events may be found in the manual edited by Mc Donaldr.

_The E;u'th's Trapped Radiation

The trapped radiation in the earth's magnetic field, the radiation that makes up the

Van Allen belts, is reasonably localized and is of primary importance. When one considers

orbital missions about the earth which repeatedly pass through the belt. This radiation is

mainly composed of both protons and electrons. This paper is not interested in these

radiations here, but in some cases the protons are important in the transport problem for

shielding purposes.

In general, the data obtained from Trans-Lunar Apollo missions show that the HZE

fluence within a spacecraft in free space can be estimated at [ _ 17 particle_(cm2 day)] with

LET (linear energy transfer) greater than 100 KeV/mmT. For a theoretical three-year

Mars8 mission during solar minimum, even behind heavy shielding, 33% of body cells

would be hit by at least one particle of Z (charge number) greater than 10.

The depth-dose profiles behind the shielding materials of a spacecraft is dependent

on the type, energies, and range of the primary radiation involved. Accurate transport

equations and models thus depend on a knowledge of the physical interaction of HZE

particles with a variety of materials over the entire range of cosmic ray energies and masses

in order to provide meaningful predictions of dose distributions and other quantities

required for management of space radiation hazards. Flight operational considerations

impose severe constraints on shielding weight and volume limitations, and therefore is an

important factor in obtaining optimal efficiency and minimal generation of secondary
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radiations. Verifiable mathematical evaluations are required before innovative shielding

concepts can be investigated9.

b. Radiobiological Considerations

When radiation (heavy ions) passes through a living cell, biological effects can be

expected only when one or more ionizations occur in, or in the immediate vicinity of, some

particularly radiation-sensitive molecule or structure which exists within the living cell;

usually in the cell nucleus. However, ionization which occurs within the cell, but outside

this volume of sensitivity is considered to be less effective. The sensitive volume is termed

the "target" and the production of ionization in it is termed a "hit". The presence of the

target can be demonstrated and its size and shape determined by the biological response of

the organisms irradiated with a given (received) doseZ0.

It has been suggested that, because of the length of the track and the density of the

ionization along the particle track there are important differences between the radiobiology

of HZE particles and the radiobiology of other types of radiations 1!. The relationship of

relative biological effectiveness (RBE) and linear energy transfer (LET) has been

determined for various end-points, but not cancer initiation. The relative biological

effectiveness (RBE) cannot be determined for cases in which the end point is unique to

heavy ions. Despite the problems with determination of meaningful LET values and the

debate about their appropriateness, it is important to have information about the LET- RBE

relationship for tumor induction, but not as important in transport problems.

There is evidence that high LET radiation at low dose rate can be more harmful

than at moderately higher rates. It has been observed from energetic iron (600 MeV, 200

KeWmm, 2 Gy/min ). A similar enhancement effect has been shown for argon, but not

for neon particles. Suggesting that low-dose-rate effect for cell transformation is LET
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dependent, with enhancement at 140-200 KeV/mm (LBL 1988).

The combination of a complex mixture of HZE particles, energy, relative biological

effectiveness with either microgravity, low LET radiations, dose protection and other

factors produces great uncertainty in the ultimate level of risk and radiation protection

requirements. The RBE concept is of limited use for practical applications to many

radiobiological protection purposes. In radiobiological protection, many different organs,

effects, dose rates and other parameters are involved and a weight factor referred to as the

quality factor, (QF), is used. The QF is specified in terms of the linear collision stopping

power, {S), in water, which is equal to the unrestricted linear energy transfer, LET, or

LETot (This is the case that locally there is no energy imparted to the medium, some

times it is the same as stopping power). The relationship between QF and LET is specified

by International Commission on Radiobiological Protection (ICRP 1977). Unlike RBE,

QF never decreases at high LET as currently defined.

C. Medical Therapy

Heavy ions used for laboratory research are produced at particle accelerators and are

generally made available in the form of a beam whose spatial extent, divergence, energy,

and energy spectrum can be substantially controlled. Heavy ions were first accelerated to

relativistic energies and used in radiobiological and nuclear physics experiments at the

Princeton Particle Accelerator in 19711l. The continuing heavy ion program has been the

one at the Lawrence Berkeley Laboratory (LBL), where heavy ions are being studied and

used for cancer therapy in order to take advantage of the steep depth-dose profiles available

with accelerated beams. The heavy ion beams that have received the most interest in the

biomedical program at LBL are beams of helium, carbon, neon, silicon, and argoni3.



CHAPTERII

ONEDIMENSIONAL HEAVY ION BEAM TRANSPORT

Heavy ions, in passing through extended matter, lose their energy through

interaction with atomic orbital electrons along their trajectories. On occasion there is a

violent collision with nuclei of the target medium. These collisions produce projectile

fragments moving in the forward direction and low-energy fragments of the struck target

nucleus which are nearly isotropically distributedN.

In the present work the short-range target fragments have been neglected. The

transport equation for these target fragments can be solved in closed form in terms of

collision density (for more details see WilsonZS). Therefore, the projectile fragment

transport in the forw,'u'd direction is the major subject of this work.

A. Straight Ahead Approximation Transport F___uation

In this approximation, ions are not angularly deflected; and, as the colliding ions

break up in nuclear fragmentation, the fragments continue in the incident ion direction.

Thus, for ions of charge number j, the appropriate transport equation, neglecting target

secondary fragments, is

_)x _ _j(x,E) = mjkOkCk(X,E )
(2. I)

where _j(x,E) is the flux of ions of type j with atomic mass number Aj at x in units of

g/cm2 moving along the x axis at energy E in units of MeV/nucleon; o'j is the

7
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corresponding macroscopic nuclear absorption cross section in unit of cm2/g, Sj(E) is the

change in energy E per unit distance and mjk is the multiplicity of ion type j produced in

collision by ion type k passing the mediumt4, 16. iT. The details for nuclear absorption

cross section and multiplicities which are required for calculation in the present work, will

be given in Chapter 3.

The present work is essentially concerned with high energy beams, which would

not be stopped in the interested range of tissue, i.e the energy loss for them in this medium

is very small or almost zero. The transport problem for such a beam is studied as an

energy independent case.

B. Energy Loss and Range - Energy Relation

Charged particles such as electrons, protons, and heavy ions passing through

matter, interact with nuclei and orbital electrons of the target material by the Coulombic

force. For the heavy ions the two principal processes are:

I. Inelastic collisions with orbital electrons.

2. Elastic scattering from nuclei.

Other processes with much smaller cross sections include:

3. Bremsstrahlung.

4. Cerenkov Radiation.

5. Nuclear Reaction.

Most of the energy loss of the incident ions is a result of the inelastic collision with the

orbital electrons. The energy is transferred to the target atoms causing excitation and

ionization. The energy transfer per collision is very small, but a substantial energy loss is

observed even in thin targets because of a large number of collisions.

There are essentially two methods of calculating the linear rate of energy loss,
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or stopping power, passing through a medium. First one, based on classical

considerations, was developed by Bohr (1913, 1915), and the other one is quantum

mechanical method which was developed by Bethe (1930, 1933).

In classical consideration the calculation of stopping power is based on

simplified assumptions concerning the structure of the material in which the ion moves.

The medium is represented as an assembly of free electrons at rest and distributed

uniformly in space; the charged particle is moving swiftly (v<v0), so that the electrons do

not move appreciably during a collision. Under these conditions only small momentum

transfers from the ion to the electrons occur, and since the ion has a relatively largc mass,

its trajectory is substantially unaffected by the momentum transfers.

The collision of the moving ion with an electron is represented

schematically as below;

Point of the

Closest A _proch Path of the Ion

Velocity v
Charge Ze

b = Impact Parameter

I Electron

Schematic Track of an Ion

The ion has velocity v and passes the electron at an "impact parameter" b, which is

the distance of closest approach of the ion to the electron. The total momentum change

of the ion from the collision with the electron is due only to the e.L component of the

ion's electric field.
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e.t = z e b (2. 2)
(v2t2 + b2)3/2

The momentum change, designated as AP t , is given by the time integral of the force;

as

F = e Ea. (2. 3)

f fAP± = eE.Ldt -
v 3

at = 2__7.r2. (2. a)
(t2 + b2/vZ)3n bv

The amount of energy lost by the ion in the collision is equal to the amount of

energy gained by the electron from the passage of the ion. Therefore the energy lost by the

ion is given by

-AE = (AP,I-)2= 2Z2e4 (2.5)
2m mv2b 2 '

where m is the mass of electron.

If there are n electrons per cubic centimeter, then a cylindrical section lying

between impact parameters b and (b +db) and having length dx, there are 2Pnb dx

electrons. Hence the total energy change of the ion in moving a distance dx is given by

dEv = 2FIbn(-AE) db dx (2. 6)

where brain and bma x represent the "minimum" and "maximum" impact parameters, which

are discussed further below. Substituting Eq. (2.5) in Eq. (2.6) and performing the

integration over db, we will have
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11

. dET = _[T7.,_.¢__n In b_m_.
dx my2 brain

(2. 7)

in Eq. (2.7) is known as Slopping Power, which is related to

1 dE-r
= % dx

in Eq. (2. !) for ion type j.

Tile probability density for finding the p,'u-ticle at rest at a given position inside the

target at a later time is known as the range distribution for the ion injected through tile

surface of a target. In range theory, range is regarded as the end effect of tim transport

problem and distributes the motion of tile ion during their slowing down to zero energy.

The range of ion type j is related to stopping power Sj(E) and depends on energy E as

given by

R

Rj(E) = _._dE'__
_(E') '

(2. 8)

Tile stopping powers used herein are based on Ziegler's fits to a large data base iS. It

follows from gethe's theoryt9 and classical theory (Equation 2.7) that

for which

(2.9)

Z2_ Rj(E) = 7_ Rp(E).
Aj Ap

(2. 10)

The subscript P refers to proton. Equation (2. 10) is quite accurate at high energy and
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only approximately true at low energies because of electron capture by the ion which

effectively reduces its charge, higher order Born corrections to Bethe's theory, and nuclear

stopping at the lowest energieslS. Herein the parameter vj is defined as:

VjRj(E) = VkRk(E) ,

so that

Equations (2. 10) and (2. I I) are used in subsequent developments and the energy

variation in vj is neglected. The inverse function of Rj(E) is defined as:

E-rjl[ Rj(E) 1,

and plays a fundamental role subsequently.

(2. 11)

(2. 12)

(2. 13)

Minimum Impact Parameter

Equation (2.5) demonstrates that the energy transfer- DE is inversely proportional

to the square of the impact parameter so that close collisions involve very large energy

transfers. In order to apply our approximate calculations to determine brain, the maximum

possible energy transfer is equated to the expression (2. 5) in which we set b = brain.

Since the velocity of the ion is considerably higher than that of the electron, it was

assumed that the electron remained stationary during the collision. Following the collision,

however, the electron acquires a velocity v2 and the velocity of the ion decreases from v to

vl. The conservation of energy for the collision can be written as :
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(2.14)

where M is the mass of ion. For the conservation of momentum we have

Mv -- Mv I + my 2 . (2. 15)

The maximum momentum transfer corresponds to a "head-on" collision in which

the velocity vectors in Eq. (2. 15) lie in the same direction. Replacing the vectors by their

magnitudes in Eq. (2. 15) and eliminating Vl from Eqs. (2. 14) and (2. 15) we obtain

for the maximum momentum transfer

(mV2)m m __ 2mM v. (2. 16)
m+M

Since it is assumed that (m/M<<l) then, approximately one can obtain

(mV2)max = 2my. (2. 17)

The maximum energy an electron acquires as a result of a collision with an ion is

(DE)max ='"'2 _- 2my 2 (2. 18)
2

which is the maximum value of the energy lost - DE by the ion. Using this expression in

Eq. (2. 5), we find that the impact parameter corresponding to the maximum energy

transfer is

brain =Ze2. (2. 19)
my 2

Maximum Impact Parameter

For large impact parameters the duration of the collision becomes comparable with

the orbital period of atomic electrons, and the electrons can no longer be treated as if they
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collision time 'c defined as

14

The effect of the passage of the ion on a bound electron depends on the relative

,_ = v (2. 20)
b'

and the period of oscillation T=2n/to (to is the orbital frequency of the elec_on). The net

transfer of momentum to an electron is most effective when x << T. For interaction times

which are comparable to or larger than this period, the probability of a quantum transition

in the atom, with an accompanying energy loss by the ion, is negligible. Thus, in order for

energy to be exchanged, we have

__<1. (2. 21)
v to

Therefore, the maximum value of the impact parameter is given by

bm.x = -y- (2.22)
0.1



CHAPTER Ill

ENERGY INDEPENDENT HEAVY ION TRANSPORT

If the ion beam is of sufficiently high energy (detail for high energy beam will be

given in section 3. A) so that the energy shift due to atomic/molecular collisions brings

none of the particles to rest in the region of interest, then we will consider a special case

rather than the case where the beam lose all its energy in the medium. This case is called

the energy independent case. The number of particles moving in the forward direction in

the medium (ap,'u-t from concerning energy) is studied as energy independent flux, which is

the main subject for this work.

A. The Lower Limit Energy for High Encr_ Beam

According to development of technology the concept of high energy has been

changed, the 3 GeV high energy particle of Bertini's time is not a high energy particle any

more. Nowadays with CEBAF facilities 4 GeV particle is intermediate energy particle.

In our view point, the concept of high energy beam is not based on the technical

problems. In our consideration the limit for energy is studied according to

atomic/molecular interaction of the beam with the medium.

In this work, the high energy neon (20Ne) and iron (56Fe)beams transport in

water are going to be studied. According to the theory of beam's energy loss in the

medium, when a beam of ions enters a medium, its energy is lost and eventually comes to

rest, after traveling a certain thickness. In the energy independent case we consider the

beam of sufficient high energy that they will not come to rest in thickness L of interest.

15



The energy lost in crossing the thickness is less than the particle's initial energy.

(- d_-x)L< E

16

(3. 1)

where (- _x-x) is the mean energy loss rate across the thickness L.

Now the least limit energy of the incident beam to pass through the thickness of

interest is going to be studied. So for this case, it is necessary to determine the energy of

the initial energy beam for the range greater than the thickness of interest, i.e, the energy of

the initial beam is required for R > L. For this purpose we will use Equation (2. 13) will

be used

E = gj t [ Rj(E) ] (2. 13)

To calculate the range- energy relation, subroutine RMAT has been used

which is part of computer program LBLFRG developed by Wilson, J. W. (NASA Langley

Research Center). These programs require a data file named ATOMICS. The calculations

were done for neon and iron ion beams in water and the results are shown in Table (1) and

Figure (1) for the ions lighter than neon and the results for the ions heavier than neon are

shown in Table (2) and Figure (2). For evaluation of the method, the results for neon

incident beam in silicon target have been compared with the results from the Handbook of

Range Distributions for Energetic Ions in all Elementst9 and the comparison is shown in

Figure (3).

The development of the computer codes for Range-Energy relation have been clone

to determine the least limit initial energy for neon and iron incident ion beams to pass 50

cm (50 g/cm2) of water, which is the maximum target thickness of interest for the

purpose of Section (3.2). From Table (1) and/or Figure (1) one can see that, the incident

neon beam in water must have the initial energy greater than at least 833.43 (MeV/nuc) to
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pass 50 cm of water. In the same way, from Table (2) and/or Figure (2) we can see that

the incident iron beam must have the initial energy at least greater than 1579.68 (Mev/nuc)

to pass 50 cm of water. So at this point the 833.43 (Mev/nuc) incident neon and 1579.68

(MeV/nuc) incident iron beams in water are the high energy beams for us.

B. Energy Indepcn_lent Flux

As mentioned in Chapter 2. the energy independent flux is the main subject of

present work. In this part the flux of secondary fragments from incident high energy heavy

ion beams are to be studied. High energy beam means that none of the particles in the

region of interest come to rest and energy loss per unit distance in the matter due to

atomic/molecular collisions can be ignored in calculating thc total particle flux. So that

dE __-0 (3.2)
dx

or

Sj(E) = 0 (3.3)

in Equation (2. I) and the last conclusion brings us to the energy independent case.

The energy independent transport equation is obtained from the heavy ion transport

Equation (2. I) by first assuming that the cross sections and fragmentation multiplicities are

constant (independent of energy). Equation (2.1) is then integrated over all energies to

yield the following energy independent transport equation.

+ Oj _j(X) = mjkOk_k(X) ,

k

(3.4)

where J>k>j+l and the initial boundary condition is
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,jCo)= (3.5)

and the energy independent flux is given by

(3. 6)

The solution of Equation (3. 4) for a given incident ion type j, which gives us the flux of

secondary fragments, will be given in terms of g functions in Chapter (4. A).

C. Nuclear Absorption Cross-Section

Typical cosmic ray transport calculations use energy independent microscopic absorption

cross sections, sj, obtained from some form of Bradt-Peter parameterization21.22.

1 L

trlj = nr_ ( A3 + A3 - 8 )2 (3.7)
t j

where r0 and d are energy independent parameters which have been fitted to a particular

set of cross section data and Ai and Aj are the mass numbers of colliding nuclei. While

certainly adequate for high energies where the cross sections are nearly asymptotic,

significant differences exist, at energies below 2 GeV/nucleon, between experimental

data1, 21 detail of theoretical formalism and the values predicted by Equation (3. 7).

To test the sensitivity of the dose predictions to the absorption cross section energy

independence, the sijwere fixed at their 2 GeV/nucleon values, which are representative of

the asymptotic results obtained from Eq. (3. 7). The input fragmentation parameters used

in the calculations were the fully energy dependent ones. The results are displayed in

Figure (4) as the ratios of calculated to experimental doses20. For the renormalized
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fragmentation parameters predictions (label VR) the calculated dose is underestimated by

<10 % before the Bragg peak and up to 35 % beyond the Bragg peak. For the

unrenormalized fragmentation parameters (label ST ) the calculated dose is underestimated

by up to 33% before the Bragg peak and by almost a factor of 4 beyond the Bragg peak.

D. Nuclear Fragmentation Parameter

Aside from the use of energy independent absorption cross section another possible

simplification to the heavy ion transport problem is the use of energy independent

fragmentation p,'u'ameters. To test this approximation dose calculations for the neon beam

in water were performed using fragmentation parameters mjk fixed at the values applicable

to the incident beam energy of 670 MeWnucleon. The absorption cross sections were

fully energy dependent. The results are displayed in Figure (5) as the ratios of calculated to

experimental dose20. For the VR fragmentation parameters, the calculated dose is within

3% of the experimental dose in the region before the Bragg peak and generally within

10% beyond the Bragg peak. For the ST fragmentation parameters, the calculated dose

underestimates the experimental dose by up to 20% before the Bragg peak and by a factor

of 2 beyond it. Thus, as long as fragment charge and mass are conserved through

renormalization, the use of energy independent fragmentation parameters may be

reasonable. Recently an energy independent fragmentation model, which conserves

fragment charge and mass without renormalization, has been developed for use in heavy

ion transport studies.



CHAPTER IV

SOLUTIONS

When a beam of heavy ions enters a tissue filled region, the ions break up and

produce several secondary fragments. Heavy ion beams passing through tissue consist of

primary particles and of fragments produced by nuclear interaction with the materials in the

path of the particle beam. The produced charged fragments can include different isotopes

of the primary ion and isotopes of any lighter elements, with a mass number less than the

mass number of the projectile. The mathematical model for the flux of secondaries are

given by the analytical solution of the Equation (3.4).

A. Analytical Solution

Let us consider the general energy independent heavy ion beam transport equation

and solve it for different collision terms :

+ Oj ejCx) -" mjkO'kCk(X)
k

(4. l)

where the boundary condition is

¢,j(o)

a. Flux of Incident Ion Beam

This part considers the portion of the incident beam which passes the target

without any interaction. So, the equation for this kind of beam that is not related to any

20
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secondary fragments is :

a
[ -- + oj ] +j(x) - o
ax

a

ax q,j(x) - c_jq,j(x)

= -Oj dx

%(x)

ln[_j(x)J =- ajx + c

Sj(x) = e-°J_ ec

x = 0 : +j(0)= ec= ajj

then the flux of incident ion beam is expressed as :

+_°)(x) = Gjj e"J". (4. 2)

b. The Fluxes of Secondary_ Fragments

To determine the fluxes of secondary fragments, the integral form of the general

energy independent heavy ion beam transport of Equation (4. 1) has been considered here,

which consists of the initial beam term and secondary terms as :

ll

_j(x) = e-_Jx _j(O) + _ e°J r-mjk Ok _k(X-Z) dz,
k

(4. 3)

which is a Voltem equation, which may be solved using the Neumann series. Each term in

the Neumann series is a collision term to be discussed below.
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Flux of First Collision Term

In the flu'st collision term (flu'st generation secondaries), the first secondaries are the

same as the final particles. So, subscript k can be replaced by J and there is no summation

required. Then,

From equation (4.2) with

ll

_]l)(x) = e-q'mj_ aj _j(x-z) dz.

Oj(x-z) = 8ji e "_J(x-z)

_j(x-z)= e-a_(x-_.)

the Equation ( 4. 4 ) can be written

f I*_l)(x)= e-C_z mjj 13je_,(x-z)dz _bll)(x)= e_iz mjj 13jem(xz) dz

fO l

= mjj 13I e "°Jx e(aJt_l )z'dz

= my 13j e-rex _._L_ [ e(m-oj)X.l]
m-13j

-_}I)(x)= _ [e'aJx-e_ ].
aj-t_j

_e_re

Flux of Second Collision T_rm

(4. 5)

the summation over k (i.e. summation over all possible types of first generation secondary

(4.4)

In the second collision term there are secondaries from the first collision term, so
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particles) is needed only. Then, the flux of second collision secondaries can be written :

(4. 6)

From Equation (4. 5) replacing j by k we have :

p_kn)(x- Z) = rn_Oj [ e-,,,(,,-z), e-O,(,-,) ]
O'j-O k

and Equation (4. 6) can be written as :

fo II

_2)(x) : _ e-°jr"mjk Ok _ [ e"°k(x'z) - e°,(x'_'-) ] dz
T OJ-O k

----._ .mjk mkj O k O'J

k OJ - O k f" f"[ e-O.x e(_-oj_, dz - e-OJx e(OJ-oJ_dz ]

which reduces to

_2) ( x ) = _ m,ik mkj Ok Oj
k O'1- Ok

[ ¢,-ojx. ¢-okx. ¢-ojx. ¢-ojx ] .
Ok- crj Oj- _j

(4.7)

where J- 1 > k > j indicates all possible values of k.

.Flux of Third Collision Term

In the third collision term there are secondaries from second collision term. So, the

secondaries for third collision term should sum over I (i.e. summation over all possible

types of second generation secondary particles). So, from equation (4. 3) the flux of third

collision term secondaries is written as :



24

ll

(4. 8)

From Eq. (4. 7) with relabcling j to I it can bc written

_12)(x.z)= _ mtkmu OkOS[C-O,(x-_)- C-O,,(x-z)C°,(x-_)- C-°,(_-z)]
k OJ-Ok Ok-OI Oj-O_

Equation (4. 8) has then the form :

ll

_3)(X) = _ mjl OI _ mlk mkJ Ok Oj e.OJ z [ ¢.o,(x-z) _ C-Ok(X-Z)

l k OJ'O'k O'k- O'i

. ¢-o,(x.z). C-o,(x-z) ] dz
O'j - OI

= _ mjlol
Ik

mlk mkI Ok Oj

Oj - (3"k " [¢-o_x¢(ov-oj)z. ¢-o,.x¢(o_-oj)+,,Ok- 0"1

. e-_X e(o_- oj). ¢.-ojxc:(oj- o+)] dz
Oj - OI

= mjl mlk mkJ 01 Ok 13"1

OJ - Ok I" i"[ ¢-o,x c(°_'°+)z dz - C'OkX e(Ok'OJ)z dz
Ok- O'1 Ok- (3"1

I' f."- _ c(°_'°J)z-dz + _ e(O,-oi)z dz
Oj-O I OJ'O I

¢_+)(x)= _ rainmik mkj ol Okoj { __.L_ [ e°Jx- e"°'x . e"°j"- c"°'x ]
Ik O'J-Ok Ok - (3"i O'i-Oj O'k-O'j
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.__!__1 [ e-°J_- r._.. e-oJx- eos x ] }.
oj- el o,-oj oj-oj

(4.9)

Flux of Fourth Collision Term

In the fourth collision term there ate secondaries from the third collision term. So,

the secondaries for fourth collision term should sum over m (i.e. summation over all

possible type of third generation secondary particles).

From Equation (4. 3) the flux of fourth collision term secondaries is written :

f0 x
(4. 10)

and considering Eq. (4. 9) by replacing j with m it can be written :

c_)(x - z) = _ mini talk mk.l o ! o k oj { _ [ ¢-o,,,(x.z). ¢-o,(x-z)
I k O'J "Ok Ok - el OI-O" m

. ¢-o.(x-z) _ ¢-o,(x-z) ].._..L_ [ ¢-o_x-z). c-o,(x-t). ¢-o,0,-z). ¢-o,(x-z) ] }
Ok'Om OJ - O I Oi-O'm O'J-Om •

Now Equation (4. 10) can be written :

f0 II

q;_4)(x) : _ e'°' z mjm Om dz _ mini talk ink,; el Ok Oj { __L__
lk O'j - O k O k - (3"l

[ ¢-o,,,(x-z). ¢-o,(x-z) ¢-o,,,(x-z). e-o,(x-z) ]..._..1.__ [ ¢-o,,,(x-z). ¢..o,(x-t)
O'l-Om Ok-O" m OJ - O I Oi-O" m

.¢-o,,,(x-z).O-oj(x.z)] }
O J-Ore
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_)_4)(x) -- E m'im mml talk mid Om 0"i Ok O'j {
m Ik O'j - 0"k O'k - (3"1

[ 1__ (e-O,x
0"1 - O'm

I I I_ 1 ( e-O._ e(m.-oj_dz
e(O,,,°_ z dz - e-rex e(O_-OJ)z dz ) Ok - O'm

I" I'_ e-o_x eCO,-ajkdz) ] - __1 [ L__ (e_._ e_._j)_ dz
GJ - 0"I 0"1- O'm

I' I". I ( e-O-x e_-_J_ • dz
. e-a,x e(_-oj)z dz ) Oj - Om

fo II

. e-rex e(m-oj),,dz )] }

_)_4)(x) - Z mjm mml talk mkJ Om OI O'k O'J { 1 [ _ ( e-ai x - e _''x
mlk O'j - Ok Ok - OI 0"1- O'm Om'Gj

. e-OJx - e-oix ). 1 ( ¢-ojx. ¢-o,,x. ¢-ojx. ¢-a_x) ]
Oi-Oj Ok -Ore O'm-Oj Ok-O'j

. ___1 [ 1__ ( e-OJ_- e_,,_, e-OJ*- e-O,,_)
Oj - OI (3"1-O'm O'm-O'j GI-Oj

1 (¢°J'" e_- _°J" - e°'_ ) l}
OJ -O'm Om-Oj Oj-Oj

(4. 11)

For simplicity and easy use of these expressions for fluxes of different collision

terms for computer calculations, in Equations (4.5), (4.7), (4.9), and (4.1 I) g-functions is

introduced as follow :

1. For First Collision Term (i.e. Equation 4. 5)
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gO,J) = e aJx ' eO'x (4. 12)
OJ - O'j

2. For Second Collision Term (i.e. Equation 4.7)

g(j,k,J) = 1 [ c'°Jx _ c"°_x. e°J x- e -°,x ]
OJ- Ok Ok'Oj Oj-Oj

with respect to Equation (4. 12) the last relation can be written"

g(j,k,J) -- g(j,k) - gO,J) (4. 13)
O'J - Ok

3. For Third Collision Term (i.e. Equation 4. 9)

g(j,l,k,J) = __1 [ 1__. ( e'Oj x - e "°ix . e°J x - e'° .x )
oj - Ok Ok - OI OrOj Ok-Oj

. _ ( C..Ojx.C-O,x. ¢..ojx. ¢.ojxoroj oj-oj ) ] ' (4. 14)

and considering relation (4. 12), and switching the indices in Equation (4.14) it will have

the form:

g(,j,k,I,J) = 1 [ g(j,k)- gO,l) gO,k)- gO,J) ].
Oj- OI Ol-Ok Oj-O'j

With respect to Equation (4. 13) the last relation takes the form :

g(j,k,l,J) = g(j,k,l) - g(j,k,J) (4. 15)
OJ - O I

4. For Fourth Collision Term (i.e. Equation 4. I 1)
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g(j.m,l,k,J) = _ { ---_ [ 1
Oj-O k O k-O I O I-O" m

( e-Ojx, e-a_. ¢-_jx. ¢-otx )
am-_j al-oj

I ( e'OJx- e_=x . e_Jx- e"°=x i__ ( e°j_ - e"a=x
ak am Om-_j o=-oj ) ] .__i [- O'J - O ! (3"1 - O"m O'm-Oj

_¢-_x. c-_,x I ( c-oJ_ - c°-_ "c-_Jx - e-°,x ) ] ].
cl-aj m- Om Om-_j OJ-_j

Considering equation (4. 12) and switching k with m to each other in the last relation it

will have the form:

gO,k)- gO,l) gO,k)- gO,m) ]
g(j,k,l,m,J) = Oj ._0. m {_.._.L_Iota. 0"1 _ll_O.. _ . Ore'Ok

. _ [ gO'k) - gO,l), gO,k) - gO,J) ] }
Oj - OI O'l'Ok (3"J'Ok

with regarding Equation (4. 13) it can be written:

g(j,k,l,m,J) : I { ___k__ [ g(j,k,l) - g(j,k,m) ]
O'j - (3"m O m - G I

- _ [ g(j,k,l) - g(j,k,J) ] } .
Oj - GI

According to Equation (4. 15) the last relationwill have the form :

g(j,k,l,m,J) = g(j,k,l,m) - gO,k,l,J), (4. 16)
GJ -O'm

with considering Equations (4. 12), (4. 13), (4. 15), and (4. 16 ) we can write the general

form for g - functions as :

g(Jl,j2,j3 ..... jn,jn+l) : g(Jl,j2 .... jn)- g(Jl,j2 ..... jn-l,jn+l)
oj,., - %

(4. 17)
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g(jl)--e"°jtx• (4. 18)

Now by switching 1 with k in _j(3)(x) and m with k in _bj(4)(x) according to the left

sides of the Eqs. (4. 12), (4. 13), (4. 15), and (4. 16) the following very simple form for

CjO)(x), Cj(2)(x), _ibjO)(x), Cjt4)(x)can be written:

_l)(x) - OilgO,J), (4. 19a)

where

{Ib_2)(X)--E O'Jko'kJg(j,k,J), (4. 19b)
k

I_3)(x) --Z O'JkGklo'IJ g(j,k,l,J),

k.l

(4. 19c)

_ 4)(x) -" Z OJ kO'klO'imClmJ g(j,k,l,m,J). (4. 19d)

k.l.m

mjjl_j = o'jj ,

mjkO'k - Ojk , mkJO] -- OkJ ,

mjkOk = O'jk , mkl_l = Okl , mlJl_J = OIJ ,

mjkl_k --- Ojk , mkiO'l = Okl , mimO'm --- _lm , mmJ_J -- _mJ •

The total flux of secondary fragments in different thicknesses x of the target is

 j<x)=
i

i indicates the collision (i.e. generation ) number.

The Equation (4. 20) which is the solution for energy independent transport

equation, is equivalent to the one derived by Ganapol et al._. In this stage it is better to

(4.20)
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B, Numerical Solution

To evaluate the accuracy of the model solve Equation (4. 1) numerically. For this

purpose one can start from a simple approximation of the derivatives.

m m

d_(x) = _(x+Ax) - _(x)
dx Ax

with very small Ax (Ax 40 ).

m

¢--'(x+A) =_(x) + dc_(x) A + O(A 2) + ...
dx

(4. 21)

To determine (d¢(x)/dx) let us consider the general energy independent transport equation

[0-- + Oj ] q)j(x) = E mjk Ok _k(X)
OX k

is considered and expanded for

charge number.

[ d x + Ol ] (_l(X) = 0 + m120"2(_2(x) + m13o3_3(x) + QO@_ mlJO'j_j(x)

[ _7 + 02 ] _2(x) = 0 + 0 + +m2.303_3(x) + O QO_ m2j_j_j(x)
tlX

[ d_.0_+ oj ] Cj(x) = 0 + 0
dx

J_> k > j , where J denotes the incident ion beam's

+0 +...+0

(4.22)

The system of Equations (4. 22) can be written in matrix representation as :



m

d_(x). + _ _(x) - A' _b(x)
dx
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or :

dp(x) - ---
dx = Aq)(x)-c_(x). (4. 23)

where A is the matrix of fragmentation parameters and shown as :

m

0 ml2s 2 m13s3 . mljsj

0 0 m23s3 . m2jsj

0 0 0 . m3js J

0 0 0 0

The entries of matrix A satisfy the assumed simplified nuclear model23. According to this

model

_.2__ k>jk-1
mjk

=I" 0 k_<j

and

oj = O'oj (2/3)

Here the choice of oj is based upon nuclear liquid drop model, and the multiplicities are

chosen so as to conserve charge in each interaction. The matrix for nuclear absorption
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O=

al 0

0 02

0 0

0

0

Oj

where the solution matrix is like :

¢2(x) I

- $3(x) I
_(x) = .

.¢_(x)J

So, with the known values of A and o in Equation (4. 23), we can easily determine the

values of f(x+D) from the Equation (4. 21):

M

_(x+A) = _(x) + d$(x)

where the initial condition is :

rOq

_(o) =

The results of calculation for 25Mg incident beam in water in thicknesses up to 100
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(g/cm2) has been done by computer code IONFLM (i.e. the program which has been

developed for calculation of total flux related to Eq. 4. 21). The same calculation for 25Mg

was done by Ganapol et ai.23. In Table (1) the results for total flux from this code is

compared with the results from reference 23.
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APPLICATIONS

In this part the application of the energy independent beam transport formalism is

going to be studied in order to calculate the four different contributing terms and total flux

from incident neon (20Ne) and iron (S6Fe) beams in water. The maximum depth of

interest for both neon and iron cases is 50 g/cm2 (50 era, special for water as target).

From the energy independent formalism, our incident beams must have sufficient energy to

pass the range of interest (detail in previous chapters). Based on the calculations of

Chapter (3. 1) the least initial energy for the neon beam must be 833.43 MeV/nuc and the

iron incident beam must have 1597.68 MeV/nuc initial energy to qualify as high energy

beams for our case. Using the computer programs and subroutines developed for the

equations derived from the energy independent transport equation in Chapter (4.1), the

different contributing terms and the total flux of different generation secondary fragments

have been calculated. The related equations from Chapter (4. A) are the following :

Incident beam :

=Sjje"J 

Flux of 1st generation secondaries :

_]i)(x) =ojj g0,J)

Flux of 2.ridgeneration secondaries :

34



_ 2)(x) =E OjkOkJ g(j,k,J)
k

Flux of third generation secondaries :

¢_3)(x) =E OjkOklOtl g(j,k,I,J)
k,I

Flux of fourth generation secondaries :

_)_4)(x) "- E OJ kO'klOImrrnJ g(j,k,l,m,J)

k,l,m

The total flux for all secondary fragments"

_bj (x) = _ _b_i)(x) i = l, 2, 3, 4
i

Now, the specific terms will be discussed.
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A. Neon Beam Transport

In the case of neon (20Ne) incident beam transport on water first it is noted that

19Ne and 19F have only one contributing term in Equation (4. 20). The fluxes of these

secondary fragments and some other secondary ion fragments are shown in Figures (6),

(8), (9) and Tables (6 - I 0). The effect of successive terms of Equation (4.20) is shown in

Table (6) for Oxygen (t60) flux. From the Table (6) it is clear that the fourth and higher

order collision terms are completely negligible, and that third collision terms are rather

minor contributions. The relative magnitude of the terms contributing to the 7Li flux

generated by the 20Ne beam is presented in Table (7). The fourth collision term is

negligible at small penetration distances and it is small, but not negligible, at distances
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greater than 30 g/cm2. The fluxes of secondary fragments for some lighter ions which are

produced in 20Ne beam transport in water arc presented in Figure (7) and Tables (11 - 13).

B. Iron Beam Transport

In the case of 56Fe incident beam on water it is noted that 55Fe and 55Mn have

only one contributing term in Equation (4. 20). The _Mn has two contributing terms in

Equation (4.20), and the results can be seen in Figure (10) compared with some other

ion secondary fragment fluxes. Also, the fluxes of some secondaries from 56Fe beam

include the results for 52V are shown in Tables (14 - 17). The convergence rate of Eq. (4.

20) is determined in Table (18) for vanadium 52V from iron 56Fe beam on water. Again

we see the fourth collision term to be negligible while the three term expansion that has

been used by Wilson et al.24, before seems quite accurate at these depths for these ions.

In distinction to prior results, the 160 flux has significant contributions from higher order

terms for depths beyond 20 g/cm2 as seen in Table (19). Also, the fluxes of secondary

fragments for some lighter ions compare with 55Fe which are produced in 56Fe beam

transport in water, are presented in Figure (11) and Tables (17) (20), (21). Figures (12)

and (13) show the comparison of the total flux and the fluxes of individual collision terms.
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SUMMARY AND CONCLUSIONS

Determination of the fluxes of secondary fragments in an energy independent model

of heavy ions beam transport in one dimension is the focal point of this work. The concept

of energy independent term is related to high energy incident beam in a medium which

passes the interested thickness of the medium without coming to rest. The solutions which

give the fluxes of secondary fragments for different generations, are obtained from the

integral form of the energy independent transport equation analytically. The numerical

solution of the general energy independent transport equation gives us the results for total

flux of secondary fragments of all generations. The results are compared to benchmark

results of reference 23 in order to determine the accuracy of the model.

The fluxes of secondary fragments of incident 20Ne beam with initial energy

833.43 MeV/nuc and incident iron 56Fe beam with the initial energy 1597.68 MeV/nue

has been studied in 50 g/cm2 of water (which almost represents normal tissue). Results

show that fourth and higher order collision terms are negligible, and third collision terms

are rather minor. Also it is seen that with exceptions of the lighter isotopes of the

primary ions secondary ions are exponentially attenuated at a slower rate than the

primaries.

The calculations in this present method have taken a rather long execution time on

computer. The next step of this work will be the studying of the same model with a

different method which is expected to take less computer execution time.

A rather important thing for transport problems of this kind is the solution of

37
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coupled partial differential equations which requires a special work. As has been indicated

in reference 23, the solution of this kind of equation for transport problem will be the

subject of their future work_.



Table 1

The Lower Initial Energy of Incident Ions Beam to Pass
the Indicated Depth of Water

39

Depth

Incident Ions with Intial Energy (McV/nuclcon)

(g/cm2)
160 12C 19F 4He lOB

5.000 172.494 146.320 178.920 78.772 131.934

10.000 258.959 218.441 268.944 116.180 196.344

15.000 330.383 277.918 343.416 146A 13 249.223

20.000 394.362 330.482 410.416 172.567 296.107

25.000 454.171 378.968 473.026 196.344 338.870

30.000 510.431 424.845 531.644 218.435 379.088

35.000 563.695 468.560 587.689 239.234 417.388

40.000 615.369 510.425 641.916 258.990 454.254

45.000 665.693 550.507 694.752 277.907 489.708

50.000 714.815 589.713 746.549 296.107 524.017

55,000 762.964 628.092 797.186 313.587 557.105

60.000 8I0.134 665.834 846.589 330.550 589.713

65.000 856.280 702.794 895.457 34 7.092 62 ! .748

70.000 902.059 739.106 943.888 363.258 653.360

75.000 947.460 774.866 991.941 379.088 684.398

80.000 992.532 810.127 1039.468 394.6 ! 3 714.969

85.000 1037. ! 33 844.770 1086.528 409.861 745.103

90.000 108 i.320 879.220 1133.190 424.888 774.866

95.000 1125.152 913.442 1179.489 439.657 804.283

100.000 1162.660 947.460 1225.459 454.203 833.379



Depth

Table 2

The Lower Initial Energy of Incident Ions Beam to Pass
the Indicated Depth of Water

Incident Ions with Intial Energy (MeV/nucleon)

4O

(g/cm2)
20Ne 56Fe 55Mn 59Co 106Pd

5,000 196,226 330.692 318.825 335,360 450.698

10.000 295.929 511.434 491.972 519.119 711,602

15.000 378.825 667.791 641.335 678.260 943,639

20,000 454.17 ! 812.888 779.701 826.089 1163.337

25.000 524,039 950.582 910,493 966,638 1376.136

30.000 589.736 1085.420 1038A63 ! 104.218 1586.473

35.000 652.985 1216.657 1163.080 1238.116 1794,732

40.000 714.507 1343.935 1285.140 1368.056 2001.386

45,000 774.791 1471.377 1404.273 1498.267 2207.027

50.000 833.431 1597.681 1523.776 1627,328 2411.891

55.000 890.651 1723.230 1642.327 1755.684 2616.257

60.000 947.461 1848.237 1760.331 1883.514 2819.42 i

65.000 i 003.740 1972.841 1877.896 2010.955 3024.518

70.000 1059.273 2097.151 1995.128 2137.891 3230.909

75.000 1114.225 2220.975 2111.916 2264.811 3438.660

80.000 ! 168.660 2344.982 2228.645 2391.757 3650.336

85.000 1222.630 2469.049 2345.382 2518.785 3859.751

90,000 1276,182 2593.221 2462.172 2645.940 4 069.704

95.000 1328.465 2717.537 2579.054 2773.261 4279.159

100.1300 1381.473 2842.085 2696.059 2900.820 4490.042



Depth

(g/cm2)

Table 3

Total Flux from Numerical Solution of Present Work Compare
with Data from Reference 23

i •

Total Flux (Ions/era2)

Present Work Data from Ref. 23

41

0.000 1.000 1.000

10.000 2.150 2.159

20.000 3.438 3.452

30.000 4.793 4.801

40.000 6.124 6.137

50.000 7.396 7.401

60.000 8.532 8.547

70.000 9.541 9.543

80.000 10.359 10.363

90.000 10.996 11.011

100.000 11.465 11.473



Table 4

Normalized Contributions to the tsO Fluxes from Successive

Collision Terms of 20Ne Beam Transport in Water

42

Depth

(g/cm2)

Fluxes of Different Collision Terms in (lons/cm2)

First Term SecondTerm Third Term Forth Term

5.000

10.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

1.00E 0 5.03E-2 6.58E-4 3.63E-6

1.00E 0 1.01E-1 2.63E-3 3.31E-5

1.00E 0 1.05E-1 5.91E-3 1.07E-5

1.00E 0 2.01E-1 1.05E-2 2.57E-4

1.00E 0 2.52E- 1 1.64E-2 4.92E-4

1.00E 0 3.02E- 1 2.36E-2 8.58E-4

1.00E 0 3.53E-1 3.21E-2 1.36E-3

1.00E 0 4.03E- 1 4.18E-2 2.03E-3

1.00E 0 5.04E- 1 6.52E-2 3.95E-3



Table 5

Normalized Contribudons to the 7Li Fluxes from Successive

Collision Terms of 20Ne Beam Transport in Water
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Depth

(g/cm2)

Fluxes of Different Collision Terms in (lons/cm2)

First Term Second Term Third Term Forth Term

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

1.00E 0 2.18E-2 2.91E-3

1.00E 0 1.62E- 1 I. 15E-2 4.02E-4

1.00E 0 2.42E-I 2.57E-2

1.00E 0 3.20E- I 4.53E-2 3.16E-3

1.00E 0 3.97E- 1 7.01E-2

1.00E 0 4.72E-1 9.98E-2 1.04E-2

1.00E 0 5.46E- 1 1.34E- 1

1.00E 0 6.18E- 1 1.73E- I 2.39E-2

1.00E 0 7.58E-1 2.63E-I 4.53E-2



Table 6

Successive Collision Terms and the Total Fluxes of

from 20Ne Transport in Water

18Ne

44

Depth

Total Flux and Fluxes of Different Collision Terms in (lons/cm2)

(g/cm2)
First Term Second Term Third Term Fourth Term Total Flux

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

1.48E-3 7.61E-5

2.05E-3 7.61E-4

2.12E-3 3.28E-4

1.96E-3 4.03E-4

1.69E-3 4.35E-4

1.41E-3 4.34E-4

1.13E-3 4.08E-4

8.97E-4 3.69E-4

5.36E-4 3.23E-4

Third and Fourth

Collision Terms

do not exist.

1.56E-3

2.26E-3

2.45E-3

2.36E-3

2.13E-3

1.84E-3

1.54E-3

1.27E-3

8.12E-4



Table7

Successive Collision Terms and the Total

from 20Ne Transport in Water

Fluxes of 18F

45

Depth
Total Flux and Fluxes of Different Collision Terms in (Ions/era 2)

(g/cm2)
First Term Second Term Third Term Fourth Term Total Flux

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

6.74E-3

9.32E-3

9.67E-3

8.92E-3

7.71E-3

6.40E-3

5.17E-3

4.08E-3

2.44E-3

1.49E-4

4.12E-4

6.41E-4

7.88E-4

8.51E-4

8.48E-4

7.99E-4

7.21E-4

5.39E-4

Third and Fourth

Collision Terms

do not exist.

6.89E-3

9.74E-3

1.03E-3

9.71E-3

8.57E-3

7.25E-3

5.97E-3

4.80E-3

2.98E-3



I

Depth

(Wcm2)

Table 8

Successive Collision Terms and the Total Fluxes of 19Ne

from 2ONe Transport in Water

• L I I n In i iN

Total Fux and Ruxes of Different Collision Terms in (lons/cm2)

First Term SecondTerm Third Term Fourth Term Total Flux

46

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

7.95E-3

1.09E-2

1.13E-2

1.04E-2

8.93E-3

7.38E-3

5.92E-3

4.66E-3

2.76E-4

Second, Third, and Fourth

Collison Terms do not exist.

7.95E-3

1.09E-2

1.13E-2

1.04E-2

8.93E-3

7.38E-3

5.92E-3

4.66E-3

2.76E-4



I

Depth

Table 9

Successive Collision Terms and the Total Fluxes of 19F

from 20N¢ Transport in Water

I III I I

Total Fux and Fluxesof Different Collision Terms in (Ions/era2)

47

(glcm2)
First Term Second Term Third Term Fourth Term Total Flux

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

9.68E-3

1.33E-2

1.37E-2

1.26E-2

1.09E-2

8.99E-3

7.22E-3

5.68E-3

3.36E-3

Second, Third, and Fourth

Collison Terms do not exist.

9.68E-3

1.33E-2

1.37E-2

1.26E-2

1.09E-2

8.99E-3

7.22E-3

5.68E-3

3.36E-3



Table 10

SuccessiveCollisionTerms and theTotalFluxes of 10B

from 20Nc Beam TransportinWater

48

Depth

Total Fluxand FluxesofDifferentCollisionTerms in(lons/cm2)

(g/cm2)

First Term Second Term Third Term Forth Term Total Flux

5.000

I0.000

20.OOO

30.000

40.OOO

50.000

3.24E-3 2.88E-4 9.99E-6 1.57E-7 3.54E-3

4.67E-3 8.30E-4 5.76E-5 1.87E-6 5.56E-3

4.87E-3 1.72E-3 2.39E-4 1.53E-5 6.86E-3

3.82E-3 2.03E-3 4.21E-4 4.04E-5 6.31E-3

2.67E-3 1.88E-3 5.19E-4 6.64E-5 5.14E-3

1.76E-3 1.54E-3 5.30E-4 8.45E-5 3.91E-3



Table I0

Successive Collision Terms and the Total Fluxes of 10B

from 20Ne Beam Transport in Water

48

Depth

Total Flux and Fluxes of Different Collision Terms in (Ions/¢m2)

(g/cm2)

First Term Second Term Third Term Forth Term Total Flux

5.000

I0.000

20.000

30.000

40.OOO

50.000

3.24E-3 2.88E-4 9.99E-6 1.57E-7 3.54E-3

4.67E-3 8.30E-4 5.76E-5 1.87E-6 5.56E-3

4.87E-3 1.72E-3 2.39E-4 1.53E-5 6.86E-3

3.82E-3 2.03E-3 4.21E-4 4.04E-5 6.31E-3

2.67E-3 1.88E-3 5.19E-4 6.64E-5 5.14E-3

1.76E-3 1.54E-3 5.30E-4 8.45E-5 3.91E-3



Table 11

Successive Collision Terms and the Total Fluxes of 14N¢

from 2ONe Beam Transport in Water

49

Depth
Total Flux and Fluxes of Different Collision Terms in (lons/cm2)

(g/cm2)

First Term SccondTerm Third Term Forth Term Total Flux

5.000 5.14E-3 3.55E-4 6.52E-6 4.47E-8 5.49E-3

1O.000 7.25E-3 1.00E-3 3.67E-5 5.73E-7 8.28E-3

20.000 7.21E-3 1.99E-3 1.46E-4 4.44E-6 9.35E-3

30.000 5.39E-3 2.24E-3 2.46E-4 1.12E-5 7.88E-3

40.000 3.58E-3 1.98E-3 2.90E- 4 1.75E-5 5.87E-3

50.000 2.23E-3 1.54E-3 2.82E-4 2.13E-5 4.08E-3



Depth

Table 12

Successive Collision Terms and the Total Fluxes of TLi

from 2ONe Beam Transport in Water

I I

Total Flux and Fluxes of Different Collision Terms in (Ions/era2)

5O

(g/cm2)

First Term Second Term Third Term Forth Term Total Flux

5.000

I0.000

20.000

30.000

40.OOO

50.000

4.59E-3 3.75E-4 1.34E-5 2.26E-7 4.97E-3

6.75E-3 1.09E-3 7.81E-5 2.71E-6 7.93E-3

7.35E-3 2.35E-3 3.33E-4 2.32E-5 10.05E-3

6.03E-3 2.85E-3 6.02E-4 6.27E-5 9.54E-3

4.43E-3 2.74E-3 7.66E-4 1.06E-4 8.04E-3

3.06E-3 2.32E-3 8.07E-4 1.39E-4 6.33E-3



Table 13

Successive Collision Terms and the Total Fluxes of z2C

from 20Ne Beam Transport in Water.

51

Depth

Total Flux andFluxes or Different Collision Terms in (lons/cm2)

(g/cm2)

First Term SecondTerm Third Term Forth Term Total Flux

5.000

10.000

20.000

30.000

40.000

50.000

6.44E-3 5.25E-4 1.26E-5 1.37E-7 6.97E-3

9.18E-3 1.49E-3 7.18E-5 1.53E-6 10.74E-3

9.34E-3 3.04E-3 2.91E-4 1.24E-6 12.66E-3

7.14E-3 3.47E-3 4.98E-4 3.18E-5 11.14E-3

4.88E-3 3.13E-3 5.98E-4 5.09E-5 8.66E-3

3.11E-3 2.49E-3 5.93E-4 6.29E-5 6.26E-3



Depth

Table14

SuccessiveCollision Terms and the Total Fluxes
from56FeBeamTransportin Water

of SSMn

TotalFux and FluxesofDiffexcntCollisionTerms in(lons/cm2)

52

(g/cm2)
First Term Second Term Third Term Fourth Term Total Flux

5.000 9.48E-2 9.48E-2

10.000 1.02E-2 1.02E-2

15.000 8.27E-3 8.27E-3

Second, Third, and Fourth
20.000 5.94E-3 5.94E-3

Collison Terms do not exist.
25.000 4.00E-3 4.00E-3

30.000 2.59E-3 2.59E-3

35.000 1.63E-3 1.63E-3

40.000 1.00E-3 1.00E-3

50.000 3.64E-4 3.64E-4



Depth

Table 15

Successive Collision Terms and the Total Fluxes of 54Mn from 56Fe

Transport in Water

I I

Total Flux and Fluxes of Different Collision Terms in (Ions/era 2)

53

(g/era2)
First Term Second Term Third Term Fourth Term Total Flux

5.000 1.04E-2 2.96E-4 1.07E-2

10.000 1.13E-2 6.41E-4 1.19E-2

15.000 9.15E-3 7.78E-4 9.93E-3
Third and Fourth

20.000 6.59E-3 7.49E-4 7.35E-3
Collision Terms

25.000 4.46E-3 6.33E-4 5.09E-3
do not exist.

30.000 2.89E-3 4.93E-4 3.38E-3

35.000 1.82E-3 3.63E-4 2.19E-3

40.000 1.13E-3 2.56E-4 1.38E-3

50.000 4.12E-4 1.17E-4 5.29E-4



Table 16

SuccessiveCollisionTermsandtheTotalFluxesof 52V
from 56Fe Beam Transport in Water

54

Depth

Total Flux and Fluxes of Different Collision Terms in (lons/cm2)

(g/cm2)

First Term Second Term Third Term Forth Term Total Flux

5.000 1.16E-2 4.60E-4 6.88E-6 1.63E-7 1.21E-2

10.000 1.26E-2 1.00E-3 2.99E-5 2.84E-7 1.34E-2

15.000 1.03E-2 1.22E-3 5.49E-5 6.99E-7 1.16E-2

20.000 4.47E-3 1.18E-3 7.08E-5 1.29E-6 8.72E-3

25.000 5.06E-3 1.00E-3 7.52E-5 1.83E-6 6.16E-3

30.000 3.31E-3 7.85E-4 7.06E-5 1.98E-6 4.17E-3

35.000 2.10E-3 5.81E-4 6.10E-5 1.93E-6 2.75E-3

40.000 1.31E-3 4.12E-4 4.95E-5 1.84E-6 1.77E-3

50.000 4.g3E-4 1.90E-4 2.89E-5 1.33E-6 7.04E-4



! I

Depth

Table 17

Successive Collision Terms and the Total Fluxes of 55Fe

from 56Fe Transport in Water

Total Fux and Fluxes of Different Collision Terms in (Ions/era 2)

55

(g/cm2)

First Term Second Term Third Term Fourth Term Total Flux

5.000 1.80E-2 1.80E-2

I0.000 1.94E-2 1.94E-2

15.000 1.57E-2 1.57E-2

Second, Third, and Fourth
20.000 1.13E-2 1.13E-2

Collison Terms do not exist.
25.000 7.61E-3 7.61E-3

30.000 4.92E-3 4.92E-3

35.000 3.09E-3 3.09E-3

40.000 1.91E-3 1.91E-3

50.000 6.92E-4 6.92E-4



Table 18

Normalized Contributions to the 52V Fluxes from Successive

Collision Terms of 56Fe Beam Transport in Water

56

Depth

(g]cm2)

Fluxes of Different Collision Terms in (Ions/cm2)

First Tcrm Second Term Third Term Forth Term

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

1.00E 0 3.45E-2 5.92E-4 1.40E-5

1.00E 0 7.91E-2 2.37E-3 2.24E-5

1.00E 0 1.18E-I 5.33E-3 6.76E-5

1.00E 0 1.58E-I 9.48E-3 1.73E-4

1.00E 0 1.97E-1 1.48E-2 3.61E-4

1.00E 0 2.37E-1 2.13E-2 5.93E-4

1.00E 0 2.76E- 1 2.90E-2 9.19E-4

1.00E 0 3.15E-1 3.79E-2 1.41E-3

1.00E 0 3.94E- 1 5.91E-2 2.79E-3



Table 19

Normalized Contributions to the t60 Hu×es from Successive

Collision Terms of 56Fe Beam Transport in Water

57

Depth

(g/cm2)

Huxes ofDifferentCollisionTerms in(lons/cm2)

First Term Second Term Third Term Forth Term

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

50.000

1.00E 0 2.99E- 1 4.77E-2

1.OOE 0 5.87E- 1 1.86E- 1 3.06E-2

1.00E 0 8.61E-I 4.09E- I

1.00E 0 1.12E 0 7.08E- 1 2.63E- I

1.00E 0 1.39E 0 1.07E 0

1.00E 0 1.59E 0 1.49E 0 9.44E-I

1.00E 0 1.81E 0 1.96E 0

1.00E 0 2.00E 0 2.46E 0 2.33E0

1.00E 0 2.36E 0 3.56E 0 4.72E 0



Table 20

Succcssivc CollisionTerms and the TotalFluxes of 2sSifrom 56Fe

Beam TransportinWatcr

58

Depth

TotalFlux and Fluxes ofDifferent Collision Tcrms in (Ions/cm2)

(g/cm2)

First Term SecondTerm Third Term Forth Term Total Flux

5.000 1.34E-3 5.91E-4 8.49E-5 4.80E-6 2.03E-3

10.000 1.70E-3 1.49E-3 4.25E-4 5.14E-5 3.67E-3

20.000 1.37E-3 2.36E- 3 1.34E-3 3.19E-4 5.39E-3

30.000 8.33E-4 2.12E-3 1.79E-3 6.39E-4 5.38E-3

40.000 4.55E-4 1.51E-3 1.69E-3 7.99E-4 4.45E-3

50.000 2.35E-4 9.54E-4 1.32E-3 7.75E-4 3.28E-3



Depth

Table 21

SuccessiveCollisionTermsandtheTotalFluxesof 160
from 56FeBeamTransportin Water

II

Total Flux and Fluxes of Different Collision Terms in (Ions/era2)

59

( cm2)
First Term Second Term Third Term Forth Term Total Flux

5.000 2.28E-3 6.83E-4 1.08E-4 3.07E-3

10.000 2.84E-3 1.67E-3 5.31E-4 8.73E-5 5.13E-3

20.000 2.26E-3 2.53E-3 1.60E-3 5.96E-4 6.98E-3

30.000 1.38E-3 2.20E-3 2.06E-3 1.30E-3 6.94E-3

40.000 7.65E-4 1.53E-3 1.88E-3 1.78E-3 5.98E-3

50.000 4.06E-4 9.59E-4 1.45E-3 1.92E-3 4.73E-3
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ABSTRACT

ONE DIMENSIONAL HEAVY ION BEAM TRANSPORT:

ENERGY INDEPENDENT MODEL

Student: Hamiduilah Farhat

Date of Birth: January 05, 1955
Department: Physics
Advisor: Dr. W. W. Buck

The present work, which is a step to better understand the nature of interaction of

radiations (heavy ions) with matter, studies energy independent flux of heavy ion beam

transport in one dimension (straight ahead approximation method). The transport of high

energy heavy (HZE) ions through bulk materials that is studied here neglects energy

dependence of the nuclear cross section. In the density range of 50 g/cm2 for water a

833.43 MeV/nucleon neon beam and a 1579.68 MeV/nucleon iron beam represent the

lower limit for high energy beams. The four term fluxes of secondary fragments which arc

given by an analytical solution of the energy independent transpon equation, show that the

fluxes of first and second collision terms are important, where the flux of third collision

term is minor and the fluxes of fourth and higher order terms arc negligible.


