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Abstract

We calculate the density fluctuations--both curvature and isocurvature---

that arise due to quantum fluctuations in a simple model of extended

inflation based upon the 3ordan-Brans-Dicke theory. Curvature fluctua-

tions arise due to quantum fluctuations in the Brans-Dicke field, in gen-

eral have a nonscale-invariant spectrum, and can have an amplitude that

is cosmologically acceptable and interesting without having to tune any

coupling constant to a very small value. The density perturbations the'

arise due to the inflaton field are subdominaat. If there are other massless

fidds in the theory, e.g., an axion or au ilion, then isocurvature fluctu-

ations arise in these fields too. Production of gravitational waves and

the massless particles associated with excitations of the Brans-Dicke field

are also discussed. Several attempts at more realistic models of extended

inflation are also analyzed. The importance of the Einstein conformal

frame in calculating curvature fluctuations is emphasized. When viewed

in this fra_ne, extended inflation closely resembles slow-rollover inflation

with an exponential potential and the usual formula for the amplitude of

curvature perturbations applies.
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I. INTRODUCTION

Extended inflation is a very interesting variation on both old 1 and slow-roUover 2 in-

flation. In old inflation the inflaton field was the Higgs field responsible for GUT

symmetry breaking; while in slow-rollover inflation, in order to achieve density per-

turbations of an acceptably small level, the inflaton field had to be a very weakly

coupled gauge singlet. In extended inflation it is possible for the infiaton field to be

associated with GUT symmetry breaking, thereby once again "tying" inflation to a

cosmological phase transition. Models 3 of extended inflation have been based upon al-

ternative gravity theories where the value of the gravitational constant is determined

by the value of some scalar field, the simplest theory being Jordan-Brans-Dicke. 4

In extended inflation it is crucial that the field that determines the gravitational

constant--which we shall refer to as the Brans-Dicke field--vary significantly. The

field that precipitates inflation--the inflaton field tr--does so because it gets hung

up in a false vacuum state---a local, but not global, minimum of its scalar potential.

While the _ field is hung up, the Universe expands very rapidly--as a large power

of time, but not exponentially---owing to the false vacuum energy and the varying

"gravitational constant." It is crucial that the scale factor not grow exponentially,

so that the probability (per Hubble volume per Hubble time) of nucleating a true

vacuum bubble, e(t) ,,_ r/H'(t) _ t', increases with time (here P is the bubble nu-

cleation rate). At the start of extended inflation e is small so the tr field remains

trapped in the false vacuum; when it increases to order unity the phase transition

ends by the nucleation of true vacuum bubbles. The lack of a "graceful exit" back

to a radiation-dominated Universe that plagued old inflation is circumvented by the

variation of the gravitational constant: Because of the variation of the gravitational

constant during extended inflation, the scale factor only grows as a power of time and

g decreases and e(t) increases during inflation. Reheating is accomplished by bubble

coUisions and should--unlike reheating in slow-rollover inflation--be very efllcient.

Density perturbations certainly arise as remnants of the bubbles that are nucleated

during the phase transition; these perturbations have been addressed elsewhere. _

While it is possible that the density perturbations that arise due to the bubbles are

interesting, it seems uncertain: If the bubble nucleation turns on rapidly, there will

be very few bubbles of cosmologically interesting size; if bubble nucleation turns on

slowly, there will be too many large bubbles to be consistent with the isotropy of the



cosmic microwave background radiation (CMBR). s Unless the bubble nucleation rate

is just so, it is not possible for relic bubbles to be both interesting and observationally

acceptable. In any case, we will focus on the density fluctuations that arise due to

quantum fluctuations in the various fields in the theory during extended inflation. For

comparison, in slow-rollover inflation it is these fluctuations in the inflaton field that

lead to the dominant density perturbations: scale-invariant (Harrison-Zel'dovich)

curvature perturbations, and that also necessitate a very small coupling constant for

the inflaton field, s Curvature perturbations arise in extended inflation, but they are

not quite scale-invariant (they have a power-law spectrum), and they arise due to

fluctuations in the generalized Brans-Dicke field (the field whose value controls the

value of the gravitational constant). Most importantly, no dimensionless parameter

needs to be set to a very small value to ensure that they are of an acceptable--or

even interesting--size.

In this paper we compute these perturbations by a conformsl transformation to the

Einstein frame, the frame where the gravitational constant is constant. In this frame,

extended inflation closely resembles slow-roUover inflation, with the Brans-Dicke field

playing the role of the inflaton with an exponential potential: 7 Moreover, the formulas

derived for curvature fluctuations and graviton production in slow-roLlover inflation

are directly applicable. We also address the production of massless Brans-Dicke

particles, the production of gravitons, and the isocurvature fluctuations that can

arise if there are other massless fldds in the theory, such as an axlon or an ilion.

Finally, we analyze several recent attempts at realistic models of extended inflation.

II. BRANS-DICKE FIELD FLUCTUATIONS

a. Some eztended-inflation basics

For simplicity we consider the original La-Steinhardt model a of extended inflation.

The theory derives from the action

16_r + 1--_g _' _ + £;=,,tt_ ,

where q_ = 2¢c_b2/_.

(2.1)

This theory serves only as a toy model since the temperature
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fluctuations in the CMBR that arise due to the distribution of bubble sizes requires

that _ _ 20, s while solar-system tests of the theory require w _ 500. 8 However, this

model will serve well to illustrate the salient features of the density fluctuations that

arise in extended inflation.

The matter part of the Lagrangian includes the inflaton field _r and all other

matter fields: _m,tt,r = (O_r)_/2 - V(cr)+.... During extended inflation the inflaton

field sits quietly in the false vacuum, and affects the dynamics only through the

vacuum energy density that it contributes to the energy density of the Universe:

PvAc = V(_ = 0) - M 4.

In Eq. (2.1) we have expressed _ in terms of a massless scalar field ¢ with curvature

coupling _ = -1/4w. We warn the reader that rewriting the action in terms of ¢ can

be misleading: The kinetic term for _b appears canonical, but because of the absence

of the usual --7_/16_'GN term, gravity is not canonical. Moreover, by integrating by

parts, derivatives of the metric tensor (from 7_) may be shifted to the _ kinetic term.

Fluctuations in • are related to those in ¢ by:

_ = v/_-_-/__¢. (2.2)

This fact will be of some utility later.

The equation of motion for • and the Friedmann equation are

8,_3.(,0_ 3p);+3H_- _72_ = 2w+

H 2
----a2 = 3"-'_-+ 6 _2 H_. (2.3)

During extended inflation p _ pvAc -- M 4- , p - -pvAc, and the scale factor a and

evolve as

=(0 = =0(1+ m) _+_/' _ =o(B0=+_/' (form >>1),

• (t) = _0(1 + B$)' =_ _0B'$' (for B$ :>> 1), (2.4)

where B is defined in terms of w, M, and the value of _ at the start of inflation by

B¢_/2 = 1M,, P = _(6w + 5)(2w q- 3) (2.5)pa_ 32_-_ _ "

Eq. (2.4) implies that during inflation, the expansion rate is time dependent:

h (_ + 1/2)B w -t- 1/2
=__- = _ (forBt >>1). (2.6)

a l+Bt t



Since there is little variation in • during the matter or radiation-dominated regimes,

the value of • at the end of inflation is approximately equal to its value today:

2 4t_M rap:

_,, =_ t._ _.,,-#-_, (2.7),_.__c_v_=__p,___oB_t_ =

where the time t, corresponds to the end of extended inflation. Around this slightly

ill-defined time the _ field makes the transition to the true vacuum through the rapid

nucleation of Coleman-De Luccia bubbles, and bubble collisions reheat the Universe

to a temperature of the order M. The quantity p is a dimensionless constant of order

unity and for _o ::_ 1, ? --_ _/3/8_'.

m

b. Production o/ fluctuations

•The physical wavelength of a linear perturbation grows with the scale factor of

the Universe: _ph_ oc _(t). Consider a fluctuation of present physical wavelength

that crossed outside the horizon at time t during extended inflation; )_ is given by

= M .(t.) H__(t)' (2.s)
2.75K act)

where the reheat temperature is assumed to be M, aCto)/aCte ) = M/2.75 K, and

a(to) = 1 is the scale factor today. Writing _ -- _Mpc Mpc -_ _Mpcl0 as GeV -1 and

taking a(t.)/a(t) __ Cry�t) _'+1/2 it foUows that

_Mp¢ --- 10-_SPMP!(te/t)_-I/2;

(2.9)

It is interesting to exhibit the effective value of the gravitational coupling G (GN wiU

be reserved for the present value of Newton's constant) as a function of epoch when

the fluctuation of wavelength A went outside the horizon:

G t 10 _5 XMpc ; (2.10)
GN

for w = 10 and M = 1014 GeV, G/GN "_ lt_410.21| In addition, since the bubble_v "_Mpc"

nucleation rate per Hubblevolume_(t) : r/m __ (t/t,)', we can express _(t)in
terms of the scale that is leaving the horizon at time t instead of t,

e(t) OC AMpc 4/(_-1/2). (2.11)



As bubble nucleation "switches on," say e increases from 0.1 to I, a range of scales

cross outside the horizon: From the relation above we see that the logarithmic interval

of scales (A(ln A)) that cross outside the horizon as bubble nucleation commences is

proportional to (w - 1/2)/4. This implies that the range of bubble sizes expected

varies exponentially with w, and one can easily appreciate why there is an upper

bound to w from bubble nucleation.

Now let'scompute the horizon-crossingamplitude of a fluctuationin the Brans-

Dicke field(i.e.,when it crossesoutside the horizon during extended inflation).We

estimate itsamplitude by settingthe fluctuationamplitude in the equivalent field_b

equal to the value of H/2a" at the epoch of horizon crossing:

_]_A (_p/) ('_a+lJ/(_a-l/') I 'l('--al') (2.12)_ "_w-x12105°l('_-x12)P "mpc •

(Since _bis only minimally coupled in the limit that _o >> 1, 5_b = H/2_r is only

technicallycorrectin thislimit.)We see that the sizeof the fluctuationcan be large---

justlikethe value of m_,Jq_--and for the same reason: During extended inflation,

can be very small compared to itspresent value. Moreover, we see that in the limitof

exponential inflation, i.e., _ _ 1, the spectrum of fluctuations becomes "flat"--that

is independent of A--as one would expect. Finally, the amplitude of the @ fluctuations

decreases to zero as w _ oo (in the limitof w --_o% the Brans-Dicke field• freezes

out and the theory becomes gener_ relativity).

c. Evolution of @-fieId fluctuations

During extended inflation _ grows as t_; using Eq. (2.3), it is simple to show

that super-horizon-sized fluctuations in • grow at the same rate, and thus that q_a/q_

remains constant in amplitude. During the radiation- and matter-dominated epochs

that foUow extended inflation the value of @ remains roughly consta_ut. Likewise,

it is simple to show that super-horizon-sized fluctuations in _ also remain constant

in amplitude. (More pzecisdy, both grow slightly and their ratio remains constant.)

Once a fluctuation in @ re-enters the horizon, it follows from Eq. (2.3) that its am-

plitude decreases as a-l(t). For fluctuations that re-enter the horizon during the

present matter-dominated epoch (A > 13 Mpc), the decrease in their amplitude un-

til today is given by a(tR) -s a_'_ I0 _Mpc, where tH is the time when the fluctuation

crossed back inside the horizon. For fluctuations that cross back inside the horizon



during the radiation-dominated epoch (A < 13 Mpc), the decrease in amplitude is

a(_s) -_ 10 -s _Mp¢.

Using these facts we can compute the present amplitude of the fluctuations in the

Brans-Dicke field. For fluctuations of present wavelength less than about 13 Mpc

while for fluctuations of present wavelength greater than about 13 Mpc

6":_ = _a-ll' lo-s+s°l("-11') p (p-_pt ) ("_+l)l(_'-ll')_ ("'+l)l('_-ll')" (2.14)T "Mpc

Again, we see that for the interesting values of M and w the fluctuations are of

interesting amplitude; e.g., for _a = 10 and M = 1014 GeV,

8q_ = la-11_ x.2 (A < 13Mpc),
T J.v _Mpc ,

_A 1¢_-12. 2., (A _ 13Mpc). (2.15)
T -" -v "kMpc :l

On scales less than that of the present horizon, A _ 3000 Mpc, the fluctuations in

correspond to massless ,I, particles; while on the largest scales, _ _> 3000 Mpc, they

correspond to spatial fluctuations in the gravitational constant. The consequences of

such fluctuations in the Brans-Dicke fleld--and any resulting constraints--remain to

be discussed. Brans-Dicke fldd fluctuations should have numerous effects, including

contributing energy density, causing temperature fluctuations in the CMBR, affecting

the timing of the millisecond pulsar, and possibly affecting various precision solar-

system tests of general relativity. However, because the model we are considering

is truly a toy model which most certainly needs modiflcation--perhaps making the

Brans-Dicke field massive, or even massive and unstable---we wiU not consider them

further here.

d. Curvature fluctuatior_

Since the effective source of Newtonian gravity is proportional to Gp and Gp oc

p/_, one might expect that fluctuations in • give rise to density fluctuations of a

similar amplitude. As we shall see this is essential]y correct. While it is tempting

to try to analyze the production of curvature fluctuations in the frame of Eq. (2.1),

known as the Jordan conformaIfrarne, because the effective gravitationai constant is



varying and because the fluctuating fieldmthe Brans-Dicke field _mis not minimally

coupled, such a procedure is very suspect.

The surest way to analyze curvature fluctuations is to work in a conformally

rescaled frame where the gravitational part of the action takes the usual Einstein-

HiIbert form. This frame is known as the Einstein conformal .frame. The rescaling

to the Einstein conformal frame is accomplished by the following conformal transfor-

mation:

_ = n-'(t)g_, n' = _,/_, ) = )01n[_/-_,];

where qJ02 = (2t# + 3)m_,t/16z'. In the Einstein frame the action is given by:

lfi_'GA, +

+ exp(- $/q_o)g_0_,#O,,# - exp(-2@/@0)M'] ;

(2.16)

(2.1z)

where overline indicates the Einstein frame and GN = rni,_ is the present value of the

gravitational constant. We will assume that the inflaton field is anchored in the false

vacuum so that its kinetic term can be neglected; the only effect of the inflaton is

to contribute a false-vacuum energy exp(-2_/_0)M (. Note too that at late times,

t >> t,, when q_ _ m_t , the conformal factor f_ --, 1, so that the Jordan and Einstein

frames become equivalent. (Since • grows with time, the conformal factor decreases

monotonically to 1.) During extended inflation it is simple to show that 9

a(f) = a0(1 + C{)_'12+st4;

(w/2 + 3/4) w/2 + 3/4 (for Ct >> 1);
= (1 +ct-) _

(1+ c_) = (1+ Bty; (2.18)

where 2B/C = eq_o/m2p,. These facts will be of use shortly.

In the Einstein frame the Brans-Dicke field qt takes on the appearance of a min-

imally coupled scalar field with with a potential, Y(9) = M 4 exp(-2qJ/@o). The

equation of motion for gt is familiar:

dV())+ 3H_t - V'gt + d--"'_- = 0. (2.19)

Assuming that the _ field is homogeneous, its evolution is just that of a "slow roller:"

d_/d[ __ -(dV/d$)/3[I. (It is simple to show that _//I_ .-_ w-_, which for w >> 1

justifies the slow-roll approximation.) That is, when extended inflation is viewed from



the Einstein frame, it resembles slo_-rollowr inttation off an exponetial potential, with

the rescMed Brans-Dicke iqeld !P playLng the role of the inflaton.

Because _ behaves just like an inflaton field and because gravity is as per usual,

we can compute the curvature fluctuations that result from quantum fluctuations in

by taking advantage of the machinery developed for slow-roUover inflation, s When

a given scale A crosses back inside the horizon after extended inflation (denoted by

"HOR") the amplitude of the fluctuation on that scale is given by

(6p) H' 3R s
7 HOR -- d_-_dE '_- dV--_/'; (2.20)

where the quantities on the right side of Eq. (2.20) are to be evaluated when the scale

crossed outside the horizon during inflation. Moreover, well after extended inflation

the Jordan and the Einstein frames coincide so that the curvature fluctuations in both

frames are the same! That is, the fluctuation amplitude in the Jordan frame---which

' is what we are interested in--is equal to that computed in the Einstein frame---where

the amplitude that is most easily and unambiguously computed.

Remembering that f[2 = 81rV/3m_ t and dV(_)/d_ = -2V/_o, it is simple to

evaluate Eq. (2.20) for (SP/P)HOR:

HOR _ _ '

"" 10s°/('_-1/_)4_" 6 p-21(_,-x12)

( M ._(,,,.,+,)/(,.,-,/2)_ ,/(,-1/2) (2.21)X -- _Mpc •
\ WbpI /

Up to a factor of order w this is precisely the same as the fluctuation amplitude in

9, cf. Eq. (2.12). 1°

Implicit in computing (6P/P)HOR was the assumption that quantum fluctuations

in the field _ are given by R/2_. What would have been the outcome if we had

worked in the Jordan frame and assumed that 6_ = H/2_? The fluctuations in • are

computed from those in _bby Eq. (2.1):

- = (2.22)

From this and the fact that 6q' = _0(60/O)--which follows from the definition of

• --we find that

6@= L-_---_ J _+ 2--_"

8



Thus, only in the limit w >> 1 is the result in the Jordan frame assuming 6_a = tt/27r

consistent with the result in the Einstein frame assuming 6_ = Ar/27r. The fluctuation

amplitude of H/27r applies only to a minimally coupled, massless scalar field with

canonical kinetic term. In the Einstein conformal frame • is a minimally coupled

scalar field with canonical kinetic term, and because its potential is very flat it is

effectively massless. Thus 6_ = H/27r applies. In the Jordan conformal frame the

field ¢ is only minimally coupled in the w --* oo limit, and thus _b = H/27r only

technically applies for w --_ oo: This is the limit in which the two methods for

estimating/_ agree.

Even if w is not large it is still possible to compute 6¢ in the Einstein frame; in

this case there is an additional correction to 6_b which arises from the interaction of

¢ with the curvature scalar.

Note that the power-law spectrum of curvature fluctuations that arise due to

quantum fluctuations in _, given by Eq. (2.21), becomes flatter as w becomes large.

The amplitude of these fluctuations is very interesting: for w = 10 and M : 1014

GeV,

\/(P_ __ ln-'_ o.21 (2.24)6p 4 X _,,.., _Mp© "

HOR

The associated temperature fluctuations on large angular scales, 0 ,,_ 1° to 180 °,

corresponding to scales A ,,_ 100 Mpc to 1000 Mpc, are given by 11

6T) 1 /_-2

_'-- 1050/(W--1/"_[2"_--_ p-2/(_-1/2, \T'rl, p|(-M ]_) (,w-+-l,/(w--1/2)

×1o,/(._l/,)(aoh)_,/(._l/,{_o
\ l° ) ; (2.25)

(where we use the fact that a comoving scale A corresponds to an angular size of 6 =

34.4"(i20h)AMp¢) at recombination). For w = 10 and M = 1014 GeV, the temperature

fluctuations are certainly too large to be consistent with the currents limit to the

quadrupole anisotropy, 6T/T < 3 x 10 -5. Increasing w or decreasing M slightly

can remedy this problem, while still predicting fluctuations of an interesting size

on smaller scales. That bubble nucleation occur rapidly enough so that there are

not too many large bubbles requires that w must be less than about 20. s This fact



together with the desire to associate M with a scale of order the GUT scale seems

to imply that the fluctuations will be both of an interesting magnitude and not scale

invariant. The fact that the amplitude of the density perturbations increases with

scale may be of some importance in that it boosts the fluctuation amplitude on large

scales. (According to some, a scale-lnvariant spectrum lacks sufficient power on large

scales to be consistent with the observed large-scale structure--large-scale streaming

motions, the cluster-cluster correlation function, and the large voids seen in the CfA

red shift survey.)

Again, we remind the reader that the model considered is truly a toy model which

certainly requires modification. However, since the key feature of extended inflation is

significant variation in the gravitational constant during inflation, one might expect

that this simple toy model with w _< 20 would at least mimic features of a more

realistic model of extended inflation. Finally, we again emphasize that curvature

fluctuations are most directly and unambiguously addressed in the Einstein frame.

In Section IV we will analyze curvature fluctuations in several attempts at more

realistic models.

III. FLUCTUATIONS IN OTHER FIELDS

a. Inflaton field _r

During most of extended inflation the inflaton field plays a very passive role, quietly

resting in the false vacuum state, _r = 0. At the end of extended inflation the

inflaton tunnels to the true vacuum; density fluctuations will certainly arise from the

nucleation and thermalization of bubbles. Here we are interested in the perturbations

that might arise due to quantum fluctuations in the (r field long before the end of

extended inflation. However, we will not find them! Quantum fluctuations in the

inflaton field are highly suppressed for a very simple reason: The mass of the o"field,

m 2. = V"(0) 0_ M 2, is much larger than the Gibbons-Hawking temperature, Taw =

///_.a-. Very roughly, m,/(lt/21r) ,,, vf_(ra_/M) where ra;,'_ - G-'/' < ms,

is the effective value of the Planck mass during inflation. As we have seen in the

previous section, M must be significantly less than rapt to ensure that the Brans-

Dicke fluctuations are acceptably small; in a similar vein, m_,_ cannot be too much

10



less than rapt. Thus, the mass of the inflaton is several orders of magnitude larger

than the Gibbons-Hawking temperature, and so fluctuations in the inflaton field are

highly suppressed. Note that we have addressed the fluctuations in the _ field in the

Jordan frame, as in this frame the kinetic term for _ is canonical. Were we to carefully

address the fluctuations in the ¢ field in the Einstein frame by using a redefined field

which has a canonical kinetic term, we would find that mr./(fI/2_) _- m_/(H/2_).

b. Other massless fields

Any nearly massless scalar field, i.e., m 2 << _2 in the theory will have fluctuations

of order H/2_" imprinted upon it on all scales. In the case that the energy density

contributed by that field is subdominant, i.e., much smaller than that of the inflaton,

these fluctuations will not contribute significantly to the curvature fluctuations, but

instead give rise to isocurvature fluctuations. This occurs in much the same way it

does in slow-roUover inflation. 12 As a simple and interesting example, we will treat

isocurvature axion fluctuations.

To analyze these fluctuations it is most appropriate to work in the Jordan frame,

where matter fields have their usual kinetic and potential terms, but where the grav-

itational constant is varying. (In the Einstein frame kinetic terms in the matter

Lagrangian are rescaled by factors of f/2 = exp(-_/_0) and potential terms by fac-

tors of f/4 = exp(-2_/_0).) Since the fluctuations we are interested in do not involve

the gravitational degrees of freedom, the variation of G is only of interest in so far as

it affects the expansion rate H.

Consider a complex scalar field _ that carries PQ charge and undergoes sponta-

neous symmetry breaking, after which _ obtains a vacuum expectation value (_) =

fo exp(-iS), where fo = (1_1) is the vacuum expectation value that breaks PQ sym-

metry. The axion degree of freedom is 8. Suppose that PQ symmetry breaking occurs

before, or early on, during inflation. Since 8 is massless, no particular value is ener-

getically favored during inflation. Later, around a temperature of 1 GeV, instanton

4 and minimumeffects become important, and 6 develops a potential of depth about m,r

at 6 = 0. Within the inflationary region, 6 will take on some arbitrary value 61 _ 0.

The misalignment of//1 with the eventual minimum of the axion potential leads to

coherent axion production, with the number density of axions produced being pro-

portional to #12.is Fluctuations in 6 will lead to fluctuations in the number of a_ons

produced and correspond to isocurvature _on perturbations: (5_/_o) _- 2(_0/6_).

11



Quantum fluctuations in _ give rise to quantum fluctuations in 0: 50_ __ H/fa,

where H is value of the Hubble parameter when the scale _ crossed outside the

horizon. During extended inflation H o_ (w + 1/2)/t, and we have previously related t

to _, cf. Eq. (2.9). Bringing this all together, we find that the spectrum ofisocurvature

axion perturbations is given by:

~1_ M2
\ na /_ 01 f, met t '

M ( M _(_+1/2)/('-1/_) • 1/(_-1/_)
'_ 102S/(_-1/2) _1-1 _ _---_p/j "_Mpc • (3.1)

When the Universe is matter-dominated and a given scale has crossed back inside

the horizon, these isocurvature perturbations will give rise to density perturbations

of the same amplitude. In slow-ro]]over inflation the spectrum of isocurvature axlon

perturbations 12 is identical to Eq. (3.1) in the limit that w :_ 1. For M/f,, 01 "_ O(1),

- 10, and M -- 1014 GeV the amplitude of fluctuations is

6_" ""3 x 10 -'_ (3.2)
0.11

which is definitely cosmologically interesting.

Any field that could develop isocurvature fluctuations in slow-rollover inflation

can also do so in extended inflation. A second interesting example is provided by the

"ilion" field, which in a particular model of baryogenesis gives rise to the baryon

asymmetry. 14 In this case ilion fluctuations result in isocurvature baryon-number

fluctuations, is In general, in slow-rollover inflation the spectrum of isocurvature fluc-

tuations was scale invariant; in extended inflation they will have some scale depen-

dence because the Hubble parameter is not constant during inflation (inflation is

power law rather than exponential).

c. Gra_iton perturbations

To analyze gravitational wave perturbations (the transverse, traceless tensor met-

tic perturbations) it is most appropriate to work in the Einstein framer as the results

derived for slow-rollover inflation is are directly applicable. As mentioned previously,

long after extended inflation the Jordan and Einstein frames coincide so that the

results we derive for tensor fluctuations in _ at late times are identical to those in

g_--the ones we are interested in.

12



The dimensionless amplitude of a gravitational wave perturbation as it crosses

outside the horizon during extended inflation is

B
h'A --_ _, (3.3)

_Ttpl

where £r is to be evaluated at horizon crossing during extended inflation. Once the

mode is outside the horizon its amplitude remains constant until it re-enters the

horizon after extended inflation. It is a simple matter to evaluate Eq. (3.3) for the

amplitude of the tensor-metric perturbation hA at post-extended-inflation horizon

crossing; x7

(____pl) 2/(ta-l/2) i 2/(ta-1/2) (3.4),_ 10so/(,_-1/2) p-2/(_-112) "_Mpe '

For w = 10 and M - 1014 GeV we find that

hA "_ 5 x 10 -0 1 o.21 (3.5)"qMpc *

The gravitational wave mode just re-entering the horizon today, A -,, 3000 Mpc, leads

to a quadrupole anisotropy in the CMBR of amplitude gT/T ,,_ hA, which for the

parameters above corresponds to _fT/T ,-, 3 x 10-S--very close to the current upper

limits to the quadrupole anisotropy.

At post-extended-inflation horizon crossing the ratio of energy density in the gray-

Rational wave mode just crossing inside the horizon to that of the total energy density

is given by

AdpGw / dA __4 ( _______1)'Pror "_ 3:r ; (3.6)

for the mode that is just crossing inside the horizon today (A ,-_ 3000 Mpc) this is

 ap .,la ( M (3.7)flA~_OMv¢ = '_ I01141(_'-112)P-41(_'-I12)_ •
PCmT \rapt /

For the parameters above, NA~zoooMp_ " 10 -I°.

It is straightforward to compute the spectrum of relic gravitational waves today; is

they extend from $ ,-_ 10 -2s (met�M) Mpc--the mode that re-entered the horizon
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just after reheating--to A ,,_ 3000 Mpc--the mode that is just re-entering the horizon

today. The fraction of critical density contributed today varies with A as

Gx' oc A2+4/('-I/2) 13 Mpc _< ,_ _ 3000 Mpc,

fix ¢x A41(_'-112) 10 -2s (rapt�M) Mpc < A _< 13 Mpc, (3.8)

and can by normalized by the result above for 12x~3OOOMpc. In the limit that to >> 1

this is the same spectrum as that predicted in slow-roUover inflation.

IV. OTHER MODELS OF EXTENDED INFLATION

Were it not for the fact that solar-system tests of the Brans-Dicke theory require

to be greater than about 500, Brans-Dicke theory with w -,, 10 and M ,-- 1014

GeV would provide a very elegant and viable model of extended inflation. The rub

is that for a_ < 500, the effective gravitational constant today, which varies as G -1 =

oc 41nt/3(2_a + 3), is changing too rapidly to be consistent with the most stringent

solar-system limits to G. If, after extended inflation, there were some mechanism to

prevent the time variation of @, e.g., a potential of the general form A(_ - rn_,l) 2,

the above difficulty could be circumvented. In many theories, including superstrings

and other theories that involve higher dimensions, a field like the Brans-Dicke field

arises, and is known as the "dilaton." There are a variety of reasons for wanting

and expecting the dilaton field to acquire a mass, and extended inflation provides

yet another. For the sake of a simple model, imagine that the Brans-Dicke field does

acquire a mass, in the form of an additional (potential) term in the Lagrangian,

Aw ._
£ ---* E 1-_ ( - rn_")_" (4.1)

Such a potential for _ would both "anchor" @, thereby preventing the gravitational

constant from varying, and provide a mass for the Brans-Dicke field, rn_ = Am_, t.

As we shall now discuss, in so doing it would not adversely affect extended inflation

provided that rn, < (16a'/w)l/_Ma/mp_ ... 100 GeV (for M = 1014 GeV).

The addition of such a term to the Lagrangian density of the theory would modify

the equations of motion for a(t) and <I>;in the Jordan conformal frame they become:

'i'+3H,i,- V_'_ - 2to,3(P-3p)+ _.,,,+-----_m_,t(m_,-_,);
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- 3+ + 6 + H + - (4.2)

During extended inflation p _ M 4, p = -p, and the vacuum energy associated

with the o" field being in the false vacuum controls the right-hand sides of both

these equations. If the potential for _ is not to interfere with the implementation

of extended inflation, then the additional terms on the right-hand sides of Eqs. (4.2)

must be subdominant; this requires that

( ) "( +)'2 2 _ w rn+mpi (4.3)w re+rapt << I, 1 << 1.
16¢ M' 1 _, 16¢ M' m_pt

Both of these conditions are met during extended inflation provided that m® <

(16_r/_)X/2M2/mpt. Likewise, if these conditions are met, the new terms in the

equations of motion for a (_) and $ are subdominant. In addition, conditions (4.3)

also guarantee that • << B/2_" (and equivalently that m+ << H/2_'); therefore,

during extended inflation the Brans-Dicke field g' still behaves Like an (effectively)

massless scalar field (mass much less than the Gibbons-Hawking temperature) and

g$ =///27r, implying that our previous calculation for the curvature fluctuations is

appLicable here.

There is one new and potential worrisome wrinkle associated with the mass term

introduced for the ff field: In general, extended inflation need not end when the value

of ff is precisely equal to rn_t , and so after reheating the ff will be left oscillating

about the minimum of its potential. These coherent if-field oscillations behave just

Like nonrelativistic matter and will come to dominate the mass density of the Universe

long before the Universe is supposed to become matter dominated (at a temperature

of about 10 eV). To be more specific, if these oscillations come to the dominate the

Universe the energy density of the Universe when the temperature is 7'. >> 10 eV,

then the Universe reaches a temperature of 3 K at the age of 10 Gyr (T./IOeV) -x/2.

(A similar problem was encountered in slow-rollover inflation with the Polonyi field. TM)

The cure for this dread disease is simple: The Brans-Dicke field must be unstable

and decay. This is not difficult to arrange for a field of such large mass. A more

thorough discussion of a model of extended inflation where the Brans-Dicke field

acquires a mass and how extended inflation fits into a realistic particle physics model

is given in Ref. 19.

Steinhardt and Accetta z have proposed another model, dubbed hyperextended

inflation, in an attempt to construct a realistic model of extended inflation. They
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start with the action

S
[ le - - 16 M2 .... + 16f • + £,..,,,, ; (4.4)

where # is a dimensionless constant, M is an energy scale less than the Planck mass

(the GUT scale?), and _ is, as before, the Brans-Dicke field. The key modification

is to include higher order terms in the coupling between the Brans-Dicke field _ and

the curvature. (We have adopted a slightly difference notation than theirs; in their

model ta is a function of _ which is then expanded in powers of _.)

In general, the conformal transformation to the Einstein frame is quite complicated

because of the three different terms involving _ and g. However, the analysis can

be simplified by considering regimes where one of the three terms dominates. Those

regimes are: (a) • _< M a, where the first term dominates; (b) M a <_ • _< M 2/_/, where

the second term dominates; and (c) • _> M2/#, where the third term dominates. In

regime (a), the theory is a rescaled version of general relativity where G = M -a.

Since _ crucial feature of extended inflation is the time variation of the gravitational

constant we wiU not address regime (a). In regime (b), the theory resembles the

Brans-Dicke theory, and in regime (c), the theory also has a time-varying gravitational

constant. Supposing that M _ mpl, we can be certain that we are not in regime (b)

today since the value of the gravitational constant would be G = M -a > m_ = GN.

Today then, the effective gravitational theory must be described by regime (c), in

which case we can read off the gravitational constant--G_v = M2/#c_--and deduce

the present value of 6: _ = Mmpl/v_ = ra_,(M/raptVr_). Provided that M <

vr'Bmvt, the value of • today is less than the Planck mass squared, a fact that will be

of some significance. In the spirit in which the model was proposed we will assume

that this is the case.

There are several possible scenarios for hyperextended inflation. First, that the

period of inflation relevant for us--the last 60 or so e-folds--occurred during regime

(b), in which case the analysis of the previous Sections applies since the effective

action during inflation is just that of a Brans-Dicke theory. There is one crucial

difference however; the final value of the q_ during phase (b), denoted by q_, will

necessarily be less than ra_, I. In deriving the various formulas for fluctuations we

assumed that _ = m_,t. In particular, if this is not the case, then we must modify
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some of the previous results. To begin, Eq. (2.7) which defines te becomes,

(#/ 2.QM=  ,oB't:= t.= (4.5)
_,mpl / iv1-

whereq = _/mp_ islessthan1.Now Eq. (2.9)relatingt,/ttoM/mr_, _Mp¢,and

O) becomes

_re_ 102s/(,,_1/2) -- _Mpc ,

t \pmel/

which is the same as Eq. (2.9) except for the factor of q. Equation (2.21) for the

amplitude of the curvature fluctuations becomes

-;- .oR _ ¥

__ 10so/(_,-x/2)47r_2__ q-(2t_+l)/(,_-1/2)p-2/(_,-1/2)

(4.7)

The amplitude of the fluctuations is increased by a factor of (m_,J_e)(_+1/2)/('_-1/2).

The amplitude of graviton perturbations is increased by the same factor, while isocur-

vature perturbations are increased by a factor of (m_,J_e)('+1/2)/2('-t/2). Since the

largest possible value of _e is M2/_, the increase in the amplitude of curvature per-

turbations is at least a factor of (v/-_M/mp_) 2(_'+t)/(_'-_n), which nearly cancels a

similar factor of M/m_,t in Eq. (4.7):

(_P) >10so/(,__l/2)4_r#__p_2/(,__l/2)_O_+1)/(,,_l/2)i I'Mpc 2/(w--1/2). (4.8)
P- HOB

Unless/9 << 1, it is now difficult to achieve curvature perturbations of an acceptable

magnitude.

Now consider regime (c). In this regime the action is effectively given by

S = / d'tz_ + + E.m_,, ; (4.9)

By means of the following conformal transformation

g,,, ._, _,,,, f_2= M2m_,/_¢2, (4.10)
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the theory can written as

= /IzV_ 16-_G + z

where V(_) : (M*l_2m_v,)exp(-2_l_o)V(_), _G : exp(_12_o), and the new

definition of _o is _ = 3m_t/161P. In rescaling the theory, we have assumed that

,_ << 6, in which case the kinetic term for • that arises from the original kinetic term

for _, cf. Eq. (4.4), is negligible compared to that which aries from the conformal

transformation involving _. The evolution of the rescaled scale factor a and _ are

easy to analyze in the Einstein conformal frame: 2°

_ { 3/4 _ cc { 1/2

In the Jordan frame it follows that

a _ t 1/2, ,I_ _ a 2 cct.

In this regime there is no inflation! TM

(4.12)

(4.13)

However, • does evolve, as it must to reach

its final value, _ = MmPt/v_. Because of the large density perturbations that arise

during inflationary regime (b), this version of hyperextended inflation seems doomed

to failure.

There is one last possibility, that the inflation relevant to us occurred during

regime (c), which requires that _ _ 6. In this case, the transformation to the Ein-

stein conformal frame is not a simple one. If we treat • as slowly varying, the

transformation above is valid with the following change:

• o=- _ i+ 6fl_)"
(4.14)

In this case

3 w M 2

a = _% m = _ + s/_' '_ = _1/= (4.1s)

Early on, when _ _< wM=/2_, inflation occurs as m > 1; as • increases to the value of

wM2/2fl superluminal expansion ceases. The epoch of inflation lasts from _ -- M2/fl

to _ = wM2/2fl. During inflation,

a oc t 2"_-1, @ oc a 1/(2"-1). (4.16)

Using the usual formula for (6P/P)HOR, we find that

(_P) _81r,/-m102sl(m_1) ( M _('m-l)/(m-1)_ 1/(rn.-1) (4.17)
-P- HOR V 6 \71_pl/ "_Mpc •
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Sincem varies during inflation, we cannot immediately evaluate this expression.

During the period of inflation, that is, while M2/_3 _ • _ wM2/2_,

dln.=(2, -l)dln = (4.1s)

Integrating this expression, we find that the total number of e-folds in the scale factor

a(t) during inflation is (w/2) _ exp(w/4 - 1/2); we immediately see that in order to

achieve the 60 or so e-folds of inflation necessary, w must be in excess of about 240.

Further, it is straightforward to compute the value of m around the time that the

cosmologically interesting scales went outside the horizon (N = 60 or so e-folds before

the end of inflation): m _- N/2 ,_ 30. Returning to Eq. (25) we find, provided that

w _> 240,

HOR \ _n p-----ill AMP2c/ (N-2)"
(4.19)

Since m __ N/2 >> 1, this expression is very nearly independent of N and _Mpc:

(gg/P)aoa _ 300(M/mpt)_. Fluctuations of a cosmologically interesting amplitude

can be attMned for M ,,_ 10 is GeV or so, provided that w _> 240.

V. CONCLUDING REMARKS

In slow-roUover inflation the dominant curvature fluctuations arise due to quantum

fluctuations in the inflaton field. In extended inflation the inflaton field plays a very

passive role until it makes its transition to the true vacuum at the end of inflation,

thereby reheating the Universe. It is the quantum fluctuations in the Brans-Dicke

field that give rise to the dominant curvature fluctuations (aside from those associated

with bubbles). These curvature fluctuations are most naturally and unambiguously

addressed in the Einstein conformal frame: In the Einstein conformal frame extended

inflation resembles slow-roUover inflation with the Brans-Dicke field playing the role of

the inflaton, with an exponential potential; the calculation of curvature fluctuations is

the same as in slow-rollover inflation. Unlike slow-rollover inflation, these fluctuations

are typically nonscale invariant--and even more important--it is not necessary to tune

any parameter to a very small value to ensure that they have an acceptably small
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amplitude. In principle, the density perturbations that arise from bubbles can also

be important; however, that seems to require that a parameter--in the Brans-Dicke

example, w--be tuned to be just so.

Just as in slow-roUover inflation, isocurvature fluctuations can any arise in any

massless field present in the theory, e.g., the axlon or the ilion. Such isocurvature

fluctuations are of a similar magnitude as they are in siow-rollover inflation, but they

typically have a nonscale-invariant spectrum. Because ordinary matter fields have

canonical kinetic terms in the Jordan frame, these fluctuations are most appropriately

computed in the Jordan frame.

While we have only analyzed density fluctuations in extended inflation for the

simplest mode] and a couple of attempts at a realistic model, there is some hope that

these models will serve to illustrate the general features that one can expect in a

viable model of extended inflation; the reason to expect that this is true is that the

key feature of extended inflation is significant variation in the gravitational constant,

which occurs in the toy model analyzed here for w _ 20.
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