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Abstract

Many large space system concepts will require active vibration control to satisfy critical perfor-

mance requirements such as line-of-sight accuracy. In order for these concepts to become operational

it is imperative that the benefits of active vibration control be practically demonstrated in ground-

based experiments. This report describes an experiment conducted by Harris as part of the NASA

CSI Guest Investigator Program. The results of this experiment successfully demonstrate active

vibration control for a flexible structure. The testbed is the ACES structure at NASA Marshall

Space Flight Center. The ACES structure is dynamically traceable to future space systems and

especially allows the study of line-of-sight control issues.
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1. INTRODUCTION

Many large space system concepts will require active vibration control systems to satisfy critical

performance requirements such as line-of-sight (LOS) accuracy and constraints on rms surface

roughness. In order for these concepts to become operational it is imperative that the benefits

of active vibration control be practically demonstrated in ground-based experiments. This paper

discusses an experiment conducted by Harris as part of the NASA CSI Guest Investigator Program.

The results of this experiment, which has features directly traceable to future space missions,

successfully demonstrate active vibration control for a flexible structure. The testbed, shown in

Figure 2.1, is the ACES structure at NASA Marshall Space Flight Center (MSFC).

The primary objective of this experiment was to design controllers that provide substantial

reduction of the LOS errors. The satisfaction of this objective required the controllers to signifi-

cantly attenuate the beam vibration. Particular emphasis was also placed on controller simplicity

(i.e., reduced-order and decentralized controller architectures). Complexity reduction in control

law implementation is of paramount interest due to stringent limitations on throughput of even

state-of-the-art space qualified processors.

The development of the system models used for control design was facilitated by using the

Eigensystem Realization Algorithm developed at NASA [12-13]. As will be described more fully in

Section 3, the strong and weak interaction patterns in the dynamics of the ACES structure allowed

us to approach the control design by designing decentralized control laws for selected system loops

involving eight actuators and eight sensors.

The primary methodology chosen for control design in this experiment is the Optimal Pro-

jection Approach for Uncertain Systems (OPUS) [1-10]. The OPUS design process allows for the

simultaneous trade-off of four fundamental issues in control design: actuator sizing, sensor accuracy,

controller order and robustness versus system performance. A subset of OPUS is the Maximum

Entropy/Optimal Projection (MEOP) methodology [2-6] which was developed particularly to allow

high performance, robust control law design for flexible structures. The MEOP design equations

(Figure 1.1) consist of four coupled matrix equations which specialize to the standard LQG Riccati

equations when the plant is known perfectly and a full order controller is desired. In this experiment

MEOP was used to develop control laws for active vibration suppression. The discrete-time optimal

projection approach [7-8] was used to develop control laws for a tracking problem associated with

two of the feedback loops.
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Thepaperis organizedasfollows.Section2 describesthe basicACESconfiguration.Section

3 thendiscussesthe finite elementmodelprovidedby MSFCand the developmentof the models

actually usedfor control design. This sectionalsomotivatesthe decentralizedapproachchosen

for the control design. Next, Section4 describescontrol designfor eight systemloopswhich

wereselectedby analysisof test data collectedfrom the structure. Section5 then presentsthe

experimentalresults. It is seenthat very significantperformanceimprovementis achievedwhen

theeight feedbackloopsareclosed.Finally,Section6 presentsclosingremarksandconclusions.
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Figure 1.1 The MEOP design equations consist of four modified Riccati and Lyapunov equations,
coupled by a projection matrix r and allow high performance, robust control law developement for

flexible structures.
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2. DESCI_IPTION OF THE ACES STRUCTURE.*

The ACES experimental testbed is located at NASA MSFC. The basic test article is a de-

ployable, lightweight beam, approximately 45 feet in length. The test article is a spare Voyager

Astromast built by ASTRO Research, Inc. It was supplied to MSFC by the Jet Propulsion Labora-

tory (JPL). The Astromast is extremely lightweight (about 5 pounds) and is very lightly damped.

The Astromast is a symmetric beam which is triangular in cross section. Three longerons

form the corners of the beam and extend continuously along its full length. The cross members,

which give the beam its shape, divide the beam into 91 sections each having equal length and mass

and similar elastic properties. When fully deployed, the Astromast exhibits a longitudinal twist of

approximately 260 degrees.

The ACES configuration (Figure 2.1) consists of an antenna and counterweight legs appended to

the Astromast tip and the pointing gimbal arms at the Astromast base. The addition of structural

appendages creates the "nested" modal frequencies characteristic of Large Space Structures (LSS).

Overall, the structure is very flexible and lightly damped. It contains many closely spaced, low

frequency modes (more than 40 modes under 10 Hz). As illustrated by Figure 2.1, the ACES

configuration is dynamically traceable to future space systems and is particularly responsive to the

study of LOS issues.

The precise motion of the Base Excitation Table (BET) is obtained by supplying a commanded

voltage input to the BET servo control system. The BET movements are monitored by a Linear

Variable Differential Transformer (LVDT) whose outputs are fed back to the servo controllers. The

servo controllers compare the commanded input voltage to the LVDT signals and automatically

adjust the position of the BET. The closed-loop controller allows any type of BET movement within

the frequency limitations of the hydraulic system. In this experiment the disturbances are chosen

to be position commands to the BET.

The Image Motion Compensation (IMC) System consists of a 5-mW laser, two 12-inch mirrors,

two pointing gimbals, a four quadrant detector and associated electronics, and two power supplies.

Figure 1.1 shows the location of each of the components of the IMC system. The goal of the

control design is to position the laser beam in the center of the detector. The detector and pointing

gimbals are each positioned on the end of a flexible appendage to increase the difficulty of the

* This description of the ACES testbed is taken primarily from [11]
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control problem. The lack of information about the appendage motion also adds complexity to

the controller design (i.e., there is no accelerometer or gyro at the location of the gimbals or the

detector).

In addition to the two IMC gimbals, the available control actuators also include the Advanced

Gimbal System (AGS), a precision, two-axis gimbal system designed for high accuracy pointing

applications, which has been augmented with a third gimbal in the azimuth. The gimbal system

provides torque actuation at the base of the Astromast. The AGS receives commands from the

control algorithm (implemented on an HP 9000 via the COSMEC data acquisition system) in the

form of analog inputs over the range of-10 to +10 volts. This saturation represents a current limit

of 27 amps which is built into the AGS servo amplifier as a protective measure. Because the AGS

servo amplifier outputs a current that causes an applied torque proportional to the current, the

control algorithms used in the COSMEC must be designed to produce torque command signals.

The AGS gimbal torquers, with the power supply and servo amplifiers used in the SSC labora-

tory, can generate 37.5 ft-lbs of torque over an angular range of approximately ± 30 degrees. The

azimuth torquer is capable of generating 13.8 ft-lbs over an angular range of _ 5 degrees. It can,

however, be set manually to allow i 5 degrees of rotation at any position about the 360 degrees

of azimuth freedom. This allows the test article to be rotated to any position desired without

remounting.

Linear Momentum Exchange Devices (LMEDs) provide colocated sensor/actuator pairs which

apply forces and measure the resulting accelerations. Each LMED package contains two LMEDs

having orthogonal axes, two accelerometers, and two Linear Variable Differential Transformers

(LVDT's). The two LMED packages are positioned at intermediate points along the Astromast.

These locations were selected to maximize the ability of these devices to control the dominant

structural modes. When the Astromast is at rest, each LMED package is aligned with the X and

Y axes of the inertial reference frame shown in Figure 2.1. The LMED applies a horizonal force

to the structure and a colocated accelerometer measures the resulting acceleration at the actuator

location.

The LMED is linear permanent magnet motor whose magnet functions as a proof mass. Force is

applied to the structure as a reaction against the acceleration of proof mass. The magnet assembly

travels along a single shaft on a pair of linear bearings. The armature of the motor is of a hollow

coil which extends inside the magnet assembly from one end. The magnet assembly moves along
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the shaft with respect to the coil which is fixed to the LMED package. The magnet is constrained

on each end by a bracket which provides a small centering force to the proof mass. A linear

accelerometer is mounted in line with the shaft. An LVDT is utilized to measure the position of

the proof mass with respect to the LMED assembly.

In addition to the two-axis detector associated with the IMC System and the accelerometers

and LVDT's associated with the LMEDs, the available measurement devices include three-axis rate

gyros at the tip and base as well as three-axis accelerometers at the tip and base. However, since

the three-axis rate gyros at the tip are not available for controller implementation and were not

used for evaluation, we will describe only the remaining measurement devices.

The rate gyros at the base are Apollo Telescope Mount (ATM) Rate Gyros. They are designed

to measure small angular rates very precisely. The analog output signals of an ATM rate gyro

package is ± 45 volts. The analog signal is converted to 12-bit binary words by the analog-to-

digital converter card of the COSMEC system. The ATM rate gyro packages require a warmup

period of approximately 40 minutes. Each package requires 1.5 amps during warmup and then 1.25

amps after stabilization, both at 28 volts DC.

The accelerations at the base and tip of the ASTROMAST are measured by two identical

three-axis accelerometer packages. The accelerometers provide resolution finer than 0.0001 g and a

dynamic range of ± 3 g with a bandwidth of 25 to 30 Hz. They require approximately 20 minutes

for warmup, during which time each package requires 1.2 amps at 28 Volts DC. After warmup

the power requirement reduces to about 0.9 amp per package. The accelerometer electronics are

included on board the instrument package.

The signals from the accelerometers are different from the ATM rate gyros. Two channels are

required for each degree of freedom of the accelerometer package, i.e., six channels per accelerometer

package. One channel of each pair carries a 2.4-kHz square wave synchronization signal, and the

other channel carries the acceleration information. Zero acceleration is represented by a signal

identical to that of the synchronization channel, positive acceleration by an increase in frequency,

and negative acceleration by a decrease in frequency as compared to the synchronization channel.

As in the cases of the other instruments, these signals are monitored by a hardware card in the

COSMEC system.

As mentioned previously the computer system consists of an HP 9000 digital computer inter-
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facedwith theCOSMECInput/Output system.TheHP9000performsthecontrolalgorithm,data

storage,real-timeplotting, andthe strapdownalgorithm(describedin the next section).TheHP

9000is a32-bitmachinewith an18-MHzclockrate. It includesanHPIB interfacecard,two 16-bit

parallelinterfacecards,512kbytesof extramemory,anda floppydiscdrive. Thebenchmarktest

timesfor processingthe presentcontrol andstrapdownalgorithms,plotting, andstorageare .010

to .013millisecondspersample.

TheCOSMECisahighlymodifiedAIM-65microcomputersystemusedforI/O processing.The

primary purposesof the COSMECare to processthe sensorinputs, to provideforceand torque

commandsfor the actuators,and to off-loadcontrol and sensordata to the computersystem.

Currently, the COSMECperformsthesetaskswith 25sensorinputs and nineactuatoroutputs,

whilemaintaininga50-Hzsamplingrate. Thecycletimefor COSMECoperationis approximately
5 milliseconds.

In ourcontroldesignandimplementationweused8controlinputsand8measurementoutputs.

TheinputsweretheX andY torquesof theIMC gimbals,theX andY torquesof the AGSgimbals

andthe X and Y forcesof the two LMED packages.Themeasurementsconsistedof the X and Y

detector(DET) positionoutputs,the X andY basegyro (BGYRO)rateoutputsandthe X andY

outputsof the LMED accelerometers.
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3. MODELING PROCEDURE FOR THE ACES STRUCTURE

The first critical step in control design is model development and validation. Below, we describe

the process that led us to of develop our control design models by using a system identification

procedure that is based upon the Eigensystem Realization Algorithm. We then present details of

the system identification procedure.

3.1 Choosing the Modeling Procedure

Initial model development for flexible structures is usually based on the finite element approach.

The initial finite element model (FEM) is evaluated by comparing its time and frequency responses

with information gleaned from input-output data collected from the actual physical apparatus. If

this comparison shows that the FEM is inadequate for control system design, then the control

designer has essentially three options: (i) modify the FEM, (ii) develop a new model based on

the input-output test data using an appropriate system identification algorithm or (iii) develop a

model which is in some sense a hybrid of the FEM and models developed using system identification

techniques.

In this experiment the inputs to the system were chosen to be either broad-band random

noise, sine-sweeps or delta-functions. The inputs that yielded the most information about the

system modes were the sine-sweeps and delta-functions. We conjecture that this is primarily due

to limitiations on the length of the time-histories allowed and the fact that the broad-band random

inputs did not significantly excite the dominant lower frequency dynamics in the allowable time

windows. The input-output test data was used to generate frequency response functions (FRF's)

of selected system loops and these FRF's were compared with the corresponding bode plots of the

finite element model. Figures 3.1.1-3.1.5 show this comparison for four system loops: (i) IMC-X to

DET-Y, (ii) IMC-Y to DET-X, (iii) AGS-X to BGYRO-X, and (iv) AGS-Y TO BGYRO-Y.

As evidenced by the comparisons of Figures 3.1.1-3.1.5, the FEM predicted significantly differ-

ent frequency responses than those obtained by actually testing the structure. For example, Figure

3.1.1 shows that for the AGS-X to BGYRO-X loop the finite element model Bode plot does not

contain the 1.4 Hz mode which most influenced the open loop LOS performance. The FEM's also

do not show the large magnitude peaks corresponding to some of the modes past 8 Hz. Figure 3.1.2

shows analogous trends for the AGS-Y to BGYRO-Y loop. Also notice that as seen by Figure 3.1.3

the FEM predicts positive real behavior for the AGS-X to BGYRO-X loop, while the FRF reveals
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that between2 Hzand4Hz the phaselags-90° by asmuchas25° (evenwhenthe computational

delaydueto the 50Hz samplerate isnot takeninto account).This phaselag is probablydueto

actuatorandsensordynamics.

TheFRF'softhe IMC-X to DET-Y andIMC-Y to DET-X loops,shownrespectivelyin Figures

3.1.4and3.1.5,revealthat theseloopsareinfluencedverylittle by theflexiblemodesof thestruc-

ture. It followsthat the IMC gimbalsarenotcapableof controllingflexiblemodesto improveLOS

performance.Thus,if oneconsidersthefouractuatorinputs(IMC-X, IMC-Y, AGS-XandAGS-Y)

andthe four sensoroutputs(DET-X, DET-Y, BGYRO-X,BGYRO-Y), it is not necessaryto feed

backthe BGYROoutputs to the IMC gimbals since the BGYRO's primarily contain information

about the behavior of the flexible modes which the IMC's cannot control. In addition, the DET

outputs do not contain much (if any) useful information for the AGS gimbals that is not already

provided by the BGYRO's. Thus, the achievable performance cannot be improved by feeding back

the DET outputs to the IMC gimbals or the BGYRO outputs to the AGS gimbals. As illustrated

by Figure 3.1.6, analysis of test data also revealed that within the decentralized structure described

above there were four dominant loops: AGS-X to BGYRO-X, AGS-Y to BGYRO-Y, IMC-X to

DET-Y, and IMC-Y to DET-X.

In summary, analysis of the test data revealed that for the four sensors and actuators described

above the achievable performance with a decentralized control structure involving four dominant

loops comparable to the achievable performance with a centralized control structure. Also, the

analysis revealed that although the finite element model showed some of the trends seen in the

FRF's generated by the test data and was thus adequate for preliminary design studies, the FEM

was inadequate as a model for high performance control system design. Thus, it was necessary to

either modify the FEM or develop a model based upon actual test data. Modifying the finite element

model and accounting for the sensor and actuator dynamics would have been a very time-consuming

and expensive process and thus we decided to use the Eigensystem Realization Algorithm (ERA)

to develop state space models of the four dominant loops. It is important to note that since all test

data were collected by using the control sensors and actuators, models generated from this data

should account for the sensor and actuator dynamics.

We had difficulty obtaining useful input-output data from the LMED's due to the stroke lim-

itations of their proof masses. In addition, early in the project the internal control configuration

of the LMED's was in transition. In particular, MSFC in joint consultation with the guest inves-
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tigatorsdecidedto havethe springsremovedfrom the LMED's andreplacedby internal position

loops.Theuncertaintyregardingthedynamicsof the LMED's ledusto delaycontroldesignactiv-

ities involvingthesedevices.Ultimately,it wasdecidedto simplyfeedbackthe colocatedLMED

accelerometersto the correspondingLMED forceaxisandto determinesimpledynamicsfor these

controllersby usingcrudemodelsof the loops,developedby informationprovidedto usby MSFC

andourknowledgeof proofmassdevices.Aswill beseenin Section5,thesecolocatedLMED loops

did providesignificantperformanceimprovement.

3.2 Model Development Using the Eigensystem Realization Algorithm

The collection and manipulation of test data to obtain high fidelity models for control design is

usually an iterative procedure as illustrated by Figure 3.2.1. Figures 3.2.2 and 3.2.3 show the final

steps in developing the models for the four major loops. Note that first-order all-pass filters were

incorporated into the AGS to BGYRO loops to account for the computational delay. The control

design models for the loops AGS-X to BGYRO-X and AGS-Y to BGYRO-Y were respectively

17th and 19th order continuous-time models. The control design models for the loops IMC-X to

DET-Y and IMC-Y to DET-X were both 4th order discrete-time design models. Ideally, for digitial

implementation of a control algorithm it is better to design the controller directly using discrete-

time representations of the system model. We chose to design the AGS to BGYRO feedback loops

using continuous-time models because of a greater maturity in the theory and software development

for the continuous-time setting.

Figures 3.2.4-3.2.8 show comparisons of the ERA models of the four system loops with the

FRF's generated from the test data. The magnitude plots of Figures 3.2.4, 3.2.5, 3.2.7, and 3.2.8

show that the ERA models closely resemble the FRF's. As illustrated by Figure 3.2.6, the all-pass

filters were effective in emulating the computational delay in the system.

3-3



AGSoX TO BGYRO-X
100 ....................

Z

10-1

10-2

10-3

10-4

FIE MODEL

...... _02

ud

10o

10"i

10"4

E
I
t,-

10.5 I
10-2

AGS-X TO BGYRO-X

FRF

.j' W"  il',,tt l,( ti

, , h

10-1 10o 10 i

I

i

-i
I

102

FREQ IN HZ

Figure 3.1.1 A comparison of the FRF data and finite element Bode plot for the AGS-X to

BGYRO-X loop shows that the finite element model neglects the contribution of the 1.4 Hz mode

(which most influences LOS performance) and does not show the large magnitude peaks corre-

sponding to some of the higher frequency modes.
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BGYRO-Y loop shows that the finite element model neglects the contribution of the 1.7 Hz mode

(which most influences LOS performance) and does not show the large magnitude peaks corre-

sponding to some of the higher frequency modes.
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Figure 3.1.3 For the AGS-X to BGYRO-X loop the finite element loop predicts positive real

behavior while the FRF reveals that between 2 Hz and 4 Hz the phase lags -90 ° by as much as

25 ° .
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Figure 3.1.4 A comparison of the FRF data and finite element Bode plot for the IMC-X to DET-Y

loop shows that the finite element model correctly predicts the small influence of the flexible modes
and the dominance of the IMC-X mode but predicts much lower damping in the gimbal mode and

much higher loop gain.
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Figure 3.1.5 A comparison of the FRF data and finite element Bode plot for the IMC-Y to DET-X

loop shows that the finite element model over estimates the influence of the flexible modes.
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(I) AGS-X TO BRATE-X

13 ERA STATES

-1 STATE LOST IN CONVERTING FROM DISCRETE-TIME TO CONTINUOUS-TIME

+4 STATES FOR HIGHER FREQUENCY UNMODELED MODES

+1 STATE FOR ALL-PASS TO EMULATE COMPUTATIONAL DELAY

17th ORDER CONTINUOUS-TIME DESIGN MODEL

(IV) AGS-Y TO BRATE-Y

17 ERA STATES

-1 STATE LOST IN CONVERTING FROM DISCRETE-TIME TO CONTINUOUS-TIME

-2 STATES FOR DELETED HIGH FREQUENCY MODE

+4 STATES FOR HIGHER FREQUENCY UNMODELED MODES

+1 STATE FOR ALL-PASS TO EMULATE COMPUTATIONAL DELAY

19 th ORDER CONTINUOUS-TIME DESIGN MODEL

Figure 3.2.2 The final steps in developing control design models for the AGS-X to BGYRO-X

and AGS-Y to BGYRO-Y loops yielded respectively 17th and 19th order continuous-time models.

3-11



(I) IMC-X TO DET-Y

6 ERA STATES (DISCRETE-TIME)

-4 SPURIOUS STATES

+1 DELAY STATE

+1 FILTER DISTURBANCE STATE

4th ORDER DISCRETE-TIME DESIGN MODEL

(II) IMC-Y TO DET-X

USED IMC-X TO DET-Y DESIGN MODEL

(THE OPEN LOOP GAIN AND THE DAMPING OF
THE DOMINANT MODE WAS MODIFIED, HOWEVER)

Figure 3.2.3 The final steps in developing control design models for the IMC-X to DET-Y and

IMC-Y to DET-X loops yielded 4th order discrete-time models.
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Figure 3.2.4 The ERA model for the AGS-X to BGYRO-X loop closely resembles the FRF

generated from test data.
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Figure 3.2.5 The ERA model for the AGS-Y to BGYRO-Y loop closely resembles the FRF

generated from test data.
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Figure 3.2.6. As shown here for the AGS-X to BGYRO-X loop, the ERA models effectively

modeled the computational delay by using all-pass filters.
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Figure 3.2.7 The ERA model for the IMC-X to DET-Y loop closely resembles the FRF generated
from test data.
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Figure 3.2.8 The ERA model for the IMC-Y to DET-X loop closely resembles the FRF generated
from test data.
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4. CONTROL DESIGN FOR THE ACES STRUCTURE

Once we had settled on a decentralized controller architecture, control design for the ACES

structure was essentially a three step process:

(_) design of the IMC gimbal to detector loops,

(ii) design of the AGS gimbal to base gyro loops, and

(iii) design of the LMED force to colocated accelerometer loops.

Below, we give details of the design procedures for each step along with experimental data de-

scribing the resultant performance improvement. Experimental data describing the performance

improvement of the integrated controller (i.e., the controller with all feedback loops closed) is

delayed until Section 5. The sample rate for each of the three feedback paths was 50 Hz.

4.1 Design Process for the Detector to IMC Loops

The design processes for the IMC-X to DET-Y loop and the IMC-Y to DET-X loop were

essentially identical. As illustrated by Figure 4.1.1, for each loop the control problem was formulated

as a disturbance tracking problem. The disturbance to be tracked w_ was modeled by filtering a

white noise process wl through a filter 1/(z- 1-{-e), which approximates a discrete-time integrator

as the positive parameter e approaches zero. This filter accounted for the system biases and also

the low frequency modes (i.e., modes below 1.5 Hz). Optimal Projection control laws H(z) were

synthesized [7-8] by minimizing the quadratic cost function

J(e) = lim E[qW(e)q(e)-{- puW(e)u(e)], p > 0.
/c---* oo

The controllers implemented were the limiting controllers as e --_ 0. Thus, the implemented con-

trollers contained integrators which were able to effectively eliminate the line-of-sight biases. For

both loops the design models were 4th order while the controllers implemented were 3rd order. The

controller gains are given in Appendix A.

The resultant performance improvement is illustrated by Figures 4.1.2-4.1.3 which show open-

loop and closed-loop responses of the x and y axes of the detectors respectively to pulse commands

to the x and y axes of the Base Excitation Table. Notice that the feedback loops were able to

eliminate the system biases and also improved the LOS performance by providing low frequency

tracking.
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4.2 Design Process for the Base Gyro to AGS Gimbal Loops

The design processes for the AGS-X to BGYRO-X loop and the AGS-Y to BGYRO-Y (subse-

quently to be referred to as the X and Y loops) were very similar. As mentioned in Section 3, the

design model for the X-loop was a 17th order continuous-time model while the design model for the

Y-loop was a 19th order continuous-time model. For the X-loop the modes that most influenced

LOS performance were 1.4 Hz and 2.4 Hz bending modes. Similarly, for the Y-loop the modes that

most influenced LOS performance were 1.7 Hz and 2.3 Hz bending mode.

Maximum Entropy Optimal Projection (MEOP) synthesis was used to synthesize continuous-

time controllers of varying orders, control authorities and robustness. These controllers were then

discretized by using the bilinear transformation with frequency prewarping. In our control designs

we penalized only the modes less than 3 Hz since these modes dominate the open-loop LOS perfor-

mance. The Maximum Entropy (ME) robustness design proved to be crucial in developing stable

controllers which yielded significant performance improvement when implemented. The utility of

the ME approach is illustrated by Figures 4.2.1-4.2.3.

Figure 4.2.1 describes the influence of ME uncertainty design on the phase of a full-order

compensator in the performance region (i.e., less than 3 Hz). The phase of the LQG compensator

varies widely over this frequency interval, implying that the Nyquist plot of the corresponding

loop transfer function encircles the origin several times. As one would expect, these designs were

nonrobust and were unstable when implemented. However the ME designs became positive real in

the performance region tending toward rate feedback. Thus the ME designs provided the needed

stability robustness in the performance region.

Figure 4.2.2 describes the influence of ME uncertainty design on the magnitude shape of a

full-order compensator in the performance region. Notice that the ME compensator magnitudes

are smoother than those of the LQG compensators, thus providing performance robustness. An-

other implication is that the ME designs yield robust controllers that are effectively reduced order

controllers. In practice, the full-order ME designs actually provide insight into the choice of the

order of the compensator and is a numerical aid in synthesizing reduced order controllers.

The higher authority controllers notched the high frequency modes that had high gain, i.e., the

two highest frequency modes shown in the ERA models of Figures 3.2.4 and 3.2.5. As illustrated

by Figure 4.2.5, ME design was able to robustify the controller notches. That is, the controller
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notcheswereincreasedin both width anddepth.

The controllerswhichyieldedthe bestperformancewhenimplementedwerea 4th order con-

troller for theX-loopand a6th ordercontrollerfor the Y-loop. Thecontrollergainsarepresented

in AppendixA.

Theresultantperformanceimprovementis shownin Figures4.2.4--4.2.7whichshowopenand

closedloopresponsesof thedetectorsandbasegyrosto pulsecommandsto the x andy axesof the

BaseExcitation Table.Noticethat significantperformanceimprovementwasachievedin both the

detectorandbasegyroresponses

4.3 Design Process of the LMED Force to Accelerometer Loops

In this subsection and hereafter the two-axis LMED device closest to the base will be referred

to as LMED-1 while the two-axis LMED device closest to the tip will be referred to as LMED-2.

The control design was based on feeding back each of the four colocated accelerometer outputs to

the corresponding LMED proof-mass axis. Thus the four loops utilized for control design were (i)

LMED-1X to ACCEL-1X, (ii) LMED-1Y to ACCEL-1Y, (iii) LMED-2X to ACCEL-2X, and (iv)

LMED-2Y to ACCEL-2Y. It was assumed that the open loop dynamics of each of the four loops

was identical so that the same controller H(s) can be utilized in each loop. A block diagram of the

assumed dynamics for each of the feedback loops is shown in Figure 4.3.1.

From Figure 4.3.1 it follows that the transfer function from the beam velocity (at the given

LMED location and along a given axis) to the force applied (by the LMED along the same axis) is

/_5¢= H(s)s 2 + Ds + k._kd
_p s 2 + D--s+

The design goal was to choose H(s) such that the above transfer function is positive real at low

frequency (say around 1 Hz) and remains positive real to some significantly higher frequency (say

10 Hz) in order to provide damping to the beam modes in this frequency band. In theory the

design objectives could be accomplished by simply choosing H(s) = 1/s 2. However, due to the

stroke limitations of the LMED proof mass devices, this controller, which has very high gain at

low frequency, is not implementable. Thus, H(s) was initially chosen to be a second-order low-pass

filter. Unfortunately, even this controller caused the stroke limitations to be violated. To limit the

low frequency stroke a first order high pass filter was then cascaded with the second order low pass
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filter. The resultantcontrollerwasthusof the form

ks

H(s) = (s + _)(s _ + 2_,_,,s + w_,)"

The low and high pass portions of the controller were discretized separately by using the bilinear

transformation with frequency prewarping and was then implemented in each of the loops. The

control gains of the discretized controller are given in Appendix A.

The closed loop attenuation in the beam vibration is demonstrated in Figures 4.3.2.-4.3.7.

Figure 4.3.2 shows the open and closed loop responses of BGYRO-Y to a BET-X pulse disturbance.

It is seen that the LMED controllers especially aided in providing damping to the higher frequency

harmonics. The closed loop performance improvement to a BET-X pulse is demonstrated even

more clearly in Figures 4.3.3 and 4.3.4 which show the responses of ACCEL-1X and ACCEL-2X.

The closed loop accelerometer responses reveal that both the peak magnitude of the responses and

the influences of the higher frequency harmonics were significantly reduced. Similar results are

seen if Figures 4.3.5-4.3.7 which show the BGYRO-Y, ACCEL-1Y and ACCEL-2Y responses to a

BET-Y pulse disturbance. When integrated with the feedback controllers involving the IMC and

AGS gimbals, the LMED loops improved the LOS performance especially by reducing the influence

of the higher frequency vibration in the detector responses.
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- CONTROLLERS WERE DESIGNED BY MINIMIZING

J(e) -- lim E[qW(e)q(e) + 9uW(e)u(e)] p > O.

Figure 4.1.1 The control problem for both the IMC-X to DET-Y loop and the IMC-Y to DET-X

loop was formulated as a disturbance tracking problem.
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addition to bias correction to improve the DET-X response to a BET-X pulse disturbance.
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that the robust controllers were effectively reduced-order controllers.
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Figure 4.2.5. For a BET-X pulse a comparison of the open loop BGYRO-Y response to the

response with the AGS to BGYRO feedback loops closed reveals significant closed loop damping
of the beam vibration.
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kmkd

x s/p

p= beam acceleration

x s/p= relative velocity of proof mass

m = mass of proof mass

f c = force applied to structure

ks = position loop stiffness

D = inherent viscous damping of the LMED

k mkd = motor force constants

H(s) = compensator transfer function

rp = position command.

Figure 4.3.1. The LMED designs assumed that this block diagram described each feedback loop

with control law H(s).
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Figure 4.3.2. For a BET-X pulse a comparison of the open loop BGYRO-Y response to the

response with the LMED loops closed reveals some closed loop damping of the higher frequency
harmonics.
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Figure 4.3.3. For a BET-X pulse a comparison of the open loop ACCEL-1X response to the

response with the LMED loops closed reveals some closed loop damping of the higher frequency
harmonics.
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Figure 4.3.4. For a BET-X pulse a comparison of the open loop ACCEL-2X response to the

response with the LMED loops closed reveals some closed loopdamping of the higher frequency
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Figure 4.3.5. For a BET-Y pulse a comparison of the open loop BGYRO-X response to the

response with the LMED loops closed reveals some closed loop damping of the higher frequency
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4-19



c,.)
{J
<

O.5

0

-0.5

-1

-L50

OPEN LOOP RESPONSE TO BET-Y PULSE

lo 15 '
TIME (SECS)

3O

>,
"7,
,.d
r_ 0

<

-0.5

-1

RESPONSE WITH COLOCATED LMED FEEDBACK LOOPS
T r

"1"50 5 1'0 15 2'0 2'5

TIME (SECS)

30
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5. PERFORMANCE OF THE INTEGRATED CONTROLLER

The integrated controller consisted of decentralized controllers for each of the three major

feedback paths. Since the order of the controllers for the IMC gimbal to detector loops, the AGS

gimbal to base gyro loops, and the colocated LMED loops were respectively 6th, 10th and 12th

order, the integrated controller consisted of 28 states. The controller was evaluated for three types of

disturbance commands to the BET-X and BET-Y: (i) pulse disturbances, (ii) the RCS disturbance

described by Figure 5.2.1, and (iii) the Crew disturbance described by Figure 5.3.1.

The two measure of performance that were computed to compare the open-loop and closed-loop

performance are the mean (_) and the standard deviation (a), defined respectively as [7, p. 2-24]

N

{gl _q_
i=I

)/(2 2 1)a ---- q_ - Nq N -

where for a given sensor output N is the number of recorded samples over a specified time interval

and N(q_}_=l is the sequence of sampled values. The performance improvement in dB for both the

mean and standard deviation is defined as

01 .OL performance _
Performance Improvement -- 2 ogl0_- _ _j.

5.1. Response Due To Pulse Disturbances

For pulse commands to BET-X and BET-Y Tables 5.1 and 5.2 show the resultant performance

improvement respectively in the DET-X and DET-Y responses as the controllers

were integrated. In terms of the standard deviation, the integrated controller yielded a 9.0 dB

improvement in the DET-X response and a 2.4 dB improvement in the DET-Y response. The

corresponding improvements in the mean were respectively 57.9 dB and 47.5 dB. These large

values are due to large open-loop detector biases which were effectively eliminated using feedback.

In general, the mean values were dominated by the size of the initial biases which varied with each

test.

Figures 5.1.3-5.1.6 show the DET-X, BGYRO-Y, ACCEL-1X and ACCEL-2X responses to a

BET-X pulse disturbance. A comparison of the open-loop and closed-loop responses shows very

significant improvement in both the LOS errors and vibration suppression. For a BET-Y pulse
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disturbancesimilarperformanceimprovementis seen in Figures 5.1.7-5.1.10 which show the DET-

Y, BGYRO-X, ACCEL-1Y and ACCEL-2Y responses. By comparing Figures 5.1.3-5.1.10 with

the corresponding figures of Section 4 it is easy to see that the integrated controller always yielded

better performance than any of the three individual feedback controllers.

A comparison of Figures 5.1.3 and 5.1.7 shows that the performance improvement in DET-Y,

though significant, is not as substantial as the improvement in DET-X. We conjecture that this

is due to the interaction between the IMC-X gimbal, which most influences the DET-Y response,

with the modes of the arm on which the IMC gimbal is mounted.

5.2 Response Due to an RCS Disturbance

The RCS disturbance profile is shown in Figure 5.2.1. Figures 5.2.2 and 5.2.3 show the DET-X

and BGYRO-Y responses to an RCS disturbance command to BET-X. The controller improved the

standard deviation of the DET-X response by 9.7 dB and the standard deviation of the BGYRO-Y

response by 3.0 dB.

5.3 Response Due to a Crew Disturbance

The Crew Disturbance profile is shown in Figure 5.3.1. Figures 5.3.2 shows the DET-X response

to a Crew disturbance command to BET-X. The resultant improvement in the standard deviation

was 4.3 dB.

5.4 Some Final Remarks on the Implementation Results

The closed-loop test data indicated that sensor noise was not a significant factor in limiting

performance. This was primarily due to the quality of the sensors and the dominance of other

factors limiting the achievable performance (e.g., modeling errors and sampled-data issues). Also,

Actuator saturation did not occur in either the AGS or IMC gimbals. However, we believe that

actuator saturation will be an important factor when designing higher performance controllers

involving the LMED's. In particular, care must be taken in designing the controllers so that the

mass positions of these proof-mass devices do not try to exceed the physical limits.
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OPEN LOOP RESPONSE TO BET-X PULSE
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:Figure 5.1.3. The integrated controller provided greater improvement in the DET-X response to

a BET-X pulse than any of the three individual controllers.
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Figure 5.1.4. The integrated controller provided greater improvement in the beam damping as

measured by the BGYRO-Y response to a BET-X pulse than any of the three individual controllers.
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Figure 5.1.6. The integrated controller provided greater improvement in the beam damping
as measured by the ACCEL-2X response to a BET-X pulse than any of the three , individual
controllers.
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Figure 5.1.7. The integrated controller provided greater improvement in the DET-Y response to

a BET-Y pulse than any of the three individual controllers.
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Figure 5.1.8. The integrated controller provided greater improvement in the beam damping as

measured by the BGYRO-X response to a BET-Y pulse than any of the three individual controllers.
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Figure 5.1.9. The integrated controller provided greater improvement in the beam damping as

measured by the ACCEL-1Y reponse to a BET-Y pulse than any of the three individual controllers.
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Figure 5.1.10. The integrated controller provided greater improvement in the beam damping

as measured by the ACCEL-2Y reponse to a BET-Y pulse than any of the three individual
controllers.
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Figure 5.2.2. For a BET-X RCS disturbance the integrated controller provided substantial im-
provement in the DET-X response.
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Figure 5.2.3. For a BET-X RCS disturbance the integrated controller provided substantial im-
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6. CLOSING REMARKS AND CONCLUSIONS

This experiment has demonstrated successful control system design and implementation for the

ACES testbed, a flexible structure dynamically traceable to future space missions. This experiment

has also provided validation of the Maximum Entropy/Optimal Projection approach to control

design.

In this project a major challenge was developing models with sufficient fidelity to support high

performance control system design. This challenge will of course be found in most projects involving

control design for flexible structures. It is important that the control designer not accept models

without careful evaluation. It is the designer's responsibility to acquire modeling information that

is sufficient to allow achievement of the control design objectives. This project also stressed the

importance of modeling the actuator and sensor dynamics as well as the computational delay. For

the ACES structure these aspects caused substantial phase delay and, in general, must be carefully

considered in the development of control design models.

The results of this experiment also illustrate that simple controllers (i.e., reduced order and

decentralized controllers) can provide very significant performance improvement for some flexible

structure control problems. The total design model contained 45 states. However, the integrated

controller contained only 28 states and had a decentralized architecture. This reduction in controller

complexity is very important for the development of practical controllers due to substantial limits

on throughput capability of even the most advanced spaced-qualified processors.

Another very helpful benefit of reduced complexity controllers is that they are easier to analyze

which can save significant cost and time in both design and implementation.

Inconclusion,we believethata practicalcontroldesignand implementationapproach istostart

with "simple"controllersand increasecontrollercomplexity as needed to increaseperformance.
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Appendix A Control Gains for the Eight System Loops.

This Appendix presents the gains of the control laws described in Section 4. It is assumed that
each control law is of the form

x°Ck + 1): AoxoCk) + BoYCk)

_(k) : Co_oCk) + DovCk).

Control Gains for the IMC-Y to DET-X Loop

-0.1179 -0.0168 0 1
A_ = 1.0000 0 0 ,

-2.0019 0.9060 1.0000

(7, = [-2.0019 0.9060 1.0000], D, = 1

Sc

Control Gains for the IMC-X to DET-Y Loop

-0.1179 -0.0168 0
A_ = 1.0000 0 0 ,

-2.0202 0.9246 1.0000

Ce = [-2.0202 0.9246 1.0000], De = 1

BC =

Control Gains for the AGS-Y to BGYRO-Y Loop

a¢ =

0.1781 0.8596 0 0 0

-0.8596 0.3728 0 0 0

-0.1219 -0.0889 -0.8281 0.5279 0

0.3744 0.2731 -0.5279 -0.6211 0

-0.1802 -0.1315 -0.0293 -0.0901 0.3293

-0.1252 -0.0914 -0.0204 -0.0626 0.9236

Cc : [175.3 127.9 28.5 87.6 1293.0 - 1372.0],

010
0
0
0

-0.9800

De = 8.8900

, Bc =

0.2754

-0.2010

0.2642

-0.8113

0.3906

0.2714

Control Gainsfor the AGS-XtoBGYRO-XLoop

0.1125 0.6785 0 0

-0.6785 0.5862 0 0
A¢ = -0.1779 -0.1085 -0.1599 0.8401

0.1779 0.1085 -0.8401 -0.1599

, Bc =

0.6699

-0.4086

0.3451

.-0.3451.

Cc = [-198.2681 - 120.9193 - 178.2161 - 178.2161],

Control Gainsfor Each Colocated LMED Loop

0.9987 0 0

Ac = |0.0117 0.9875 0
[0.0004 0.0606 0.9392

Cc = [0.0002 0.0341 - 0.0343],

D_ = 384.6600

1.00001, Bc = 0.0177|

0.0005]
Dr = 3.0343e - 04
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