.

TWR-17548-10

RSRM-9 (360L009) FINAL REPORT BALLISTICS MASS PROPERTIES

20 March 1990

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

 Contract No.
 NAS8-30490

 DR. No.
 3-5

 WBS.No.
 4B601 ECS SS-1017

Thickol CORPORATION

SPACE OPERATIONS

P.O. Box 707, Brigham City, UT 84302-0707 (801) 863-3511

(MASA-UM-103964) ASRM-9 (360U09): N90-26064 SALLISTICS MASS PROPERTIES Final Report (Thiokol Corp.) 37 p CSCL 21H

> Unclus 63/20 0279817

FORM TC 4677 (REV 1-88)

VOL REV

DOC NO.

TWR-17548-10

RSRM-9 (360L009) FINAL REPORT BALLISTICS MASS PROPERTIES

21 March 1990

Prepared by:

Albert S. Drendel Ballistics/Mass Properties

M. C. Kichan

M. C. Richards Ballistics/Mass Properties

Approved by:

J Speas, Supervisor Ballistics/Mass Properties

Program Manager

A. M. Keilson

A. M. Neilson Systems Integration Engineer

C Indec 23-90

P. Tydec**Ø** Release ECS 1017

Thickol CORPORATION SPACE OPERATIONS

PO Box 707, Brigham City, UT 84302-0707 (801) 863-3511

Thickol corporation space operations

.

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
2.0	SUMMA	RY	2
3.0	DISCU	SSION AND RESULTS	3
	3.1	RSRM-9 Propellant Materials	3
	3.2	RSRM-9 Propulsion Performance Analysis	3
	3.3	RSRM-9 Delivered Performance	4
		3.3.1 RSRM-9A/RSRM-9B Thrust and Pressure Comparison	4
		3.3.2 RSRM-9 Predicted Impulse, Isp, Burn Rate, Event Times, Separation, and PMBT Comparison	4
	3.4	CEI Specification Performance Requirements	5
		3.4.1 Performance Tolerances	5
		3.4.2 RSRM Nominal Thrust-Time Performance	5
		3.4.3 Impulse at Standard Conditions vs. Requirement Gates	5
		3.4.4 Matched Pair Thrust Differential	6
		3.4.5 Matched Pair Performance Requirements	6
	3.5	Reconstructed Mass Properties	6
			33

DISTRIBUTION

DOC NOTWR-1	7548-10	VOL
SEC	PAGE	
	i j	Ĺ

PAGE

Thickol corporation space operations

_

LIST OF TABLES

3.1	Raw Material Evaluation Summary	7
3.2	RSRM-9 Propulsion Performance Assessment	8
3.3	Predicted Propellant Temperature Gradients in RSRM-9	9
3.4	Comparison of RSRM-9A Variations at PMBT = 60°F About the Nominal to the CEI Spec. Requirements	10
3.5	Comparison of RSRM-9B Variations at PMBT = 60°F About the Nominal tc the CEI Spec. Requirements	11
3.6	RSRM-HPM Population Impulse Gates	12
3.7	RSRM-9 Thrust Imbalance Summary	13
3.8	Matched Pair Performance Limits	14
3.9	RSRM-9A Sequential Mass Properties	15
3.10	RSRM-9B Sequential Mass Properties	16
3.11	RSRM-9A Sequential Mass Properties Predicted vs. Actual	17
3.12	RSRM-9B Sequential Mass Properties Predicted vs. Actual	18
3.13	RSRM-9A Predicted vs. Actual Weight Comparison	19
3.14	RSRM-9B Predicted vs. Actual Weight Comparison	20

DOC NOTWR-17548-1()	VOL	_
SEC	PAGE		
	' ii		

PAGE

LIST OF FIGURES

21 RSRM Propellant Grain Design Configuration 1.1 22 RSRM-9 Reconstructed Vacuum Thrust vs. Time at 2.1 Delivered Conditions (67°F) RSRM-9A Predicted vs. Reconstructed Vacuum Thrust at 67 °F 23 3.1 RSRM-9B Predicted vs. Reconstructed Vacuum Thrust at 67 °F 24 3.2 RSRM-9A Predicted vs. Measured Chamber Pressure at 67 °F 25 3.3 RSRM-9B Predicted vs. Measured Chamber Pressure at 67 °F 26 3.4 RSRM-9A Performance Compared to HPM-RSRM Population Nominal 27 3.5 RSRM-9B Performance Compared to HPM-RSRM Population Nominal 28 3.6 RSRM/HPM Nominal Vacuum Thrust Compared to CEI CPW1-3600A 29 3.7 Specification Limits RSRM-9 Instantaneous Steady State Thrust Imbalance 30 3.8 RSRM-9 4 Second Average Steady State Thrust Imbalance 31 3.9 32 3.10 RSRM-9 Tail Off Thrust Imbalance

DOC NOTWR-17548-1	VOL	
SEC	PAGE	iii

Thickol corporation space OPERATIONS

1.0 INTRODUCTION

This report contains the propulsion performance and reconstructed mass properties data from Thiokol's RSRM-9 motors which were assigned to the STS-36 launch. The Thiokol manufacturing designations for the motors were 360L009A/360L009B, which are referred to in this report as RSRM-9A and RSRM-9B, respectively. The launch occurred on 28 February 1990 at the Eastern Test Range (ETR). The data contained herein was input to the STS-36 Flight Evaluation Report.

The SRM propellant, TP-H1148, is a composite type solid propellant, formulated of polybutadiene acrylic acid acryonitrile terpolymer binder (PBAN), epoxy curing agent, ammonium perchlorate oxidizer and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-9 are included in the discussion section of this report.

The propellant grain design consists of four segments. There is a forward segment with an eleven point star with a transition into a tapered circular perforated (CP) configuration. There are two center segments that result in a double tapered CP configuration and an aft segment with a triple taper CP configuration and a cutout for the partially submerged nozzle (Figure 1.1).

The ballistic performance presented in this report was based on the Operational Flight Instrumentation (OFI) 12.5 sample per second pressure data for the steady state and tail off portion of the pressure trace. The 12.5 s/sec OFI data on the right motor was adjusted down by 0.2 percent to closer match the other right motor OFI gauges. The OFI data on the left motor needed no adjustment. In addition, the data for both motors was adjusted up by 1% from 0 to 1 seconds and the ramped down from 1.0% to 0.4% from 1-2 seconds and then adjusted up 0.4% thereafter. These adjustments are a result of a bias between the OPT and Taber pressure transducers which are used on flights and static tests respectively. No high sample rate pressure gauges, Development Flight Instrumentation (DFI), were used on this flight and therefore no ignition data will be presented.

> DOC NOTWR-17548-10 VOL SEC PAGE 1

Thickol CORPORATION

SPACE OPERATIONS

2.0 SUMMARY

The delivered propellant burn rates were close to predicted. The delivered burn rates were 0.368 in/sec at 625 psia and 60°F for the left and the right RSRM. The predicted burn rates were 0.366 in/sec for both the left and right motors. The average of the two motors was the same as the target rate of 0.368 in/sec at 625 psia and 60°F. The performance of the two motors was very close as can be seen in Figure 2.1. The Isp on the right RSRM was low and was the second lowest experienced by a It was within the CEI-3600 Specification limits, but 0.65 HPM/RSRM. percent below the nominal value. The main engines (SSME) did not have to compensate for low performance from the RSRMs. If performance was 0.65 percent below nominal, the main engines should have been signaled to increase their output. Although no instrumentation error has been identified, the low Isp on the right motor appears to be a product of instrumentation uncertainty and not a real performance decrease. The low Isp issue is still being researched.

The performance of the pair of motors were compared to the following for compliance: 3.2.1 Specification CPW1-3600A paragraphs CEI 3.2.1.1.2 Motor Performance, 3.2.1.1 General Performance, Characteristics, 3.2.1.1.2.1 Nominal Thrust Time Curve, 3.2.1.1.2.2 3.2.1.1.2.4 Impulse Gates and Performance Tolerance and Limits, 3.2.1.1.2.3 Thrust Differential. The aspects of the CEI Specification that could not be compared due to low sampling of the data were 3.2.1.1.1 Ignition Characteristics, 3.2.1.1.1.1 Ignition Interval and 3.2.1.1.1.2 Pressure Rise Rate. The performance from each motor as well as matched pair performance values were well within the CEI Specification requirements. The nominal thrust time curve and impulse gate information has been included. The historical average was well within the variation limits developed from the HPM Block prediction population at a burn rate of 0.368 in/sec at 625 psia and 60°F. The historical population values are the average performance data from QM-4, SRM-8, SRM-9A, SRM-10, SRM-11A, SRM-12 through SRM-19, SRM-24, ETM-1A, DM-8, DM-9, QM-6, QM-7, PVM-1, RSRM-1, RSRM-2, RSRM-3, RSRM-4A, and RSRM-5 through RSRM-9.

> DOC NOTWR-17548-10 VOL SEC PAGE 2

Thickol CORPORATION

SPACE OPERATIONS

Post flight reconstructed RSRM mass properties are within expected values for the RSRM lightweight (RSRML) configurations and meet the following CEI paragraphs: 3.2.2.2, 3.2.2.2.1, 3.2.2.2.2, and 3.2.2.2.3.

3.0 DISCUSSION AND RESULTS

3.1 RSRM-9 PROPELLANT MATERIALS

Both of the ninth flight motors were cast with primarily one evaluation of propellant, E69. An evaluation is defined as a specific combination of raw material lots and all of the standardization and production batches of propellant produced with these materials. There were however, 2 verification mixes of evaluation F67 in the left motor forward segment and 2 verification mixes from the same evaluation in the right center aft segment. Table 3.1 shows the raw material lots and vendors for the evaluations used. The igniters used in this flight set were cast from propellant evaluation F70, mix F700004. See document TWR-19066 for more information on propellant materials for this flight set. For more information on this lot of igniters see lot acceptance test (LAT) 41 test report (TWR-50058).

3.2 RSRM PROPULSION PERFORMANCE ANALYSIS

All times shown in this section, unless noted otherwise are referenced to the RSFM ignition command time at 90:059:07:50:22:000(GMT). As previously mentioned the OFI (12.5 s/s) data was used for the steady state and tailoff performance assessment.

The ballistic performance was reconstructed using SCB04 steady state 1-D mass addition computer program, and SCA08 SRM modeling program. Both computer codes have been consistently used for predictions as well as reconstructions throughout the SRM program. Since thrust was not measured on the flight motors, average values of η_r 's and C_m 's, which are used for the pressure to thrust conversion, were taken from RSRM static test motors and applied to the measured head end pressure to determine the thrust values.

Thickol CORPORATION

SPACE OPERATIONS RSRM DELIVERED PERFORMANCE

3.3

3.3.1 RSRM-9A/RSRM-9B Thrust and Pressure Comparison

The flight motor reconstructed thrust-time traces at the delivered temperature of 67°F are shown in Figure 2.1. A comparison between the predicted thrust and reconstructed thrust for each motor can be seen in Figures 3.1, 3.2.

The comparison cf predicted and measured head end chamber pressure is shown in Figures 3.3, 3.4.

Figures 3.5 and 3.6 show how RSRM-9A and RSRM-9B compared with a nominal performance average for the RSRM at standard conditions of 0.368 burn rate and 60 °F PMBT. From the figures, it is evident that the RSRM design will continue to influence the shape of the average thrust time trace near 50 seconds.

RSRM Predicted Impulse, ISP, Burn Rate, Event Times, Separation, 3.3.2 and PMBT Comparison

reconstructed RSRM-9 propulsion performance at delivered The conditions is compared to the predicted performance in Table 3.2. The actual values were slightly different than the predicted data for both This difference was caused by the low Isp on both motors. The motors. right motor's Isp was the second lowest experienced by any HPM/RSRM. The impulse values at 20 and 60 seconds, and the total impulse also reflected the low performance.

The predicted scale factor of 1.0175 for conversions from 5 inch CP burn rates to actual motor burn rate were based on an average scale factor from the HPM-RSRM population. The actual scale factors for left and right motors were 1.0222 and 1.0231 respectively.

The propellant mean bulk temperature (PMBT) used in the Ballistics reconstruction for both motors was 67°F. This was based on predicted 2-D Table 3.3 shows the temperature gradients expected in the RSRMs. predicted gradient (data provided by 2-D SINDA Model Aero-Thermal Group).

DOC NOTWR-17548-10)	VOL
SEC	PAGE	

REVISION

• •

Thickol corporation

3.4 CEI SPECIFICATION PERFORMANCE REQUIREMENTS

3.4.1 Performance Tolerances

The parameter variations of the total population of RSRMs about a nominal value are constrained by the requirements defined in the CEI Specification paragraph 3.2.1.1.2.2, Table II. A comparison of the RSRM-9A and RSRM-9B calculated and reconstructed parameters at PMBT of 60°F with respect to the nominal values and the CEI Specification maximum 3 sigma requirements is shown in Tables 3.4 and 3.5. All values are within CEI specification requirements.

3.4.2 RSRM Nominal Thrust-Time Performance

nominal RSRM-HPM performance is defined as the average The performance of the HPM and RSRM static test and flight motor series at standard conditions. The standard conditions consist of the propellant burn rate of 0.368 in/sec at 625 psia and a PMBT of 60°F. The flight motor reconstructed thrust-time traces are normalized to standard conditions and averaged with past flight and static test data at standard conditions to form the RSRM-HPM population nominal thrust-time trace. This nominal RSRM-HPM performance will be continually updated during the Shuttle program. It is the current estimate of the total population The nominal performance for the thrust time trace and impulse nominal. gate requirements is based on the performance of QM-4, SRM-8, SRM-9A, SRM-10, SRM-11A, SRM-12 through SRM-19, SRM-24, ETM-1A, DM-8, DM-9, QM-6, QM-7, PVM-1, RSRM-1. RSRM-2, RSRM-3, RSRM-4A, and RSRM-5 through RSRM-9. The delivered RSRM-HPM population nominal performance is compared to the CEI Specification paragraph 3.2.1.1.2.1, Table I requirements on Figure 3.7.

3.4.3 Impulse at Standard Conditions VS. Requirement Gates

The vacuum impulse at standard conditions at each of the gates is compared to the CEI Specification paragraph 3.2.1.1.2.4 requirements in Table 3.6. The population making up the standard nominal for the impulse requirements are the same as those in the nominal thrust time trace (Figure 3.7).

Thickol CORPORATION

SPACE OPERATIONS

3.4.4 Matched Pair Thrust Differential

The maximum thrust imbalance assessment is shown in Table 3.7. Figure 3.8 through Figure 3.10 shows the thrust differential during steady state and tail off. All the thrust differential values were near the nominal values experienced by previous flight SRMs and were well within the CEI Specification paragraph 3.2.1.1.2.3, Table III limits. The thrust values used for the assessment were reconstructed at the delivered conditions of each motor.

3.4.5 Matched Pair Performance Requirements

The CEI Specification requires that a matched pair of motors on a flight set have similar performance at delivered conditions according to Table 3.8. The RSRMs for STS-36 were well within the matched pair specification requirements.

3.5 RECONSTRUCTED MASS PROPERTIES

The Thiokol manufacturing designation, 360L009, along with RSRM-9 have been used, by Mass Properties, to identify the RSRMs used on this flight. Tables 3.9 and 3.10 provide RSRM-9A and RSRM-9B reconstructed sequential mass properties, respectively.

Table 3.11 and 3.12 compares RSRML predicted sequential weight and center of gravity (cg) data against post flight reconstructed data. A 2,000 lbm slag weight was used for both pre-fire and post-fire sequential predictions. Actual 360L009 mass properties may be obtained from Mass Properties History Log Space Shuttle 360L009-LH (TWR-17350A), dated 12 October 1989, and 360L009-RH (TWR-17351), dated 12 October 1989. Some of the mass properties data used has been taken from average actual data presented in the 5 September 1989 Mass Properties Quarterly Status Report (TWR-10211-92). Postflight reconstructed data reflects Ballistics mass flow data from the 12.5 sample per second measured pressure traces and a predicted slag weight of 2,000 lbm.

Table 3.13 and 3.14 presents CEI requirements, predicted, and actual weight comparisons. The actual weights are in close agreement with predicted values. Mass Properties data for both RSRMs comply with CEI requirements.

Thickol corporation SPACE OPERATIONS

TP-H1148			
PROPELLANT EVALUATION	INGREDIENT	STOCK-LOT	VENDOR
E69	HB Polymer ECA Aluminum Iron Oxide AP unground AP ground HB/ECA Ratio Iron Oxide	7227-0073 7225-0081 7228-0070 7226-0016 7229-0080 7229-0080 86.7% HB 0.253%	ASRC Dow Chemical Alcoa Charles Pfizer Kerr McGee Kerr McGee
F67V	HB Polymer ECA Aluminum Iron Oxide AP unground AP ground HB/ECA Ratio Iron Oxide	7227-0075 7225-0083 7228-0072 7226-0026 7229-0087 7229-0087 86.7% HB 0.249%	ASRC Dow Chemical Alcoa Charles Pfizer Kerr McGee Kerr McGee

TABLE 3.1 RAW MATERIAL EVALUATION SUMMARY

Thickol corporation SPACE OPERATIONS

	(LEFT MOTO PREDICTED	DR 67 DEG) ACTUAL	(RIGHT MOTOR 67 DEG PREDICTED ACTUAL		
IMPULSE GATES I-20 (10^6 lbf sec) I-60 (10^6 lbf sec) I-AT (10^6 lbf sec)	64.81 173.07 296.97	65.03 173.50 295.76	64.76 172.97 296.87	64.91 173.16 294.93	
VACUUM ISP (lbf*sec/lbm)	268.5	267.4	268.5	266.7	
BURN RATE (in/sec)	0.368	0.3697	0.368	0.3700	
EVENT TIMES (sec) * IGNITION INTERVAL WEB TIME * TIME OF 50 PSIA CUE ACTION TIME * SEPARATION COMMAND (sec)	0.232 111.3 120.9 123.0 125.8	N/A 110.6 120.3 122.2 125.5	0.232 111.3 120.9 123.0 125.8	N/A 110.4 120.6 122.4 125.5	
PMBT (deg F)	67.0	67.0	67.0	67.0	
MAXIMUM IGNITION RISE RATE (psia/10 ms)	91.9	N/A	91.9	N/A	
DECAY TIME (sec) (59.4 psia to 85 K)	2.8	2.4	2.8	2.5	
TAILOFF IMBALANCE IMPULSE DIFFERENTIAL (KLBF-SEC)	PREDICTED N/A		AC -	TUAL 119	

TABLE 3.2 RSRM-9 PROPULSION PERFORMANCE ASSESSMENT

Impulse Imbalance = Left Motor - Right Motor
* All times are referenced to ignition command time except where noted by
an *. These times are referenced to lift off time (ignition interval).

DOC NO. TWR-175	548-10	VOL
SEC	PAGE	
×		

TABLE 3.3 PREDICTED PROPELLANT TEMPERATURE GRADIENIS IN RSRM-9

DISTANCE FROM OUTSTIDE SURFACE OF CASE (IN.)	15	45	75	105	135	165	195	225	255	285	315	345
0.0 CASE SURFACE	67.57	67.62	68.06	68.78	69.39	69.64	69.44	68.86	68.42	68.20	67.91	67.67
0.25 STEEL CASE	67.47	67.52	67.96	68.68	69.26	69.49	69.29	68.72	68.30	68.11	67.81	67.57
1.094 PROPELLANT	66.02	66.04	66.21	66.40	66.57	66.68	66.67	66.56	66.50	66.42	66.23	66.08
6.114 PROPELLANT	65.49	65.49	65.50	65.50	65.53	65.55	65.57	65.58	65.58	65.57	65.53	65.50
13.130 PROPELLANT	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.46	65.45	65.45	65.45
21.550 PROPELLANT	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45
29,970 PROPELLANT	65.45	65.44	65.44	65.45	65.45	65.45	65.44	65.45	65.45	65.45	65.44	65.44
29.300 PROPELLANT	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45	65.45
50.570 1101422211		1	i	_i	<u>i</u>	1	<u> </u>		1			

•*

....

TABLE 3.4

COMPARISON OF RSRM-9A VARIATIONS AT PMBT = 60°F ABOUT THE NOMINAL TO THE CEI SPECIFICATION REQUIREMENTS

PARAMETER	CEI MAX 3 SIGMA VARIATION% (1)	NOMINAL VALUE (2)	RSRM-9A VALUE (3)	RSRM-9A VARIATION % (4)
WEB TIME	± 5.0	111.7	111.4	$\begin{array}{r} -0.27 \\ -0.32 \\ +0.11 \\ -0.65 \\ +0.33 \\ +0.00 \\ +0.07 \\ -0.31 \\ -0.27 \end{array}$
ACTION TIME	± 6.5	123.4	123.0	
WEB TIME AVG PRESSURE	± 5.3	660.8	660.1	
MAX PRESSURE	± 6.5	918.4	912.4	
MAX SEA LEVEL THRUST	± 6.2	3.06	3.07	
WEB TIME AVG VAC THRUST	± 5.3	2.59	2.59	
VAC DEL SPECIFIC IMPULSE	± 0.7	267.1	267.3	
WEB TIME VAC TOTAL IMPULSE	± 1.0	288.9	288.0	
ACTION TIME TOTAL IMPULSE	± 1.0	296.3	295.5	

PRESSURE VALUES IN PSIA, THRUST VALUES IN MLBF, IMPULSE VALUES IN MLBF-SEC TIME VALUES IN SECONDS

- (1) CEI PARAGRAPH 3.2.1.1.2.2, TABLE II
- (2) QM-4 STATIC TEST AND SRM-8A AND B, SRM-9A, SRM-10A, SRM-10B, SRM-11A, SRM-13A AND SRM-13B FLIGHT AVERAGE AT STANDARD CONDITIONS.
- (3) RSRM-9A AT PMBT = $60^{\circ}F$

-

(4) VARIATION = ((RSRM-9A - NOMINAL)/NOMINAL)*100

DOC NOTWR-17548-10)	VOL	
SEC	PAGE		

Thickol CORPORATION SPACE OPERATIONS

TABLE 3.5

COMPARISON OF RSRM-9B VARIATIONS AT PMBT = 60°F ABOUT THE NOMINAL TO THE CEI SPECIFICATION REQUIREMENTS

PARAMETER	CEI MAX 3 SIGMA VARIATION% (1)	NOMINAL VALUE (2)	RSRM-9B VALUE (3)	RSRM-9B VARIATION % (4)
WEB TIME	± 5.0	111.7	111.2	$\begin{array}{c} -0.45 \\ -0.08 \\ -0.35 \\ -0.85 \\ +0.00 \\ -0.39 \\ -0.15 \\ -0.73 \\ -0.54 \end{array}$
ACTION TIME	± 6.5	123.4	123.3	
WEB TIME AVG PRESSURE	± 5.3	660.8	658.5	
MAX PRESSURE	± 6.5	918.4	910.6	
MAX SEA LEVEL THRUST	± 6.2	3.06	3.06	
WEB TIME AVG VAC THRUST	± 5.3	2.59	2.58	
VAC DEL SPECIFIC IMPULSE	± 0.7	267.1	266.7	
WEB TIME VAC TOTAL IMPULSE	± 1.0	288.9	286.8	
ACTION TIME TOTAL IMPULSE	± 1.0	296.3	294.7	

PRESSURE VALUES IN PSIA, THRUST VALUES IN MLBF, IMPULSE VALUES IN MLBF-SEC TIME VALUES IN SECONDS

- (1) CEI PARAGRAPH 3.2.1.1.1, TABLE II
- (2) QM-4 STATIC TEST AND SRM-8A AND B, SRM-9A, SRM-10A, SRM-10B, SRM-11A, SRM-13A AND SRM-13B FLIGHT AVERAGE AT STANDARD CONDITIONS.
- (3) RSRM-9B AT PMBT = 60 F
- (4) VARIATION = ((RSRM-9B NOMINAL)/NOMINAL)*100

DOC NOTWR-17548-10		VOL
SEC	PAGE 11	

Thickol CORPORATION SPACE OPERATIONS

TABLE 3.6

RSRM-HPM POPULATION IMPULSE GATES

IMPULSE (3)	REQUIREMENT (1)	STANDARD NOMINAL (2)
Impulse at 20 sec (10**6 LBF-SEC)	63.1 (MIN)	64.7
Impulse at 60 sec (10**6 LBF-SEC)	171.2 - 178.1 172.9 (+3%,-1%)	173.0
Impulse at ACTICN TIME (10**6 LBF-SEC)	293.8 (MIN)	296.9

- (1) CEI PARAGRAPH 3.2.1.1.2.4
- (2) NORMALIZED TC STANDARD CONDITIONS-BURN RATE OF 0.368 IN/SEC. POPULATION IS SAME AS USED TO COMPARE NOMINAL THRUST TRACE, Figure 3.17.

.

(3) IMPULSE VALUES ARE CALCULATED FROM IGNITION.

doc NCTWR-17548-10		VOL	
SEC	PAGE 12		

.

.

Thickol corporation space OPERATIONS

.

.

EVENT	IMBALANCE SPECIFICATION (KLBF)	MAXIMUM IMBALANCE (KLBF)	TIME OF MAXIMUM IMBALANCE (SEC)
STEADY STATE (1.0 SEC TO FIRST WEB TIME MINUS 4.5 SEC, LBF, 4 SEC AVERAGE)	85	+ 30.6	71.0
TRANSITION (FIRST WEB TIME MINUS 4.5 SEC TO FIRST WEB TIME, LBF)	85 - 268 LINEAR	-34.9	110.0
TAILOFF (FIRST WEB TIME TO LAST ACTION TIME)	710	- 69.9	117.0

TABLE 3.7 RSRM-9 THRUST IMBALANCE SUMMARY

THRUST IMBALANCE = LEFT SRM - RIGHT SRM

DOC NEWR-17548-10		VOL	
SEC	PAGE 13		

Thickol CORPORATION SPACE OPERATIONS

TABLE 3.8 MATCHED PAIR PERFORMANCE LIMITS

PARAMETER	CEI SPECIFICATION MAX DIFFERENCE(%) (1)	DELIVERED % DIFFERENCE (2)
WEB TIME	±2.0	+0.18
ACTION TIME	±3.0	-0.16
WEB TIME AVG PRESSURE	±2.0	+0.23
MAX PRESSURE	N/A	+0.20
MAX SEA LEVEL THRUST	N/A	+0.32
WEB TIME AVG VAC THRUST	±2.0	+0.00
VAC DEL SPECIFIC IMPULSE	±1.0	+0.24
WEB TIME VAC TOTAL IMPULSE	±1.4	+0.43
ACTION TIME TOTAL IMPULSE	±1.4	+0.26

PRESSURE VALUES IN PSIA, THRUST VALUES IN MLBF, IMPULSE VALUES IN MLBF-SEC TIME VALUES IN SECONDS

- (1) CEI SPECIFICATION PARAGRAPH 3.2.1.1.2.2, TABLE II
- (2) DIFFERENCE = ((RSRM-9A RSRM-9B)/RSRM-9 AVERAGE)*100 DATA AT PMET OF 67 °F

DOC NOWR-17548-10		VOL
SEC	page 14	

•. •

TAR	IF	્ર	q
TUD	יויי		• -

RSRM9-LH SEQUENTIAL MASS PROPERTIES

Thickol CORPORATION SPACE OPERATIONS

.

	WEIGHT	CENTER OF GRAVITY			мом	TIA	
EVENTS/TIMES	(LBS)	LONG.	LAT.	VERT.	PITCH	ROLL	YAW
	1255202 2	1171 170	0 059	0 006	42408.326	878.960	42409.203
	1299293.3	1171,110	0.077	0.000	121001020		
LIFT-OFF	1254599.0	1171.302	0.059	0.006	42365.194	877.640	42366.071
TIME = 0.23	1010015 0	1209 227	0.074	0 008	30670 635	760.451	30671.510
INTERMEDIATE BURN	1012812.9	1200.231	0.074	0.000	30070.002	1001 197	••••
INTERMEDIATE BURN	791360.4	1231.692	0.094	0.010	21637.244	625.427	21638.112
TIME = 40.00	///ADEE 3	1000 000	0 111	0.012	17055 463	5/18 079	17956.325
MAX "Q"	661255.7	1229.292	0.111	0.012	17977.403	940.019	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ITME = 54.00	606519.4	1226.779	0.121	0.013	16550.710	511.659	16551.569
TIME = 60.00			o 175	0.010	11077 550	277 740	11878 308
INTERMEDIATE BURN	414610.0	1215.107	0.175	0.018	110/1.000	5//./47	11010.330
11ME = 80.00	350563.3	1214.336	0.207	0.022	10493.624	327.175	10494.467
TIME = 87.00						020 h72	9/106 1130
INTERMEDIATE BURN	245229.8	1227.594	0.293	0.031	8495.594	238.413	0490.430
TIME = 100.00	172259.6	1268.838	0.415	0.044	7239.456	171.573	7240.284
TIME = 110.88	11223710	12001000				444 000	(55(002
END OF ACTION TIME	144006.3	1316.195	0.495	0.053	6555.460	146.290	0770.203
TIME = 122.39	143361 1	1317.931	0.498	0.053	6524.752	145.813	6525.578
$\frac{\text{SEPARATION}}{\text{TIME}} = 125.47$	145501.1	10111901	01.120				4505 77 5
MAX REENTRY "Q"	142963.6	1317.893	0.499	0.052	6504.948	145.461	6505.775
TIME = 320.47	102011 5	1217 874	0 100	0 052	6502.188	145,415	6503.015
NOSE CAP DEPLOYMENT	142911.2	1311.014	0.477	01072	0,000		
DROGUE CHUTE DEPLOYMENT	142910.4	1317.874	0.499	0.052	6502.132	145.414	6502.959
TIME = 351.07	140072 7	1217 961	0 400	0.052	6500.179	145.382	6501.005
FRUSTUM RELEASE	1428/3./	1317.001	0.433	0.072	0,000,000	,,,,,,,,,,	
MAIN CHUTE LINE STRETCH	142871.5	1317.860	0.499	0.052	6500.057	145.380	6500.884
TIME = 373.47		4447 055	0 100	0.052	6400 118	145 364	6499.945
MAIN CHUTE 1ST DISREEFING	142853.9	1317.855	0.499	0.052	0499.110	142.304	047777747
MAIN CHUTE 2ND DISREFEING	142843.7	1317.851	0.499	0.052	6498.568	145.355	6499.395
TIME = 389.47			0 1 0 7	0.050	6200 211	140 766	6300 149
NOZZLE JETTISONED	140614.2	1307.649	0,497	0.052	0299.344	140.700	0000.149
IIME = 390.17	140570.2	1307.631	0.497	0.052	6296.968	140.727	6297.775
TIME = 415.47							

REVISION ____

.

RSRM9-RH SEQUENTIAL MASS PROPERTIES

		CENTER	OF GRAV	ITY	мом	ENT OFINER	TIA
EVENTS /TIMES	(LBS)	LONG.	LAT.	VERT.	PITCH	ROLL	YAW
EVENIO/THEO						********	
PRE-LAUNCH	1254958.4	1171.147	0.059	0.006	42363.881	878.780	42364.759
TIME = 0.00 LIFT-OFF	1254417.8	1171.259	0.059	0.006	42326.105	877.521	42326.983
TIME = 0.23 INTERMEDIATE BURN	1012289.0	1208.168	0.073	0.008	30637.168	760.079	30638.044
TIME = 20.00 INTERMEDIATE BURN	790679.0	1231.475	0.094	0.010	21615.616	624.982	21616.485
TIME = 40.00 MAX "Q"	660558.9	1228.982	0.111	0.012	17939.563	547.658	17940.426
TIME = 54.00 INTERMEDIATE BURN	605846.3	1226.425	0.121	0.013	16533.928	511.056	16534.787
TIME = 60.00	414498.4	1214.661	0.175	0.018	11876.598	377.682	11877.446
TIME = 80.00 MAX "G"	350483.4	1213.828	0.206	0.022	10493.770	327.133	10494.613
TIME = 87.00 INTERMEDIATE BURN	245480.9	1226.820	0.292	0.031	8502.831	238.721	8503.666
TIME = 100.00 WEB BURN	174101.4	1266.078	0.410	0.044	7279.634	173.318	7280.462
TIME = 110.66 END OF ACTION TIME	143946.4	1315.228	0.494	0.053	6561.538	146.284	6562.362
TIME = 122.59 SEPARATION	143380.9	1316.652	0.497	0.053	6537.219	145.853	6538.046
MAX REENTRY "Q"	143021.0	1316.589	0.497	0.052	6516.177	145.533	6517.004
NOSE CAP DEPLOYMENT	142968.9	1316.569	0.498	0.052	6513.415	145.487	6514.242
DROGUE CHUTE DEPLOYMENT	142967.8	1316.569	0.498	0.052	6513.359	145.486	6514.186
FRUSTUM RELEASE	142931.2	1316.556	0.498	0.052	6511.403	145.454	6512.231
MAIN CHUTE LINE STRETCH	142928.9	1316.555	0.498	0.052	6511.283	145.452	6512.111
MAIN CHUTE 1ST DISREEFING	142911.3	1316.549	0.498	0.052	6510.344	145.436	6511.172
MAIN CHUTE 2ND DISREEFING	142901.1	1316.546	0.498	0.052	6509.794	145.427	6510.622
NOZZLE JETTISONED	140671.7	1306.326	0.497	0.052	6309.813	140.839	6310.61/
TIME = 390.17 SPLASHDOWN TIME = 415.47	140627.7	1306.308	0.497	0.052	6307.435	140,800	6308.241
••••							

•

REVISION

Thickol corporation SPACE OPERATIONS •

SEQUENTIAL MASS PROPERTIES PREDICTED/ACTUAL COMPARISONS RSRM-9 Left Band

Weight (lb)

Longitudinal OG (in)

SPACE

OPERATIONS

CORPORATION

Event	Predicted ¹	Actual	Delta	% Error	Predicted ¹	Actual	Delta	% Error
Pre-Ignition	1,255,293	1,255,293	0	0.00	1,171.170	1,171.170	0.000	0.00
Liftoff	1,254,658	1,254,599	-59	0.00	1,171.296	1,171.302	+0.006	0.00
Action Time	144,225	144,006	-219	0.15	1,315.534	1,316.195	+0.661	0.05
Separation ²	143,491	143,361	-130	0.09	1,317.522	1,317.931	+0.409	0.03
Nose Cap Deployment	142,908	142,911	+3	0.00	1,317.881	1,317.874	-0.007	0.00
Drogue Chute Deployment	142,907	142,910	+3	0.00	1,317.881	1,317.874	-0.007	0.00
Main Chute Line Stretch	142,868	142,871	+3	0.00	1,317.868	1,317.860	-0.008	0.00
Main Chute 1st Disreefing	142,851	142,854	+3	0.00	1,317.862	1,317.855	-0.007	0.00
Main Chute 2nd Disreefing	142,841	142,844	+3	0.00	1,317.858	1,317.851	-0.007	0.00
Nozzle Jettison	140,613	140,614	+1	0.00	1,307.650	1,307.649	-0.001	0.00
Splash Down	140,570	140,570	0	0.00	1,307.631	1,307.631	0.000	0.00

Notes:

Based on Mass Properties History Log Space Shuttle 360L009-LH, 12 Octobber 1989 (TWR-17350A).
The separation longitudinal center of gravity of 1,317.293 is 66% of the vehicle length.

SEQUENITAL MASS PROPERITIES PREDICTED/ACTUAL COMPARISONS RSRM-9 Right Hand

Weight (lb)

Longitudinal CG (in)

7 PLOT

CORPORATION

Event	Predicted ¹	Actual	Delta	% Error	Predicted ¹	Actual	Delta	% Erro	
Event Pre-Ignition Liftoff Action Time Separation Nose Cap Deployment Drogue Chute Deployment Main Chute Line Stretch Main Chute 1st Disreefing Main Chute 2nd Disreefing	1,254,958 1,254,324 144,284 143,550 142,968 142,967 142,928 142,910 142,900	1,254,958 1,254,418 143,946 143,381 142,969 142,968 142,929 142,911 142,901	0 +94 -338 -169 +1 +1 +1 +1 +1 +1	0.00 0.01 0.23 0.12 0.00 0.00 0.00 0.00 0.00 0.00	1,171.147 1,171.274 1,314.246 1,316.225 1,316.579 1,316.578 1,316.565 1,316.559 1,316.555 1,316.555 1,306.327	1,171.147 1,171.259 1,315.228 1,316.652 1,316.569 1,316.569 1,316.555 1,316.549 1,316.549 1,316.546 1,306.326	0.000 -0.015 +0.982 +0.427 -0.010 -0.009 -0.010 -0.010 -0.009 -0.001	0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00	
Nozzle Jettison Splash Down	140,671	140,628	0	0.00	1,306.308	1,306.308	0.000	0.0	

Based on Mass Properties History Log Space Shuttle 360L009-RH, 12 October 1989 (TWR-17351).
The separation longitudinal center of gravity of 1,316.675 is 66% of the vehicle length.

·

PREDICTED/ACTUAL WEIGHT (1b) COMPARISONS RSRM-9 LEFT HAND

Item	Minimum	Maximum	Predicted ³	Actual	Delta	% Error	Notes
Inerts					<u> </u>		
Prefire, Controlled		151,076	149,187	149,187	0	0.00	1
Propellant	1,104,714		1,106,106	1,106,106	Õ	0.00	ī
Usable			1,105,247	1,105,468	+221	0.02	2
To Liftoff			535	594	+59	9.93	-
Liftoff to Action			1,104,712	1,104,874	+162	0.01	2
Unusable			859	638	-221	34.64	-
Action to Separation			669	579	-90	15.54	
After Separation			190	59	-131	222.03	
Slag			2,000	2,000	0	0.00	2

Notes:

.*

1. Requirement per CPW1-3600A, Addendum G, Part I, (RSRM CEI Specification).

Slag included in usable propellant, liftoff to action.
Based on 12 October 1989, Mass Properties History Log Space Shuttle 360L009-LH (TWR-17350A).

PREDICTED/ACTUAL VEIGHT (1b) COMPARISONS RSRM-9 RIGHT HAND

Item	Minimm	Maximum	Predicted ³	Actual	Delta	% Error	Notes
Inerts Prefire, Controlled Propellant Usable To Liftoff Liftoff to Action Unusable Action to Separation After Separation Slag	1,104,714	151,076	149,246 1,105,712 1,104,854 535 1,104,319 858 668 190 2,000	$149,246 \\1,105,712 \\1,105,192 \\440 \\1,104,752 \\520 \\499 \\21 \\2,000$	0 +338 -95 +433 -338 -169 -169 0	0.00 0.03 21.59 0.04 65.00 33.87 804.76 0.00	1 1 2 2 2

Notes:

1. Requirement per CPW1-3600A, Addendum G, Part I, (RSRM CEI Specification).

2. Slag included in usable propellant, liftoff to action.

3. Based on 12 October 1989, Mass Properties History Log Space Shuttle 360L009-RH (TWR-17351).

ě

Thickol corporation space operations

•

Thickol CORPORATION SPACE OPERATIONS

Z.
