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SUMMARY

In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the

power source options being considered for such a mission are photovoltaics, regenerative fuel cells and
nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars,

in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate

and solve potential problems.

Space power systems components such as photovoltaicarrays,radiators,and solarconcentratorsmay

be vulnerableto degradation in the Martian environment. Natural characteristicsof Mars which may

pose a threatto surfacepower systems includehigh velocitywinds, dust,ultravioletradiation,largedaily

variationsin temperature,reactionto components ofthe soil,atmosphere and atmospheric condensates as

well as synergisticcombinations. Most of the currentknowledge of the characteristicsof the Martian

atmosphere and soilcomposition was obtained from the Viking 1 and 2 missionsin 1976.

This paper presents a theoretical study used to assess the effects of the Martian atmospheric condi-
tions on the power systems components. A computer program written at NASA Lewis Research Center in

1961 to 1962 for combustion research that uses a free-energy minimization technique was used to calculate

chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system

component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium.
Combinations of environments and materials considered in this study include: (1) Mars atmosphere with

power surface material, (2) Mars atmosphere and dust component with power surface material, (3) Mars

atmosphere and hydrogen peroxide or superoxide with power system material. The chemical equilibrium

calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the
silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 K and 400 K; for carbon,

copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were

evaluated at pressures of 700, 800, and 900 Pa, which simulate the Martian atmosphere.

INTRODUCTION

In the past few years there has been a growing interest by the United States in space exploration.

An exploratory expedition to the planet Mars is among the first steps for this task. Such a step will

require careful planning and preparation to insure a successful mission. The discussion of electrical power

systems for such a mission considers a range of power requirements and power source options (ref. 1).

Some of the power systems considered are: photovoltaics, regenerative fuel cells, solar thermal, nuclear

reactor and isotope power systems. Electrical power requirements are driven by crew size, electric pro-

pulsion demands, scientific and operational requirements and others. In addition, all environmental con-
ditions in the route to Mars, in the planet orbit, and on the Martian surface should be simulated and

studied in order to anticipate and solve, if possible, any problems.

Space power system components such as photovoltaicsarrays,radiators,solarconcentratorsand

superconductor power components may be vulnerableto degradationin the Martian environment. Natu-

ralcharacteristicsof Mars which may pose a threatto surfacepower systems include: winds, dust,ultra-

violetradiation,temperature,soil,atmospheric condensates.



The atmospheric composition on Mars was determined by measurements with mass spectrometers on

the Vikings (ref. 2}. Table I indicates the composition of gases present; the major component is CO T
The average amount of atmospheric water vapor precipitation is approximately 100 pm (ref. 3). The
atmospheric pressure varies from 7 to 9 mbar depending on season, weather and altitude.

The surface temperatures range from 130 to 300 K (ref. 4) and swings in daily temperature of 20 to

50 K are not uncommon (ref. 5}. The winds were measured by the Viking lander 2 had velocities of

20 m/s or less greater than 99 percent of the time (ref. 6), but during dust storms winds greatly in excess
of 25 m/s can be expected (ref. 7).

The composition of the soil was measured by X-ray fluorescence spectrometry at the Viking 1 land-

ing site Iref. 8). Although direct mineralogical identification was not possible by the Landers, computer-

ized search of analog mineral mixtures found a mixture of weathered ferro-silicate minerals, with smectite

clays nontronite and montmorillonite to be similar to the major components. The results of the Viking

biological experiments suggest that the Martian top regolith also contains highly oxidizing compounds

which are probably generated by the high UV light flux present at the surface {refs. 9 and 10).

The Martian atmosphere always contains suspended dust particles which result from local and/or
global dust storms that occur each year. The information obtained from the Mariner 9 and the Viking

missions suggest that the dust is a mixture of many materials such as granite, basalt, basaltic glass, obsid-

ian, quarts, andesite or montmorillonite, and the average particle size into the atmosphere is about 2/_m
(ref. 11). Aerosols made of soil material and water ice are also known to be present in the Martian atmos-

phere. Such'particles are injected in the atmosphere during dust storms. Three types of aerosol particles

can be present: a water ice ground fog, a higher level ice cloud {polar hood), and suspended soil particles

(ref. 12}. A ground fog is composed of water ice particles having an average radius of about 2/_m, and

the depth of the fog is 0.4 km. A polar hood is an ice condensation cloud of CO2, H20 or a mixture of
both. Suspended soil particles constitute the dominant source of nondiurnal variation in atmospheric

opacity. The rate of removal of dust particles from the Martian atmosphere is probably controlled by a

combination of three processes: gravitational sedimentation of dust grains, eddy mixing and growth by

H20 and CO2 ice condensation followed by gravitational sedimentation.

A significantamount of solarultravioletflux penetratesthe surfaceof Mars, which affectsthe chemi-

calbalance ofthe atmosphere (ref.6). Below 2000 A, no solarradiationreaches the surfacedue to absorp-

tion by CO 2. The high flux ofultravioletradiationcontinuallyregeneratesfreeradicalsin the atmosphere

and on the surfaceofsoiland dust particles.Any surfaceexposed to eitherthe atmosphere or the soil

could be subjectto attack by reactivespecies,permanently degrading theirperformance.

This paper presentsa theoreticalstudy to predictthe chemical effectsof the Mars environment on

power system components. The conditionsselectedin thisstudy are presented in Table I forcandidate

high temperature radiatormaterialsand photovoltaiccellmaterial. The candidate radiatormaterialsare

carbon (C), copper {Cu}, and titanium {Ti}. Representativeofthe photovoltaicmaterial was silicondiox-

ide {SiO2) and silicon(Si}.A free-energyminimization techniqueisused to calculatechemical equilibrium

forassigned thermodynamic statesof temperature and pressure.The resultsobtained presentswhich

reactionsare thermodynamically favorablefor an assigned temperature and pressure. Thermodynamics

allowsthe determination ofthe changes that can be expected,but does not allow calculationof the rates

ofchemical or physicalprocess(how fastitwould occur).

METHOD

Thermodynamics isthe branch of sciencethat embodies the principlesofenergy transformation in

macroscopic systems and allowscalculationsof chemical equilibrium(correspondingto an infinitereaction

time). Chemical equilibriumcalculationscan be made through the use of equilibriumconstants forsimple

problems or applying the concept ofminimization of freeenergy when the equilibriumcomposition is



determined by a number of simultaneous reactions. The computations required for simultaneous reactions

can be complex and tedious, and several computer programs have been developed to perform such calcula-

tions. The computer program selected for our study was developed at NASA Lewis Research Center in

1961 to 1962 for combustion research {ref. 13). This program employs a free-energy minimization tech-

nique to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure.

The total Gibbs free energy function for the system is given by:

G = (1)

and thisisthe equation to be minimized with respectto the ni (number of moles ofspeciesi)at constant

T (temperature)and P (pressure}.

The generalcriterionfor equilibriumisexpressedas:

(dG)T 'p ----0 {2)

meaning that at the equilibrium state differential variation can occur in the system at constant tem-

perature and pressure without changes in G. Combining the fundamental property relation which is a

combination of the first and second laws of thermodynamics (3), and the differential Gibbs free energy

equation (4}, the Gibbs-Duhem equation (5) is obtained.

d(nU) = T d(nS) - P d(nV) + E(/_ i dni) (s)

d{nG) = d(nU) + P d(nV) + (nV) dP- T d(nS) - {nS) aT (4)

d(nG) = -(nS) dT + (nV) dP + E(fl| dni) (5)

where U is the internal energy, T temperature, S entropy, P pressure, V volume, and ]_ is the chemi-
cal potential.

Since the system is at constant temperature and pressure, equation 5 provides the criterion of

chemical-reaction equilibrium as:

d(nG) = _(]_i dni) (6)

Using the definition of fugacity (7),

]_i = COi + RT In fitfi° (7)

where the subscriptdenotes a property value for a standard state,R isthe gas constant and f isthe

fugacity. The ratioof fugacitiesin equation (7)iscalledthe activitycoefficient,ai= fi/fi°. This activity

coefficientisdefinedaccording to the conditionsand standard statesof the system. Substituteequa-

tion (7) intoequation (6),the equilibriumconstant K isdefinedas:

G ° =-RTlnK (8)

which can be applied to solvesimple chemical equilibriumproblems.

The set ofequations that need to be solved are derivedhere for convenience. The problem issolved

by findinga set ofequations of ni which minimizes nG at constant T and P subjectto the restraints
ofthe material balances.



The material balance equations axe developed as follows. Let Bj be the total number of atoms of
the j element present in the system, aij be the number of atoms of the j element present in each chemi-
cal species i. Then for each element j,

E(niau) = Bj C9)

it can also be written as,

_](niaij ) - B| = 0 (10}

multiplying the above equation by a constant _ (Lagrange's multiplier), and performing a summation

over all j:

_{_j[_(niaij ) - Bj]} : 0 (11)

This equation added to equation (1) and partially differentiated with respect to ni, which when set
to zero (equilibrium criterion) leads to:

z_ Gn ° + RT In a i + EO_jau) = 0 (12)

where _ Gri n is the standard Gibbs function of formation of compound i from its constituent elements

at temperature T. The material balance equations, equation (12), and the summation of the mole frac-
tion equal to 1.0 must be solved simultaneously in order to obtain the equilibrium compositions at a speci-

fied temperature and pressure.

Details of calculations and numerical methods used are discussed elsewhere (ref. 13). It is important
to note that the standard state is taken as the pure ideal gas at 1 atm for each constituent in the gas

phase.

The conditions selected in this study are presented in Table I for candidate high temperature radia-

tor materials and photovoltaic cell material. The candidate radiator materials are carbon (C), copper

(Cu) and titanium (Ti). Representing the photovoltaic cell materials were silicon dioxide (SiO2) and
silicon (Si). The temperatures selected are based on operational conditions expected for the materials.

Space nuclear and solar dynamic power systems requires high temperature radiators for overall system

efficiency. The SP-100 may be required to operate at temperatures as low as 500 K and as high as 950 K

(ref. 14). Photovoltaic cells are expected to operate close to ambient temperature, for that reason silicon
dioxide conditions were set for 200 to 400 K range. The pressures selected are based on the Martian

atmospheric pressure which ranges from 700 to 900 Pa.

The reactivespeciesintroduced inthismodel includeiron oxide (Fe203),hydrogen peroxide (H202)

and a sodium superoxide (Na202) which are expected to be presentat the surfaceof Mars. The amount

(moles)assumed forthesespeciesare not expected to be the same as the ones that might be found on

Mars, neverlessthe effectsof thesespeciesare investigatedand presented. The oxidant to fuelratio

(weightratio),O/F, isneeded as an input forthe computer program. Severalratioswere investigatedas

shown in Table I,the resultspresented in thispaper are for O/F equal to 100.0. The above ratiopresents

a more likelyscenariowhere carbon dioxide (CO2) isthe major component and the other components are

in considerablylower amounts, Table IIpresentssome of the systems investigated.

RESULTS AND DISCUSSION

The degradation obtained for the differentsystems selectedare shown in figure1. The results

showed no differencesin degradation forcasesrun at 700, 800 or 900 Pa. Itwas found that at high tem-

perature (>500 K} the reactionbetween carbon and carbon dioxideisthermodynamically favorable.
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Degradationof graphite,formerly carbon,would increasewith temperature up to the point where allthe

graphitewas consumed as shown in figure2. The additionofother components such as H202, and Fe203

show the same trends,degradation and finallyconsumption of allthe graphite. The resultssuggestthat

by adding Fe203, the graphite degradation isgreaterthan forthe other two casesinvolvingCO 2 and

CO2//H202. Carbon/carbon composites are attractivematerialsforuse in applicationsrequiringstrength,
lightweight and toughness at high temperatures. However, carbon in any form willreactwith oxygen,

burning away rapidlyat temperatures as low as 500 °C (ref.15).

The interaction of CO 2 with copper is shown in figure 3. Reactions between copper and CO 2 were
found not to be thermodynamically favorable. If some amount of hydrogen peroxide was added to the

system, some changes were obtained. Some of the copper reacts to form copper oxide (CuO}. Oxidizing

substances may accelerate the degradation of one class of materials and retard the degradation of others.

In the latter case, the behavior of the material usually represents a balance between the power of the

oxidizing compounds to preserve a protective film and their tendency to accelerate the degradation when
the elements responsible for the protective-film are able to destroy the film (ref. 16). The oxide film that

forms on copper and copper-base alloys is not a protective film, for example in industrial oxidizing media,

such as flue gas with sulfur content, copper is not recommended as a fabrication material {ref. 16).

Resultsobtained for Ti/CO 2 (fig.4},shows the transformationof Ti to titanium dioxide (TiO2).

Thermodynamically itisexpected that the oxide scaleon titanium to consistsof a sequence oflayersof

the differentoxidesof titanium (TiO, Ti203, Ti305 and TiO2) {ref.17),thissuggeststhe formation of a

protectivefilm on the titanium surface. Titanium isan excellentcorrosionresistantmaterial foroxidizing

atmospheres. The presenceof a thin,tough oxide surfacefilm provides excellentresistanceto oxidation

and other reducing environments (refs.17 and 18). Additional oxidizingagents,such as H202 and Fe203,

are expected to increasethe oxidation of titanium (fig.5).

The resultsobtained for the radiatorsurfacesshow thermodynamically favorablereactionsat the

operationaltemperatures. Some ofwhich could be criticalto the performance of the system. These reac-

tionsmay be significantcontributorsto system mechanical degradation depending upon the radiatorsur-

facematerial used to obtain high thermal emittance. However, metal oxidesgenerallyhave enhanced

emittance compared to theirparent metals.

For the use of metals indry oxygen atmospheres at low temperatures,the instabilitymay be of no

practicalconsequence for many metals because ratesofreactionsare low. However, reactionratesincrease

rapidlywith an increasein temperature, and in applicationsof metals at elevatedtemperatures the ques-

tion ofcorrosionresistancebecomes very important (ref.17}. The totalchemical reactionfor the reaction

of a metal M and oxygen gas 02 to form the oxide MaO b may be writtenas,

aM + (b/2)O 2 = MaO b (is)

from this equation the oxidation of metals may appear as a simple chemical reaction. The reality is that
the reaction path and the oxidation behavior may depend on several factors, and the reaction mechanism

could be complex.

The silicondioxide materialwas investigatedwith allofthe aforementioned environmental condi-

tions,in additionto Na202.. None ofthe systems shows any degradation of SiOT However, when silicon

(Si)was analyzed,figure6, itwas found that siliconwas thermodynamically favorablefor a reactionwith

a CO 2 atmosphere. The siliconchanges to siliconoxide (SiO) at 200 K, as temperature isincreasedthe

SiO istransformed to SiO 2 (300 K) and no furtherchanges were found to occursup to 400 K. The SiO 2
formed was suspectto be a thin,noncrystallinefilm,which isknown to be a very protectivefilm from the

oxidationof silicon.The additionof other oxidizingcomponents, such as hydrogen peroxide and sodium

superoxide,shows the same trend which isthe oxidationof silicon.



CONCLUSION

The effects of the Martian environment on candidate radiator and photovoltaic array materials have

been thermodynamically investigated. Although thermodynamics does not give any information about

kinetics (how fast a reaction will occur}, it predicts (at infinite time of reaction) what changes could occur.

The results obtained in this study show thermodynamically that radiator surfaces would be degraded.

Some of the materials such as copper and titanium will develop oxide films, which could be protective.

Unfortunately, if a protective film is formed it is unknown how the thermal cycling, environmental condi-

tions such as UV light, superoxides and other dust components will affect the integrity of the protective

layer. An increase of the thermal emittance would be expected as consequence of the oxidation of the

surfaces. Based on thermodynamics, carbon/carbon composites would have to be protected in order to
survive the Mars environment.

The silicon dioxide material does not showed any signs of degradation on CO 2 enviroment, which
suggests that SiO 2 will be compatible with the Mars environment. However, silicon (Si) does thermody-

namically react with the Martian atmosphere. Oxidation of silicon could be critical to the photovoltaic
arrays on Mars.

The resultsobtained inthisstudy suggestthe need forfurtherinvestigationson the effectof Martian

environment on power system component materials.Experimental work isrequired to determine the

kineticsof theseMartian reactionsand the influencethat thermal cycling,UV lightand any other envi-

ronmental conditionsmight have on them.
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TABLE I- Selected Conditions for Photovollaic and Radiator Candidate Materials

GYSf£M

PHOTOVOLTAIC MATEIllAL/EHVII 1ONMENT

StO,/COt

SIO=/CO Jl'lo=O_

8tOi/COJForOa

SIO,/CO_/t I_O I

SI/CO=,.,

SI/COJNoiO=

SI/CO_/Fe ,Oa

SI/COJH,Op

SIICOJNeaOjlFotO=/H,O_

RADIATOR/ENVIROHMENT

C {carbon]/COt

1[I-II'ErI^ I UIIE IKI

200. 300, 400

SAME

SAME

SAME

SAME

SAME

SAME

SAME

SAME

300, 600, 800, t000

PI1EO_URE (t;/m')

700, 0SO, 900

SAME

8AME

..SAME

SAME

SAME

S/@AE

SAME

SAME

SAME

OXIDAUI/I'Ui':L W[IOlli" iIA'llO

I, IS, 20, 100

SAME

SAME

SAME

SAME

8AME

SAME

SAME

SAME

SAME

C/COJH,O, SAME 8AME SAME

C/CO,Fe,Ot SAME SAME gAME

SAME SAME SAMECu/COI

Cu/COJHtO,

"It/CO,

SAME SAME SAME

3S0, 500, 1000 SAME SAME

Tt/CO,/Fe,O= SAME SAME SAME

TI/CO,/HtO , SAME SAME SAME

Tl/COl/PoiO)/I llO I SAME SAME SAME
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TABLE II- Initial Number of Moles for Systems at

Oxidant to Fuel Welght Ratio o[ 100.

Syslem

SiO2

CO2

SiO2

CO2

Na202

Si

CO2

Si

C02

H_O_.

Fe203

Na_02

C

C02

Cu

CO2

Ti

CO2

Moles

100.0

13,656.0

100.0

13,631.0

13.63

100.0

6,382.0

100.0

6350.5

3.30

6.33

3.24

100.0

2727.0

100.0

14,432.0

100.0

10,886.0

1.10
Si02 Cu

.14

Ti

-.10 I
200 360 520 680 840

Temperature, K

Figure 1 .---Degradation of carbon, titanium,

copper, silicon, and silicon dioxide.
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