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Supersonic Reacting Internal Flow Fields:

J. Philip Drummond*

The national program to develop a trans-atmospheric vehicle has kindled a renewed

interest in the modeling of supersonic reacting flows, both in the United States and abroad.

A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion

system for this vehicle. Work has been underway for the past 25 years to develop and

optimize a scramjet propulsion system for a variety of purposes, but during most of this

period, the program has not reached the level of intensity that it currently enjoys. With the

maturing of the scramjet development program, techniques to model the engine flow field

have also progressed significantly. This has been due both to an advancement in numerical

methods for computing reacting flow fields as well as an appreciable growth in computer
i!:

speed and storage. The improvements in both algorithms and computer power have also

lead to a gradually improved understanding of the physics of reacting flow fields which is

so very important if computation is to have a truly significant impact on scramjet design.

This chapter will deal principally with the development of computational techniques for

modeling supersonic reacting flow fields, and the application of these techniques to an

increasingly difficult set of combustion problems. Since the scramjet problem has been

largely responsible for motivating this computational work, we will begin with a brief

history of hypersonic vehicles and their propulsion systems. This will be followed by

a discussion of some early modeling efforts applied to high speed reacting flows. We will

then move to the present day and discuss current activities to develop accurate and efficient

algorithms and improved physical models for modeling supersonic combustion. Following
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that discussion, some new problems where computer codes based on these algorithms

and models are being applied will be described. We will then be ready to look beyond

the-current day and draw some conclusions concerning future needs and directions for

modeling supersonic reacting flows, and hopefully challenge the reader to tackle one of :_::_

these exciting problems that we face in the future.

Introduction

Research to develop a supersonic combustion ramjet, or scram jet, propulsion system

was underway in the late 1950's. In unrelated efforts, work had also begun to develop

computational techniques for solving the equations governing the flow through a scramjet

engine. The marriage of scramjet technology and computational methods for assisting in

its evolution would remain apart for another decade, however. The principle barrier to the

union was the lack of a high-speed computer technology for solving the discrete equations

provided by the numerical methods. Computer resources remain even today as a major

pacing item in overcoming this barrier. Significant advancement has been made over the

past thirty years, however, to model the supersonic chemically reacting flow in a seramjet

combustor. To see how the the two fields finally merged, it is useful to briefly trace the

evolution of the technology in both areas.

Following a moderate level of activity in the late 1950's, there was a significant in-

crease in the research to develop scramjet engine concepts in the 1960's. In 1965, the

NASA Langley Research Center initiated the Hypersonic Research Engine (HRE) Project

to develop a high speed airbreathing technology base that could then be applied to the

development of propulsion systems for hypersonic cruise vehicles [1]. The goal of the HRE

Project was to flight test a regeneratively cooled, hydrogen fueled, pilon mounted scramjet

on the X-15 research airplane and demonstrate design performance levels. The HRE did

not reach the flight demonstration stage due to cancellation of the X-15 program, but the

ground based program did continue and resulted in the development and construction of
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two variable geometry engine models. Work with these models significantly increased the

scramjet technology base to be applied in more advanced configurations.

Following completion of the HRE Project, attention moved to propulsion concepts

that would provide high performance when installed on a vehicle. The pilon mounted

HRE would have resulted in excessive levels of external drag, so the pilon was removed

and work began to highly integrate the engine with the airframe of candidate vehicles.

In addition, engine weight was reduced by moving from a variable to a fixed geometry

which reduced the amount of engine structure. Out of this activity, the Langley airframe

integrated scramjet engine concept was conceived. That program, which has continued to

the present day, resulted in the successful demonstration of the concept to produce net

thrust in subscale hardware. A detailed review of this program was given by Northam et

al. in reference [1], and the reader is referred to their discussion for further details.

In addition to the NASA scramjet research and development program, other govern-

ment activities included a Navy sponsored scramjet program at the Applied Physics Lab-

oratory of the Johns Hopkins University (JHU/APL) [2,3]. This work also increased in

the 1960's and was directed towards the development of an air-breathing shipboard missile

utilizing a scramjet propulsion system. Development of this concept continued until 1977.

At that time, concern over the storage of highly reactive and toxic fuels to be used by the

system forced a change to more conventional but safer fuels. This change resulted in the

development of an integral rocket/duel combustor ramjet concept that utilized a fuel-rich

gas generator to preburn the fuel for a main supersonic combustor, thus allowing the use

of hydrocarbon fuels [4].

The Air Force also sponsored scramjet research and development during the 1960's [2].

They continued the support of several programs that were initially funded by the HRE

program. In 1964, a program was started at the General Applied Science Laboratory to

continue development of a low-speed fixed geometry scramjet engine, and a duel-mode

scramjet program was continued with the Marquardt Company at the same time. Soon
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thereafter in 1965, the Air Force began an effort with the United Aircraft Research Labora-

tory to continue development of a water cooled variable geometry scramjet design. These

three efforts ended in 1968, and only the NASA and JHU/APL programs continued into

the 1970's.

It was also during the 1970's that computational techniques were first applied to study

the supersonic reacting flow found in a scramjet combustor. A detailed review of those

activities was given by White, et al. in reference [2], and a summary of that discussion

and additional work is now provided. Some of the earliest work to model supersonic re-

acting flows was undertaken by Ferri [5] and his colleagues, Morretti [6], Elelman [7],

and Dash [8,9]. They employed an explicit viscous characteristics method that split the

governing equations into hyperbolic and parabolic parts followed by a coupled numerical

solution of each part at each integration step. Modeling of multistep finite rate chemistry

was also included in their solution strategy. Spalding and his colleagues then took Ferri's

splitting-based approach and improved its efficiency by developing a fully implicit solu-

tion procedure for solving the governing equations [10]. Spalding then developed several

implicit parabolized Navier-Stokes programs for modeling scramjet combustor flow fields.

These codes included the CHARNAL two-dimensional axisymmetric program [11] and

the SHIP three-dimensional program [12]. Both programs utilized the well known SIM-

PLE solution procedure for spatially marching the governing equations in the parabolized

direction while employing a tri-diagonal matrix solution procedure to perform repetitive

sweeps for solution of the equations in the cross-plane(s) [13]. The programs were written

to assume that a state of chemical equilibrium alway existed, but they were later modified

by Evans [14] to include the effects of finite rate chemical reactions. The modified pro-

grams are still being used today for studies of mixing and reaction in candidate combustor

configurations.

The work of Ferri and Spalding was then adapted by Dash to develop the SCORCH

program that used a hybred explicit/implicit procedure for modeling supersonic reacting
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flows. The method again split the governing equations into hyperbolic and parabolic parts.

The hyperbolic part was solved using a viscous characteristics approach that employed

an upwind finite difference procedure. The parabolic part was solved using an implicit

finite difference procedure [15]. Work on this program and its application to supersonic

combustion problems has continued to the present day.

While Ferri, his colleagues, and Spalding were developing analysis techniques for di-

rect application to the supersonic reacting flow problem in a scram jet, other algorithm

development work was underway, directed primarily at solving high speed external flow

problems. These techniques ultimately found their way, however, into the internal reacting

flow arena. The first of these algorithms was the MacCormack explicit, unsplit predictor-

corrector method that was initially developed to model the hypervelocity impact cratering

problem [16]. The MacCormack method was a variation of the Lax-Wendroff second order

accurate scheme. The method was robust and easily applied to complex geometries. Be-

cause of these qualities, the algorithm was readily adopted and used to study a wide class

of external flow problems. In fact, due to its general applicability, MacCormack's unsplit

algorithm is still used today as one option in several codes that are applied extensively to

the modeling of scramjet flow fields. Implicit algorithms were also developed for external

flow problems in the 1970's. Their development was motivated by the need to resolve the

high gradients present in wall boundary layers. The resolution of boundary layers required

fine computational grids, resulting in a severe stability constraint on the marching step

size of an explicit method. Where only a steady state solution was required, i.e., time

accuracy was not necessary, implicit methods could achieve a significantly more rapid rate

of convergence. Early work to develop implicit solution techniques for the Navier-Stokes

equations was carried out by Briley and McDonald [17] and Beam and Warming [18].

Both approaches used a spatial factoring procedure that reduced the multidimensional

problem to one of sequentially solving a set of one dimensional spatial implicit operators.

Using this computationally emcient procedure, convergence rates one to two orders of mag-



nitude faster than the explicit method were achieved for steady-state problems on highly

stretched grids.

While the application of implicit methods was generally limited to scramjet inlet flow

fields through the late 1970's and early 1980's, explicit methods were applied extensively in

studies of combustor flow fields. The MacCormack method was employed by Drummond to

model internal scramjet combustor flow fields. In 1977, he developed the two-dlmenslonal

TWODLE combustion program based on that method. The code used an equilibrium

chemistry scheme to model H2-air reaction and several algebraic eddy viscosity methods

to model the turbulence field. The program was applied to several scramjet combustor

component problems. Particular emphasis was given to the scramjet fuel injector problem

in an attempt to better understand the complex flow field in this region of the engine

[19,20]. Development on the program continued into the early 1980's when the program

was used to carry out the first simulation of a scramjet flow field using a two-dimensional

model engine module [22]. Detailed studies to optimize candidate scramjet fuel injector

configurations were also completed during this period [21,23].

An explicit solution procedure was also employed by Schetz during the early 1980's to

model the APL duel combustion ramjet described earlier [26]. He employed a modular

approach to carry out his analysis. The mixing and burning of the center jet from the

fuel-rich gas generator was calculated with a jet mixing code [24,25] that was modified

to include a turbulent kinetic energy turbulence model, a chemistry model, and other

improvements. Because of the high static pressures and temperatures that were present

in the device, a local diffusion-controlled, equilibrium chemistry model was used to model

reaction in the combustor. Schetz's procedure for modeling combustor flows was ultimately

combined with an inlet analysis procedure to compute performance estimates for the duel

combustion ramjet [27].

While numerical methods for modeling scramjet flow fields were developing through

the 1960's, 1970's and early 1980's, there was a parallel growth in computer hardware
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upon which these methods could be applied. Many of the early calculationswere carried

out on IBM 7090 and CDC 6600 class machines. Hardware improvements, that allowed

the consideration of more realisticproblems came in the late 1960's wlth the arrivalof

the CDC 7600 computer. The most significanthardware improvement came in the mid

and late 1970's,however, when vector processing supercomputers became availableto the

computational community. These machines included the CDC Star-100 and the Cray 1.

They were followed in the early 1980's by the Cyber 205 and the Cray X-MP which gave

performance capabilitiesseveral orders of magnitude greater than the scalar machines

availableto the researcher prior to their arrival [2].To thistime, the state of computer

resources had resulted in a major barrier to advancing the state of the art in modeling

supersonic reacting flows. With the new machines, however, the researcher was now in

a position to begin dealing with the detailed physics contained in these complex flows.

The burden now returned partiallyto the state of numerical algorithms used to model

supersonic combustion. This state has continued to the present day.

We are now in a situationwhere both numerical algorithms and computer technology

are pacing our abilityto formulate an improved understanding of supersonic reacting flows.

We willconcentrate for the remainder of thischapter on the numerical challenge,i.e.what

is needed to advance the computational state of the art that will resultin an improved

understanding of supersonic reacting flows. We will then explore how we can use this

improved understanding to solve practical problems associated with the modeling and

design of a scramjet combustor. There isa criticalneed today for creditable methods for

modeling flows typicalof those found in a supersonic combustor. The National Aero-Space

Plane, mentioned earlierin thischapter, willoperate at Mach numbers as high as 25. To

develop a successfuldesign for the propulsion system of thisvehicle,extensive use willbe

made of ground-based facilitiesto create flow fieldsconsistent with those that the engine

will injestover its operating envelope. Unfortunately, however, ground based facilities

are only able to create continuous flow conditions up to a flightMach number of:about
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8. Beyond Mach 8, the only options available to the experimentalist are pulse facitities

that create flight conditions for only a short period of time, providing a data collection

window of only a few milliseconds. Numerical methods provide an alternative to the Mach

8 barrier, but only if they are properly applied to the problem. To examine the challenge

that this poses for those who are applying computational methods, we will proceed along

the following path. We will first review the equations that govern the supersonic reacting

flow problem and the modeling that these equations require. We will next explore a number

of promising numerical methods, both old and new, for accurately solving these governing

equations. Several solutions for reacting flow problems using some of these methods will

then be presented to assess the capabilities of the techniques and the computers which

provided their results. We will then be in a position to evaluate where we are with these

methods and where we need to go. That will be the subject of the conclusion to this

chapter, or at least this author's perspective of it!

Theory

Governing Equations

The Navier-Stokes, energy, and species continuity equations governing multiple species

undergoing chemical reaction have been derived by Williams [28]. The terms used in

these and subsequent equations axe defined in the appendix at the end of this chapter.

The governing equations are given by

Continuity

Momentum

i)p
o-i+ v . (pC)= o (i)

8
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oCp¢)_+ v .(p,_¢)= v •_+p_ i,;, (2)



Energy

OCpE) .o
0t -+ V. (pCE)= V. (_.¢)- V.¢+p_f,g,(¢ +_)

i=l

Species Continuity

o(pf,)_+ v. (per,)=_, _ v. (pf,_)
Ot

where

(3)

(4)

and

. cgul i)u I . _.. x cguk
- _,./=-_,./p+ _(y_ + T_,) + -,,..-_;_ (5)

n# n$ tl$ X. T" _

= -kVT + p _ h, fi_ + R°T _ _-_(_)(_ - g.)
i= l i= l i=l "trli J'_"i./

Radiation heat transfer is not included in equation (6). Also,

(6)

ns _ U2 _{_ V2
E = _ h,f, - V + (7)

i=1 p 2

hi = h_. + %,dT i = 1, 2, ..., ns (S)

P = pR°T _ -_i (9)
i=l

The diffusion velocities are found by solving

VX,-_ (V/ Vi)+(f, x,)VP p "'- - ---t--_flf./(_-_)--I-
./=1 "./ P P j=l

"" X_X./.Dry Dry) VT
_(' f./ Z T (10)

.i=1

Note that if there are ns chemical species, then i = 1,2,...,(ns-1) and (ns-1) equations must

be solved for the species ft. The final species mass fraction f,° can then be found by

conservation of mass since "'Ei=l fi = 1.
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Thermodynamics Model

To calculate the required thermodynamic quantities, the specific heat for each species

is first defined by a fourth-order polynomial in temperature

%--'_R= Ai + BiT + C_T _ + DIT s + E_T 4 (11)

The coefficients are found by a curve fit of the data tabulated in reference [29]. Knowing

the specific heat of each species, the enthalpy of each species is then found from equation

(8) and the total internal energy is computed from equation (7).

To determine the equilibrium constant (required in the next section) for each chemical

reaction being considered, the Gibbs energy of each species must first be found. For a

constant pressure process, -_ from equation (11) is first integrated over temperature to

define the entropy of the species, and then the resulting expression is integrated again

over temperature to obtain a fifth-order polynomial in temperature for the Gibbs energy

of each species.

g--_= A_(T - T In T) + 2 12R + TS + + TS + F_ - G_T (12)

The coefficients Fi and Gi are again defined in reference [29]. The Gibbs energy of

reaction is then calculated as the difference between the Gibbs energy of product and

n$ n$
It #

AeRi =  i,9, - j = 1,2, ...,, : (13)
i=l i=l

reactant species.

The equilibrium constant for each reaction can then be found from

• 1 ,anex ,-AGRi_
K_q_ = (-_) p(,, R°T )

[30]

(14)

where An is the change in the number of moles when going from reactants to products.
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Chemistry Models

The rate of reaction of chemical reactions is often defined by using the Arrhenius Law.

A modified form of of the Arrhenius law is usually employed when modeling supersonic

combustion. It is given by

--F,.

KIi = AjT Ni exp(_v-_) (15)

The values of the preexponential constant A, power constant N, and the activation energy

E have been determined for a number of reaction schemes. Unfortunately, there is a great

deal of uncertainty for many chemical reactions. One of the best understood mechanisms,

however, is the hydrogen-air reaction system. This is not the reason that hydrogen fuel

was chosen for several scramjet concepts, but it has proven convenient for its combustor

analysists! Values for A, N, and E for a typical hydrogen-air mechanism are given in Table

1. Knowing the forward rate, the reverse rate is then given by

Kbi_ - K,+
Keq+

(16)

Once the forward and reverse reaction rates have been determined, the production rates

of the species are found from the law of mass action. For the general chemical reaction

n8 I n$ tl

fly, C, K-_s_" E fly, C, j = 1,2,...,nr (17)
i=l i=l

the law of mass action states that the rate of change of concentration of species i by reaction

j is given by [28]

n$ f n# II

(0,)i= IIc?'- II c?']
i=l '=1

i = 1, 2, ..., n8 (18)

The net rate of change in concentration of species i by reaction j is then found by summing

the contributions from each reaction

nr

¢, = (19)
i=1
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Finally, the production of species i can be found by multiplying its rate of change of

concentration by its molecular weight.

- ¢,M, (20)

The source terms in equation (4) are now determined as a function of the dependent

variables.

Molecular Diffusion Models

The coefficients governing the molecular diffusion of momentum, energy, and mass are

determined from models based on kinetic theory. The set of models that is often used is

now described. Individual species viscosities are computed form Sutherland's law

= (T_,sTo+S
"Yo" (21)

where/_o and To are reference values and S is Sutherland's constant. These constants are

tabulated for many species in references [31,32]. Once the viscosity of each species has

been determined, the mixture viscosity is found from Wilke's law [33]

where

f_o.5 f M_O.2512

¢,i = [ "'1 M_0.5+
Mi'

(23)

Species thermal conductivities are also computed from Sutherlands's law

k T .LsTo + S'

k-_o=('_o } T+S' (24)

with different values of the reference values ko and T: and the Sutherland's constant S °.

These values are also tabulated for a number of species in references [31,32]. The mixture
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thermal conductivity is computed using conductivity values for the individual species and

Wassilewa's formula [34]

"' k, (25)k,,.=_l+ i .,
_=1 _ Ej=ld#i Xjeq

where eq = 1.065 eq and eq is taken from equation (18).

For dilute gases, Chapman and Cowling used kinetic theory to derive the following

expression for the binary diffusion coefficient Dq between species i and j [31].

0.001858T'
D,j = pa,_n _ (26)

Here, the diffusion collision integral flD is approximated by

aD = i "-°.''5 + (_- + 0.5) -2 (2_)

T Values of the effective temperature T_ and the effective collision diameterwhere i' = r-/_-i.

a are taken to be averages of the separate molecular properties of each species, giving

and

aq = 0.5(a_ + ai) (28)

T_,, = (T,,T_;) °'5 (29)

For most molecules, the thermal diffusion coefficient is generally small when compared

with the binary diffusion coefficient, and therefore, the thermal diffusion coefficient can

be neglected. This is a fortunate fact, since values of the thermal diffusion coefficient

are generally not known for most species. For low molecular weight molecules such as

hydrogen, though, the thermal diffusion coefficient can be important. A set of relationships

for the thermal diffusion coefficient of species having a molecular weight less than 5 has

been developed by Kee et al. [35]. The reader is referred to reference [35] for further

information and some numerical details for computing thermal diffusion coefficients of light

molecules.
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Once the binary and thermal diffusion coefficients for all species combinations are

known, the diffusion velocities of each species can be computed from equation (10). The

diffusion velocity is the velocity induced upon each species by all diffusion processes that are

present in the flow. The solution of equation (10) requires solving a simultaneous equation

system, with the number of equations equivalent to the number of species present for each

component of the diffusion velocity. It should be noted that for i species, however, the

system of i equations defined by (10) is not linearly independent. One of the equations must

be replaced by the constraint _i_1 Pfi_ = 0 to make the system linearly independent. The

resulting simultaneous system of equations must then be solved for the diffusion velocities.

The process of solving for the diffusion velocities can be computationally quite expen-

sive. A coupled system of equations must be solved for each of the three components of

the diffusion velocity at each computational grid point. This process can require as much

time as solving the Navier-Stokes equations for the three components of the convection

velocities. Alternately, for hydrogen-air chemistry where large amounts of nitrogen are

present, it is sometimes assumed that each species is present as a "trace" in a mixture

with N2 [26]. Then each species is assumed to diffuse only into N2 with that process

defined by its binary diffusion coefficient with N2. Finally, for engineering calculations, it

is often further assumed that the diffusivities of each chemical species present in the flow

are the same. Then the diffusion of each species into the remaining species varies only with

its respective concentration gradient. The diffusion velocities then decouple, and equation

(10) reduces to

_d- DO f,
f, (30)

where _,s is the diffusion velocity vector of the i th species in the j th coordinate direction

(j = [x,y,z]) and D is the binary diffusion coefficient. If the binary diffusion with N2 is not

used, the value of D is determined by chosing an appropriate value of the Schmidt number

Sc since D = _e_psc.The mixture viscosity/_ is determined as before from Wilke's law. When

the binary diffusion assumption is invoked, it is often further assumed that the mixture
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thermal conductivity can be defined by k = _ after an appropriate value of the Prandtl

number Pr has been chosen.

Turbulent Diffusion Models

While the techniques for defining the molecular diffusion of momentum, heat, and mass

are reasonably well established in a supersonic reacting flow, the same statement cannot

be made for our ability to describe the turbulent diffusion of these quantities. Work to

develop methods for modeling turbulent supersonic combustion is now in its early stages.

Conventional approaches have included the use of algebraic eddy viscosity models or dif-

ferential transport models. Several eddy viscosity models have been used, in particular the

Cebeci-Smith model [36] and the Baldwin-Lomax model [37]. The differential transport

models include the k/c turbulent kinetic energy model and its variants [38], a modified

k/e model that included a supersonic flow compressibility correction [39,41], and a multi-

pie dissipation hngth scah (k/multiph e) model with a compressibility correction [39,40]

that addressed the existence of multiple dissipation length scales that exist in the energy

cascade of a turbulent flow. In addition to these differential transport models, the alge-

braic Reynolds stress models of Rodi [42] and Sindir [43] have also been considered for

use in modeling turbulent supersonic reacting flows. A review of all of these models has

been given by Sindir [43]. In that review, he also critically compared the models against

several nonreacting flow experiments prior to using the models for studying flows with

reaction. He concluded that forms of the algebraic Reynolds stress model that he consid-

ered produced the best agreement with nonreacting data. He also found that the multiple

dissipation length scale model did not offer any advantage over the basic k/e model.

All of the turbulence models described above have a major disadvantage when applied

to reacting flow fields. They fail to account for the important coupling between the fluid

mechanics and the chemistry. Turbulent fluctuations in the fluid mechanic variables have

a direct effect upon the species production rates. The coupling between these two fields
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occurs through the Arrhenius rate expression, equation (15), and the law of mass action,

equation (18). The Reynolds averaging process applied to the governing equations elimi-

nates the direct effect of temperature and species fluctuations on species production rates.

For example, a positive temperature fluctuation would cause a decrease in the size of the

exponential argument of the Arrhenius rate expression, with a corresponding increase in

the forward kinetic rate of a particular reaction. This would in turn produce an increase in

the time rate of change of the products of that reaction. More importantly, if the reaction

were at a critical stage, where perhaps a small increase in temperature would cause a reac-

tion to enter an ignition stage, the entire species distribution of the flow field downstream

could be changed.

Two promising ways for accounting for the effects of fluid and species fluctuations on

chemical reaction would be through probability density functions or direct numerical sim-

ulation. The application of the probability density function approach to a reacting flow

has been covered by Stephen Pope in a companion chapter in this book and so that subject

will not be further addressed in this chapter. Direct numerical simulation offers another

attractive approach for modeling a turbulent reacting flow. The method has been used

for a several years to accurately model lower speed reacting flows [44,45,46]. With this

approach, the Navier-Stokes and species continuity equations are resolved down to the

smallest scale features of the flow field. The size of those scales goes inversely with the

Reynolds number of the flow field. Clearly then, for the high Reynolds numbers that occur

in typical supersonic reacting flows, the smallest scales can become quite small, nessitating

a very fine computational grid to resolve the scales. Also, when high speed flow undergoes

chemical reaction, additional scales are introduced by the combustion process. Herein lies

the principal difficulty of applying direct simulation to a high speed flow. The difficulty is

not so much one of numerical algorithms as it is of computer power. Highly accurate numer-

ical algorithms are required, but appropriate high-order finite-difference/volume methods

or spectral methods have been developed that satisfy that requirement. The large number
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of computational grid points required to resolve the smallest scalesin the flow requires

large computer storage, and therefore, meaningful calculations can be carried out only

on large memory machines. Currently, direct numerical simulations have been made for

nonreactlng flowswith Reynolds numbers up to about 10000on a Cray 2 computer [47].

Work is proceeding to directly simulate a chemically reacting flow of a similar Reynolds

number, and thoseactivities will bediscussedwith other applications later in this chapter.

As an alternative to direct numerical simulation with its intensive memory require-

ments, it is possibleto model rather than compute the smallest scales. In this approach,

termed large eddy simulation, the larger scalesabovea chosenwavelength are still com-

puted. The smaller scalesbelow the cutoff wavelength are modeled, however, using a

subgrid scalemodel. Large eddy simulation is an attractive alternative because only the

larger scale effects are computed, lessening the computer memory requirements for higher

Reynolds number flows. Subgrid scale models must be constructed, though, that give an

accurate rendering of the physics of small scale phenomena. This is a difficult task. Work

is underway to develop subgrid scale models for nonreacting flow, for example the early

work of Schumann [48] and later work described by Speziale et al. [49]. Large eddy

simulation is an attractive technique for modeling high speed reacting flows. Little has

been done so far with this technique, but it warrants serious attention in the future.

Discretization of the Governing Equations

Once the governing equations and required modeling are in hand, the numerical method

of choice can be applied to discretize the governing equations in space and time. The

numericist has three basic options for discretizing the equations in time. He may express

the equations explicitly, implicitly, or in a partially implicit manner. The merits of the first

two approaches were discussed in the introduction. The latter approach is attractive when

the time scales for chemical reaction are quite small as compared to the prevailing fluid

dynamic time scales. In this case, the governing equations become stiff, and a significant

17



advantagecan be gained in convergence of the equations to steady state by casting only

the source term in the equations implicitly [50,51]. Before discretization, it is convenient

to express the governing equations (1) in vector form. In that form they become,

oJ o_ oP o_ _ (31)o----i-+-g_+-_-_y+ o--7=

where U is the vector of dependent variables, /_,/_, and G are flux vectors continuing

convective and diffusive terms, and /_ is the source term containing body forces and

the chemistry production terms. The temporally discrete form of equation (31), written

explicitly, is then given by

0,.+1 _. _ .o#" a_- a_-
= -"tt-_-= +-E#-y+ o--T- /-'/'" ] (32)

where n is the old time level and n+l is the new time level. Written implicitly, equation (31)

becomes

05""-' aP-+' o_'-+' z-/-+'] (33)d-÷' = U-- At[ _ + a--#-+ az

A partial implicit statement of equation (31) is obtained when only the source term is

written implicitly, i.e. H _'+I, and the remaining terms are written explicitly.

Once the temporal discretization of equation (31) has been chosen, the spatial deriva-

tives must also be discretized. There are many choices available. In the next section of this

chapter, we will examine a number of those choices, using earlier techniques as well as some

newer ones. We will then be in a position to review some applications of these methods to

practical supersonic combustion problems that we are able to numerically simulate today.

Numerical Algorithms

A number of numerical algorithms have been used over the past 20 years to solve the

equations that govern a supersonic reacting flow field. The earliest of those approaches

were reviewed briefly in the introduction to this chapter. We will now discuss, in somewhat
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more detail, several of those algorithms that are still in use today. New algorithms that

have appeared fairly recently will then be considered, and their merits and the advantages

that they offer over the older approaches will be discussed. Accurate methods used in

other fields and recently borrowed to model combustion problems will also be reviewed.

With the review behind us, we will then move on in the next section to the application of

these algorithms to several practical combustion problems. We will then be in a position

to assess where we are in our ability to model these practical combustion problems and

what is needed to further extend our capabilities.

Conventional Approaches

The algorithms developed by Spalding, Dash, MacCormack, and their colleagues today

continue to be popular tools for modeling supersonic reacting flows typical of those found

in scramjet combustors. Each of these algorithms was described in the introduction, and

references were given to provide more details. The Spalding three-dimensional parabolized

Navier-Stokes code, SHIP [12] as modified by Evans [14], is still being used to carry out

engineering design studies of scramjet configurations as well as basic high speed fuel-air

mixing studies. The two-dimensional parabolized Navier-Stokes code, SCORCH, of Dash

[15] has recently seen considerable use to perform analyses of the National Aero-Space

Plane (NASP) propulsion system. In addition, the SCORCH code has also been used to

carry out several fundamental studies of experiments being used to design that propulsion

system. The MacCormack algorithm was employed by Drummond in the TWODLE code

[19,22] to solve the two-dimensional Navier-Stokes equations describing a scramjet flow

field. We will examine some interesting computations from these conventional algorithms

in the applications section of this chapter.

A number of other extensions of the MacCormack algorithm were made following the

work that was just described. Drummond extended the TWODLE code [52] to include

detailed models for finite rate chemistry and kinetic theory based models for the molec-
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ular diffusion of momentum, heat, and species. He also added an option for treating the

chemical source term implicitly, as suggested by Bussing and Murman [50], to allow for a

more efficient treatment of stiff kinetic source terms. In that form, the new code (SPARK)

then solved in two-dimensions without simplification the complete governing equation set

given in equations (1) through (29). Options were also provided, however, to simplify the

diffusion modeling to use the approach indicated by equation (30). Following development,

the SPARK code was also applied to NASP configurations, but perhaps more importantly,

it was also applied to a number of basic high speed reacting flow problems to seek an im-

proved understanding of important physical processes that occur in these flows and that

ultimately effect the performance levels that can be achieved by the propulsion system.

As scram jet technology evolved, a critical need developed for a three-dimensional anal-

ysis tool for modeling high speed combustor flow fields. Uenishi and Rogers [53] extended

the three-dimensional nonreacting Navier-Stokes inlet code (NASCRIN) developed by Ku-

mar [54,55] to include multiple species, but initially they did not include chemical reaction.

The program again used the unsplit MacCormack method [16] to integrate the governing

equations (1) through (10). Thermodynamic properties were also defined using equa-

tion (11) and the procedure described in the discussion following that equation. Molecular

diffusion of momentum, energy, and species was modeled with Sutherland's and Wilke's

law, the Reynolds analogy, and Fick's law, respectively. Turbulent diffusion was modeled

with the Baldwin-Lomax turbulence model [37] along with chosen values of the turbulent

Prandtl and Schimdt numbers. A clever storage scheme was also employed with Mac-

Cormack's predictor-corrector scheme that saved predictor values locally only until the

corrected values could be computed [55]. The scheme allowed computations to be carried

out, with three chemical species, on computational grids with up to 500,000 points on a

Cyber-205 having 32 million words of storage. When the code was completed, a number of

studies were made to model supersonic fuel-air mixing in scramjet like flows [53]. Of par-

ticular interest were the calculations of the downstream mixing of a transverse hydrogen
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fuel jet injected acrossa supersonicair flow. Thesecalculations by Uenishi were the first

simulations of the three-dimensional near-field fuel injector problem in a scram jet engine.

At that time, a clear understanding of the flow field that existed near the fuel injectors

wag critical to achieving a successful engine design. Work to optimize fuel injector design

based on these and other simulations is continuing today.

Uenishi et al. then extended their program to include finite rate chemical reaction

[56]. Motivated by the need to model hydrogen-air combustion taking place in a scramjet,

they chose a two-step hydrogen-air reaction model developed by Rogers and Chinitz [57].

The model considered five species (//2, 02, OH, It20, and N2 [inert]) participating in the

following chemical reactions.

H2 + 02 _ 20H

112 + 20H _ 2//20

(34)

The approach defined by equations (15) through (20) was then used with the chemistry

model to determine values of the chemistry source terms. The source terms were sometimes

found to be numerically quite stiff, and so the numerical method was also modified to

include implicit source terms. Otherwise, the numerical method and the physical modeling

remained unchanged from the previous code. Uenishi again applied his extended program

to the transverse fuel jet problem, but in this case with chemical reaction. Encouraged by

those results, he then went on to model an actual combustor configuration. Some results

from those calculations will be included in the next section of this chapter.

Because of the need for a more basic modeling capability in three dimensions, Car-

penter then extended the SPARK combustion code to three dimensions [59]. The three-

dimensional code retained all of the basic modeling of the two-dimensional code, i.e. it

solved the system defined by equations (1) through (30). In addition, Carpenter added

a generalized equilibrium chemistry model and a generalized finite rate chemistry model

that allowed for consideration of any fuel-air system with any number of reaction paths
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[60]. Typically, either a seven species, eight reaction model or a nine species, eighteen reac-

tion model was used to represent hydrogen-air chemistry. The eighteen reaction model is

given in Table 1. Turbulence was modeled with either a Cebeci-Smith or Baldwin-Lomax

eddy viscosity model, or a two-equation k/e turbulent kinetic energy model. Calculations

were then carried out to validate the code by modeling several of the problems considered

by Uenishi. Following successful agreement with Uenishi's results and experimental data,

the code was also used to study a model scramjet combustor. Those results will also be

presented in the applications section.

Three-dimensional paxabollzed Navier-Stokes programs were also developed to model

supersonic combustor flow fields. These programs often provided a more efficient solution

procedure if the flow field contained no subsonic regions. The flow field in the neighbor-

hood of the fuel injectors in a scramjet combustor contains subsonic separated regions

necessitating a solution of the full (spatially elliptic) Navier-Stokes equations. Somewhat

downstream of this region, however, the flow takes on a principal supersonic flow direction,

allowing solution of the parabolized equations and the application of parabolized codes.

In response to this need, Chitsomboon developed a three-dimensional parabolized Navier-

Stokes (PNS) program [61] by extending a two dimensional PNS program that he had

developed earlier [62,63]. He solved the conventional parabolized Navier-Stokes equations

together with a set of species continuity equations given vectorally by

= n (35)+ + a--T

where E, F, G, and H have the same definitions as given in equation (31). The dependent

variable vector q - [p, pu, pv, pw, T,p_, ...] was chosen nonconventionally, with the energy

equation written in terms of temperature rather than total enthalpy or total internal

energy. The equations (35) were then discretized using the Vigneron method [64], and the

nonlinear vectors F, G, and H were linearized with respect to the dependent variable vector

q. In order to insure that the numerical scheme was then stable, the flux vector E was

linearized using the approach of Schiff and Steger [65]. Thermodynamics and chemistry
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were handled in a manner identical to the approach used in the Uenishi code [58]. Following

initial completion of the code, it was compared against the Uenishi program and fairly good

agreement was achieved. The code is undergoing further development today.

During this same period, Gielda developed a three-dimensional explicit PNS program

[66] using the MacCormack explicit algorithm [16]. The code was fully vectorlzed to run

efficiently on vector supercomputers such as the Cray 2 and the Cyber 205. Gielda found

that his explicit scheme was quite competitive with implicit algorithms for problems at

high Mach number or with surface discontinuities. He was able to resolve the problem of

decoding the axial flux vector (E in equation (35)), that had earlier limited the application

of explicit PNS codes, by also employing the Vigneron procedure of splitting the axial

pressure gradient. Following completion of this nonreacting program, Gielda extended

his code (then named the SSCPNS code) by adding the parabolized species continuity

equations to the governing equation system [67]. He also incorporated both an equilibrium

and a global one-step H_-air finite rate scheme into the program. The extended program

was then validated against several experimental cases, and generally excellent agreement

was obtained between data and computation. With this confidence in hand, the code

was applied to a three-dimensional generic inlet-combustor scramjet configuration that

included gaseous hydrogen fuel injection and reaction. Some of these interesting results

will be presented in the following section.

Kamath then employed the Gielda algorithm to develop a parabolized version of the

three-dimensional SPARK combustion code [59]. He generalized the coordinate trans-

formation to allow the streamwise coordinate to be orientated in the most supersonic

direction. He also utilized the generalized equilibrium and finite rate chemistry schemes

developed by Carpenter [60] such that any multistep reaction scheme could be considered

with the algorithm. The extended code was next validated with several test cases, one of

which was also utilized by Gielda, and it gave generally good agreement with data. Work

on the program is now continuing.
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Alternate Approaches

Several numerical algorithms have been developed to solve the equations governing

high speed reacting flow fields, but these algorithms have not been applied to the scramjet

combustor problem. Most of these methods have been developed to model supersonic

or hypersonic flow with interacting air chemistry moving externally about configurations.

The remaining algorithms have been developed to study basic phenomena associated with

high speed reacting flows, but have not yet been applied to scramjet problems. Each of

the approaches falls into the general class of monotone methods, that is methods that

employ flux-correcting or flux-limlting procedures to preserve high numerical resolution

without the numerical oscillations associated with higher accuracy. Included in this class

of algorithms are Flux Corrected Transport methods, TVD (total variation diminishing)

methods, and TVD like methods that exhibit TVD behavior. These algorithms would offer

the modeler advantages over conventional methods when studying scramjet problems, and

they should be seriously considered for future work. It is for that reason that we discuss

them here.

The first monotone method applied to chemically reacting flows was the Flux Corrected

Transport (FCT) algorithm developed by Boris [68,69,70]. In this method, a small amount

of artificial diffusion is added to the governing equations in smooth regions of the flow to

stabilize the solution. In regions where high gradients exist, larger amounts of diffusion are

added to maintain monotonicity. The diffusion is added in such a manner, however, that

the overall dissipation is held below that of the conventional algorithms. One proceeds as

follows. Starting with equation (32), the flux terms are discretized in space, and then a

diffusive term is added to insure positivity as the equations are integrated in time. That

integration is then performed to determine a first value of the dependent variable vector at

the next time step. An "anti-diffusive" correction using the first values of the dependent

variables is then applied to reduce the numerical diffusion added in the first step. Care

must be taken when applying this step, however, because the anti-diffusive correction can
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degrade the monotonicity of the method. Therefore, the anti-diffusive terms are limited

by a "flux correction" procedure such that no new maxima or minima are introduced into

the solution. The initial fluxes in equation (32) are then replaced by the corrected fluxes

and the equation is again advanced over the same time step to arrive at the final value of

the dependent variables at the new time. A more detailed but very readable description

of the FCT method is given in reference [70].

Following development of the FCT method, a more general approach was suggested by

Zalesak [71]. His approach allowed the method to be readily incorporated into existing

algorithms that did not provide monotone behavior. In addition, the method could be

more easily generalized to two and three spatial dimensions. Zalesak viewed FCT as a

hybridization of a low order and a high order method. The anti-dlffusive flux was then

found as the difference between the fluxes determined by the high order and low order

methods. Once found, the anti-diffusive flux was then limited as before by flux correction,

and the solution was advanced using the corrected fluxes. A more detailed discussion of

Zalesak's approach is again given in reference [70].

Most of the new work to model high speed reacting flows has taken place over the last

five years. It was motivated primarily by the need to model hypersonic flows about vehicles,

including hypersonic cruise aircraft such as the NASP, and reentry vehicles. Therefore, the

methods were developed to model high speed strongly shocked flows undergoing air chem-

istry. To compute flows of this type, MacCormack and Candler developed an implicit flux

split scheme, as an extension to MacCormack's explicit predlctor-corrector finite difference

method [16], to solve the Navier-Stokes equations. MacCormack initially developed the

implicit algorithm to consider only nonreacting flows [72]. A finite volume approach was

used to discretize the flux terms. In addition, Steger-Warming [73] flux vector splitting

was introduced to more properly account for the propagation of information through the

flow field. Finally, to relax the constraint on the time step imposed by the Courant con-

dition in his explicit method, the flux terms were written implicitly and then linearized.
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This procedure resulted in a coupled set of algebraic equations to be solved at each time

step once the spatial opperators had been applied to the flux terms. The equation system

was then solved iteratively using either a line Gauss-Seidel procedure or Newton iteration.

Following development of the basic algorithm, Candler and MacCormack extended the

method to consider high speed air flows that were ionized and in thermodynamic and

chemical nonequilibrium [74,75]. To model such flows, equations describing species con-

tinuity, vibrational energy of each diatomic molecule, and electron energy were appended

to the Navier-Stokes equations. The fully coupled system of equations was again solved

using Gauss-Seidel line relaxation along with an implicit, flux split treatment of the flux

terms. Air chemistry was modeled with a seven species, six reaction model that included

N2, 02, NO, NO +, N, 0, and e-. For these species, four vibrational temperatures and

an electron temperature were computed. The chemical source terms associated with the

seven species and the thermal source terms were also computed implicitly due to the small

kinetic time scales, relative to fluid scales, that were introduced by the chemistry. When

the authors completed the extension of their algorithm to include chemical reaction, they

applied it to several high speed external flow problems in both two- and three-dimensions

that are described in references [74] and [75]. Even though these examples considered

only external flows with air chemistry, it appeared that the algorithm could readily be

modified to consider internal flows with combustion chemistry, and, therefore, serve as a

means for modeling scramjet combnstor flow fields.

Flux splitting methods were also employed by Grossman, Waiters, and Cinnella to

model high speed chemically reacting flow problems. Grossman and Waiters initially de-

veloped their algorithm to solve the Euler equations for nonreactlng flows, but included real

gas effects [76]. Three forms of flux splitting were considered, including Steger-Warming

flux vector splitting [73], van Leer flux vector splitting [77], and Roe flux difference split-

ting [78]. Each of these splitting methods was originally derived to be applied to ideal

gas flows. They were rederived in reference [76] to allow their application in problems
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with realgas effects.The new derivationsare based on the concept of an equivalent _/to

replace the ratioof specificheats for an idealgas. Each approach isderived with sufficient

detailin the paper to allow the reader to incorporate the modifications into existing flux

splitcodes written to originallymodel idealgas flows. Once the flux splitequations had

been developed, they were solved using a two-step predictor-correctormethod that was

second-order accurate inspace and time. Spatialdifferenceswere formed using the MUSCL

differencingprocedure and flux limiting that was described in reference [79]. Following

the successfulapplication of the algorithm to a one-dimensional shock tube problem, the

realgas splittingwas incorporated into a two-dimensional implicitfinitevolume code that

originallyutilizedvan Leer splittingand Gauss-Seidel linerelaxationto solve the equations

governing idealgas flows [80].The modified code was then applied to a two-dimensional

inletflow fieldexhibiting equilibrium real gas behavior.

Grossman and Cinnella then extended the algorithm to includevibrationaland chemical

nonequilibrium [81,82].They again began with the one-dimensional Euler equations, but

they appended species continuity equations to account for each chemical species present

in the reacting flow and vibrational energy conservation equations to account for those

species in vibrational nonequilibrium. The authors then redeveloped the relationships

described previously that were required to implement Steger-Warming, van Leer, and Roe

flux splitting. Once these splittingapproaches had been implemented, a finitevolume

scheme was used along with eitheran explicitRunge-Kutta time integrationor an implicit

Euler time integrationto solve the governing equations. The shock tube problem was again

revisited,but nonequilibrium effectswere modeled with a fivespecies,fivereaction model

that included IV2,O2, NO, N, and O. Finally,a supersonic nozzle flow undergoing H2-air

chemistry was modeled using a fivespecies,two reaction model involvingH2, 02, OH, H_O,

and N2. The calculationsexhibited excellentagreement with those provided by another

program utilizinga conventional method [81]. Extensions of the algorithm to two- and

three-dimensions are currently underway, and once in place,thisapproach should alsooffer
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an attractive option for modeling scramjet combustor flow fields.

A class of more exact flux split algorithms for nonequilibrium chemistry was recently

developed by Liu and Vinokur [83]. Steger-Warming, van Leer, and Roe flux splitting

were again generalized for the nonequilibrium case. No simplifying assumptions were made,

however. The most general thermal and chemical nonequilibrium flow of an arbitrary gas

was considered. The results have not yet been incorporated into a computer program, but

one should become available in the future.

Additional interesting work using flux splitting has also recently been completed by

Liou, van Leer, and Shuen [84]. This work has only recently been submitted for publication

and so details will not be given here. The authors again employed van Leer flux vector

splitting or Roe flux difference splitting and derived real gas forms of these approaches.

The derivations were begun by assuming a general equation of state for a real gas in

equilibrium. Approaches similar to those discussed previously were then used to modify

the splittings, but the number of assumptions and particularizations employed were kept

to a minimum. The modified splittings were then incorporated into an available TVD

algorithm [85] and used to model several problems described by the one-dimensional

Euler equations. Excellent agreement with the exact solution for a classical shock tube

problem was obtained [84]. Work on the method is now continuing.

A considerable amount of work has also been carried out over the last several years

to develop new TVD schemes for chemically reacting real gas flows. Beginning in 1985,

Yee developed a symmetric TVD scheme that could be employed in the context of either

explicit or implicit numerical integration procedures [86]. The approach was later gen-

eralized to consider chemically reacting flows [87]. Yee noted that her approach could

readily be added to existing algorithms that did not exhibit TVD behavior, e.g. the 1969

MacCormack method, resulting in a more robust method with better shock capturing

qualities. New explicit, semi-lmplicit, and implicit algorithms employing the symmetric

TVD method were then developed and discussed [87]. An explicit multistep TVD scheme
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was constructed using the 1969 MacCormack method [16] for the first two (predictor-

corrector) steps followed by the addition of a conservative dissipation term as a third step,

such that the overall scheme was TVD. The dissipative term was made up of products of

eigenvectors of Jacobians of the governing equation system and their associated eigenval-

ues, an entropy correction, and a limiter function. Details regarding the construction of

the dissipative term and the determination of its magnitude were given in reference [88].

For the situation described earlier, where stiff kinetics resulted in small chemistry time

scales, the explicit procedure was altered to include an implicit source term while retain-

ing explicit flux derivatives and the same dissipative terms. Finally, a fully implicit TVD

method was developed that included both implicit source and flux terms for situations

where both chemistry and fluid scales were small. Calculations using both the explicit and

semi-implicit schemes were also given in reference [87]. The explicit scheme was used to

model a shock interacting with an obstacle in a two-dimensional flow. The shock was cap-

tured quite crisply, and more subtle flow discontinuities, including slipstreams that were

present, were also captured. The semi-implicit scheme was generalized to three-dimensions

and incorporated into the Uenishi semi-implicit code [56] that was described earlier in this

chapter [89]. That program also contained the two step Rogers-Chinitz H2-air chemistry

model discussed before. The three-dimenslonal TVD code was then used to model the

reaction of a stoichiometric H_-air mixture flowing supersonically in a channel [89]. The

flow was ignited by a shock produced by a wedge along the lower wall of the channel. The

resulting fluid and chemistry profiles predicted by the program in the neighborhood of

the shock did not exhibit the overshoots and undershoots typical of those observed with

classical shock capturing methods.

When stiff terms are present in the governing equation system and the fully implicit

TVD procedure of [87] is used to solve two- or three-dimensional problems, the proce-

dure employed to temporally integrate the governing equations must be carefully chosen.

When ADI procedures are used, the factorization error that results when the implicit
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operator is spatially factored often cannot be neglected [87]. Iterative procedures such

as line Gauss-Seidel or Newton iteration, applied in the approaches discussed earlier, are

attractive options. An alternate procedure developed by Gnoffo employed point implicit

relaxation [90,91]. That procedure was used by Gnoffo in his three-dimensional finite

volume code that employed a symmetric TVD upwind discretization of the governing

Navier-Stokes, species continuity, vibrational, and electron energy equations. Pseudo-time

relaxation was used to drive the solution to a steady state. A point-implicit procedure

implies that during a relaxation step, the equations at each cell in the computational

plane are discretized by using the latest available data from neighbor cells and by implic-

itly updating only those terms which are functions of variables at the cell center. This

procedure has proven to be very efficient on vector computers. Two options for coupling

the governing fluid and chemistry equations, strong and weak implicit coupling, were also

utilized. With strong implicit coupling, the complete equation set was solved as a unit,

an approach typical of those described earlier. Weak implicit coupling involved splitting

the fluid and chemistry equations into two groups, and applying the point-implicit method

to each group separately during the relaxation process. The former approach was more

physically exact, better accounting for complex wave interactions and fluid-kinetic cou-

pling. The latter approach allowed for the relaxation strategy and time stepping to be

tailored to the needs of the equation set [91]. Air chemistry was modeled in the program

using an eleven species scheme that included N, O, N2, 02, NO, N +, 0 +, N +, 0 +, NO +,

and e-. Further details on the chemistry model and other physical modeling are given

in reference [92]. Gnoffo's program was validated against several experiments and has

performed well. The code was then used to successfully model the high speed external

flow about several configurations. Because of the code structure, it should be relatively

straightforward to add a H2-air combustion model. Therefore, Gnoffo's program, utilizing

a symmetric TVD upwind discretization with point-relaxation appears to be an attractive

candidate for modeling scramjet combustor flow fields as well.
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Another attractive option to an ADI integrationscheme for solving the spatiallydis-

cretized governing equations is an LU scheme that approximately splitsthe implicit op-

erator into an upper and a lower operator which isindependent of the dimensionality of

the problem. Shuen and Yoon developed a scheme for solving the two-dimensional Navier-

Stokes and speciescontinuity equations governing chemically reacting flows that employed

an implicitfinitevolume time marching LU method [93].Details of the derivation of the

LU scheme are given in the reference. The approach was quite attractive because, even

though the method was fullyimplicit,itrequired only scalardiagonal inversionfor solution

of the flow equations and diagonal block inversionof the species equations. The authors

stated that as a result,the scheme exhibited a fastconvergence rate while requiring only

about the same amount of work as that of an explicitmethod [93].This advantage can be

particularlyimportant when problems with a large number of chemical species are being

solved. Following development of the LU code RPLUS, an eight species,fourteen reac-

tion chemistry model and the Baldwin-Loma_x algebraic turbulence model was added to

the program. The code was then compared with experimental data and calculationsfrom

other combustion programs, and itshowed very good agreement with those data and com-

putations [93].Encouraged by their success,Yu and Shuen then extended the LU code

to three-dimensions (RPLUS3D) [94]. A finiterate chemistry model and a turbulence

model are currently being added to the program. Once completed, the three-dimensional

LU code will provide another valuable tool for modeling scramjet combustor flow fields.

The alternative methods described above for modeling reacting flows (with the ex-

ception of Flux Corrected Transport) have generally exhibited second-order numerical

accuracy in both space and time. Two high-order accurate methods have recently been

developed and applied to high speed combustion problems. These methods offerimproved

accuracy as compared to lower-order methods on a given computational grid and reduced

phase error. One method was developed by Carpenter using a fourth-order compact fi-

nite differencescheme [59]. The scheme was initiallydeveloped by Abarbanel to accu-
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rately solve the Euler equations in two- and three-dimensions [95]. Carpenter extended

these ideas to the Navier-Stokes equations and used them to alter the 1969 MacCormack

method, producing a fourth-order "compact MacCormack" scheme. The modifications

did not change the basic structure of the MacCormack scheme, allowing it to be easily

incorporated into existing codes using the 1969 algorithm. The modification significantly

improved the accuracy of the algorithm, while markedly reducing the phase error. As

a result, the improved scheme was able to crisply capture strong shocks with very little

of the pre- and post-shock oscillations present in the old scheme. The algorithm in fact

exhibited a TVD like behavior when capturing waves. Because of its attractiveness, the

scheme was added to the two- and three-dimensional SPARK codes and applied to several

supersonic chemically reacting flow problems [59]. Very good agreement with available

experimental data was achieved, and the 3-D program was then successfully applied to a

three-dimensional scramjet combustor. Results from that study will be described later in

this chapter.

High-order accurate spectral methods have also been applied to supersonic reacting

flows. Drummond extended a Chebyshev spectral method developed to study transitioning

flows [96,97] to include finite rate chemical reactions [98]. Spectral methods are based

on the representation of the solution of a problem by a finite series of global functions,

in this case Chebyshev polynomials. To apply this method to the Navier-Stokes and

species continuity equations, the flux terms in these equations were restated in terms of

Chebyshev series, and then the required spatial derivatives were taken. The resulting

ordinary differential equations were then integrated with respect to time using a Runge-

Kutta time stepping scheme. Drummond initially developed this technique for the one-

dimensional Euler equations and species continuity equations [98]. The method was then

extended to two-dimensions in reference [99] where a hybrid spectral-finite difference

algorithm was used to model two-dimensional supersonic reacting flows.

Now that both conventional and new alternate methods for modeling supersonic react-
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ing flows have been examined, we will now explore the results from some of the problems

where these methods have been applied. This should make more clear how far we have

been able to carry these techniques to solve some of the difficult problems that we face in

the course of designing and developing a scramjet engine.

Applications

Many of the computer programs described earlier in this chapter have been applied to

study supersonic reacting flow fields. In this section, we will review some of those appli-

cations. Space does not allow a review of each effort. Rather, a representative sample of

the research will be provided to show the progress that has been made. We will begin

with some basic two-dimenslonal studies performed in the late 1970's. We will then ex-

amine some of the first attempts to model simple scramjet flow fields and see how those

studies affected later design activities. The early scramjet studies raised several basic is-

sues regarding mechanisms controlling the mixing and chemical reaction of fuels and air

at supersonic speeds. These issues spawned several research efforts undertaken to bet-

ter understand high-speed combustion physics and to use that understanding to improve

engine performance. Therefore, we will next examine the results of some of those ef-

forts. With advancing computer resources in the mid 1980's, scramjet calculations moved

ahead to consider three-dimensional reacting flows. Those calculations began with simple

three-dlmenslonal configurations that served as model problems for the more complicated

configurations to be later considered. We will complete our review of the applications

by tracking the progress of those three-dimensional calculations, ending with a complex

combustor configuration not greatly different from those being considered for advanced

propulsion systems to be employed early in the next century.

Early supersonic reacting flow simulations centered on configurations defined by ex-

periments that were being performed at that time. Evans, Schexnayder, and Beach used

the CHARNAL program as modified by Evans [14] to model a number of experiments
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available in the late 1970's and compared their simulations with the available data [100].

One case, the Burrows and Kurkov experiment [101], is shown in figure 1. Hydrogen

was injected at Mach 1.0 through a slot in the lower wall of the configuration. Hot air

passed by the slot at Mach 2.44. The air temperature was sufficient to ignite the hydrogen

gas. Figure 2 shows a comparison between the computed results and the data includ-

ing pitot pressure and reactant and product mass flow 35.6 cm downstream of the slot.

The calculations were made using either a complete (infinitely fast) or a finite rate (eddy

breakup) model [100]. The agreement between the data and calculation is quite good for

both pitot pressure and chemical species distributions. Encouraged by their success, the

authors went on to examine several other experimental cases, each of which is discussed

in reference [100].

While basic combustion studies continued, some of the effort was shifted to begin

considering scramjet combustor flow fields. The first efforts considered only a part of the

combustor, and they were still limited to two-dimensions. One example is given in figure 3

which shows a sketch of a slot injection experiment undertaken to simulate the transverse

injection of fuel into a scramjet combustor. In this case, helium was injected at Mach 1.0

into a Mach 2.9 air cross-stream in a duct. Helium was used to represent gaseous hydrogen

fuel because the test facility in which the experiment was performed could not support

combustion. Weidner and Drummond modeled the flow field in the channel using the

TWODLE code [22] and obtained the results shown in figure 3 [23]. Comparisons of the

calculations with measured static pressures were fair and the comparison with helium mass

fraction was quite good. (Interest in the slot injector case continued through the 1980's.

Shuen and Yoon revisited this case in 1988 using their new LU scheme in the RPLUS code

and showed improved agreement with the static pressure data [93]. They also went on

to examine a reacting hydrogen-air transverse jet case and reported those results in that

reference.) Following the nonreacting study, Weidner and Drummond went on to consider

several two-dimensional transverse injector configurations including the "staged" injector
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configuration shown in figure 4 [23]. Staged injection of hydrogen fuel provided a means

for producing a large region of separated flow between the injectors, thereby providing

improved flameholding in the combustor. The final configuration resulting from the study

is shown in figure 5. A large region of separation was produced between the injectors and

significant reaction of hydrogen fuel and air took place in that region.

Following completion of the fuel injector studies, scramjet calculations were extended

in 1981 to consider a model problem for a complete engine module including both inlet

and combustor. The calculations were still constrained to two-dimensions due to available

computer resources at that time. Drummond and Weidner used the TWODLE program

to simulate the flow through the module shown in figure 6 [22]. The left portion of

the module provided inlet compression and the combustor made up the right portion of

the module. A single fuel injection strut was positioned between the two module walls.

Gaseous hydrogen fuel (indicated by the arrows) was injected at Mach 1.1 from the strut

walls as well as from the engine side walls. That fuel reacted with air that entered the inlet

at Mach 5.0. The resulting velocity, static pressure and temperature contours, and water

contours are also shown in figure 6. The air entering the inlet was turned by shocks from

the inlet leading edges. Shocks are indicated by a coalescence of pressure contour lines

in the figure. These shocks struck near the strut leading edge and coalesced with shocks

produced by the strut. The resulting shocks then had sufficient strength to separate the

boundary layer when they reached the engine sidewalls, as indicated by a reversal of the

velocity vectors.

The transverse hydrogen fuel injectors located downstream of the minimum can also be

seen in the figures along with their associated flow separations leading and trailing the in-

jectors. The flow becomes subsonic near the fuel injectors due to air flow blockage and heat

release from chemical reaction. Some reaction takes place in the separated regions ahead

of the injectors. Significant reaction occurs downstream of the injectors. The temperature

rise and water production associated with the reaction can also be seen in the figures. The

35



results of the simulation showthat the injectors are not of sufficient strength to penetrate

acrossthe flow at the point of injection. The mixing layers do not meet until around 11

cm downstream of the injectors. In an attempt to improve the level of fuel-air mixing,

the injectors were moved a small distance upstream of their previous location. It was

hoped that the change would improve the amount of injector interaction and enhance mix-

ing. The resulting velocity field is shown in figure 7. An inlet-combustor interaction and

choking then occured, resulting in large regions of separated flow in the inlet, and clearly,

an unacceptable design. To examine the source of choking, the calculation was repeated

without chemical reaction. The calculation then proceeded normally without any signifi-

cant separation. Therefore, it was concluded that thermal choking produced by chemical

reaction and subsequent heat release near the injectors produced the inlet-combustor in-

teration. While performed for a two-dimensional engine model problem, these scramjet

simulations did demonstrate in 1981 the potential of numerical modeling for studying and

better understanding engine flow fields. As computer resources improved, calculations

of this type in three-dimensions were also attempted. The calculations also raised some

basic questions regarding the very complex physics of mixing and reaction at supersonic

speeds in a scramjet combustor. These questions resulted in several research efforts aimed

at achieving an improved understanding of these phenomena. We will now move on to

describe some of those basic studies and then complete this section by examining some

three-dimensional simulations of scramjet combustor flow fields.

The supersonic velocities that must exist in a scram jet combustor produce a perplexing,

but interesting problem for the engine designer. At such high speeds, the mixing of the

hydrogen fuel injected into the combustor and air from the inlet is reduced relative to the

mixing achieved in lower speed operation. As a consequence of the reduced mixing, the

degree of reaction that can occur and the overall combustor efficiency is also suppressed.

The phenomena of reduced mixing in nonreacting mixing layer flows at supersonic speeds

had been observed experimentally by Brown and Roshko as early as 1974 [102], and the
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effect was further studied by Papamoschou and Roshko [103] in 1986. Numerical stud-

ies of the nonreacting problem by Oh in 1974 [104] and Hussaini, Collier, and Bushnell

in 1986 [105] were performed to better understand this phenomena. Oh suggested that

the reduced mixing was related to weak shocks that formed when the local Mach number

exceeded one about vortical structures that developed in an evolving mixing layer. He

argued that other vortices would then interact with these shocks and produce fluctuations

in the flow field that could ultimately reduce the turbulent kinetic energy and the degree

of mixing. Hussaini et al. examined the detailed interaction of a vortex convecting subson-

ically relative to a locally supersonic flow. They showed that a transient shock structure

which they termed an "eddy shocklet" formed as the eddy accelerated, and the shocklet

tended to deform the eddy. Finally, do to this interation, a vortex of opposite circulation

formed, and the length scale of the original vortex was reduced. Based on those results,

the authors then concluded that eddy shocklets reduced turbulent mixing through both

the production of counter fluctuating vorticity and a reduction of turbulence scale.

The effects of chemical reaction on mixing in a supersonic flow have also been con-

sidered. Beginning in 1986, Drummond studied the supersonic reacting mixing layer that

formed between coflowing streams of hydrogen gas and air at moderate Mach numbers in

the range of Mach 2 [52,99,106]. His simulations using the SPARK code indicated that

supersonic reacting flows exhibited some of the same features observed for subsonic react-

ing and nonreacting flows. Vortical structure, noted in much of the subsonic nonreacting

flow literature, was shown to be quite predominant. In agreement with the earlier react-

ing subsonic literature, the vortical structure had a marked effect on chemical reaction in

supersonic flow. Significant burning took palce in the eddies on the edges of the mixing

layer, broadening the reaction zone relative to the layer thickness defined by the velocity

gradient. In addition, the vortical flow resulted in the roll up of unburned reactants inside a

layer of partially or fully burned products. This phenomena, often termed Uunmixedness"

in subsonic flows, prohibited the reaction of captured reactants and reduced the overall
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efficiencyof the combustion process. There was also some indication that heat releasere-

sultlngfrom the chemical reaction also reduced the amount of mixing and reaction further

downstream in a mixing layer.

Work is continuing to better understand the phenomena that produce reduced com-

bustion e_ciency in supersonic combustors. Related effortsalso began in 1987 to develop

techniques forenhancing the degree offuel-airmixing and combustion that occured in high

Mach number flows. Guirguis used the flux-correctedtransport algorithm of Boris to study

convective mixing in high-speed nonreacting flows [108].He again chose the mixing layer

as a model problem for mixing in a scram jet combustor and solved the two-dimensional

Euler equations to examine the effectsof imposed pressure gradients on the spatial de-

velopment of the layer. The upper stream of the mixing layer,made up of "species 1"

entered a confined channel at Mach 4.5 and a pressure of 4 atm. The lower stream of

Uspecies 2" entered at Mach 1.5 and a pressure of 2 arm. The stream temperatures were

matched. In addition, two other cases were considered. In the second case, the pressures

of the two streams were matched and the mixing layer was unconfined, and in the third

case, the lower stream entered at a pressure of 2.1 times that of the upper stream. Other

minor differencesbetween the cases were discussed in reference [108].One resultfrom the

study by Guirguis isshown in figure8. In that figure,mass fraction contours of species 1

from 0.01 to 0.99 are plotted for the three cases,respectively.The matched pressure case

showed littledevelopment with increasing streamwlse coordinate, whereas the firstand

third cases with the imposed transverse gradient showed significantspread of the layer.

Guirguis thereforeconcluded that in a channel of a given length, differencesin pressure

across the layer enhanced mixing. He also suggested means whereby pressure differences

could be induced by the geometry of the combustor. Guirguis then continued his work to

finda means ofenhancing mixing where the two stream pressures were matched [109].He

concluded that mixing could be enhanced ifa bluffbody was placed at the trailingedge of

the splitterplate separating the two matched pressure streams. One resultfrom the bluff
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body case is shown in figure 9. The mass fraction contours given in the figure again show

a significant degree of enhancement is provided by the presence of the bluff body.

Kumar, Bushnell, and Hussaini also examined the problem of mixing in flows undergo-

ing supersonic combustion using a two dimensional version of the NASCRIN Code [110].

Several techniques for enhancing turbulence and mixing were suggested and one enhance-

ment technique that employed an oscillating shock was studied numerically. In this case a

premixed stoichiometric hydrogen-air flow was processed through a spatially and tempo-

rally oscillating shock wave, and the resulting flow was studied with and without chemical

reaction. Reaction was modeled using an equilibrium chemistry model. One reacting flow

case that was considered is shown schematically in figure 10. Here, the premixed fuel-alr

flow was introduced into a two-dimensional channel at Mach 3, a pressure of 1 arm, and a

temperature of 1500 K, and the mixture was passed through a 10 degree shock produced

by a lower wall compression. A periodic oscillation was imposed upon the flow near the

lower wall, and this resulted in a periodic oscillation of the shock wave. The resulting

pressure field over one perlod of the imposed oscillation is shown in figure 11. A wave can

be seen to propagate along the shock. The oscillating shock was shown to increase the

level of turbulence in the flow field, and the degree of turbulence enhancement was seen to

increase with a decreasing frequency of shock oscillation. Chemical reaction as defined by

the equilibrium model was shown to have little effect relative to the nonreacting results.

Several techniques for enhancing mixing and reaction in a model scramjet combustor

were studied in 1988 by Drummond and Mukunda [107]. They considered the shock and

expansion structure that existed in scramjet combustors, and sought to redirect this exist-

ing wave structure to utilize it for enhancement. Planar and curved shocks were created by

structure and fuel injection in scramjet engines, and so both shock shapes were considered

as candidates for mixing enhancement. Three cases that were studied to determine the

efficiency of shock shapes are shown in figure 12. Case I shows a two-dimensional spatially

developing supersonic mixing layer that served as a baseline to indicate the degree of mix-

39



ing and reaction that could be achieved without enhancement. Here, gaseous hydrogen

fuel and air are initially separated by a thin splitter plate. Hydrogen and air both enter

at Mach 2, a pressure of 1 atm, and a temperature of 2000 K. The hydrogen and air begin

mixing at the trailing edge of the splitter plate, ignition occurs at some small distance

downstream, and combustion continues from that point. Two enhancement studies, cases

2 and 3, are also shown in figure 12. In case 2, the mixing layer is processed through

two 10 degree planar shocks produced by wedges in the fuel and air streams. In case 3,

a small interference body that produces a curved bow shock is placed at the center of

the mixing layer. The flow field in each case was then simulated using the SPARK code.

Chemistry was modeled using either a 4 species, 1 reaction or a 9 species, 18 reaction

H2-air finite-rate chemistry model. The resulting instantaneous mixing efficiencies shown

as a function of streamwise coordinate are given in figure 13 [107]. The degree of mixing

achieved in the mixing layer without enhancement is shown by the result from case 1.

Very little additional mixing results from passing the layer through planar shocks in case

2. Case 3 exhibits a significantly higher degree of mixing. When the high velocity gradient

across the mixing layer is processed by the curved bow shock, vorticity is produced, and

the mixing is subsequently enhanced downstream of the shock.

With a background of planar and curved shock mixing enhancement in hand, fuel

injection configurations typical of those used in a scramjet engine were considered. A

typical design is described in figure 14, which shows the trailing edge of a NASA Langley

fuel injection strut. Inlet air crossed the strut as shown. Gaseous hydrogen fuel was

injected parallel to inlet air from the base of the strut, and transverse to the inlet air

behind a small rearward facing step in the surface of the strut. (The step caused a small

recirculation region to form which captured a small amount of fuel and air. Combustion

then occured in that region providing a flameholding sight in the engine combustor.) The

results of the previous analysis suggested a simple change in the fuel injector configuration

that might provide improved fuel-air mixing and enhanced combustion efficiency. If the
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parallel injector from the strut base were moved to the step face as shown in figure 14,

then the high velocity gradient of that jet would interact with the curved bow shock that

formed ahead of the transverse injector. The mixing enhancement modification was then

examined by again simulating the two-dimensional flow fields. Chemical reaction was

described by the 9 species, 18 reaction finite rate model. The resulting water mass fraction

contours downstream of the modified strut for only the parallel injector and for both the

parallel and transverse injector are given in figure 14. The multiple jet configuration clearly

gave significantly higher levels of jet development, mixing, and reaction. A quantitative

assessment of mixing and reaction is given in figure 15. In that figure, the combustion

efficiency for both cases is plotted against the streamwise coordinate. Jet interaction

produced a significantly more rapid increase in mixing and combustion. Instantaneous

combustion efficiencies of about 80 percent were obtained for the enhanced case within

the first 40 percent of the solution length whereas the unenhanced case required about

75 percent of the solution length to achieve the same level of reaction. Enhancement

by such approaches could therefore result shorter combustor lengths for a given level of

performance.

While the basic studies we have discussed were underway, several interesting three-

dimensional scramjet combustor simulations were undertaken in 1987 and 1988. Uenishi,

Rogers, and Northam used their three-dimensional combustor code, described earlier, to

study several generic combustor configurations that utilized wall fuel injection [56,58]. One

of the interesting cases is shown in figure 16. This combustor model was also being used in

an experimental program at NASA Langley when the study was undertaken, although no

data was yet available. Vitiated hot air, produced by the combustion of hydrogen, oxygen,

and air in a facility heater, entered the model combustor from the left. Gaseous hydrogen

fuel was initially injected a small distance downstream from this point through a row of

secondary orifice fuel injectors located on opposite walls of the combustor. These injectors

were intended to pilot a pair of primary hydrogen fuel injectors again located on opposite
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walls some distance downstream of rearward facing steps in the walls. The flow in the

combustor was modeled using the Uenishi code [58]. Features of the combustor flow field

resulting from that study are shown in figure 17. Figure 17a shows the distribution of

the injected fuel given as the mass fraction of total It2 in the streamwise x-z plane of the

computation along the duct centerline. The total H_ distribution represented the sum at

each point of the hydrogen atoms in any form, i.e. //2, H20, or OH, so that it represented

the amount of injected //2 fuel. The fuel rich regions in the vicinity of the injectors are

clearly evident as is the penetration of the fuel across the duct. The contours in figure

17a show that the upstream fuel injectors provide relatively well mixed fuel and air into

the downstream region which then arguments the fuel mixing and combustion process

produced by the downstream injectors [58].

The three-dimensionality of the flow field is clearly shown by the distributions of total

//2 and static temperature given in figure 17b at several cross-planes along the combustor

length. The static temperature was normalized by the initial static temperature. The

locations of the y-z cross-planes are indicated in figure 17a. The distribution of total//2

in each cross-plane indicates the mixing of injected fuel. At location A, the fuel jets from

the upstream injectors have not merged, and the cold fuel has not mixed with the hot air

stream to an extent sufficient to result in any significant heat release, as is indicated by the

absence of any appreciable temperature rise at this location. At location B, however, the

fuel has mixed and reacted with the hot-alr stream to an extent that the temperature is

about 1.7 times the air stream. Further downstream, at locations C and D, the 0.5 percent

contour line becomes more uniform and a large area of the flow contains reacting fuel as

also indicated by the elevated temperatures. Results from location E indicate that some

fuel from the downstream injector is entrained upstream by the recirculating flow behind

the step. This upstream entrainment of//2 from the downstream injector is also indicated

by the regions of high and low temperature at location E. The fuel rich regions have a

lower temperature because the//2 is cold and because the fuel-air mixture is too rich to
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react. At locations F and G, whlch are downstreamof the primary fuel injector, large

regions of unreacted fuel can be seen. With the present flow conditions, the//2 injected

from the primary injectors penetrates very well, passing beyond the combustor centerline

[58].

Calculations are continuing with the Uenishl code to model complex three-dimensional

combustor flow fields. A major effort is now also underway to compare the code with addi-

tional experimental data that has recently become available. Work is also currently being

completed to couple the spatially elliptic Uenishi code to several parabolized Navier-Stokes

programs, including the Chitsomboon PNS code and the Kamath PNS code, that were

described earlier in this chapter. Parabolized Navier-Stokes codes can be more efficient for

simulating the combnstor far-field well away from the fuel injectors where the flow is spa-

tially elliptic due to separation. Therefore, there is an incentive, based on computational

efficiency, to switch to PNS programs wherever possible in the combustor.

A number of interesting combustor calculations have been made by Gielda using his

three-dimensional parabollzed Navler-Stokes program, SSCPNS, that was also described

earlier in this chapter. One configuration that he analyzed is given in figure 18, which

shows a sketch of a generic hypersonic propulsion system including an inlet, combustor,

and nozzle [67]. Conditions entering the inlet were determined by assuming that the

hypersonic vehicle was cruising at Mach 16 and at an altitude resulting in a free stream

temperature and pressure of 452 R and 0.004 arm, respectively. Gaseous H_ fuel was

injected through five injectors into the engine beginning at a location x/L = 0.625 and

continuing for a distance of x/L = 0.24 along the combustor as indicated by figure 18.

This injection schedule resulted in a fuel equivalence ratio of approximately three. The

fuel was injected at an angle of 25 degrees to the engine cowl defined in the figure by the

x-axis.

Once the engine geometry and fuel injection configuration had been defined, the entire

engine flow field was simulated using the SSCPNS code. The computed flow field was

43



highly three-dimensional. The three-dimensionality can be seen in figure 19 which shows

Mach number contours at a number of cross-planes along the length of the inlet, combustor,

and enclosed portion of the nozzle. Gielda's study also showed that there were significant

losses associated with the fuel injection process in the generic engine. The losses resulted

from the formation of strong oblique shocks as the inlet air interacted with the injected

fuel. The induced shock waves can be seen in figure 20 which shows the computed pressure

contours in the engine. The entropy increase that resulted when the engine flow passed

through these oblique shocks caused a significant loss in the average stagnation pressure

of the flow. This loss in stagnation pressure would ultimately result in a loss in the overall

thrust that could be achieved. The fuel injector configuration did result, however, in good

fuel-air mixing and combustion. The degree of combustion is indicated by the computed

water mass fraction contours shown in figure 21 at several cross-planes along the combustor

and nozzle lengths. Water mass fractions of up to 0.23 resulted across a large extent of the

cross-planes, and an oxygen utilization of approximately 0.80 was achieved. Normalized

static temperature contours in the engine resulting from the simulation are also shown in

figure 21 [67].

In order to improve the performance of the engine, Gielda further investigated the

fuel injection process in an attempt lower the associated shock losses. Three numerical

experiments were performed that included a study of the engine flow field without injection

or reaction, with injection, and with injection and reaction. By comparing the three cases,

Gielda was able to assess the losses associated with the fuel injection process and associated

with the heat addition resulting from the combustion process [67]. He concluded that

further investigation into the injection process was required and that such a study would

require simulation of the flow field near the fuel injectors using the spatially elliptic form

of the Navier-Stokes equations. Such a study has recently been undertaken.

Carpenter used the SPARK3D spatially elliptic Navier-Stokes program, described ear-

lier, to model the generic scramjet combustor sketched in figure 22 [59]. This combustor
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configuration has been used as a generic model for actual combustor designs being consid-

ered as a part of a propulsion system for a hypersonic vehicle that will become operational

early in the next century. Flow processed by an inlet enters the combustor from the left in

the figure. The flow exits the inlet at a velocity of 1500 m/s, a static temperature of 1000

K, and a pressure of 0.5 arm. That flow then passes over rearward hcing steps on the walls,

experiencing a mild area expansion. Gaseous H2 fuel is injected from a line of four orifice

fuel injectors that lie along the hce of the step on each of the four engine walls. The fuel

and inlet air begin mixing just downstream of the steps. The flow for this configuration

was simulated by Carpenter using the SPARK3D code [59]. Because the combustor was

symmetric about its center, only the lower quadrant, shown in figure 22 was modeled. In

addition, even though the program contained a generalized finite rate chemistry model,

only fuel-alr mixing was considered at this stage of the study. The resulting //2 mass

fraction distributions at 2 cm and 5 cm downstream of the step are given in figure 23. At

the first station, recirculation behind the step and diffusion spread the hydrogen towards

the walls, but there is little penetration of the fuel into the core flow in the center of the

combustor. The 0.2 mass fraction contour does not extend beyond the height of the step.

(Fuel rich regions having contours with a mass fraction greater than 0.2 were surpressed

for clarity.) Further downstream at the 5 cm station, hydrogen mixes to a greater extent

with the air, and the mixture extends further into the core flow. The extent of mixing

is still not suffcient to provide an acceptable level of mixing efficiency or for that matter

combustion efffciency if reaction had been allowed. As a result of these findings, mixing

enhancement strategies similar to those discussed earlier are currently being applied to the

generic combustor configuration to achieve an acceptable level of combustion efficiency.

Several other interesting calculations have also recently been undertaken to model

scramjet combustor flow fields. But we have now reached the end of 1988, and it is time to

bring this chapter to a conclusion. Computatlonal methods have clearly been established

as valuable tools for simulating combustor flows and providing an improved understanding
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of their complex physics. Therefore, this story will continue to be told! With expected

improvements in algorithms, computer resources, and creativity, the story should only

improve, and computational methods should take on an even greater role in studying and

designing high speed propulsion systems.

Concluding Remarks

Significant progress has been made in the past twenty years to develop techniques for

modeling supersonic reacting flows. The progress has been due both to an advancement

in numerical methods for computing reacting flow fields as well as an appreciable growth

in computer speed and storage. The improvements in both algorithms and computer

power have also lead to a gradually improved understanding of the physics of reacting

flows which is so very important if computation is to have a truly significant impact on

scramjct combustor design. The national program to develop a trans-atmospheric vehicle

has been quite effective in generating a renewed interest in supersonic combustion, and

it has spawned several programs aimed at better understanding its complexities. While

these programs have begun to unravel some of the mysteries, they have also shown us that

supersonic reacting flows still contain many unsolved questions. These questions provide

exciting opportunities for future research, and these opportunities should not be missedl

The efficient mixing and combustion of fuel and air in a scramjet combustor remains

a critical issue today. We are just beginning to understand the phenomena that suppress

mixing in these high Mach number devices, but a great deal of work remains to be done.

Once the mixing question is answered, many opportunities will still remain to employ this

improved physical understanding to produce an efficient mixing strategy. Ground based

experimental facilities will be used to study and design scramjet combustors by providing

flows consistent with those that the engine will injest over its operating envelope. Ground

based facilities are only able to create continuous flow conditions up to a flight Mach num-

ber of about 8, however. Beyond Mach 8, the only options available to the experimentalist
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are pulsefacilities that create flight conditions for only a short period of time, or the very

vehicle that the national program seeks to build! Numerical methods provide an alter-

native to the Mach 8 barrier, but only if they are properly applied to the problem. To

apply these methods properly, a fundamental understanding of the physical phenomena

present in high speed reacting flows must be achieved. Even with this understanding, we

will still be required to simulate flow fields in large geometric configurations, necessitating

highly efficient numerical algorithms and significant advancements in computer technology.

There is certainly a problem here for everyone! The problems are difficult ones, but they

can be solved if we continue to tackle them in a careful and dedicated way. The United

States committed itself to landing men on the moon in 1961, and it succeeded through a

dedicated national commitment to do so in only eight short years. The national program

to build and fly a trans-atmospherlc vehicle is no more difficult a goal to achieve. It simply

requires another national commitment to succeed, and a willingness on our part to accept

the exciting challenges that such a program provides.
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TABLE 1. - Finite-Rate Chemistry Model and Arrhenlus Rate Coefficients for Each Reaction

Reaction

number Reaction A N E, U/g-mole

1. H2+O2=OH+OH 0.1700E+14 0.00 201.5

2. H+Ox=OH+O 0.1420E+15 0.00 68.6

3. OI-I+Hx=I-I20+H 0.3160E+08 1.80 12.78

4. O+H2=OH+ H 0.2070E+15 0.00 57.5

5. OH+OH=H20+O 0.5500E+14 0.00 29.3

6. H+OH=HxO+M 0.2210E+23 -2.00 0.0

7. H+H=H2+M 0.6530E+18 -1.00 0.0

8. H+O2=I-t O2+M 0.3200E+ 19 - 1.00 0.0

9. HO2+OH=H20+O 2 0.5000E+14 0.00 4.2

10. HO2+H=H2+O 2 0.2530E+ 14 0.00 2.9

11. HO2+H=OH+OH 0.1990E+15 0.00 7.5

12. HO2+O=OH+O 2 0.5000E+ 14 0.00 4.2

13. HO2+HO2=H202+O 2 0.1990E+ 13 0.00 0.0

14. HO2+H2= H2Ox+H 0.3010E+12 0.00 78.2

15. H202+OH=HO2+H20 0.1020E+14 0.00 7.9

16. H202+H=OH+H20 0.5000E+ 15 0.00 41.9

17. H202+O=OH+HO 2 0.1990E+14 0.00 24.7

18. M+H202=OH+OH 0.1210E+18 0.00 190.4

For the single step reaction 0.5510E+15 0.00 30.2
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Nomenclature

reaction rate constant for jth reaction

body force of species i

concentration of species i

time rate of change of C_

specific heat at constant pressure

binary diffusion coefficient

thermal diffusion coefficient

total internal energy; activation energy

flux vectors in x, y, and z coordinate directions

mass fraction of species i

Gibbs energy of species i

Gibbs energy of reaction

enthalpy of species i

reference enthalpy of species i

source vector

backward rate constant

forward rate constant

equilibrium constant

Mach number

molecular weight of species i

moles of species i

number of chemical species

number of chemical reactions

pressure

heat flux
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universal gas constant

temperature

reference temperature = 298°k

effective temperature

time

time step

dependent variable vector

streamwise velocity

transverse velocity

streamwlse diffusion velocity of species i

transverse diffusion velocity of species i

diffusion velocity vector of species i

species production rate of species i

streamwise coordinate

transverse coordinate

mole fraction of species i

second viscosity coefficient

stolchiometric coefficient; species i, reaction j

ratio of specific heats

Kronecker delta function

density

normal stress

effective collision diameter

shear stress

laminar viscosity of species i

mixture laminar viscosity

computational streamwise coordinate

61



computational transversecoordinate

diffusion collision integral
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S ,, 2.0 cm, L 1 -. 1.5 cm, D ,, 3.5 mm
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