
N90-26225

TDA ProgressReport 42-101 May 15,1990
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A new 34-m research and development antenna is currently being constructed

prior to introducing beam waveguide (B_VG) antennas and Ka-band (32 Gllz) fre-

quencies into the NASA/JPL Deep Space Network. The new 34-m antenna, fed
with either a center or bypass B_¥G, will lose less than 0.2 dB (excluding surface

root mean square and mirror misalignment losses), as compared with a standard-fed

Cassegrain antenna at X- (8.4 Gtlz) and Ka-bands. The antenna is currently under
construction and is scheduled to be completed in July 1990. Phase 1 of the project

is for independent X- and Ka-band receive-only tests. Phase 2 of the project is

for simultaneous S- (2.3 Gllz) and X-band or X- and Ka-band operation, and the

design is currently under way.

I. Introduction

Feeding a large low-noise, ground-based antenna via a

beam waveguide (BWG) system has several advantages
over placing the feed directly at the focal point of a
dual-reflector antenna. For example, significant simplifi-

cations are possible in the design of high-power, water-
cooled transmitters and low-noise cryogenic amplifiers,

since these systems do not have to rotate, as in a normally

fed dual reflector. Furthermore, these systems and other

components can be placed in a more accessible location,

which leads to improved service and availability. Also, the

losses and noise degradation associated with rain on the
feedhorn radome are eliminated because the feedhorn can

be sheltered from the weather.

The design of the new 34-m BWG antenna at DSS 13

is based upon geometrical optics (GO) criteria introduced

by Mizusawa and Kitsuregawa in 1973 [1], which guaran-
tee a perfect image from a reflector pair. Since it may

be desirable to retrofit existing antennas with a BWG, as

well as construct new antennas, there are two independent

BWG designs built into the research and development an-
tenna. The first, termed a bypass design, places the BWG

outside one of the elevation bearings on the rotating az-

imuth platform, thereby retaining the existing elevation

wheel and counterweight subassembly, suitable for retrofit

applications. The second, a center design, places the BWG

through the center of the main reflector, inside the eleva-

tion bearings, and through the azimuth axis into a pedestal
room located below the antenna. The centerline design

is preferred, given new construction. The bypass design
uses a pair of paraboioidal sections and two flat mirrors,
whereas the center design uses the same four-mirror design

(although not physically the same four mirrors) above the
azimuth bearing with a flat plate and an ellipsoidal section
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that functions as a beam magnifier in the pedestal room.
A beam magnifier is required since the pair of paraboloids

requires a 29-dBi gain horn to feed, whereas at the lower

frequencies a 29-dBi gain horn would be too large to fit in

the pedestal room. The ellipsoid design allows the use of

smaller 22-dBi gain horns in the pedestal room.

Although the upper four reflectors in either the bypass

or centerline BWG satisfy the Mizusawa criteria, the sin-
gle (curved) ellipsoidal mirror in the pedestal does not.

Hence, use of the overall six-mirror, three of which are

curved, centerline system introduces a small beam distor-

tion (imperfect imaging). It would require a second el-

lipsoidal mirror in the pedestal to obtain perfect imaging

(in the GO limit). The second ellipsoidal mirror, to be

fully compensating for the first, would defeat the (here)

necessary beam magnifier function, and is therefore not
used.

The microwave antenna gain performance was ana-

lyzed using an appropriate combination of physical optics
(PO)/spherical wave expansion (SWE) and geometrical

theory of diffraction (GTD) software. The initial opera-
tion (Phase 1) of the DSS-13 project is for independent X-

and Ka-band receive modes, and performance predictions
for these frequencies will be given below.

A. Dual-Shaped Reflector Design

The DSN presently operates three 34-m high-efficiency
(HEF) dual-shaped reflector antennas with a dual band

feed (2.3/8.4-GHz), which has a far-field gain of 22.4 dBi

that is conventionally located at the Cassegrain focal point
(see Fig. 1). The structures were designed prior to BWG
requirements and feature a continuous elevation axle and a

carefully designed elevation-wheel substructure. The ele-

vation wheel is supported by an alidade that rotates on
a circular azimuth track. To minimize the cost of de-

veloping a new 34-m BWG antenna, as much as possi-

ble of the existing structure design was to be used (see

Fig. 2). Through the use of a clever mechanical design,
the elevation-tipping structure was modified to accommo-

date a central BWG inside the elevation bearings. To pro-

vide clear access for an 8-ft (2.44-m) diameter, center-fed
BWG, the main reflector backup trusses are connected to

a revised elevation wheel via the integral ring girder, or
IRG. The IRG is a toroidal structure, an octagonal space

truss with a square cross section, approximately 290 in.

(,_7.4 m) in maximum radius and 80 in. (-,,2.0 m) high.
It is interwoven with, but separate from, the conventional

rib-and-ring backup structure. In order to minimize tile

distortion of the main reflector surface under gravity load-
ing, the reflector connections to the elevation-wheel struc-

ture were selected to provide equal stiffness supports. This
is achieved by grouping eight equally spaced reflector ra-

dial ribs into four pairs and connecting each pair to the

IRG top plane at alternate vertices of the octagon. The

vertices lying on the elevation axis, however, are reserved

for supporting the IRG at the two elevation-bearing points.

The counterweight and single elevation bullgear lie on a

plane orthogonal to the elevation axis. The entire tipping

structure (including the main reflector, elevation wheel,
subreflector, and its support) is weight-balanced about the
elevation axis.

Selection of the previously designed HEF-reflector

structure fixes the focal length/diameter (f/D) of the main
reflector surface. The reflector shape is free to be different

from the HEF design, but had to be within an adjustable

tolerance (--,1 in.) of the existing surface to allow use of
the existing design drawings.

B. Feed Selection

GO was used to design the upper portion of the center-

line BWG system (mirrors M1 to M4). As shown in Fig. 3,
the first mirror, M1, has azimuth and elevation rotations

together with the main reflector and subreflector. A plane

surface is used for M1 to ensure an imaged feed pattern

that is independent of the elevation angle of the antenna.
Mirrors M2 and M3 are sections of paraboloids, and the

system is designed so that a feed placed at F2 (in the GO
limit) is perfectly imaged at F1.

An imaged feed pattern at F1 is used to illuminate tile

subrefiector with a narrow-angle high-gain (-_29-dBi) pat-

tern. This configuration is used because of the large dis-
tance between the subreflector and the first BWG mirror

(M1), and also because the size of M1 (as well as M2) is
smaller than the subreflector. The position of the focal

point F1 in Fig. 3 must be close to M1 to achieve ac-

ceptable spillover losses at the subreflector, as well as M1

and M2. Normally F1 is in the neighborhood of the main

reflector vertex with an 8-9 deg half-cone angle of illumi-

nation at the subreflector, as compared with 17 deg for the
normal Cassegrain feed of the 34-m IIEF antenna.

The diameter of the subreflector Ds is determined by

the size of the main reflector. According to [2], a sub-
reflector diameter not exceeding 1/10 of a main reflector

is normally selected for good radiation efficiency of the
antenna. For a 34-m antenna, a subreflector diameter of

3.43 m (135 in.) was chosen. The illumination angle 0s

is determined next. For the same f/D ratio as the HEF

and Ds = 135 in., the distance L1 = 593.1 in. (,_15 m) is
obtained. Iterations are needed for a calculation of 0s and

the location of F1. Known parameters are Ds = 135 in.,
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L1 = 593.1 in., and D2 = 94 in. (---2.4 m). Vari-

able parameters are 8.0 deg < 0s _< 9.0 deg, 105 in. _<
L_ < 110 in. (-_2.7 m), and 9.5 deg < 0m _< 11.0 deg.

The angle 0m is the illumination angle at M2 with an

edge taper of about -23 dB. The results of iterations of

GO ray geometry between Ds and D2 are Os = 8.7 deg,
0m = 10.4 deg, L0= 441.11 in. (,,_11.2 m) and L2 =

108.01 in. (,-_2.7 m). The GO focal length of M2 is selected

as 260 in. (6604 mm). The exact dimensions are somewhat

arbitrary, but are constrained by the M2 mirror-projected

diameter (96-in. limit). The BWG shroud, or tube diam-
eter, was chosen because the tube effects at S-band would
be small. It is now necessary to design a horn that has

an approximately -18 to -20-dB taper at 8.7 deg (the il-
lumination of the subreflector) and minimal spillover past

10.4 deg (the illumination of the BWG mirror).

An important design parameter is the horn's flare angle.

Figure 4 shows the patterns and efficiencies (spillover times
phase efficiency) for several different horn-flare angles and,

as can be seen, the patterns are not very sensitive to the

flare angle. For that reason and because the JPL standard
feedhorn has a flare angle of 6.25417 deg, it was decided to

examine the standard flare angle, since existing feedhorns

or feedhorn designs could be utilized.

Various horn sizes with the JPL standard angle of

6.25417 deg and frequency = 8.45 Gttz were investigated.

The goal was to find a horn with a -18-dB taper at
0 = 8.7 deg (near-field distance of 425 in., ,-,10.8 In) and

a -23-dB taper at 0 = 10.4 deg (near-field distance of

260 in., ,-,6.6 m). The distances 260 in. and 425 in. are for

a high-gain horn illuminating the BWG lnirror M2 and
the subreflector, respectively. The combined phase and

spillover efficiencies (_phase X _spill) should be optimally
between 8.7 and 10.4 deg. The results fi'om various tri-

als show that a 19-in. (,v 483-mm) aperture diameter at

X-band, with dimensions shown in Fig. 5, gives a radiation

pattern that meets these goals. Figures 6(a) and 6(b) show

amplitude, phase, and efficiency plots of the 19-in. X-band

aperture diameter at r = 425 in. and 260 in., respectively.
From Fig. 6(a), the edge taper at the rim of the subreflec-

tot (0 = 8.7 deg, r = 425 in.) is equal to -18.7 dB, which
is within the desirable range of -18 dB to -20 dB. The

combined phase and spillover efficiency is about 96.4 per-

cent, where the maximum effÉciency is about 97.8 percent,

at 0 =--+11.5 deg. This is a typical design point for a dual-

shaped system, since the use of the maximum efficiency

point results in a larger subreflector. It should be noted
that the results for a 21-in. (--_533-mm) aperture were very
similar to those of the 19-in. aperture, but the 21-in. aper-

ture results in a horn that is 11 in. (-_280 nun) longer at

X-band; hence, the smaller design was chosen.

From Fig. 6(b), the GO edge taper at the rim of any

BWG mirror (at r = 260 in.) is -_ -23.6 dB at 0 =
10.4 deg, with 96.5 percent efficiency. The maximum effi-

ciency is equal to 96.7 percent at 0 = 9.8 deg, which falls
between the desired values of 8.7 and 10.4 deg. Because

the 19-in. X-band horn has radio frequency (RF) radiation

characteristics that meet the requirements, it is therefore

used in the design of BWG mirrors and synthesis of dual-

shaped reflectors.

In similar analyses, the +22-dbi horn required for the

F3 pedestal room focus was examined at a range of 165 in.,
as discussed in section I.D.

C. Dual-Shaped Reflector Design

An essential requirement of the 34-m main reflector is

to maintain the newly designed BWG antenna surface con-

tour within 4-0.5 in. (13 mm) of the previously designed
tIEF antenna. This makes it possible to retain the exist-

ing backup structure and adjust the individual reflecting

panels with existing standoffs to fit the newly designed
contour.

The X-band feedhorn pattern at r -- 425 in. (the mean

distance to the subreflector) is used as an input pattern to

a high-resolution synthesis program developed by Galindo-

Israel) The input parameters were similar to the ItEF an-
tenna design and are shown in Figs. 7(a), 7(b), and 7(c).
The maximum difference between the main reflector sur-

faces of DSS 13 and the IIEF antenna is 0.43 in. (11 ram),

allowing IIEF antenna panel forming tooling and standoff
hardware to be reused.

D. Center-Fed BWG

This section provides technical details for the design of

the centerline BWG feed system (Fig. 3). GO was used to

design the centerline system of the first four mirrors (M1
to M4), while PO was applied to the design of the curved

mirror (M5) in the pedestal room. As shown in Fig. 3,
the first mirror, M1, has azimuth and elevation rotations

together with the main reflector and subreflector. A plane
surface is used for M1 to ensure an imaged feed pattern

that is independent of the elevation angle of the antenna.
Mirrors M2, M3, and M4 are attached to that part of
the structure with azimuth rotation only. The last two

mirrors, M5 and M6, are stationary on the ground in the

pedestal room.

1 V. Galindo-Israel, "Circulaxly Symmetric Dual-Shaped Reflector

Antenna Synthesis With Interpolation Software-User Manual" (in-

ternal document), Jet Propulsion Laboratory, Pasadena, Califor-

nia, Jaamary 1988.
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For a long RF ray path, curved mirrors are needed to

refocus and guide energy from Fz to F2 (and later on to

F3) with acceptable spillover loss. It is preferable to have

two curved mirrors arranged so that Mizusawa's conditions

[1] are met, thus achieving minimum cross-polarization at

high frequency. Oversize flat plates are used merely to di-

rect the RF beam into desired directions without changing
any other characteristic of the RF beam.

The choice of two identical paraboioidal sections for M2

and M3 has the following advantages:

(1) In the GO limit, a circularly symmetric input pat-

tern still retains the original symmetrical shape after

reflection through both (or all four) surfaces.

(2) Since there is no focal point between the two curved

mirrors, as there would be with ellipsoids, RF per-

formance is not sensitive to the spacing (L3) between
the two mirrors, provided that the spillover loss re-
mains small.

(3) A high-pass (filter) RF performance is obtained with

very good X-band performance for 8-ft mirrors

(<0.1 dB for this path).

(4) It is possible to have four identical mirrors (two for

center-fed and two for bypass) when paraboloidal
surfaces are used in the design.

(5) Identical mirrors are obviously more economical.

The centerline BWG paraboloidal mirrors are posi-

tioned so that feedhorns and instrumentation packages can

be either in an alidade location (not presently planned for

implementation) or the pedestal room. Spacing between

the two paraboloids, L3 = 360 in. (.--9144 mm), is cho-
sen to allow enough headroom for vertical orientation of

S-, X-, and Ka-band/amplifier subassemblies. Also, the

S-band spillover loss at this distance is acceptably small.

A flat plate, M4, reflects the RF beam downward along

the antenna azimuth axis to the pedestal room, with focal

point F2 about 85 in. (_2 m) above the azimuth floor and

about 195 in. (_5 m) above the pedestal room ceiling.

A significant decision was whether to locate the feeds

on the alidade at focal point F2 (requiring 29-dBi gain

feeds) or in the pedestal room under the antenna, using

focal point F3. Despite an additional RF loss going from

F2 to F3, the clear advantages of using the pedestal room
(more available space, no cable wrap across the azimuth

axis, smaller feeds required, etc.) led to its selection. The

stable environment of the pedestal room was a major de-
terminant.

Only X- and Ka-bands are planned for Phase I oper-

ation of DSS 13. However, the design must have capa-

bilities for future S/X-, X/Ka-, C-, and Ku-band opera-

tions (S-band is 2 GHz, C-band is 4-6 GHz, and Ku-band

is 13-15 GHz). Low-gain horns (_22 dBi) are desirable

for all frequency bands. A basic layout for the RF de-

sign in the pedestal room is given in Fig. 2. Mirror M5

is an ellipsoidal surface used for magnifying gain (reduc-

ing beamwidth) from 22 to 29 dBi and switching among
various horns by rotating M5 about the antenna aximuth.

Mirror M6 is a flat plate used to reflect the RF beam from

a vertically positioned feedhorn to M5, with an angle/9 =

60 deg. The 60-deg angle is preferred because the existing

,IPL dichroic plate is designed with a 30-deg incident an-

gle (equivalent to 0 = 60 deg). Therefore, the 0 = 60 deg

angle will be convenient for simultaneous operation (S/X-
and X/Ka-band) while reusing the existing JPL dichroic

technology. Even though a smaller angle of _ would yield a

more symmetric beam pattern, angles smaller than 50 deg
will have shadowing problems among M5, M6, and the

feedhorn. The curvature of M5 is determined by placing
the near-field phase center of the 22-dBi X-band horn at a

focal point of M5 (F3) and calculating the field at M3 by
using PO. Iteration continues by changing the surface cur-

vature of M5 until the scattered field has an average edge

taper at M3 of about -23 dB. The mirror M5 is adjusted
vertically until the best-fit phase center of the scattered

field of M5 overlays F_. The curvature and position of M5

are designed at X-band, and there is no vertical adjust-
ment of the mirror for other bands. The Ka-band horn

(or other high-frequency horns) must be defocussed and

the gain increased slightly (from 22 to 23 dBi) to approx-

imate the same edge taper and best-fit phase center as at

X-band. The detailed RF design layouts in the pedestal

room for X- and Ka-bands are shown in Figs. 8 and 9.
There are small lateral translations of the feedhorns to

compensate for radiation pattern asymmetry due to the
surface curvature of mirror M5.

The theoretical performance of the BWG system is de-

termined by using various combinations of analytical soft-

ware, as described in [3] and [4]. Figure 10 shows the mea-

sured pattern of the input of the 22-dBi horn fed at F3, the

calculated output of the ellipsoid at F_, and demonstrates

the X-band gain-magnifying (beamwidth-reducing) prop-

erty of the ellipsoid. Figure 11 shows the X-band output
of the BWG at F 1 compared with both the calculated in-

put at F2 and the measured 29-dBi horn. Figure 12 shows

a comparison of the E- and H-planes of the BWG out-

put. The system is designed to image the 29-dBi horn of

Fig. 5 at the input to the dual-reflector system. Figure
13 shows the input and output of the BWG at Ka-band

and illustrates the nearly perfect imaging properties of the
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paraboloid pair. Figure 14 is a comparison of the 29-dBi
horn and the BWG feed for the dual-reflector system at
X-band.

E. Bypass BWG Design

A general layout of the bypass BWG is shown in

Fig. 15(a). All mirrors rotate in the elevation plane except
M10. To allow enough clearance between mirror M10 and

the elevation bearing, a bypass BWG vertical tube must

be positioned at Hoop 6, which is about 403 in. (_10.2 m)
from the antenna center line. A retractable flat plate, MT,
is out when the center-fed BWG mode is used. Mirrors

M8 and M9 are paraboloidal surfaces positioned to sat-

isfy Mizusawa's conditions. The mirrors M7, M8, and M9

are attached to and move together with the main reflector
structure. A flat mirror, M10, is attached to an eleva-

tion bearing; it is not rotated with elevation rotation (but

moves with azimuth rotation) in order to have a focal point

F4 always pointing straight downward to the alidade plat-

form. By carefully adjusting L_ and L6 so that the distance

from Fx to the mirror M8 is equal to 260 in. (6604 mm),

the paraboloidal mirrors M8 and M9 are identical to the
mirrors M2 and M3 in the center-fed BWG design. Thus,
there are four identical curved mirrors in this double BWG

feed system.

The value of L5 used in this design is 290.645 in.

(7382 mm), which is the same as the spacing between mir-

rors M8 and M9. There is also enough clearance between

an incident ray at the lower rim of M8 and the rim of the

opening hole on the surface of the main reflector. Fig-

ure 15(b) shows detailed dimensions of the bypass BWG

design. Observe that the bypass performs slightly better
than the center BWG, due to the absence of the ellipsoidal

magnifier mirror and the shorter main path (290 versus

360 in.).

F. Microwave Performance Summary

Table 1 lists the BWG losses at X- and Ka-band for

both BWG systems and shows the reference tIEF perfor-

mance. The loss due to spillover was calculated with the

assumption that the mirrors are in free space and that the
energy not impinging on the mirrors is lost.

II. Conclusions

The new 34-m antenna fed with either a center or by-

pass BWG will lose 0.2 dB or less, as compared with a

standard-fed Cassegrain antenna at X- and Ka-bands. The
antenna is currently under construction and is scheduled

to be completed in July 1990. Phase 1 of the project will

provide independent X- and Ka-band receive-only opera-

tion. Phase 2 of the project will provide for simultaneous
S- and X-band or X- and Ka-band operation, and the de-

sign is currently under way.
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Table 1. Beam wavegulde performance*

Gain, dBi

Frequency, (100 percent
GHz efficient)

HEF DSS-13 DSS-13

Cassegrain Bypass BWG Center-fed BWG

Portion Paraboloid Ellipsoid

Gain, dBi Gain, dBi due to Gain, dBi spill spill
spiUover portion portion

8.45 69.57 69.21 69.13 --0.06 69.06 --0.05 -0.06

X-band

31.4 80.98 80.62 80.55 -0.06 80.42 -0.03 -0.03

Ka-band

*Losses due to surface rms, BWG mirror misalignments, subreflector support blockage, and feed system I2R are

not included.
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Fig. 7(c). Equivalent paraboloid for the

hole.
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Fig. 13. Center-fed beam waveguide output (Ka-band)
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Fig. 14. Comparison of horn versus beam waveguide feeding

dual- reflector system.
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Fig. 15. Bypass beam wavegulde geometry: (a) general layout;

(b) detailed dimensions of the bypass beam wavegulde design.
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