WATER FLOW MEASUREMENTS IN A 180 DEGREE TURN-AROUND DUCT

by V. A. Sandborn and J. C. Shin Colorado State University Fort Collins, Colorado

Prepared Under Contract No. NAS8-36354

For George C. Marshall Space Flight Center NATIONAL AERONAUTICS AND SPACE ADMINSTRATION

June,1989

(NASA-CR-183995) MEASUREMENT OF TERMS AND Nº0-26271 PARAMETERS IN TURBULENT MODELS Final Report (Colorado State Univ.) 134 p CSCL 200 Unclas 63/34 0293329

CR-183993

FINAL REPORT

Contract No. NAS8-36354 MEASUREMENT OF TERMS AND PARAMETERS IN TURBULENT MODELS Virgil A. Sandborn

Colorado State University

SUMMARY

Experimental measurements of the mean and turbulent velocity field in a water flow, turn-around-duct was documented. Detailes of the measurements and data obtained was submitted to NASA-Marshall Space Flight Center in a report entitled "Water Flow Measurements in a 180 Degree Turn-Around-Duct" by V. A. Sandborn and J. C. Shin. A copy of this report is included as part of the final report. Further evaluation of the data obtained was employed by Dr. Shin in a PhD Dissertation entitled "Experiments on Turbulent Shear Flow in a Turn-Around Duct". A copy of this Dissertation is also included as part of the final report. These two reports cover all results obtained during the contract peroid.

The small radius of curvature duct experiments were made over a range of Reynolds numbers (based on a duct height of 10cm) from 70,000 to 500,000. For this particular channel the flow is dominated by the inertia forces. Details of the inertia dominated curved duct flow are covered by Dr. Shin in the enclosed Dissertation. Use of the local bulk velocity to non-dimensionalize the local velocity was found to limit Reynolds number effects to the regions very close to the wall. Only secondary effects on the flow field were observed when the inlet or exit boundary conditions were altered. The flow over the central two-thirds of the channel was two dimensional.

Mean tangental and radial velocities, streamlines, pressure distributions, surface shear stress; tangental, radial and lateral turbulent velocities and the Reynolds turbulent shear values are tabulated in the two reports. The flow along the inner surface of the turn was found to relaminarize due to the large acceleration of the flow in this region. Near the exit of the turn on the inner surface a separation bubble occurs. At low Reynolds numbers the separation bubble size varies, however, above a Reynolds number of 300,000 the bubble mean flow was insensitive to Reynolds number. It appears that the separation is also controled by the inertia forces. The flow along the outer surface developes very large turbulent velocities in all three directions. While low speed flow visualization suggests the development of longitudinal vortices along the outer wall, it was

not possible to identify the motion from the measurements. The vortices were highly time dependent, thus the time averaged measurements do not indicate any lateral aray of velocity variations.

. •

It is evident from the experimental study that a complex numerical modeling technique must be developed to predict the flow in the turn-around-duct. The model must be able to predict relaminarization along the inner-convex-wall. It must also allow for the major increase in turbulence produced by the outerconcave-wall. It appears that the existing numerical models can not predict the occurance of separation along the inner wall at the exit of the turn. The separation occurs well downstream of the point where it appears on a circular cylinder. Obviously, the inertia forces in the curved duct restrict the separation from occuring until near the exit. It was originally assumed that the flow along the convex wall had returned to a turbulent boundary layer to delay the onset of separation. However, it may not be necessary for the surface layer to return to a turbulent state to delay the separation in the inertia dominated turnaround-duct. ---

NOMENCLATURE

Cn	static pressure coefficient, eq. (1)	
f	frequency, hz	
F	Froude number, U/\sqrt{lg}	
q	acceleration of gravity	
Ĥ	duct height	
l	characteristic length	
p	static pressure	
Pref	static pressure at duct inlet	
R	duct radius of curvature, 10cm	
Re	Reynolds number, $U_m H/\lambda$	
S	curvilinear distance in streamwise direction	
t	time	
Т	temperature	
u	tangential turbulent velocity	
U	local tangential mean velocity	
Um	integral mean or bulk velocity (usually specified at	
	upstream)	
U	surface shear velocity, $\sqrt{\tau_w}/\rho$	
v	radial turbulent velocity	
V	local radial mean velocity	
W	spanwise turbulent velocity	
х	distance in streamwise direction (along inner or outer	
	surface)	
У	distance normal to the duct surface	
Z	spanwise distance parallel to the duct surface	
Δ	vertical distances of the static pressure caps	
E	static pressure tap error	
φ	hot film yaw angle to the tangential flow	
ρ	fluid density	
V	fluid kinematic viscosity	
τ	surface shear stress	

WATER FLOW MEASUREMENTS IN A 180 DEGREE TURN-AROUND RECTANGULAR DUCT

by V. A. Sandborn and J. C. Shin

ABSTRACT

The mean and turbulent velocity field in a water flow, turn-around duct has been documented. Affects of Reynolds number, inlet conditions, and exit screens were evaluated. The small radius of curvature duct was operated over a range of Reynolds numbers from 70,000 to 500,000.

The mean flow in the turn-around duct is dominated by the inertia forces. The use of the local bulk velocity to non-dimensionalize the velocities greatly reduces the Reynolds number variations. Only secondary affects were observed when the inlet or exit boundary conditions were altered. The inlet conditions were varied from a smooth surface to roughness on the inner surface inlet, and also trip wires on both the upper and lower inlet surfaces. Mean tangential velocities, flow direction, tangential and radial turbulent velocities, and the Reynolds turbulent shear values are tabulated.

The flow along the inner surface of the bend is first relaminarized by the large acceleration of the flow. Near the exit of the turn on the inner surface a separation bubble occurs. The separation bubble varies with Reynolds number, however above a Reynolds number of 300,000 the separation bubble mean flow is insensitive to Reynolds number. The flow along the outer surface develops very large tangential and radial turbulent velocities. Near the exit of the turn the radial turbulent velocity component is approximately twice the magnitude of the tangential turbulent velocity.

INTRODUCTION

Extension of fluid turbulent modeling to complex shear flows requires experimental measurements both for checking predictions and for modeling improvements. The flow in a 180 degree, small radius of curvature, turn-around duct is a case where a number of flow phenomena occur. The outer concave region contains a very large magnitude turbulent flow. The inner convex region initially contains large flow acceleration which produced relaminarization. The flow transitions back to turbulent and then separates on the inner surface at the exit of the turn. Coupled with the numerous phenomena is the observation that the flow is dominated, particularly at the high Reynolds numbers, by the inertia terms. The present report is a summary of measurements made as a directed effort to improve documentation of the flow in the 180 degree, turn-around duct.

EXPERIMENTAL STUDY

TABULATED MEASUREMENTS - Detailed measurements of the surface static pressure, mean velocities, flow angles, tangential and radial turbulent velocities, and the turbulent Reynolds stress were made for a number of stations around the duct and over a range of Reynolds numbers. Tabulated data obtained are given in Appendices A, B and C. Appendix A contains a set of data obtained with trip wires placed in the duct inlet. Appendix B contains data obtained for the case of roughness on the lower surface of the inlet. Appendix C contains data obtained in the original evaluation of the flow facility with smooth inlet conditions. Both Appendix A and B also contain information on the flow when different exit screens The major part of the data in Appendix A was were in place. recorded for an upstream mean or bulk velocity of 2.83 m/sec or a The data were focused on the nominal Reynolds number of 200,000. approach flow and the area of relaminarization, although detailed measurements were taken completely around the duct. The data of Appendix B were directed toward the evaluation of Reynolds number variations and detailed measurements in the separation bubble Although the upstream inlet conditions are different for region. the data of the three Appendices, the mean velocity profiles in the The mean and turbulent velocity data turn are nearly the same. reported in Appendices A and B were obtained using a laser velocimeter-counter system which proved to be more accurate than the laser-tracker system employed for the measurements tabulated in Appendix C.

FLOW FACILITY - A special two-dimensional channel, shown in figure 1, was constructed for the evaluation of the flows in a turn-around duct. The channel is 10 cm high and 100 cm wide, with The working fluid was a 10 cm centerline radius of curvature. water which was supplied through a 61 cm diameter pipe. The water was taken directly from a large reservoir that produces a constant head of approximately 75 meters. The water flow was controlled by a 61 cm diameter valve, 104 meters upstream of the channel inlet. A section 145 cm long is used to transition from the circular pipe to the rectangular duct. For the studies reported herein no screens or flow straighteners were employed in the inlet section. A rectangular entrance region 127cm long is included ahead of the turn section. The exit of the turn is also a straight rectangular The outlet of the channel could be section 43.2 cm long. restricted by screens. The screens were employed to increase the flow exit resistance so that the water completely filled the channel at low flow rates. By increasing or decreasing the outlet resistance it was possible to operate the facility over a wide For Reynolds numbers greater than range of flow velocities. approximately 500,000 the exit screen will be removed. With the dense screens in place the facility operated at a Reynolds number of the order of 80,000 with slightly greater than one atmosphere of pressure in the test section. With the large reservoir water head available very high flow rates are possible. The major limitations on the flow is the strength of the test section. The

large reservoir also insures constant temperature of the water during a run, which is of the order of 7° to 10° Celsius - depending on the time of the year. The facility was built of clear lucite for ease of access of the optical laser velocimeter. The lucite was re-enforced with steel to strengthen the structure. The outer turn was made from a solid block of lucite. Provisions for static taps and the mounting of probes and surface transducers are included around the complete test section.

PRESSURE MEASUREMENTS - Details of the static pressure instrumentation locations are given in Appendix A. Thirty taps along the centerline of the duct were used to measure the surface static pressures. The taps were 0.81 mm in diameter. For this diameter of static tap and a maximum surface shear velocity, U_{τ} = $(\tau_{\mu}/0)^{1/2}$, of 0.3 m/sec, the measured static pressure error determined from the data of Franklin and Wallace (1970) is ϵ/τ_{μ} = 0.56, or $\epsilon = 52 \text{ N/m}^2$. This error is related to the maximum uncertainty in the pressure measurements. For a pressure of one atmosphere (86,200 N/m^2 for the test conditions) the measured pressure error is 0.06 percent. The use of a differential pressure, $p - p_{ref}$, would cancel the error if U_T was the same for the two pressure taps. Oil and water manometers and also diaphragm pressure transducers were employed in the measure of the static pressures. In all measurements the first pressure tap, 109.2 cm upstream of the start of the turn, was used as the reference pressure, figure A-2. Both, surveys around the facility, and individual pressure differences as a function of Reynolds number were measured during the study. Table A-Ia, B-Ia and b, and C-I list the measured pressure coefficients as a function of Reynolds number. In all cases the reference plane of the manometers or pressure transducers was located below the lowest point of the facility, figure A-2 (insert), so the static head from location to location does not enter the measurements. The actual static heights for each tap around the turn are noted on figure A-2. When the diaphragm pressure transducers were employed an averaging time of the order of 30 seconds was used for each individual pressure difference measurement. In all cases the pressure coefficient c_p

$$c_{p} = \frac{p - p_{ref}}{(1/2)\rho U_{m}^{2}}$$
(1)

were tabulated.

Table A-Ic lists the magnitude of the reference pressure (above atmospheric pressure) as a function of the Reynolds number and for different exit screens.

VELOCITY MEASUREMENTS - A forward scattering, single component, laser velocimeter was employed to measure the mean and turbulent velocity distributions in the duct. A 19 milliwatt, He-Ne laser was used as the light source. The effective beam diameter was of the order of 0.5mm. The forward scattered signals were sensed by a photodiode. An optical frequency shifter (Bragg cell) was used in the separated flow regions. A tracker system was employed in the preliminary measurements, Appendix C, and a counter system was used in the later evaluations, Appendix A and B. A 580

mm focal length lens was employed for the present measurements. Coupled with the refraction effects of the water this focal length was sufficient to allow measurements to be made over most of the The lens-laser system produced an of the channel. width interference fringe spacing of 7.360x10⁻⁶ meters in air. The refractive effects of water alters the beam angles and the light wave length such that the fringe spacing remains the same as in The mean velocity was determined by measuring the average air. frequency of the doppler bursts and then multiplying the frequency The turbulent velocities were evaluated by the fringe spacing. from the measured root mean square of the frequencies and then multiplying this rms by the fringe spacing. Frequency sample rates were high enough, so that accurate values were obtained with no need for corrections. The laser crossed beams were set at two or more different angles to determine the local flow direction, (from which the magnitude of the radial mean velocity component was The radial, and Reynolds shear stress, turbulent evaluated). components were also obtained from the rotated beam data. Near the surfaces beam rotation was impossible, so the flow angle, radial turbulent component and turbulent shear stress could not be Angles from 20 to 45 were employed to evaluate the obtained. radial information. For all of the velocity distributions the measurements were taken along radial distances (perpendicular to the walls). For most of the measurements data rates in the range from 2000 to 10,000 per second were indicated. The lowest data rates were encountered near the surface and in the separation region. The laser system was mounted on a rotary milling table, in order to move the beams across the test section in the radial direction. The movement was determined by dial indicators, which The initial location of the could be read to 0.030 mm. measurements with respect to the channel surface was limited to ± 0.25 mm. Evaluation of the flow angles from the rotated beams varied by approximately \pm 1 degree. The output of the laser counter or tracker was time averaged over 20 to 90 seconds depending on the sample rate. Repeatability of the mean velocities was found to be approximately \pm 0.005 m/sec in the steady flow The turbulent velocities were also determined by time regions. averaging the fluctuating velocities over the 20 to 90 seconds. A constant temperature, hot film anemometer was also used in the A direct comparison of the tangential preliminary measurements. turbulent intensities measured with the laser velocimeter and with a hot film probe is shown on Figure 2a). Figure 2b) is a comparison of the tangential turbulent anemometer and the laser velocimeter. The laser velocimeter data agree with the anemometer results up to a frequency of 100 hz. The deviation above 100 hz is due mainly to the failure of the scattering particles in the flow to follow The deviation of the laser the high frequency fluctuations. measurements at the high frequencies did not affect the evaluation of the rms turbulent values, since the major contributions to the rms signals come from frequencies below 100 hz (i.e. at 100 hz the energy is roughly 1.7 times less than that at 2hz).

Due to the high particle content of the flow it proved difficult to maintain accurate calibration of the hot films. Thus, the laser velocimeter was extensively employed for the measurements.

SURFACE SHEAR STRESS - The surface shear stress was not directly measured. Empirical relations which included fitting of the mean velocity measurements to the law of the wall, Clauser (1956), were used to evaluate the surface shear, Figure 3. Α Stanton tube probe was calibrated at a location -1.7H upstream of the start of the turn. The probe consisted of two static holes (0.6 mm in diameter) placed side by side. Over one of the static holes a thin razor blade was mounted. The lip of the razor blade was less than 0.1 mm above the surface. The Stanton tube senses the mean flow velocity very near the surface. Ideally, it is desirable to measure the velocity in the "linear" viscous sublayer. Ideally, it is For the present flow the linear sublayer thickness $(yU_{\tau}/v = 5)$ is of the order of 0.09 mm (for Re = 140,000) to 0.02 mm (for Re = 450,000). Figure 4 shows a typical calibration curve for the Stanton tube. The difference in pressure is measured directly with a capacitance, diaphragm type pressure transducer. For the particular diaphragm used, shear velocities from 0.06 to 0.80 m/sec can be measured. A surface-heat transfer, thin film gage, 0.15x1.2 mm, was also used to evaluate the fluctuating surface shear. The analogy between surface heat transfer and surface shear requires that the streamwise length of the gage be no greater than the linear viscous sublayer thickness.

FLUID PROPERTIES - The density and viscosity of the supply water were periodically checked with a hydrometer and an Ostwald type capillary viscometer. Within the three place readability of these instruments the water properties agree with tabulated values for pure water.

FACILITY FLOW EVALUATION - The large aspect ratio, 10:1, duct was employed to develop a quasi-two-dimensional, flow. Initial evaluation of the flow with a smooth inlet, Sandborn (1988) indicated a slight variation of the velocity distribution in the lateral direction across the inlet. The addition of first roughness and more recently trip wires on the inlet improved the flow in the rectangular entrance, and produced a near symmetric approach flow at the higher Reynolds numbers. The initial velocity distributions, Appendix C, of the approach flow indicated thicker boundary layers on the outer surface than on the inner wall. Figure 5a) shows velocity distributions at x = -2.54H upstream of the start of the turn for a number of Reynolds numbers for the trip wires on the inlet. The flow is approaching fully developed channel flow with the inner surface layer being just slightly thicker than the outer layer. The use of an exit screen does not appear to alter the upstream flow in the duct. Figure 6 shows measured velocity distributions at the 2.54H location for the case of no exit screen compared with a dense exit screen. Figure 7 shows typical centerline tangential and radial turbulent intensity variations as a function of Reynolds number measured in the rectangular entrance duct. The variation of the intensities with Reynolds number is similar to results obtained for fully developed

pipe and channel flow, Sandborn (1972). The magnitude of the tangential turbulent component is slightly less at the inlet than values obtained at the centerline of fully developed pipe flow. The slight increase in the magnitude of the turbulent intensity with distance along the duct indicates the centerline fully The larger magnitude developed conditions are being approached. of the radial velocity component suggests the inlet contraction damped the tangential component more than the radial component, which would be predicted theoretically. A detailed evaluation of the lateral or spanwise variation of the mean and turbulent velocities in the turn was made. Figure 8a) shows the spanwise variation of the mean velocities near the duct center at a number of locations around the turn. The data of Figure 8a) is for the case with roughness on the inlet. Although small variations in the velocity are observed, the flow was nearly two-dimensional. Some of the variation is due in part to the measuring technique. The present actuator system can span approximately 20 cm. The focal lens must then be remounted or replaced by a shorter focal length lens for each 20 cm segment. Slight inaccuracies in the lens alignment can result in small shifts in the measured velocities. Figure 8b) shows the variation in the measured tangential turbulent velocities. The actual variation of the turbulent velocity across the span is small over the central region of the duct. Only near the side walls are large variations observed. Appendix D gives a more detailed set of information on the spanwise variations measured around the duct. It was found that the most pronounced variations in spanwise mean velocity and turbulence occurred in and near the separation bubble. Some of the variation in the separation bubble and in the exit duct appeared to be related to Removal of the exit screen the uniformity of the exit screen. improved the two-dimensional aspect of the flow in the downstream region. An attempt was made to identify the existence of cell like structures which would relate to possible Taylor-Gortler vortex motion in the outer concave region of the flow. Figure D-5 shows a set of data taken at the 90 degree location. No identifiable spanwise periodic variation in either the tangential or radial mean Figure D-5d) shows an apparent spanwise flow was observed. periodic character in the radial turbulent velocity variation, but the magnitude of the variation is extremely small (of the order of 1 percent). The spanwise surveys would appear to justify treating the present turn-around duct flow as quasi-two-dimensional. Only in the separation region are deviations from two-dimensional flow of sufficient magnitude to be of importance.

TURN-AROUND DUCT FLOW EVALUATION - Figure 9 summarizes the main global flow characteristics observed for the small radius of curvature, turn-around, two dimensional duct. The very rapid turning of the flow at the start of the curve has the effect of wiping the turbulent boundary layer off the inside surface. The boundary layer was so thin that it was nearly impossible to detect a decrease in velocity with the laser velocimeter as the inner wall was approached. The large acceleration of the inner region flow is present around to 90 degrees. The flow at the start of the bend effectively turns away from the outer surface, which produces an

adverse pressure gradient on the outer surface. Measurements at low Reynolds number (Re = 70,000) indicated that the start of "incipient detachment" of the turbulent boundary layer (greater than 1 percent flow reversal) was present along the outer surface for approximately 15 degrees around the turn. For higher Reynolds numbers no evidence of flow reversal was found. At approximately 15 degrees around the turn the radial turbulent velocity component in the outer region starts to increase rapidly. The radial component growth continues around the turn and it reaches values twice the magnitude of the tangential velocity component. The tangential velocity component also grows in magnitude along the outer portion of the turn around to about 30 degrees. It then decreased in magnitude and becomes more uniform over the outer half of the turn. For high Reynolds numbers a separation bubble appears on the inside surface at approximately 150 degrees around the turn. The character of the bubble changed for Reynolds numbers below approximately 300,000. The bubble extends around the exit of the turn to approximately one duct height downstream of the turn. The maximum radial extent of the separation bubble is roughly 0.2 of the duct width.

The boundary layer on the outer surface downstream of the turn appears to be very thin. Apparently the combination of the flow turning back into the straight duct and the large radial turbulent velocities act to reduce the velocity gradient over the outer flow region.

STATIC PRESSURE DISTRIBUTION -Typical static pressure variations around the facility are plotted on Figure 10. The data shown on Figure 10 are for the rough inlet case, Table B-Ib. The pressure decreases along the entrance region indicating the flow is developing toward the fully developed conditions. Over the outer surface the pressure initially rises and then becomes nearly constant from 50 degrees around to 130 degrees. There is a moderate favorable pressure gradient on the outer surface at the exit of the turn. Downstream of the turn the pressure becomes nearly constant. On the inside surface of the turn the flow accelerates and a large favorable pressure gradient develops. The acceleration starts a short distance upstream of the turn and reaches a maximum between 10 and 20 degrees around the turn. As noted the favorable pressure gradient is sufficient to relaminarize the approach turbulent boundary layer. The minimum pressure occurs just before the 90 degree location, and a strong adverse pressure gradient exists downstream of the 90 degree station. A small perturbation in the pressure is observed between 150 and 170 degrees on the inner surface. The inner surface separation bubble starts to develop at the 150 degree location. By approximately 2 channel widths downstream of the turn the outer and inner pressure values are the same. Figure 11 compares the pressure distributions measured with and without an exit screen. These measurements are for the case of trip wires on the inlet. The effect of the exit screen on the pressure distribution was small. Figure 12 is a replot of the data of Figure 11 compared with potential flow calculations. The pressure along the outer surface is similar to

the potential flow variation. Along the inner wall the potential flow calculations indicate a larger favorable pressure gradient at the start of the turn and a more gradual transition to the adverse Obviously the gradient in the downstream part of the turn. potential calculations fail to account for the dissipation in the so the downstream pressure does not agree with the duct. measurements. Figure 13 compares the static pressure measurements with data reported by Monson and Seegmiller (1989). The measurements of Monson and Seegmiller were made in a turn-around This duct is 3.8 cm high and 38 cm duct in high pressure air. wide, with a centerline radius of curvature of 3.8 cm. The high Reynolds number, Re = 1,000,000, data agrees with the present outer wall results, while the low Reynolds number, Re = 100,000 measurements agree with the pressures measured along the inner The present water flow duct measurements show only surface. The water flow secondary differences with Reynolds number. facility operation at low Reynolds numbers may be different from the air facility, since the Froude number of the water duct approaches 1. [Froude number, F (=U/ $\sqrt{\ell g}$), is the ratio of inertia to gravitational force. The facility was setup in the horizontal plane for convenience of the laser velocimeter operation, so the water flows down around the turn. In metric units $(lg)^{1/2}$ is of the order of 1 if the characteristic length, ℓ , is taken as the radius of curvature or duct width. For a Reynolds number of 70,000 the mean flow velocity is also approximately 1 m/sec.] The original measurements, Appendix C, showed the pressure distribution around the duct was nearly the same for Reynolds numbers from 77,000 to 207,000, Sandborn (1988). Thus, it was assumed that the Froude number was not a factor.

MEAN VELOCITY DISTRIBUTION - Figure 14 shows typical velocity profiles at select locations around the duct. The measured velocities are non-dimensionalized by the local mean or bulk is closely Since the flow velocity, U_m, for the flow. two-dimensional the mean velocity was obtained by integrating over the centerline velocity distribution only, the Reynolds number, Re $(=U_mH/v)$, is defined using the mean velocity and the channel width, In water flow it is common to employ a hydraulic diameter, Η. which is approximately 2H for a rectangular channel, however, since the present flow is nearly two-dimensional the channel width was taken as the characteristic length. As may be seen on Figure 14, the velocity distributions at each specific location are nearly identical independent of the Reynolds number. The data shown on Figure 14 were obtained from cross plots of measurements made at fixed radial points, while the mean flow velocity was varied. Figure 15 shows a typical set of measurements of the velocity variation at 90 degrees around the turn for fixed radial distances. These data demonstrate that the effect of Reynolds number on the non-dimensional velocity ratio is small. Only in the region of the separation bubble was a pronounced Reynolds number effect observed.

Figure 16 compares the mean velocity distributions at the 90 degree location for the three inlet conditions; smooth, roughness and trip wires. Figure 17 is a comparison of the mean velocity distributions at the 90 degree location with or without an exit

screen. The effect of either the upstream inlet or downstream exit conditions on the flow in the turn is quite small. The large inertia changes in the turn dominate effects related to the entrance and exit boundary conditions. At the start of the turn, Figure 14b), and around to 90 degrees it was not possible to obtain laser velocimeter data close to the inside wall to record a decrease in the local velocity. As the outer wall is approached the surface curvature blocks the laser beams at the side of the facility, so measurements close to the outer wall are limited. Figure 14e) shows the velocity distribution 3.03H downstream of the turn exit. The boundary layer along the outer surface at the turn exit undergoes an acceleration similar to the flow along the inner surface at the start of the turn. The outer surface boundary layer is quite thin at the exit of the turn. Figure 18 is a comparison of the water channel velocity distributions with the profiles of Monson and Seegmiller. The air tunnel data at the start of the turn, Figure 18a, has a thicker inner wall boundary layer than observed in the water channel. The agreement of the two turn-around duct flows at the 90 degree location, Figure 18b), is very close over the center portion of the flow. The air tunnel reference velocity used for the flows appears to be different from the local mean velocity, since the area under the two Reynolds number curves are not equal. If the air data were normalized by the local mean velocity the Reynolds number variation would be quite small and the agreement with the water channel data would be even closer.

SEPARATION BUBBLE - Detailed sets of measurements in the separation bubble were made for both the cases of inlet roughness and trip wires, Tables A-IIa and B-IIc. Figure 19 is a plot of the velocity and percentage time the flow was reversed near the inner wall in this separation region for the rough inlet case. The photo is a visualization of the separation bubble. Air bubbles were injected through the 90 degree location static tap. The breakup of the bubble stream at roughly 170 degrees corresponds to the start (transitory detachment) of the separation bubble. At 150 degrees around the turn, Figure 19a), the flow was reversed 10 percent of the time at a distance of 0.005H from the inner surface. By 160 degrees, Figure 19b), the higher Reynolds number flows, Re > 300,000, are reversed approximately 25 percent of the time. The measurements at 170 degrees, Figure 19c), indicate the point of zero mean surface shear has been reached for the complete range of Reynolds numbers. The lower Reynolds number flow, Re = 200,000, did not develope as large a separation bubble as that of the higher flow rates. However, the most recent measurements at Re = 206,000 with the trip wires on the inlet and a dense exit screen, shown on figure 19d), indicate a more pronounced separation than obtained for the rough inlet case. Figure 20 shows the velocity variation with Reynolds number at fixed heights from the inner surface at the turn exit. The character of the separation bubble changes at a Reynolds number of 300,000. Beyond Re = 300,000 the flow is not altered by increasing velocity. Figure 21 compares measurements made at the exit of the turn with and without an exit screen. The coarse exit screen did not have an apparent effect on the velocity

distribution in the separation bubble region for the rough inlet case. Also shown on figure 21 are faired curves of the measurements of Monson and Seegmiller (1989) at the turn exit. The separation bubble in the air facility is more pronounced than obtained in the water channel. Dimensionwise the air and water bubbles are nearly the same physical heights even though the channel width is 3.81 cm for the air and 10 cm for the water facility. An estimate of scales related to the radial distances gives:

CSU Water Facility	Nasa Air Facility
Radius $R = 10$ cm	R = 3.82 cm
$\sqrt{1.57} \times 10^{-6}$	$m^2/s = 1.25 \times 10^{\circ} m^2/s$
Assume a viscous	length = $(\sqrt{t})^{1/2}$, where the time t
= transient	time, $t = s/U$
Est. $U = 7.13 \text{ m/s}$	U = 32.9 m/s
s = 0.314/m	s = 0.120/m
t = 0.0440 sec	t = 0.00365 sec
$(\sqrt{t})_{1/2}^{1/2} = 2.63 \times 10^{-6}$	$m_{1/2} = 6.75 \times 10^{-1} m_{1/2}$
$(\sqrt{t})^{1/2}/R = 2.63x1$	0^{-3} (vt) $^{\prime\prime}/R = 1.77 \times 10^{-3}$

The transient time of a fluid element in the water duct is an order of magnitude greater than in the air duct. The nondimensional viscous transport scale is 50 percent greater for the water channel, which may effect the size of the separation bubble.

TURBULENT VELOCITY DISTRIBUTIONS - Figure 22 shows faired curves of the tangential turbulent velocity component variation around the turn. A pronounced reduction in the magnitude of $\sqrt{u^2}$ occurs near the inside convex surface as the flow enters the turn. The values of $\sqrt{u^2}$ remain small along the inner wall around to nearly 90 degrees. From 90 degrees on downstream the tangential component grows to extremely large values once separation occurs. The tangential turbulent velocity increases in magnitude along the outer surface boundary layer as the flow enters the turn. The increase is typical of turbulence growth observed in adverse pressure gradients. At approximately 30 degrees around the turn the distribution changes. The large magnitude fluctuations tend to spread out over a large portion of the outer flow region. As the flow proceeds around the turn beyond 30 degrees the magnitude of the tangential turbulence decreases and becomes more uniform over the outer half of the duct. By 120 degrees the values of $\sqrt{u^4}$ nearly constant across two thirds of the outer flow. are Preliminary measurements, Appendix C, at low Reynolds numbers indicated $\sqrt{u^2}$ varied greatly with Reynolds number, Sandborn (1988). However, the higher Reynolds number measurements with the roughness on the inlet indicate smaller variations with Reynolds number, Figure 23. Reynolds number effects on $\sqrt{u^2}$ in the separation bubble are shown on Figure 24.

The appearance of large magnitude fluctuations across the outer half of the concave flow in the turn would be consistent with a Taylor-Gortler vortex instability. Flow visualization using milk and also air bubbles as tracers suggest that large scale, "highly time dependent" vortex like structures exist in the concave flow. These motions shift rapidly from side to side with time, so that no stationary vortex array can be identified. Figure 25 show faired curves of the radial turbulent velocity component $\sqrt{v^2}$, variation around the turn. The radial component does not change along the inside region for the initial part of the turn. Unfortunately, the measurements are limited to some distance away from the surface. As in the case of a contraction the tangential component of the turbulence is damped more by the acceleration than the radial component. The magnitude of the radial component increases as the separation bubble is approached. No measurements of $\sqrt{v^2}$ were made in the separation region. Along the outer concave surface the magnitude of the radial component increases rapidly from 15 degrees around to the exit of the turn. It is nearly twice as large as the tangential component, which appears to further reinforce the existence of a highly time dependent vortex like motion.

Large variations of $\sqrt{v^2}$ with Reynolds number were observed at all locations around the turn. Figure 26 shows measurements of $\sqrt{v^2}/U_m$ made at the 90 degree location with and without an exit screen. The radial turbulent component is sensitive to both Reynolds number and boundary condition changes. These large variations in $\sqrt{v^2}$ with only secondary effects being observed for the mean velocity distributions, lead to the conclusion that the turbulent fluctuations are not directly coupled with the mean flow.

The turbulent shear stress \overline{uv}/U_m^2 variation around the turn is shown on Figure 27. The sign convention is that v is positive away from the inner surface. Thus, negative values of \overline{uv} , usually obtained for turbulent boundary layers, would occur along the inside wall. Following this convention the values of \overline{uv} along the outer surface have a positive sign. The magnitude of \overline{uv} approaches zero at 15 degrees around the turn and is slightly positive along the inside convex part of the flow around to 90 degrees. In the separation bubble region very large positive values of \overline{uv} were encountered. Large values of \overline{uv} occur in the outer flow around to greater than 120 degrees. Downstream of the turn (x > 1.5H) large negative values of \overline{uv} occur along the inner part of the flow. The outer flow values of uv decrease once the turn exit is reached.

SURFACE SHEAR STRESS - Figure 28a) shows the variation with Reynolds number of U_T/U_m (= $c_f/2$) obtained for a number of locations on the out-side surface of the turn. These values were obtained with the Stanton tube. The measurements were taken with trip wires on the inlet. Figure 28b) compares the Stanton tube and heat transfer gage evaluations of surface shear at 90 degrees around the The heat transfer gage indicates too high a value of Us for turn. the high Reynolds numbers. The deviation of the heat transfer data is consistent with the effect of too large a streamwise width of the thin film gage. The Stanton tube evaluation employed the direct calibration, figure 4, obtained at the -1.7H upstream station. An uncertainty exists due to the pressure gradient at each location around the turn. The equation of motion very near the surface may be approximated as

$$\frac{1}{\rho} \frac{\partial p}{\partial s} = v \frac{\partial^2 U}{\partial y^2}$$
(2)

Integration of equation (2) assuming the pressure gradient is not a function of y, indicates the velocity varies as

$$U = \frac{yU_{\tau}}{v} + \frac{y^2}{v} \frac{1}{p} \frac{\partial p}{\partial s}$$
(3)

No corrections for the second order pressure gradient effect was made for the evaluations shown on figure 28. The effective y-distance for the Stanton tube was not known. At 10 degrees around the turn the surface shear is small due to the near separation of the boundary layer. The ratio U_{τ}/U_m is approximately constant at the 10 degree location for Reynolds numbers greater than 300,000. The surface shear remains nearly constant along the outer surface from 70 to 110 degrees. In the downstream portion of the turn the surface shear increases rapidly. Figure 29 shows estimated values at 90 degrees around the turn of the fluctuating surface shear intensity obtained from the surface thin film sensor. At the lower Reynolds numbers, where the thin film and Stanton tube results of the mean shear are approximately equal, the fluctuation, τ_w ' (estimate of the rms surface shear), is of the same order of magnitude as the mean surface shear.

CONCLUSION

Measurement of the mean and turbulent velocities in a 180 degree, turn-around duct are reported. A high Reynolds number, water channel was employed to evaluate the flow quantities in a small radius of curvature (ratio of channel width to centerline radius of one) duct. Measurements for a range of Reynolds numbers from 70,000 to 500,000 are reported.

The flow in the turn is dominated by the inertia forces. Variation of either the upstream inlet or downstream exit conditions have only secondary effects on the flow in the turn. The local velocity distributions at each individual location around the turn were nearly similar when non-dimensionalized by the local bulk velocity of the flow. The large aspect ratio, 10:1, of the duct produced a quasi-two-dimensional flow. At the turn entrance, the flow along the outer concave surface experiences an adverse pressure gradient, which produced a near separation condition for the lowest Reynolds number flow. However, at the higher Reynolds numbers no separation was observed. By approximately 15 degrees around the turn large radial turbulent velocity components are The large radial measured in the outer concave part of the turn. velocity components of turbulence suggest a Taylor-Gortler type vortex motion exists in the concave outer region of the turn; however, no vortex cell like characteristics could be identified in the measurements. The large radial turbulent velocities persist around the complete turn. Very large accelerations of the flow occur near the inner convex surface at the start of the turn. The tangential turbulent velocities and the Reynolds shear stress along the inner wall were damped. Relaminarization of the boundary layer occurs along the inner wall. A separation bubble occurs on the

inner convex surface at approximately 150 degrees around the turn. The separation bubble persists for some distance downstream of the turn exit. The separation bubble is Reynolds number dependent at the lower Reynolds numbers. For Reynolds numbers greater than 300,000 the velocity variations in the separation bubble are similar when non-dimensionalized by the bulk velocity. the separation velocity distribution was altered when a dense screen was placed at the duct exit.

The measured turbulent velocity components were more sensitive to Reynolds number than the mean velocities. It appears that the variation of the turbulent velocities are relatively independent of the mean flow. Beyond the turn exit the large turbulent mixing and the mean flow turning appear to reduce the thickness of the outer wall boundary layer.

REFERENCES

Clauser, F. H. (1956) The turbulent boundary layer. ADVANCES IN APPLIED MECHANICS, vol. 4, p 1, Academic Press, New York.

- Franklin, R. E. and Wallace J. M. (1970) Absolute measurements of static-hole error using flush transducers. Journal of Fluid Mechanics, vol. 42, pp. 33-44.
- Monson, D. and Seegmiller, H. L. (1988) Comparison of LDV measurements and Navier-Stokes solutions in a two-dimensional 180 degree turn-around duct. AIAA Paper AIAA 89-0275. (Paul K. McConnaughey co-author on calculations.)
- Sandborn, V. A. (1972) RESISTANCE TEMPERATURE TRANSDUCERS. Metrology Press, Fort Collins, Colo. (figure 7.9).
- Sandborn, V. A. (1988) Measurements of turbulent flow quantities in a rectangular duct with a 180 degree bend. NASA Conference Pub. 3012, Advanced Earth to Orbit Propulsion Technology 1988, vol II. May 10-12,1988, NASA George C. Marshall Flight Center, Huntsville, ALA.

a) Schematic Sketch of the 180° Turn Facility

b) Detail of the Construction of the 180⁰ Turn

c) Operating 180⁰ Turn Facility

Figure 1. The 180° Turn Water Flow Facility

ORIGINAL PAGE IS OF POOR QUALITY

a) Turbulent Intensity

Figure 2. Comparison of Laser Velocimeter and Hot Film Anemometer Measurements in the Water Duct.

....

Figure 2. (Concluded) Comparison of Laser Velocimeter and Hot Film Anemometer Measurements in the Water Duct.

Figure 3. Log Law Plot of the Outer Surface Boundary Layer at -1.7H Upstream of the Start of the Turn.

Figure 4. Calibration of the Stanton Tube for Surface Shear Evaluation.

a) Mean Velocity Distribution

b) Tangential Turbulent Velocity Distribution

b) Tangential Turbulent Velocity Distribution

Figure 7. Turbulent Intensity Variation Upstream of the Turn.

Figure 8. Spanwise Variation of the Mean and Turbulent Velocities at the Centerline of the Duct. Roughness on the Inlet.

Flow turns away from outer surface. Adverse pressure gradient along outer surface. Start Approaches, but does not reach incipient detachment. FLOW -After 15 degrees the radial turbulent velocity increases very rapidly and continues to grow around the turn. -Maximum velocity in the turn Flow turned toward occurs just upstream of 90 deg inner wall. Very large very close to the inside surface. acceleration and favorpressure gradient. **Relaminarization** alona Separation bubble starts at inner wall. 150 deg around the turn for 40110 Re 250,000. EXIT Acceleration along outer wall reduces the shear layer. Very large fluctuations in the region of the separation bubble. Separation bubble extends at least IH downstream of turn exit.

Figure 9. Global Characteristics Observed in the Turn-Around Duct.

h

e) 3.03H Downstream of the Turn

Figure 14. Mean Velocity Distributions Around the Duct. Roughness on the Inlet.

Figure 15. Mean Velocity Variation with Reynolds Number at the 90 Degree Location. Roughness on the Inlet.

Figure 17. Mean Velocity Distributions at 90 Degrees Around the Turn for Different Exit Screens.

a) Start of the Turn

Figure 18. Comparison of the Mean Velocity Distributions with Measurements of Monson and Seegmiller (1989).

c) 160 Degrees Around the Turn

Figure 19. Velocity Distributions and Flow Reversal in the Separation Bubble. Roughness on the Inlet.

Figure 19. (Concluded) Velocity Distributions and Flow Reversal in the Separation Bubble. Roughness on the Inlet

Figure 20. Mean Velocity Variation with Reynolds Number at the Turn Exit. Roughness on the Inlet.

Figure 22. Tangential Turbulent Velocity Variations Around the Duct.

\$1

0.40

41

Figure 24. Tangential Turbulent Velocity Variation in the Separation Region. Roughness on the Inlet.

e) .505H Downstream of the Turn

Figure 24. (Concluded) Tangential Turbulent Velocity Variation in the Separation Region. Roughness on the Inlet.

Figure 25. Radial Turbulent Velocity Variation Around the Duct.

Figure 25. (Concluded) Radial Turbulent Velocity Variation Around the Duct.

Figure 26. Radial Turbulent Velocity Variation with Reynolds Number and Exit Screen. Roughness on the Inlet.

.

Figure 29. Surface Shear Turbulent Intensity at 90 Degrees Around the Turn.

APPENDIX A

TABULATED DATA FOR FLOW WITH TRIP WIRES ON THE UPPER AND LOWER SURFACE OF THE DUCT INLET

A set of mean and turbulent velocity distributions were obtained for the case where trip wires were placed on both the upper and lower surfaces of the duct inlet, Figure A-1. The trip wires, 1.3 mm in diameter, were coated with epoxy paint which served to bond them to the inlet.

Figure A-1. Trip Wire Inlet Condition

The static pressure distributions around the duct were measured from the static taps shown on Figure A-2. Tap number 1 was used as the reference pressure in computing the pressure coefficient.

$$c_{p} = \frac{p - p_{ref}}{(1/2)\rho U_{m}^{2}}$$
(A-1)

where U_m is the mean or bulk velocity of the flow. The measurements were made with the transducer located below the plane of the facility, so that the static head from location to location does not enter into the measurements, see insert on Figure A-2. Values of the static head heights for each location around the turn are noted on Figure A-2; where

Figure A-2. Location of Static Pressure Taps Around the Facility.

 \triangle_1 , corresponds to the outside surface taps and \triangle_2 to the inside surface taps. Time averaging up to 35 seconds were used for the individual pressure measurements.

Table A-Ia lists the static pressure coefficients measured around the duct for the trip wire inlet. For the data of Table A-Ia a "dense" screen was employed at the duct outlet. Table A-Ib lists the static pressure coefficient variation with Reynolds number for the cases of a dense screen and no screen at the duct outlet.

Table A-IIa lists the mean and turbulent velocity measurements in the upstream part of the duct around to the 120 degree location for a bulk Reynolds number of 218,000. The flow in the duct was set to the desired Reynolds number and the complete velocity profile was measured at a particular location. This set of data is the most detailed of the measurement reported.

Table A-11b lists the mean and turbulent velocity measurements made at a location 25.4 cm upstream of the start of the turn for several Reynolds numbers and for the cases of a dense screen and no screen at the outlet. Also tabulated are data at the 90 degree location for two Reynolds numbers and no exit screen. The mean velocity, $U_m = 2.819$ m/sec, listed on Table A-IIa corresponds to the value at the entrance to the duct. The local mean velocity varies slightly along the duct, thus the tabulated values of U/U_m versus y/H are slightly different from the values obtained when the local mean velocity is employed.

Table A-III lists values of U /U_m obtained with the Stanton tube at a number of locations around the turn. Mounting the sensor flush with the surface was done by observing the light scattering from the tube. Comparison of repeat mountings at the calibration station indicated an uncertainty of \pm 5 percent in the resulting calibration curve. Mounting in the curved wall is subject to further uncertainty. The variation of U /U_m for locations 70, 90, 110 degrees, figure 28a), at specific Reynolds numbers appears to be an indication of the uncertainty expected in the curved region.

A hot film anemometer was employed to measure the spanwise turbulent velocity component, $\sqrt{w^2}$. The measured values at 90 degrees around the turn are listed in Table A-IVa. Table A-IVb lists the faired values of the spanwise turbulent velocity for specific Reynolds numbers. The data of Table A-IVb are plotted on figure A-3 and compared with faired values of the radial turbulent velocity components (listed in Tables A-IIa and b). A faired curve of the tangential turbulent velocity component obtained when $\sqrt{w^2}$ was measured is also shown on figure A-3. The spanwise and radial turbulent velocities are nearly the same over the middle region of the outer flow (outer half of the duct along the concave surface).

The spanwise turbulent velocity is larger than the radial component both near the surface and in the center of the duct. These large spanwise fluctuations appear to be consistent with the concept that the flow in the concave region contains highly time dependent vortex type motion.

For the spanwise velocity measurements the hot film was operated in conjunction with the laser velocimeter. The hot film sensor calibration varied with time due to contamination in the water. The laser velocimeter was employed to evaluate the mean and turbulent tangential velocities for each measured point. While the hot film varied with time, it has been documented, Sandborn (1973), (pp.368-71), that the sensor sensitivities are only slightly affected by the contamination. The hot film sensitivities to velocity and flow angle were determined graphically for the sensor output and the laser velocity data. The values of \sqrt{w} were obtained from a "local linearized" relation, Sandborn (1973), [pp.290-91 and eq. (7.28)]. It was assumed that no correlation exists between u and w in the present quasi-two-dimensional flow.

Figure A-3. Spanwise Turbulent Velocity Variation at 90 Degrees Around the Turn.

TABLE A-Ia. Static Pressure Coefficient Distributions. Trip Wires on Inlet; Dense Screen at Exit.

Tap No.	x(cm)	Cp Re=143,000 Um=2.77m/s	Cp Re=207,000 Um=3.03m/s	Cp Re=228,000 Um=3.52m/s	Cp Re=266,000 Um=4.10m/s	Cp Re=296,000 Um=4.56m/s
	Outer wall	1				
2	-84,840	0.0560	0.0526			
3	-60.710	0.0468	0.0398			
4	-36.830	0.0243	-0.0211	0.0270	0.0140	
5	-17.530	0.0746	-0.0507	0.0030	-0.0100	
0	U.80U (0 94 ⁰)	0.3250	0.3340	0.3830	0.3520	
7	2.627	0.4260	0.4240	0.4770	0.4500	0.379
·	(30.10*)			•••••		
8	4.383	0.4750	0.4780	0.5360	0.5020	0.455
_	(50.22*)					0 / 7 7
9	6.137	0.4770	0.4740			0.417
10	(10.33)	0 5030	0 4600	0 8175	0 4776	
	(90,30 [•])	4.3030	0.4000	0.3175	0.4//0	
11	9.634	0.4980	0.5020			
	(110.4*)					
12	11.390	0.4850	0.4860	0.5300	0.4810	0.417
12	(130.5°)	0 4400	0 4270	0 4890	0 4170	0 360
19	(150.6*)	0.4450	0.4370	0.4000	0.4170	0.500
14	14,910	0.3670	0.3450	0.3590	0.2980	0.303
•••	(170.8*)			0.0000	0.2000	
15	23.650	-0.5330	-0.5500	-0.6220	-0.7270	-0.682
	(7.94cm					
	downstrea	m) ·				0 569
10	33.17U	-0.4050	-0.4820	-0.5000	-0.5630	-0.300
	downstrea	m)				
	Inner wall				• •	
	•• •••					
1/	-36.830	-0.0605	-0.0320	0.0430	0.0190	
19	-11 430	-0.0607	-0.0560	0.0160	-0.0050	
20	-5.334	-0.2030	-0.2060	-0.1340	-0 1580	-0.152
21	0.921	-1.6050	-1.6800	-1.7260	-1.6690	-1.421
	(10.56)					
22	2.470	-2.1850	-2.2950	-2.3890	-2.3150	-1.933
	(28.30*)			• • • • • •		
23	4.403	-2.5560	-2.5760	-2.8080	-2.7230	-2.255
24	(50.46)	-2 5820	-2 7270			2 162
• •	(70.69*)	4.3030	-2.1310	-2.8500	-2.7000	-2.405
26	9.652	-2.4040	-2.4790	-2.5430	-2.4570	-2.084
	(110.6*)					
27	11.380	-2.0730	-2.0780	-2.1230	-2.0510	-1.736
	(130.4*)					
20	13.140 (150 44)	-1.5970	-1.5700	-1.5480	-1.5340	-1.307
29	14.8AD	-1.1580	-1 3360	-1 4300	-1 ////	-1 2/3
	(170.5*)			-1.4380	-1.4000	-T•747
30	22.560	-0.6260	-0.6800	-0.8280	-0.9390	-0.872
	(6.85cm					

downstream)

TABLE	A-Ib. Static Screen	c Pressure n Condition	Coefficien ns.	nts for Two	Exit
Tap No	i) . x(cm)) No Exit : Cp Re=386,000 Um=5.96m/s	Screen Cp Re=215,000 Um=3.31m/s	Cp Re=273,000 Um=4.22m/s	
	Outer wall				
10	7.880 (90.30°)	0.5270	0.4431	0.4316	
14	14.910 (170.8*)	0.2880	0.3129	0.2659	
15	23.650 (7.94cm	-0.8470	-0.5332	-0.7048	
16	downstream) 33.170 (17.46cm downstream)	-0.6570	-0.5025	-0.6072	
	Inner wall				
24	6.169 (70.69*)	-2.970			
29	14.880 (170.5 [•])	-1.722	-1.226	-1.3150	
30	22.560 (6.85cm downstream	-1.0950)	-0.6938	-0.9446	

		ii) Dense 1	Exit Screen	1		
Tap No.	x(cm)	Cp Re=166 000 Um=2.56m/s	Cp Re=178,000 Um=2.74m/s	Cp Re=203,000 Um=3.12m/s	Cp Re=241,000 Um=3.72m/s	Cp Re=336,000 Um=5.18m/s
	Outer wall					
10	7.880					0.2186
	(90.30°)					-0 2270
14	14.910					-0.2370
	(170.8*)					-0 9217
15	23.650					- 0,0217
	(7.94cm					
	downstrea	um)				-0.7773
16	33.170					•••••
	(17.46cm					
	downstrea	un)				
	Inner wall	1				
24	6,169	-2.611	-2.559	-2.598	-2.633	
	(70.69*)					
29	14.880					-1.4150
	(170.5*)					-1 1100
30	22.560					-1.1100
	(6.85cm					
	downet ros	- 1			,	

-

Acynolus Humpel.									
Coarse	Screen	No	Screen	Dense Screen					
Static		Static		Static					
press.	Re	press.	Re	press.	Re				
kgf/cm ²		kgf/cm [∠]		kgf/cm ²					
0.4360	494,000	0.0338	359,000	0.5063	369,000				
0.3129	423,500	0.0598	417,000	0.1266	191,000				
0.2672	378,000	0.0809	445,000	0.5190	372,000				
0.1899	320,000	0.1090	523,500	0.4557	354,000				
0.1174	275,000	0.1273	534,000	0.4726	354,000				
0.0738	222,000	0.0668	422,000	0.1336	191.000				
0.0352	176,000	0.0345	345,000	0.6546	415,000				
0.1231	277,000	0.0141	267,000	0.5211	369,000				
0.2074	332,000			0.4290	319,000				
0.2707	384,000			0.3130	277,000				
0.3411	437,000			0.2145	228,000				
0.4184	452,000			0.1477	194,000				
0.4641	503,000				,				
0.5028	524,000								
0.5309	534,000								
0.0352	184,000								

Table A-Ic. Change of Static Pressure at the Reference Tap with Reynolds Number.

......

 $v = 1.32 \times 10^{-6} \text{ m}^2/\text{sec}$

x	= -94.00	-m		v =	-57 20	m	
Re	= 210.00	20		Rom	211 00	.щ Ю	
U	= 2.819	n/sec			2 211,00		
-m T	$= 9.1^{\circ}C$.,		υ _m	0 20C	y sec	
- 	= 1.341	10 ⁻⁶ m ² /se	ec	- 1 = tr	1.339x	$10-6m^2/sc$	
		·	/		200071		/==
у/Н	ус/Н	U/Um	√ u ² /U _m	у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$
.0050	.9950	.7866	.06667	.0051	.9949	.7465	.06564
.0100	.9900	.8086	.07074	.0101	.9899	.7741	.06990
.0150	.9850	.8307	.06731	.0152	.9848	.7969	.06312
.0200	.9800	.8478	.06437	.0203	.9797	.8154	.06504
.0300	.9700	.8678	.06744	.0304	.9696	.8399	.05826
.0400	.9600	.8766	.06558	.0405	.9595	.8530	.06136
.0500	.9500	.8943	.06584	.0506	.9494	.8723	.05890
.0625	.9375	.9055	.06319	.0633	.9367	.8874	.05867
.0750	.9250	.9139	.06398	.0759	.9241	.9079	.05806
.0875	.9125	.9354	.06306	.0886	.9114	.9198	.05311
.1000	.9000	.9462	.05938	.1013	.8987	.9355	.05414
.1500	.8500	.9979	.04857	.1519	.8481	.9712	.05081
.2000	.8000	1.0249	.03110	.2025	.7975	1.0004	.04384
.2500	.7500	1.0362	.01920	.2532	.7468	1.0256	.03698
.3000	.7000	1.0419	.01401	.3038	.6962	1.0378	.03052
.3500	.6500	1.0453	.01177	.3544	.6456	1.0490	.01766
.4000	.6000	1.0442	.01030	.4051	.5949	1.0533	.01542
.4500	.5500	1.0439	.01107	.4557	.5443	1.0556	.01081
.5000	.5000	1.0463	.01050	.5000	.5000	1.0566	.01037
.5500	.4500	1.0458	.01158	.5443	.4557	1.0576	.01063
.6000	.4000	1.0459	.01203	.5949	.4051	1.0576	.01158
.6500	.3500	1.0470	.01158	.6456	.3544	1.0570	.01299
.7000	.3000	1.0479	.01146	.6962	.3038	1.0573	.01395
.7500	.2500	1.0480	.01331	.7468	.2532	1.0479	.02265
.8000	.2000	1.0428	.01517	.7975	.2025	1.0342	.03244
.8500	.1500	1.0295	.02464	.8481	.1519	1.0019	.04224
.9000	.1000	.9835	.04204	.8987	.1013	.9657	.04982
.9125	.0875	.9655	.04304	.9114	.0886	.9438	.05413
.9250	.0750	.9505	.04710	.9241	.0759	.9278	.05736
.9375	.0625	.9384	.04707	.9367	.0633	.9170	.05919
.9500	.0500	.9105	.04835	.9494	.0506	.8905	.05899
.9600	.0400	.8942	.04678	.9595	.0405	.8704	.06040
.9700	.0300	.8619	.05257	.9696	.0304	.8512	.06354
.9800	.0200	.8516	.05315	.9 797	.0203	.8179	.06881
.9850	.0150	.8314	.05679	.9848	.0152	.8039	.06917
.9900	.0100	.8105	.06046	.9899	.0101	.7919	.06775
•9950	.0050	.7996	.05960	.9949	.0051	.7697	.07214

x = -34	3cm		x = -	-25.40	m	
Re= 213,	.000 '		Re=	213 00	0	
U _m = 2.81	.9m/sec		II =	2.819m	1000	
$T = 9.2^{\circ}$	C		σm T =		/ 380	
v = 1.33	9x10 ⁻⁶ m ² /se	ec	v = 1	1.339x	$10^{-6} m^2/se$	c
у/н ус/1	H U/Um	$\sqrt{u^2/U_m}$	у/н	ус/н	U/Um	$\sqrt{\frac{1}{u^2}}$
.0075 .99	25 .7874	.07147	.0050	.9950	.7622	07454
.0100 .99	00 .7982	.07076	.0100	.9900	.7879	.07255
.0150 .98	50 .8114	.06881	.0150	.9850	.8151	.07316
.0175 .982	25 .8123	.06837	.0201	.9799	.8284	.07051
.0226 .97	74 .8398	.06453	.0301	.9699	.8576	.06840
.0301 .969	.8505	.06785	.0401	.9599	.8706	.06840
.0401 .959	.8699	.06475	.0501 .	.9499	.8947	.06507
.0501 .949	.8849	.06350	.0627	.9373	.9098	.06350
.0627 .937	73 .9076	.06063	.0752 .	9248	.9280	.06190
.0/52 .924	.9262	.06015	.1003 .	8997	.9532	.06174
.0877 .912	.9305	.05806	.1504 .	8496	.9942	.05196
.1003 .899	.9458	.05903	.2005 .	7995	1.0242	.04704
.1504 .849	.9856	.04941	.2506 .	7494	1.0402	.04338
.2005 .799	5 1.0130	.04588	.3008 .	6992	1.0608	.03501
.2506 .749	4 1.0372	.03711	.3509 .	6491	1.0739	.02515
.3008 .699	2 1.0551	.03078	.4010 .	5990	1.0852	.01504
.3509 .649	1 1.0627	.02374	.4511 .	5489	1.0851	.01370
.4010 .599	0 1.0692	.01850	.5013 .	4987	1.0869	.01318
.4511 .548	9 1.0733	.01625	.5489 .	4511	1.0867	.01248
.5013 .498	7 1.0746	.01305	.5990 .	4010	1.0859	.01274
.5489 .451	1 1.0744	.01235	.6491 .	3509	1.0830	.01926
.5990 .401	0 1.0763	.01081	.6992 .	3008	1.0789	.02412
.6491 .350	9 1.0737	.01651	.7494 .	2506	1.0613	.03378
.6992 .300	8 1.0701	.01933	.7995 .	2005	1.0418	.04377
.7494 .250	6 1.0604	.02803	.8496 .	1504	1.0078	.04831
./995 .200	5 1.0389	.03750	.8997 .	1003	.9646	.05490
.8496 .150	4 1.0137	.04312	.9123 .	0877	.9426	.05886
.8997 .100	3.9598	.05631	.9248 .	0752	.9270	.06139
.9123 .087	7.9395	.05903	.9373 .0	0627	.9061	.06443
.9248 .075	2 .9243	.06097	.9499 .(0501	.8831	.06533
.93/3 .062	/ .9062	.05867	.9599 .(0401	.8626	.06488
• 3433 • 050	1.8867	.06187	.9699 .(0301	.8376	.07316
.9399 .040	1.8657	.06350	.9799 .(0201	.8059	.06907
.9099 .030	1.8421	.06788	.9850 .(0150	.7761	.07562
.9/99 .020	L .8150	.06702	.9900 .(0100	.7449	.07358
.3020 .0150	0.7972	.07229	.9950 .(050	.7192	.07642
9950 .UI0	0 .//43	.07268				
.3320 .0050	J ./459	.07358	•			

.

6,

		x = Re= U _m = T =	-17.27 213,000 2.819m/sec 9.2°C			
		√ =	1.339×10^{-6}	$^{2}/sec$		
у/Н	ус/Н	U/Um	$\sqrt{\frac{2}{u^2}}U_m$	Angle	$\sqrt{v^2/v_m}$	ūv/ Um ²
.0050	.9950	.7702	.07351	(deg)		
.0100	.9900	.8023	.07425			
.0150	.9850	.8241	.07108			
.0201	.9799	.8440	.06628			
.0301	.9699	.8604	.06901			
.0401	.9599	.8863	.06859			
.0501	.9499	.9084	.06662			
.0627	.9373	.9149	.06654	.774	.06281	001398
.0752	.9248	.9341	.06162	.011	.03836	000864
.0877	.9123	.9444	.06043	361	.03360	000967
.1003	.8997	.9677	.05816	.090	.03310	000997
.1504	.8496	1.0018	.05331	216	.02978	000663
.2005	.7995	1.0384	.04409	.334	.02645	000545
.2506	.7494	1.0569	.03955	.390	.02948	000479
.2632	.7368	1.0571	.03742			
.2757	.7243	1.0615	.03523			
.3008	.6992	1.0663	.03135	.183	.02743	000422
.3509	.6491	1.0826	.02655	.245	.02309	000275
.4010	.5990	1.0892	.02118	.328	.00958	000057
.4511	.5489	1.0944	.01542	.329	.01715	000026
.5013	.4987	1.0943	.01555	024	.01160	.000022
.5464	.4536	1.0928	.01133	052	.01520	000001
.5965	.4035	1.0930	.01459	.539	.01279	000032
.6466	.3534	1.0851	.02074	.000	.00822	.000022
.6967	.3033	1.0789	.02547	.258	.00863	.000044
.7469	.2531	1.0657	.03385	.740	.01884	.000172
.7970	.2030	1.0432	.04005	.711	.02914	.000409
.8471	.1529	1.0078	.05295	.681	.02785	.000619
.8972	.1028	.9546	.05769	.603	.03648	.000757
.9098	.0902	.9366	.05852	.968	.04761	.000886
.9223	.0777	.9216	.06366	.704	.04640	.001176
.9348	.0652	.8986	.06657	029	.04523	.001099
.9474	.0526	.8811	.06459	.369	.08632	.001267
.9574	.0426	.8528	.07092			
.9674	.0326	.8333	.06974		•	
.9774	.0226	.7972	.0/102			
.9825	.0175	. / 728	.07681			
.9875	.0125	./403	.0/645			
. 7725	.00/5	./13/	•09033			

		x =	-12.70cm			
		Re=	216,000			
		U _m =	2.819m/se	с		
		T =	9.5°C	62.		
		v =	1.324x10	^o m ⁻ /sec		
v/H	VC/H	II /IIm	1.2/II		2	2
1/11	yc/n	0/011	v u∕u _m	Angle	√ v70 _m	\overline{uv} / U_m^2
.0050	9950	7717	07505	(aeg)		
.0100	.9900	8136	.0/565			
.0150	.9850	8319	.00090			
.0201	.9799	.8499	.07150			
.0301	.9699	.8798	.06943			
.0401	.9599	.8969	.06578			
.0501	.9499	.9090	.06526	- 910	04220	001010
.0627	.9373	.9338	.06169	810	.04238	001213
.0627	.9373	.9254	.06188	- 304	.00093	000840
.0752	.9248	.9465	.06316	304	.05187	000783
.0752	.9248	.9485	.06226	- 454	.04170	000886
.1003	.8997	.9731	.05631	-1,131	02840	001034
.1003	.8997	.9719	.05899	100	02040	- 000736
.1253	.8747	.9932	.05651	.659	.03179	000881
.1504	.8496	1.0137	.05292	385	.02735	- 000607
.1504	.8496	1.0166	.04952	.582	.03261	000647
.2005	.7995	1.0463	.04377	150	.03244	0006047
.2506	.7494	1.0636	.03775	196	.02354	000358
.3008	.6992	1.0865	.02988	367	.02811	000266
.3509	.6491	1.0918	.02790	286	.01979	000140
.3509	.6491	1.0882	.02937	.034	.01317	000104
.4010	.5990	1.0981	.01600	085	.01777	000042
.4511	.5489	1.0981	.01517	.364	.01416	000036
.5013	.4987	1.0994	.01190	.153	.01703	000011
.5489	.4511	1.0979	.01286	340	.01381	000005
.5990	.4010	1.0941	.01600	021	.00912	000002
.6491	.3509	1.0912	.01702	116	.02022	000012
.6992	.3008	1.0774	.03014	-1.621	.01682	.000200
.7494	.2506	1.0623	.03648	188	.02280	.000196
./995	.2005	1.0363	.04755	661	.02132	.000553
•0490	.1504	.9979	.05241	.000	.03345	.000676
0240	.1003	.9417	.05989	158	.03606	.000870
0272	.0/52	.9102	.06274	.048	.04853	.001106
9100	0501	•0722 0710	.06092	490	.06256	.000127
.9500	0401	•0/40 g202	.00/45	162	.05964	.001180
.9699	0301	2122 2122	.00884			
.9799	.0201	·0120 70/0	07/05			
.9850	.0150	1631 7631	07201			
.9900	.0100	.7318	.07770			
.9950	.0050	.6951	.07770			

		x = Re= U _m =	-7.62cm 215,000 2.819m/se	с		
		T =	9.4°C	$6m^2/sac$		
		v –	/	°m /sec	/	2
у/Н	ус/Н	U/Um	√ u ² /Ưm	Angle (deg)	√ v⁄′ับ _m	\overline{uv} / U_m^2
.0050	.9950	.7983	.07070			
.0075	.9925	.8106	.06942			
.0100	.9900	.8068	.07156			
.0125	.9875	.8528	.06728			
.0150	.9850	.8615	.06891			
.0175	.9825	.8637	.06744			
.0201	.9799	.8737	.06718			
.0251	.9749	.8929	.06809			
.0301	.9699	.9062	.06515			
.0401	.9599	.9284	.06412			
.0501	.9499	.9406	.06476		05610	000067
.0627	.9373	.9608	.05932	414	.05619	000967
.0752	.9248	.9819	.05958	288	.04411	000928
.1003	.8997	1.0004	.05759	/13	.02765	000708
.1504	.8496	1.0402	.05183	-1.01/	.02/24	000611
.2005	.7995	1.0/35	.04562	-1.503	.02248	000480
.2506	.7494	1.0919	.03/82	-1.037	.02452	000324
.3008	.6992	1.1065	.03264	-1.263	.02/51	000458
.3509	.6491	1.1106	.02464	-1.358	.02155	- 000139
.4010	.5990	1.1146	.01824	-1./18	.01940	- 000108
.4511	.5489	1.1135	.01/4/	-1.604	.00835	- 000023
.5013	.498/	1.1101	.01484	-1.504	.01540	000020
.5489	.4511	1.1084	.01357	-1.193	.01921	.000010
.5990	.4010	1.1027	.01951	-1.333	.00883	.000020
.0491	.3509	1.0950	.02240	-1.657	.01909	.000091
.0992	.3008	1.0882	.02572	-1.657	.01990	000262
.7494	.2005	1.0049	.03584	-1.901	02653	000202
.7995	1504	1.0555	05331	-1.501	03506	000694
.0490 9007	1003	9412	06254	-1 523	.03300	.000900
02/8	.1005	9043	06267	-1 767	06436	.000997
0373	.0752	8831	06788	-1 281	.00490	.000884
9799	0501	8638	.06782	- 626	.06947	.000875
9500	0401	.8337	.07178	20	100347	
. 9699	.0301	.8068	.07837			
9700	0201	.7677	- 08083			
9850	0150	.7394	.08199			
.9900	.0100	.7038	.08077			
.9950	.0050	.6676	.08211			

- -

		x = Re=	-2.54			
		Um=	2.819m/se			
		т =	9.4°C			
		~ =	1.329x10	⁶ m ² /sec		
у/Н	ус/Н	U/Um	√ u²/Ư _m	Angle (deg)	√ √2/∪ _m	ūv/ Um
.0050	.9950	.9225	.06002	(ucg)		
.0075	.9925	.9511	.06565			•
.0100	.9900	.9556	.05983			
.0175	.9825	1.0218	.05171			
.0226	.9774	1.0350	.05906			
.0276	.9724	1.0450	.05721			
.0301	.9699	1.0514	.05976			
.0326	.9674	1.0521	.05676			
.0401	.9599	1.0764	.05618			
.0501	.9499	1.0907	.05535	104	.03432	001133
.0602	.9398	1.1002	.05259	-1.084	.03104	001201
.0652	.9348	1.1102	.05228	-1.357	.05315	001021
.0/52	.9248	1.1154	.05049	-1.520	.03733	000740
1007	.9123	1.1289	.05062	-2.063	.04424	000636
1504	.8997	1.1345	.04978	-2.712	.03372	000594
1004	.8496	1.1624	.04141	-3.259	.02922	000527
12005	./995	1.1686	.04018	-4.309	.02217	000392
•2500	.7494	1.1/36	.03277	-5.170	.02134	000230
3500	.0992	1.1650	.02803	-5.337	.01868	000219
4010	·0491	1.1541	.02240	-5.850	.01479	000124
4010	.5990	1.1395	.01964	-6.070	.01372	000074
5013	1007	1.1289	.01241	-6.889	.01755	000019
.5489	·4907	1 1002	.01401	-6.447	.01909	.000120
.5990	4010	1 0757	.01350	-6.298	.01867	.000060
.6491	.3509	1 0614	.01990	-6.327	.01440	.000064
.6992	.3008	1 0384	02094	-5.933	.02084	.000259
.7494	.2506	.9977	04761	-5.312	.01849	.000111
.7995	.2005	.9546	05804	-3.033	.01804	.000435
.8496	.1504	.9034	.06515	-4.740	.01324	.000543
.8997	.1003	.8394	.07275	-7 997	.02965	.000825
.9248	.0752	.8027	.07604	-3 325	•0366T	.000/46
.9373	.0627	.7730	.07956	-1.664	07016	.001093
.9499	.0501	.7442	.08668		.01010	.001113
.9599	.0401	.7196	.08905			
.9699	.0301	.6815	.08985			
.9799	.0201	.6288	.09225			
.9850	.0150	.5998	.09656			
.9900	.0100	.5471	.09181			
.9950	.0050	.4868	.09482			

		x =	-0.76cm			
		Re=	216,000			
		U _m =	2.819m/se	с		
		T =	9.6°C	6 2 ,		
		~ =	1.320×10^{-1}	^o m ⁻ /sec		
/	/	/	2		2,	
у/н	ус/н	0/0m	√u/U _m	Angle	$\sqrt{\sqrt{0}m}$	uv/ Um
				(aeg)		
.0050	.9950	1.1531	.05599			
.0101	.9899	1.1631	.05439			
.0151	.9849	1.1791	.05177			
.0302	.9698	1.2132	.05222			
.0402	.9598	1.2218	.05272	2 002	04750	000000
.0503	.9497	1.2349	.05062	-3.003	.04/58	000328
.0603	.9397	1.2431	.04978	-3.523	.03462	000536
.0754	.9246	1.2435	.04965	-4.811	.03299	000604
.1005	.8995	1.242/	.04665	-5.724	.02217	000422
.1508	.8492	1.2442	.04147	-6.972	.02399	000411
.2010	.7990	1.2308	.03411	-8.083	.02510	000360
.2513	.7487	1.209/	.02738	-9.257	.02129	000111
.3015	.6985	1.1914	.01945	-9.492	.02298	000162
.3518	.6482	1.1671	.01830	-9.638	.01801	000108
.3518	.6482	1.158/	.01899			
.3518	.6482	1.1645	.01622	0 0 0 0	01220	000001
.4020	.5980	1.1419	.01561	-9.920	.01320	.000001
.4523	.54//	1.1165	.01//8	-9.931	.01136	.000042
.5000	.5000	1.0959	.01888	-9.976	.01442	.000082
.54//	.4523	1.0835	.01894	-9.985	.00941	.000022
.5980	.4020	1.0539	.03161	-9.708	.01050	.000133
.6482	.3218	1.0357	.02880	-9.157	.02258	.000278
.0985	.3015	.99990	.03987	-0.133	.02349	.000270
.7487	.2513	.9548	.05151	-6.660	.01/15	.000482
./990	1500	.9143	.05656	-5.605	.03187	.000477
.0492	.1005	.000/	.000001	-3.685	.05764	.000700
.8995	.1005	.7810	.07866	-4.435	.06352	.001173
.9240	.0754	./209	.08800	-3.073	.00020	001421
.9397	.0003	.0091	.09084	-2.102	.05215	.001180
.9397	.0003	.0044	.09303	-1.075	10520	.000337
. 34 37	.0503	.0057	10017		.10520	.001227
0200	0303	6010	.1001/			
0700	0201	5356	10530			
00100	0151	1050	11062			
9299	0101	4747	10682			
.9950	.0050	.3879	.11351			

·······

		5de;	g Around 1	the Turn					
	Re= 216,000								
	$U_{\rm m} = 2.819 {\rm m/sec}$								
		= 1	9.500	6.21					
		v =	1.324X10	-m²/sec					
у/Н	ус/Н	U/Um	$\sqrt{\frac{1}{u^2}}U_m$	Angle	$\sqrt{v^2/v_m}$	ūv/ Um ²			
.0075	.9900	1.3810	.05132	(aeg)					
.0100	.9875	1.3750	.04934						
.0150	.9825	1.3917	.05209						
.0200	.9775	1.4019	.04991						
.0300	.9675	1.4051	.05068						
.0400	.9575	1.4131	.04786	-2.760	07436	- 000522			
.0500	.9475	1.3998	.04716	-3.941	05608	000532			
.0600	.9375	1.4016	.04505	-4.088	.03012	000525			
.0750	.9225	1.3965	.04377	-5.154	.04004	- 000442			
.1000	.8975	1.3708	.04358	-5,970	.01997	- 000443			
.1500	.8475	1.3360	.03821	-7.639	. 02279	- 000431			
.2000	.7975	1.2974	.03501	-8.182	.01871	- 000219			
.2500	.7475	1.2543	.02566	-8.979	.01779	- 0000248			
.3000	.6975	1.2139	.02515	-9.202	.01403	000125			
.3500	.6475	1.1811	.01491	-9.100	.01603	.0000125			
.4000	.5975	1.1470	.01594	-9.344	.01830	.000076			
.4500	.5475	1.1111	.02246	-9.326	.00366	.000089			
.5000	.4975	1.0791	.02227	-9.300	.01471	.000112			
.5500	.4475	1.0548	.02738	-9.432	.00726	.000144			
.6000	.3975	1.0245	.03142	-8.704	.01898	.000169			
.6500	.3475	.9839	.04185	-8.259	.02009	.000393			
.7000	.2975	.9415	.05209	-7.420	.01974	.000730			
.7500	.2475	.8838	.06252	-6.306	.02158	.000713			
.8000	.1975	.8295	.07111	-5.518	.02886	.001222			
.8500	.1475	.7523	.08595	-3.289	.03189	.001272			
.9000	.0975	.6533	.10299	-1.835	.04510	.002344			
.9250	.0725	.5790	.11037	-2.300	.07461	.002700			
.9400	.0575	.5469	.13095	-3.485	.05252	.003263			
.9500	.0475	.4812	.13120						
.9600	.0375	.4549	.13737						
.9700	.0275	.3928	.14458						
.9800	.0175	.3017	.13086						
.9850	.0125	.2749	.11066						

15deg Around the Turn Re= 218,000 U_m = 2.819m/sec T = 9.7°C											
$v = 1.320 \times 10^{-6} m^2 / sec$											
			2		2						
у/Н	ус/н	U/Um	√ u70 _m	(deg)	√ v/0 _m	uv/U_m^2					
.0050	.9950	1.5388	.05063	(ueg)							
.0100	.9900	1.5472	.04689								
.0150	.9850	1.5598	.04689								
.0200	.9800	1.5556	.04869								
.0300	.9700	1.5636	.04985								
.0400	.9600	1.5482	.04702	.359	.07148	000580					
.0500	.9500	1.5349	.04817	.335	.06266	000014					
.0600	.9400	1.5326	.04779	800	.03173	000151					
.0750	.9250	1.5125	.04625	-1.566	.03912	000231					
.1000	.9000	1.4830	.04483	-2.156	.03228	000215					
.1500	.8500	1.4266	.03685	-3.369	.02748	000133					
.2000	.8000	1.3642	.03564	-3.918	.01320	000171					
.2500	.7500	1.3181	.02655	-4.483	.01624	000072					
.3000	.7000	1.2632	.02681	-4.980	.00832	000093					
.3500	.6500	1.2176	.02098	-5.139	.01076	.000019					
.4000	.6000	1.1685	.01778	-5.569	.01254	.000007					
.4500	.5500	1.1331	.01907	-5.064	.01877	.000021					
.5088	.4913	1.0768	.02885	-5.650	.02622	.000369					
.5500	.4500	1.0402	.03679	-5.502	.00889	.000404					
.6000	.4000	.9920	.04312	-4.870	.02077	.000617					
.6500	.3500	.9477	.05202	-4.552	.03218	.001067					
.7000	.3000	.8959	.05842	-3.799	.03648	.001189					
.7500	.2500	.8245	.07399	-2.413	.04316	.001863					
.8000	.2000	.7298	.08835	-2.333	.04782	.002971					
.8500	.1500	.6557	.10583	-1.731	.07512	.005013					
.9000	.1000	.5277	.14720	086	.05868	.003907					
.9250	.0750	.4762	.14735		.15001	.004529					
.9400	.0600	.4202	.13098								
.9500	.0500	.3662	.14499								
.9600	.0400	.3514	.11250								
.9700	.0300	.2922	.09323								

		30d	eg Around	the Turn		
		Re=	218,000			
		U _m =	2.819m/s	ec		
		T =	9.700	-6 2.		
		√ =	1.316x10	⁻⁰ m ² /sec		
у/Н	ус/Н	U/Um	$\sqrt{\frac{1}{u^2}}U_m$	Angle (deg)	√ √2/U _m	<u>uv</u> / U _m ²
.0050	.9950	1.6922	.04754	(
.0100	.9900	1.7027	.04715			
.0150	.9850	1.7134	.04586			
.0200	.9800	1.7023	.04843			
.0300	.9700	1.6987	.04625			
.0400	.9600	1.6772	.04625	417	.03939	.000271
.0525	.9475	1.6597	.04341	710	.05071	.000062
.0600	.9400	1.6384	.04921	441	.04190	.000124
.0750	.9250	1.6170	.04444	-1.094	.02886	.000118
.1025	.8975	1.5677	.04225	-1.046	.02769	.000020
.1500	.8500	1.4872	.03916	-1.767	.02084	.000136
.1875	.8125	1.4411	.03504	-1.931	.01103	.000090
.2125	.7875	1.3863	.02975	-2.230	.01641	000011
.2500	.7500	1.3413	.02240	-2.420	.02430	.000162
.3000	.7000	1.2724	.02490	-2.413	.01184	.000088
.3000	.7000	1.2703	.01634			
.3000	.7000	1.2702	.02120			
.3500	.6500	1.2111	.02464	-2.447	.00648	.000067
.3/50	.6250	1.1756	.01545	_		
.4000	.6000	1.1558	.02745	-2.271	.00692	.000116
4000	.6000	1.1458	.02097			
4250	.5/50	1.1197	.01877			
.4250	.5/50	1.1199	.01989			
.4500	.5500	1.1065	.02598	-2.480	.01907	.000228
.4500	.5500	1.1065	.02598	-2.665	.02876	.000459
.5000	.5000	1.0566	.03174	-2.255	.03199	.000629
.5500	.4500	1.0040	.04479	-2.196	.02459	.000832
6500	3500	.943/	.05285	-1.839	.04116	.001397
.7000	3000	•0901 9161	.05829	-1.12/	.04828	.001817
.7500	2500	7410	10041	- 445	.05489	.003001
.8000	.2000	6415	12426	- 621	.08775	.005826
. 8000	2000	6395	12625	03T	.08912	.008324
.8500	.1500	5492	16702	965	00276	
.9000	.1000	4719	16070	·000	.093/6	.010292
.9250	.0750	. 4289	130/3	2.333	14707	.010537
.9400	.0600	. 3948	125942	J.230	•14/8/	.005335
.9500	.0500	.3795	.15352			
.9600	.0400	.3806	.11624			
		45de Re=	eg Around t 218,000	he Turn		
-------	-------	------------------	---------------------------	---------	------------------	------------------------
		U _m =	2.819m/sec			
		T =	9.7°C	2,		
		V =	1.316x10-0	m²/sec		
у/Н	ус/Н	U/Um	$\sqrt{\frac{1}{u^2}}U_m$	Angle	$\sqrt{v^2/U_m}$	\overline{uv}/ U_m^2
0075	0025	1 7710	04702	(aeg)		
.0100	9925	1 7725	.04/02			
.0200	9800	1 7661	.04050			
.0300	.9700	1 7554	04560			
.0350	.9650	1.7439	.05114			
.0350	.9650	1.7445	.05165			
.0400	.9600	1.7326	.04830	. 370	. 06499	000524
.0500	.9500	1.7183	.04830	.530	.03262	.000428
.0600	.9400	1.6994	.04754	.269	.03989	.000265
.0750	.9250	1.6681	.04972	.006	.02176	.000394
.1000	.9000	1.6221	.04392	.249	.02254	.000295
.1500	.8500	1.5301	.04031	.051	.01966	.000273
.2000	.8000	1.4439	.03079	040	.02427	.000255
.2500	.7500	1.3587	.02848	052	.01437	.000130
.3000	.7000	1.2842	.02425	244	.01468	.000105
.3500	.6500	1.2201	.01997	361	.02156	.000181
.4000	.6000	1.1539	.02726	061	.02619	.000418
.4500	.5500	1.0928	.02701	149	.03400	.000505
.5000	.5000	1.0426	.03750	.114	.04479	.001074
.5500	.4500	.9812	.04972	161	.04182	.001302
.6000	.4000	.9181	.06258	.628	.05123	.002209
.6500	.3500	.8481	.08410	1.904	.05929	.003787
.7000	.3000	.7801	.10686	1.146	.10768	.008882
.7500	.2500	.6986	.11921	1.261	.12494	.011159
.8000	.2000	.6231	.13221	1.354	.13466	.012587
.8500	.1500	.5679	.13677	1.865	.12858	.011290
.9000	.1000	.4796	.13182	1.477	.10252	.009055
.9250	.0750	.4476	.12681	.954	.07707	.008575
.9400	.0600	.4582	.10680			
.9500	.0500	.4600	.11888			
.3000	.0400	•45/8	•TT0A2			

		60de Re=	g Around 218,000	the Turn		
		Um=2	.819m/sec			
		T ≕ √ =	9.8°C	$6_{m}2/sec$		
		•		m / 3ec		
у/Н	ус/Н	U/Um	√u ² /U _m	Angle (deg)	$\sqrt{v^2/U_m}$	\overline{uv} / U_m^2
.0050	.9950	1.8058	.04882			
.0100	.9900	1.8043	.04728			
.0150	.9850	1.8009	.04534			
.0200	.9800	1.7898	.04650			
.0200	.9800	1.7848	.04586			
.0300	.9/00	1.7795	.04676	.770	.06424	.000479
0750	.93/5	1.6076	.04457	1.343	.04072	.000151
0875	01250	1.0030	.04405	.842	.03653	.000275
.1375	8625	1.6569	.04135	1./54	.02521	.000258
.1875	.8125	1 4708	.03039	1.503	.02186	.000368
.2375	.7625	1 3801	02732	1.572	.02378	.000324
.2875	.7125	1.3038	02732	1.508	.02012	.000144
.3375	.6625	1.2289	02302	1 154	.02069	.000151
.3875	.6125	1,1663	.02508	1 100	.03349	.000486
.4000	.6000	1,1505	.02950	1 176	02049	.000332
.4375	.5625	1.1045	.02905	1.645	03621	.000818
.4500	.5500	1.0894	.03667	.841	05352	001547
.4500	.5500	1.0909	.03695		.03332	.001547
.5000	.5000	1.0252	.04882	1.669	.06265	.002082
.5500	.4500	.9714	.05849	1.436	.07250	.003171
.5500	.4500	.9705	.05773			
.6000	.4000	.9104	.08214	2.632	.07365	.004337
.6500	.3500	.8223	.11249	2.795	.09436	.007937
.7000	.3000	.7598	.12156	3.537	.11689	.009843
.7500	.2500	.6794	.13286	2.957	.13181	.012621
.7750	.2250	.6594	.12587	3.222	.16735	.016285
.8000	.2000	.5861	.13093		.15170	.014636
.8000	.2000	.6014	.13277	3.755	.14476	.013080
.8250	.1/50	.5786	.14093	3.398	.14735	.014884
.8500	.1500	.5560	.12932	4.340	.13775	.011036
9000	1000	• 2221 5215	.11256	3.698	.12068	.005950
.9250	0750	.5315	.11962	4.269	.13796	.003992
.9250	.0750	· 5082	.10562		00106	
.9400	.0600	5250	10203		.08136	.006566
.9400	.0600	. 4990	.10356			
.9500	.0500	.5079	. 09489			
.9500	.0500	.4930	.11097			
.9600	.0400	.4995	.10614			
.9625	.0375	.5015	.09771			
.9700	.0300	.5069	.09264			

				90deg # Re= 216	Around the 6,000	e Turn			
				$U_{m} = 2.8$	819m/sec				
				v = 1.7	$324 \times 10^{-6} \text{m}^2$	/sec			
			/ 			,			/==
у/Н	ус/Н	U/Um	√ น⁄∕ บ _ั ท	Angle (deg)	√ v″∪m	\overline{uv} / U_m^2	у/Н	U/Um	√ u ² /Ưm
.0050	.9950	1.6941	.06570				.9400	.5923	.08937
.0100	.9900	1.7446	.05063				.9400	.5777	.08937
.0150	.9850	1.7576	.04895				.9500	.5814	.08746
.0200	.9800	1.7566	.04508				.9500	.5845	.08870
.0300	.9700	1.7440	.04//9				.9600	.5/32	.09161
.0400	.9600	1.7250	.04/02	1 774	00117	001360	9700	.5092	.08972
0600	9400	1 6834	04199	1 1 2 4	04261	001300	9700	5632	08937
.0750	.9250	1.6533	.04161	2 053	.04056	.000702	.9700		.00557
.1000	.9000	1,6038	.03968	1.351	.03990	.000694			
.1500	.8500	1.5066	.03375	1.617	.03315	.000470			
.1500	.8500	1.5094	.03231	20020					
.1500	.8500	1.5222	.03329						
.1750	.8250	1.4802	.02801						
.2000	.8000	1.4223	.02975	2.239	.03107	.000309			
.2000	.8000	1.4331	.02827						
.2250	.7750	1.3897	.02641						
.2500	.7500	1.3403	.02406	1.941	.03792	.000340			
.2500	.7500	1.3495	.02223						
.2750	.7250	1.3072	.02564						
.3000	.7000	1.2600	.02457	2.050	.03044	.000174			
.3000	.7000	1.2708	.02385						
.3000	.7000	1.2880	.02284						
.3250	.6/50	1 1052	.02395	2 212	01570	000227			
-3500	6500	1 1075	.04200	2.313	.01579	.000337			
3750	6250	1.1975	02995						
.4000	. 6000	1,1210	.02223	2.300	.02943	.000203			
.4000	.6000	1,1270	.04259	2.300					
.4250	.5750	1.1098	.04666						
.4500	.5500	1.0598	.05285	2.924	.05865	.001769			
.4750	.5250	1.0283	.06120						
.5000	.5000	.9958	.07255	2.509	.08368	.003554			
.5000	.5000	1.0014	.08469						
.5250	.4750	.9691	.08519						
.5500	.4500	.9257	.09589	3.757	.10543	.006768			
.6000	.4000	.8658	.10558	4.446	.12694	.010098			
.6500	.3500	.7932	.11288	4.400	.15848	.014394			
.7000	.3000	.7405	.11234	3.756	.17682	.014343			
.7500	.2500	.6965	.112/6	4.114	.17197	.012989			
.8000	.2000	.0005	.11728	3.859	16162	.012117			
0000	1000	.0122	.03910	4.940	.10103	.008270			
9250	0750	.0001 6070	08784	2 030	12721	.004304			
. 9250	.0750	.50/0	.00/04	2.294	12502	.003333			
.9250	.0750	.5948	.08803	6.204	.12302	.004001			

		1200 Re= U_m= T = √ =	leg Around 217,000 2.819m/sec 9.7°C 1.316x10 ⁻⁶	the Turn c 5m ² /sec		
у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$	Angle (deg)	$\sqrt{v_{\gamma}^2} \upsilon_m$	ūv∕ ∪ _m ²
.0050	.9950	1.1390		(5)		
.0100	.9900	1.4024	0.18536			
.0150	.9850	1.6106	.06552			
.0200	.9800	1.6476	.05823			
.0300	.9700	1.6590	.05861			
.0400	.9600	1.6486	.04965	1.631	.01613	.000531
.0500	.9500	1.6283	.04728	1.198	.04650	.000625
.0600	.9400	1.6269	.04779	1.584	.03509	.000334
.0750	.9250	1.6006	.04470	1.353	.05290	.000789
.1000	.9000	1.5641	.04715	2.899	.04732	.000747
.1500	.8500	1.4808	.04057	2.691	.04621	.000382
.2000	.8000	1.4016	.03519	3.106	.04893	.000248
.2500	.7500	1.3252	.03667	2.936	.04781	.000326
.3000	.7000	1.2485	.03724	3.358	.05381	.000286
.3500	.6500	1.1894	.04869	3.626	.06565	.001103
.4000	.6000	1.1168	.06725	3.390	.10224	.004096
.4500	.5500	1.0571	.07832	4.204	.10899	.005035
.5000	.5000	.9896	.09142	3.902	.13606	.008845
.5500	.4500	.9176	.10629	4.893	.13369	.009020
.6000	.4000	.8736	.10623	4.586	.16155	.011226
.6500	.3500	.8210	.10361	3.691	.17390	.010499
.7000	.3000	.7794	.10363	2.251	.19725	.012972
.7500	.2500	.7434	.10075	3.869	.18680	.010959
.8000	.2000	.7114	.09282	3.754	.17758	.009470
.8500	.1500	.6824	.09034	2.332	.15194	.006787
.9000	.1000	.6583	.08406	3.924	.15321	.004490
.9125	.0875	.6591	.08576	2.707	.10591	.003102
.9250	.0/50	.6438	.08186			
.9400	.0600	.6401	.08103			
.9500	.0500	.6269	.08560			
• 9550	.0450	.6352	.08185			

.

		1800	leg Around	the Turn		
		Re=	206,000			
		U _m =	2.819m/se	с		
		T =	8.4°C			
		v =	1.368x10-	⁶ m ² /sec		
			1-2		/ _ 3	2
у/Н	ус/Н	U/Um	√ น⁄ั ป _ั ก	Angle	√ v⁄′∪m	$\overline{u}\overline{v}/U_{m}^{2}$
				(deg)		
.0050	.9950	1288	.19489			
.0101	.9899	1557	.21226			
.0151	.9849	1048	.25551			
.0201	.9799	1016	.25357			
.0201	.9799	1190	.24215			
.0302	.9698	0546	.28813			
.0402	.9598	0056	.32212			
.0503	.9497	.1277	.36855			
.0628	.9372	.3948	.48370			
.0754	.9246	.4921	.52871			
.0854	.9146	.6032	.48600	7.725	.21089	.057238
.0980	.9020	.8489	.41413	20.964	.17918	.060622
.1005	.8995	.7329	.53461			
.1005	.8995	.8561	.48891			
.1106	.8894	.9982	.37958	19.308	.16345	.052404
.1106	.8894	.9034	.43829	15.665	.18486	.065177
.1231	.8769	1.1214	.32279	19.883	.16228	.027205
.1357	.8643	1.1982	.25423	18.834	.14052	.017085
.1357	.8643	1.1326	.33269	20.984	.16235	.033065
.1482	.8518	1.2319	.23425	21.251	.13016	.007268
.1508	.8492	1,1986	.33440			
1608	.8392	1.2445	.16721	21.234	.12132	.006954
1608	8392	1.2645	18896	20.400	.14959	.007361
1734	8266	1.2766	13093	20.539	.11889	.003347
1859	.8141	1.2798	.12691	21.071	.14565	.002842
.2211	.7789	1.2911	.10881	21.408	.10199	001308
.2462	.7538	1.2751	.07570	21.489	.09395	000078
2965	7035	1 2737	.05695	20.082	10486	.001632
3467	.6533	1.2661	.05638	18.887	.10815	.001114
.3970	.6030	1.2363	.06361	18,660	.11852	.002216
.4472	.5528	1.2011	.06066	16.650	.16137	.004879
.4975	.5025	1.1628	.06718	16.941	.17155	.001023
.5477	.4523	1.1351	.07018	14.795	.19555	.003876
.5980	.4020	1.0997	.07626	14.472	.20259	.002253
.6482	.3518	1.0695	.08170	13.615	.20410	.003312
6985	.3015	1.0491	.08192	12.025	.22016	.002927
.7487	.2513	1.0276	.08221	10.291	.21277	.002143
.7990	.2010	1.0051	.08067	8,483	.21206	.003334
.8492	.1508	.9977	.07828	7.050	.18935	.000150
8995	.1005	.9840	.07729	4.457	.14754	.000541
.9246	.0754	.9775	.07459	3.948	.09970	000171
.9372	.0628	9787	.07214	3.612	.12382	.000691
.9497	.0503	.9735	.07489			
.9573	.0427	.9770	.07409			
.9698	.0302	9603	.08694			
. 9799	.0201	.9237	.10984			
0840	.0151	9002	.11310			
. 9800	.0101	.8249	,11562			
.9950	.0050	.7579	.13519			

.

	Separation Bubble Data U _m = 2.819m/sec										
			$T = 6.1^{\circ}$	0							
$v = 1.468 \times 10^{-6} \text{m}^2/\text{sec}$											
	$\mathbf{x} = +2$	2.54cm		x = +5.08 cm							
у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$	у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$				
.0050 .0101 .0151 .0202 .0302 .0403 .0504 .0630 .0756 .1008 .1511	.9950 .9899 .9849 .9798 .9698 .9597 .9496 .9370 .9244 .8992 .8489	3164 3081 3114 2874 2410 1852 1746 0729 0109 .2429 .7282	.23710 .24251 .23835 .25875 .26680 .28638 .28769 .31058 .37293 .43410 .48162	.0051 .0101 .0152 .0202 .0303 .0404 .0505 .0631 .0758 .1010 .1515	.9949 .9899 .9848 .9798 .9697 .9596 .9495 .9369 .9242 .8990 .8485	2425 2515 2143 2157 1941 1240 1109 0083 .0286 .1936 .4480	.24052 .23982 .25050 .25030 .26444 .29097 .28711 .33226 .34998 .42345 .42418				
.2519	.7481	1.1042	.39362 .22402	.2020 .2525 .3030	.7980 .7475 .6970	.7811 1.1057 1.2565	.44625 .34604 .25670				

		· /	x = +11.84 cm				
у/Н ус/Н	U/Um	$\sqrt{u^2/U_m}$	у/Н	ус/Н	U/Um		
.0051 .9949 - .0101 .9899 - .0152 .9848 - .0203 .9797 .0304 .9696 .0405 .9595 .0506 .9494 .0633 .9367 .0759 .9241 .1013 .8987 .1519 .8481 .2025 .7975 .2532 .7468 .3038 .6962 1	.0548 .0464 .0278 .0039 .0377 .0464 .0946 .1202 .1995 .3032 .5058 .7769 .9699	.22872 .21951 .22389 .20579 .24078 .25862 .25960 .28406 .33791 .37476 .38095 .37595 .35283	.0051 .0101 .0152 .0203 .0304 .0405 .0506 .0633 .0759 .1013 .1519 .2025	.9949 .9899 .9848 .9797 .9696 .9595 .9494 .9367 .9241 .8987 .8481 .7975	.1126 .2537 .2796 .2844 .3056 .3172 .3131 .3918 .3798 .4596 .5686 .7289		

 $\overline{u^2/U_m}$

.19693

.24958

.25125

.24374

.25311

.26294

.26345

.28772

.27976

.29748

.32310

.33716

		x = Re=	+15.20cm						
		U_=	2.819m/se	с					
		т [‴] =	6.1°C						
		√ =	1.468x10-	⁶ m ² /sec					
у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$	Angle (deg)	$\sqrt{v^2/v_m}$	\overline{uv} / U_m^2	у/Н	บ/บ _m	$\sqrt{\frac{1}{u^2}}U_m$
0051	. 9949	. 4217	.22448	(ueg)			.9595	1.1656	.09034
.0101	.9899	.4254	.23866				.9696	1.1574	.10363
.0152	.9848	.4866	.23339				.9 797	1.1321	.10821
.0203	.9797	.4888	.22627				.9848	1.1248	.11745
.0304	.9696	.5120	.21869				.9899	1.1035	.12003
.0405	.9595	.5414	.23018				.9949	1.0684	.12928
.0506	.9494	.5691	.23283			007189			
.0633	.9367	.5667	.24309						
.0633	.9367	5784	.23587						
.0759	.9241	.5867	.24194						
.0759	.9241	.5994	.24810		•				
.1013	.8987	.6185	.25388			015500			
.1013	.8987	.6652	.24252	-5.407	.11506	015583			
.1266	.8734	.6621	.27261	-4.353	.15982	01/320			
.1392	.8608	.6784	.27258	-5.510	.18406	019081			
.1519	.8481	.7368	.27398	2 242	17200	- 020176			
.1519	.8481	.7076	.26925	-3.242	.17290	020170			
.1646	.8354	.7035	.28301	-3.000	15694	-019389			
.1899	.8101	./895	.203//	-4.322	16365	018800			
.2025	./9/0	./091	.27871	-4 066	.18317	018124			
.22/8	7/0/	.0705	25815	-5.258	.16496	012365			
2500	7/69	9463	25808	5.250					
3013	6987	1,0205	.22519	-4.417	.17757	010998			
3038	. 6962	. 9904	.23062						
.3494	.6506	1.0654	.21665	-3.481	.15728	006213			
.3544	.6456	1.0547	.20893						
.4000	.6000	1.1116	.17040	-2.202	.16363	003207			
.4051	.5949	1.1183	.15758						
.4506	.5494	1.1454	.13752	-2.548	.15338	.001151			
.4557	.5443	1.1461	.13558						
.4987	.5013	1.1665	.11466	-1.676	.17453	.003133			
.5063	.4937	1.1604	.11959			000400			
.5494	.4506	1.1724	.10690	-1.247	.17189	.003400			
.5570	.4430	1.1868	.10012						
.5823	.4177	1.1757	.10613	- 622	16056	003930			
.6000	.4000	1.1/14	.10808	025	.10030	.003920			
.6076	. 3924	1.1801	.10200	- 501	16984	004338			
.6481	.3519	1.1709	.09050	-1 027	18234	.004330			
.698/	.3013	1.1702	.09292	- 918	17086	.007266			
•/408 7075	2002 2025	1 1041	09207	-1.014	.15523	.004767			
•1715 •1515	.2023 1772	1 1001	.08501	1.014		1004/0/			
.0220 9/01	1610	1 1070	.08132						
.0401 9721	1266	1 1050	.07917						
.0734	.1013	1,1791	.08061	647	.12075	.002384			
.9241	.0759	1,1804	.07987	182	.10985	.002139			
.9367	.0633	1.1715	.08678	-1.007	.07830	.002045			
.9494	.0506	1.1750	.08634	798	.07419	.001917			

		x =	+26.70			
		Re=	192,000			
		U _m =	2.819m/se	ec		
		T =	6.1°C	< 0		
		√ =	1.468x10	• ⁶ m ² /sec		
у/Н	yc/H	U/Um	$\sqrt{u^2/U_m}$	8 mg l	/	
-	- /	- / - 111	, _, _,	Angri (dog)		uv/ Um
.0051	.9949	.6272	.14547	(ueg)	1	
.0101	.9899	.6676	.16547			
.0152	.9848	.6850	.16658			
.0203	.9797	.7001	.16825			
.0304	.9696	.7077	.17463			
.0405	.9595	.7310	.17419			
.0506	.9494	.7426	.18615			000510
.0633	.9367	.7566	.18902	-2.856	07760	- 000512
.0759	.9241	.7832	.18952	- 601	.07708	005319
.1013	.8987	.8125	.18995	-1 135	.0/109	003631
.1519	.8481	.8390	.19674	- 864	• 11000	006146
.2025	.7975	.8904	.20899	- 368	12006	008422
.2532	.7468	.9166	.21332	- 612	.13990	011484
.3038	.6962	.9762	.19205	920	16775	010570
.3544	.6456	1.0192	.18373	- 920	.10235	010051
.4051	.5949	1.0686	.17043	- 785	17525	010818
.4557	.5443	1.0704	.17547	- 338-	15226	009253
.4937	.5063	1.0877	.14783	- 323	16533	00/496
.5443	.4557	1.1129	.14344	. 089	14260	004940
.5949	.4051	1.1331	.13081	263	14000	003322
.6456	.3544	1.1535	.11422	. 442	15694	- 000809
.6962	.3038	1.1468	.10964	1.132	.14109	000032
.7468	.2532	1.1585	.09868	.379	. 13430	000158
.7975	.2025	1.1703	.08751	.889	. 12824	.002586
.8481	.1519	1.1739	.08784	.707	.10811	.001510
.8987	.1013	1.1669	.08240	1.204	. 11331	.002482
.9241	.0759	1.1674	.08496	172	.09784	.002456
.9367	.0633	1.1625	.08818	472	.08557	.001940
.9494	.0506	1.1555	.09736	. 199		.002043
.9595	.0405	1.1486	.10708			.002/15
.9696	.0304	1.1311	.11608			
.9797	.0203	1.0937	.12848			
.9848	.0152	1.0800	.11885			
.9899	.0101	1.0525	.13094			
.9949	.0051	1.0051	.13055			

TABLE A-IIb. Mean and Turbulent Velocity Variations With Exit Screen and Reynolds Number. Trip Wires on Inlet.

			x = -24.4	cm, No Scree	n						
			v) = 1.297	$x10^{-6}m^2/sec$							
Re =	= 300,00	00		Re	= 431,0	00					
U _m =	= 3.880m	n/sec		$U_{m} = 5.569 m/sec$							
у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$	у/н	ус/Н	U/Um	$\sqrt{\overline{u^2}} U_m$				
.0150	.9850	.8120	.06938	.0150	.9850	.8190	.06972				
.0301	.9699	.8485	.06968	.0301	.9699	.8537	.07484				
.0752	.9248	.9207	.06006	.0752	.9248	.9219	.05492				
.1504	.8496	.9793	.05135	.1504	.8496	.9871	.04631				
.2506	.7494	1.0273	.04097	.2506	.7494	1.0310	.03770				
.3008	.6992	1.0469	.03288	.3008	.6992	1.0494	.03300				
.3759	.6241	1.0603	.02343	.3759	.6241	1.0617	.02759				
.4950	.5050	1.0697	.01339	.4950	.5050	1.0722	.01454				
.6241	.3759	1.0678	.01837	.6241	.3759	1.0667	.02119				
.6992	.3008	1.0573	.02539	.6992	.3008	1.0553	.02935				
.7494	.2506	1.0432	.03343	.7494	.2506	1.0375	.03280				
.8496	.1504	.9940	.04747	.8496	.1504	.9916	.04183				
.9248	.0752	.9046	.06317	.9248	.0752	.9182	.05482				
.9699	.0301	.8196	.07193	.9699	.0301	.8317	.06664				
.9850	.0150	.7493	.08020	.9850	.0150	.7995	.07636				

•

Table A-IIb. Mean and Turbulent Velocity Variations With Exit Screen and Reynolds Number. Trip Wires on Inlet.

Re = 340,	000	90 de	eg. Aroun	d the Turn	. No Screen
$U_{\rm m} = 4.49$	Om/sec	= :	1.341x10 ⁻	⁶ m ² /sec	
у/Н ус/Н	U/Um	$\sqrt{\frac{2}{u^2}}U_m$	Angle (deg)	$\sqrt{\frac{1}{v^2}}$ Um	<u>uv</u> / U _m ²
.0100 .9900	1.4937	.10665	(acg)		
.0200 .9800	1.7469	.04754			
.0300 .9700	1.7526	.04549			
.0400 .9600	1.7401	.04417			
.0500 .9500	1.7219	.04392			
.0750 .9250	1.6709	.04303			
.1000 .9000	1.6166	.04037			
.1500 .8500	1.5156	.03616	.523	.03376	.000458
.2000 .8000	1.4280	.02726			
.2500 .7500	1.3434	.02766	.646	.03348	.000318
.3000 .7000	1.2730	.02362	.404	.04280	.000521
.3500 .6500	1.2055	.02661	.776	.04612	.000512
.4000 .6000	1.1286	.04328			
.4500 .5500	1.0648	.05855			
.5000 .5000	.9964	.07506	1.759	.06835	.003457
.5500 .4500	.9352	.08667	2.087	.09804	.006066
.6000 .4000	.8685	.09359	3.480	.10440	.006691
.6500 .3500	.8015	.10313	4.470	.12508	.008654
.7000 .3000	.7450	.09841	3.313	.15342	.011243
.7000 .3000	.7375	.10767	3.765	.13716	.010247
.7500 .2500	.6829	.10475	3.032	.15747	.011932
.8000 .2000	.6627	.10383	2.888	.15850	.011323
.8500 .1500	.6245	.09600	2.643	.14668	.008482
.9000 .1000	.5953	.09176	3.952	.08137	.004544
.9375 .0625	.5764	.09819			

.

Re	=472,00	00	90 d	eg. Aroun	d the Turn	. No Screen
Um	= 6.218	8m/sec	∨ =	1.341x10 ⁻¹	⁶ m ² /sec	,
у/Н	ус/Н	U/Um	$\sqrt{u^2/U_m}$	Angle (deg)	$\sqrt{v^2} v_m$	<u></u>
.0100	.9900	1.5727	.09482			
.0200	.9800	1.7282	.04701			
.0300	.9700	1.7254	.04608			
.0400	.9600	1.7063	.04410			
.0500	.9500	1.6881	.04235			
.0750	.9250	1.6379	.04014			
.1000	.9000	1.5872	.03875			
.1500	.8500	1.4900	.03386	1.719	.03818	.000394
.2000	.8000	1.4012	.02804			
.2500	.7500	1.3222	.02420	1.730	.03514	.000397
.3000	.7000	1.2616	.02576			
.3500	.6500	1.1842	.03633	1.107	.03983	.000628
.4000	.6000	1.1147	.03861			
.4500	.5500	1.0493	.05275			
.5000	.5000	.9816	.06752	2.162	.06165	.002383
.5500	.4500	.9275	.07103	2.861	.08603	.004060
.6000	.4000	.8597	.08279	3.518	.10906	.006208
.6000	.4000	.8619	.08425	3.098	.11455	.007333
.6500	.3500	.7956	.09814	3.672	.12207	.007606
.7000	.3000	.7468	.10170	3.475	.14392	.009583
.7500	.2500	.7087	.10281	4.385	.13826	.009357
.8000	.2000	.6610	.09717		.14413	.007834
.8500	.1500	.6200	.09147	4.249	.13871	.007627
.9000	.1000	.5992	.08335	2.983	.10332	.005763
.9375	.0625	.5923	.08377			

TABLE A-IIb. (Continued) Mean and Turbulent Velocity Variations With Exit Screen and Reynolds Number. Trip Wires on Inlet.

		x = -17.2	7cm, Coarse Screen at	Exit	
Dor	126 000	v =	1.595X10 m / Sec Re=	275.000	
ке- 11 -	- 1 97/m//		II =	: 3.780m/s	sec
^O m ⁻	- 1.0/4ш/:		Um	J , , G , , , , , , , , , , , , , , , , , , ,	/==
у/н	U/Um	$\sqrt{u^2/U_m}$	У/Н	U/Um	√ u²/Ư _m
.0050	.5904	.08824	.0050	.6833	.07970
.0100	.6668	.07330	.0100	.7201	.07333
.0150	.7012	.06924	.0150	.7597	.07843
.0201	.7340	.07025	.0201	.7708	.07688
.0301	.7765	.06867	.0301	.8146	.07452
.0401	.8061	.06877	.0401	.8472	.07455
.0501	.8271	.06390	.0501	.8745	.07085
.0627	.8442	.06641	.0627	.8903	.06785
.0752	.8686	.06688	.0752	.9105	.06513
.1003	.9066	.06240	.1003	.9528	.06000
.1504	.9764	.05626	.1504	.9896	.05695
.2005	1.0164	.03792	.2005	1.0354	.04290
.2506	1.0387	.03714	.2506	1.0587	.04321
.3008	1.0563	.02892	.3008	1.0791	.04090
.3509	1.0677	.03018	.3509	1.0867	.03797
.4010	1.0857	.05943	.4010	1.0928	.04147
.4511	1.0900	.05793	.4511	1.0947	.03419
.5013	1.0944	.09580	.5013	1.0943	.04099

Re= U _m =	= 363,000 = 4.997m/	sec
у/Н	U/Um	$\sqrt{u^2/U_m}$
0050 0100 0201 0301 0501 0627 0752 1003 1504 2005 2506	.6833 .7396 .7652 .7983 .8320 .8671 .8811 .9107 .9277 .9669 1.0135 1.0331 1.0606	.08201 .08243 .08737 .08548 .08192 .08335 .07494 .07205 .07200 .06428 .05574 .04708 .04126
3008 3509	1.0744 1.0842	.03365 .02311 .02049
4511	1.0943	.01715

. (

. (

Re=	446,000	
U _m =	6.141m/s	ec
у/Н	U/Um	$\sqrt{u^2/U_m}$
.0050	.7101	.10199
.0100	.7332	.09070
.0150	.7900	.08361
.0201	.8121	.08229
.0301	.8575	.07032
.0401	.8655	.07182
.0501	.8998	.06618
.0627	.9168	.07006
.0752	.9263	.05919
.1003	.9567	.05617
.1504	.9987	.05420
.2005	1.0369	.04659
.2506	1.0607	.04051
.3008	1.0748	.03034
.3509	1.0835	.02584
.4010	1.0905	.02123
.4511	1.0929	.01863
.5013	1.0943	.01721

TABLE A-IIb. (Concluded) Mean and Turbulent Velocity Variations With Exit Screens and Reynolds Number.

 $\sqrt{u^2/U_m}$.07182 06696 .06662 .06496 .08082 07024 .06351 .07071 .06231 .06364 .05864 .04942 .04576 03036 01756 .04344 02307 .01387 01209 .01229 .01433 .02629 02733 03478 06149 06258 06200 04771 05771 06078 06509 07176 07282 x = -25.40 cm, Dense Screen 04791 06731 06571 $U_m = 1.372m/sec_3$ $v = 1.372x10^{-6}m^{-2}/sec_{-3}$ 7224 7864 8840 .6700 .7716 .8191 8478 .8613 9089 9200 9800 9304 ..0791 .0840 .0153 .0849 .8758 .0404 .0753 1.0756 9293 9164 9016 8236 7929 u/um .0631 .0822 .0822 .0678 1.0593 1.0236 .9940 8478 7676 .7389 .6953 Re = 104,000.9950 .9900 .9850 .9799 .9699 .9599 .9499 .7995 .5489 .4511 .4010 .3509 yc/H .9373 .9248 .8496 .7494 .6992 .5990 .4987 .3008 .2506 .9123 .8997 .6491 .2005 .1504 .1003 0401 .0877 .0752 .0627 0201 .0150 .0501 .0301 .0100 0050 0100 .0150 0752 .1504 0627 7995 .0201 .0301 .0401 .0501 .0877 .1003 .2005 .2506 .3008 .3509 4010 5013 5489 5990 9799 Y∕H .4511 .6491 6992 8997 9123 9699 7494 8496 9373 9248 9499 9599 9850 9900 \overline{uv} / u_m^2 -.006215 -.010795 -.013143-.014200 .001510 -.009853 -.006154-.006065 -.003251 .000761 .002535 .002451 .001283 001450 003429 004930 001746 002297 001660 .001599 001193 .002165 √_v²/u_m .13245 .25753 .15558 .13966 .43124 .12964 15407 .11882 .12303 .12127 .13714 .13556 .13463 .13537 .15352 .15782 .14042 .11572 12809 .12337 .13827 .11894 Angle (deg) .553 -3.638 -5.668-7.378 -6.799 -5.045 -4.500 -3.312 -2.759 -1.880 1.105 .960 .748 1.040 .021 .237 .529 -4.704-.347 -.337 1.385 .636 = +30.90cm, Coarse Screen at Exit $\sqrt{u^2/U_m}$ 20929 24365 .26409 20969 20071 20681 .21557 24364 .18824 .14740 .12830 20297 19994 .22087 .12458 .10498 .09719 .09335 .09076 18983 .08753 .09613 .08613 07844 07728 .08619 .09558 11455 .11958 07361 .12458 .08333 Trip Wires on Inlet. U_m = 6.315 m/sec V = 1.468x10⁻⁶²/sec .3886 4130 .4656 .4956 .5146 .6316 .9110 .4072 4082 4373 .8081 1.0003 1.0862 1.1372 1.1496 1.1817 1.2135 1.1962 L.2040 1.1967 L.2040 L.1936 1.2134 1.2004 .2004 .2014 1.1944 1.1878 1.1828 1.1504 1.1307 1.1069 U/Um = 430,000 7089 .6582 .7595 .6076 .5570 .5063 .4557 .4051 9899 .9848 .9797 .9747 .9696 .9494 .9367 .9114 .8608 .8101 .3544 .3038 .2532 .2025 .0759 .1519 .1063 .0633 .0506 .0405 Yc/H .0304 .0203 .0152 .0101 × a .0253 .1899 .2405 5443 5949 0506 0633 0886 .3418 .3924 .4430 0152 .1392 .2911 4937 6456 .7468 9494 0203 0304 9595 0101 6962 .7975 .8481 9367 9797 9899 8937 9241 9696 У/Н 9848

08291

.6502

.0050

	10 damage	50 degrees	
1.7H upstream	around the turn	around the turn	
Re U _m U _r /U _m m/s	Re U _m U _r /U _m m/s	Re U _m U _r /U _m ຫ/s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338,000 5.31 0.0195 364,000 5.71 0.0189 392,000 6.17 0.0189 392,000 6.17 0.0189 392,000 6.17 0.0189 418,000 6.56 0.0189 411,000 6.92 0.0189 457,000 7.17 0.0192 413,000 6.48 0.0193 369,000 5.79 0.0193 342,000 5.37 0.0188 313,000 4.91 0.0196 293,000 4.58 0.0194 248,000 3.89 0.0215 235,000 3.69 0.0205 188,000 2.95 0.0216 166,000 2.61 0.0228	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE A-III. Surface Shear Stress Evaluation.

70 degrees around the turn		g arc	90 degrees around the turn		110 degrees around the turn		
Re	U _m U _r / m/s	'U _m Re	U _m m/s	U ₇ /U _m	Re	U _m m/s	U _r /U _m
216,000 247,000 274,000 307,000 356,000 374,000 405,000 422,000 422,000 377,000 354,000 354,000 316,000 253,000 253,000 253,000 253,000 172,000 144,000 122,000	$\begin{array}{c} 3.39 & 0.02\\ 3.88 & 0.02\\ 4.30 & 0.02\\ 4.82 & 0.02\\ 5.09 & 0.02\\ 5.59 & 0.02\\ 5.59 & 0.02\\ 5.87 & 0.02\\ 6.36 & 0.02\\ 6.36 & 0.02\\ 6.66 & 0.02\\ 7.21 & 0.02\\ 5.92 & 0.02\\ 5.92 & 0.02\\ 5.92 & 0.02\\ 4.96 & 0.02\\ 4.33 & 0.02\\ 3.97 & 0.02\\ 3.64 & 0.02\\ 3.22 & 0.02\\ 2.70 & 0.02\\ 2.26 & 0.02\\ 1.92 & 0.02\\ \end{array}$	276 437,00 274 386,00 272 642,00 667 267,00 269 232,00 273 195,00 275 277 276 273 277 276 275 281 281 275 278 284 302 315	0 6.86 0 5.37 0 4.71 0 4.19 0 3.64 0 3.06 0 2.40	0.0288 0.0281 0.0276 0.0281 0.0278 0.0275 0.0275 0.0274	213,000 234,000 259,000 283,000 304,000 356,000 356,000 433,000 433,000 365,000 365,000 343,000 365,000 281,000 232,000 184,000 158,000 132,000	3.34 3.67 4.07 4.44 4.77 5.28 5.59 5.97 6.96 6.80 6.25 5.73 5.39 4.80 4.41 4.02 3.64 4.328 2.89 2.48 2.07	0.0261 0.0264 0.0268 0.0269 0.0264 0.0275 0.0275 0.0291 0.0284 0.0276 0.0274 0.0272 0.0273 0.0275 0.0273 0.0275 0.0273 0.0275 0.0275 0.0278 0.0278 0.0294

TABLE A-III.	(Concluded).	Surface Shear	Stress	Evaluation.
--------------	--------------	---------------	--------	-------------

.

.

.

130 degrees around the turn			170 degrees around the turn		
Re	U _m m/s	U ₇ /U _m	Re	U _m U ₇ /U m/s	m
216,000 244,000 281,000 304,000 323,000 377,000 400,000 423,000 446,000 445,000 374,000 374,000 374,000 374,000 374,000 282,000 282,000 282,000 282,000 277,000 156,000 127,000 110,000	3.39 3.83 4.41 5.07 5.48 5.92 6.28 6.64 7.00 6.366 5.87 5.42 4.79 4.43 3.58 3.58 3.2278 2.78 2.45 1.99 1.73	$\begin{array}{c} 0.0350\\ 0.0315\\ 0.0315\\ 0.0312\\ 0.0312\\ 0.0314\\ 0.0319\\ 0.0321\\ 0.0321\\ 0.0333\\ 0.0325\\ 0.0326\\ 0.0325\\ 0.0326\\ 0.0321\\ 0.0320\\ 0.0323\\ 0.0318\\ 0.0316\\ 0.0316\\ 0.0315\\ 0.0325\\ 0.0346\\ \end{array}$	335,000 348,000 373,000 414,000 433,000 367,000 367,000 367,000 287,000 272,000 218,000 194,000 173,000 137,000 137,000 137,000	5.26 0.037 5.46 0.040 5.86 0.041 6.50 0.038 6.80 0.040 6.08 0.039 5.76 0.040 5.40 0.039 4.51 0.038 4.27 0.036 3.75 0.037 3.42 0.036 2.72 0.036 2.72 0.036 2.15 0.037 1.93 0.038 1.52 0.041	8849750712798655600

TABLE A-IVa Spanwise Turbulent Velocity Component at 90 Degrees Around the Turn. Trip Wires on Inlet; Coarse Screen at Exit. $\sim = 1.42 \times 10^{-6} \text{m}^2/\text{sec.}$

y/H =	0.975		y/H =	0.797	
Re	U _m	᠕ᢍᢆᢖ	Re	Um m/s	√₩²/U _m
210 000	m/s 2 09	146	125 000	1.79	.156
218,000	5.00	1/7	458,000	6.52	.127
481,000	6.00	1/6	458,000	6.52	.144
425,000	5 12	150	441,000	6.28	.154
362,000	J.12 4 60	160	396,000	5.64	.154
323,000	3 77	171	332,000	4.72	.153
203,000	2 05	103	287,000	4.08	.151
208,000	2.75	200	225,000	3.20	.167
172,000	2.45	167	162,000	2.31	192
130,000	1.92	.107	102,000	2.31	11/-
y/H =	0.949		y/H =	0.695	
136,000	1.92	.152	171,000	2.43	.158
444,000	6.28	.156	441,000	6.28	.146
379,000	5.36	.148	368,000	5.24	.132
345,000	4.88	.155	342,000	4.88	.135
280,000	3.96	.171	287,000	4.08	.145
226,000	3.20	.183	242,000	3.44	.161
172,000	2.43	.187	180,000	2.56	.209
136,000	1.92	.179	135,000	1.92	.200
y/H =	0.898		y/H =	0.619	
135 000	1 92	177	135.000	1.92	.186
441,000	6.28	150	441,000	6.28	.175
376,000	5 36	162	377,000	5.36	.151
342,000	4 88	155	377,000	5.36	.159
278 000	3 96	181	377.000	5.36	.198
270,000	3 20	193	342,000	4.88	.188
171 000	2 43	206	278,000	3.96	.138
135,000	1 92	.173	233,000	3.32	.135
155,000	1./2		144,000	2.05	.179
y/H =	0.848		/u =	0 500	
135,000	1.92	.158	y/11 -	0.000	
445,000	6.34	.136	207,000	2.95	.120
445,000	6.34	.136	261,000	3.72	.155
376,000	5.36	.134	315,000	4.48	.157
342,000	4.88	.139	360,000	5.12	.174
278,000	3.96	.152	394,000	5.61	.183
278,000	3.96	.148	441,000	6.28	.160
278,000	3.96	.148			
242,000	3.44	.158			
180,000	2.57	.170			

.

TABLE A-IVb. Variation of the Spanwise Turbulent Velocity Component with Distance from the Surface for Fixed Reynolds Numbers. 90 Degree Around the Turn; Trip Wires on the Inlet; Coarse Screen at the Exit.

Re =	200,000	Re =	400,000
0 _m -	9.55m/ Sec	0 _m =	18./m/sec
<u>y</u>	$\sqrt{\frac{1}{W^2}}$	<u>y</u>	$\sqrt{\overline{w^2}}$
н	U _m	Н	U _m
.975	.195	.975	.145
.949	.185	.949	.151
.898	.200	.898	.152
.848	.167	.848	.135
.797	.175	.797	.153
.695	.169	.695	.136
.619	.140	.619	.165
.500	.111	.500	.184
Re =	300,000	Re ≈	450,000
U _m =	14.Om/sec	U _m =	21.Om/sec
.975	.161	.975	.145
.949	.164	.949	.158
.898	.174	.898	.150
.848	.144	.848	.136
.797	.153	.797	.154
.695	.144	.695	.148
.619	.143	.619	.177
.500	.16	.500	-

APPENDIX B

TABULATED DATA FOR FLOW WITH ROUGHNESS ON THE LOWER SURFACE OF THE DUCT INLET

A set of mean and turbulent velocity distributions were obtained for a range of Reynolds numbers from approximately 200,000 to 500,000. The lower surface of the duct inlet was roughened with coarse gravel approximately lcm in height. The gravel was secured to the inlet in a band approximately 5 cm wide with epoxy paint, Figure B-1. The gravel was coated with the epoxy paint and then placed on the inlet.

Figure B-1. Rough inlet condition.

The static pressure coefficients on both the inside and outside surfaces of the duct are tabulated in Table B-I. Both oil and water manometers and diaphragm pressure transducers were employed in the measurement of static pressure. In order to determine the Reynolds number effect on the static pressure, the pressure transducer was Connected to measure the difference between the pressure on the top surface at the reference point 109.2 cm upstream of the start of the turn, Figure A-2, and each static tape along the duct wall. For each location the values of Δp was measured as a function of the bulk velocity Reynolds number. Table B-Ia lists the values of c_p for a range of Reynolds numbers obtained at each location. The value of c_p for specific Reynolds numbers, listed in Table B-Ib, were obtained from the faired data given in Table B-Ia. Least square fits of the variation of c_p with the bulk Reynolds number for each location are tabulated in Table B-Ic.

Table B-II lists the mean and turbulent velocity measurements around the duct. The laser velocimeter data was also obtained by setting the measuring volume at a fixed location and varying the flow Reynolds number. Table B-IIa lists the actual data obtained at each location. Table B-IIb lists the mean and turbulent velocity distributions at specific Reynolds numbers obtained from the faired data of Table B-IIa. Table B-IIC lists a special set of measurements of the mean and turbulent velocities obtained along the inside surface near the turn exit where a separation bubble occurs. Also listed on Table B-IIC is the percent time the flow was reversed (or in the upstream direction) determined from probability distributions of the fluctuating velocities. The data listed in Table B-IIC is viewed as more accurate than the separation data listed in Table B-IIa. The extremely large fluctuations in velocity in the separation region made it difficult to keep the signals within the range of the laser counter and the computer digital systems.

Table B-IId lists mean velocity distributions obtained for the rough inlet condition and different outlet conditions. All the data listed in Table B-IIa through c are for the case of a coarse screen across to duct outlet. In Table B-IId both a "dense" screen and no screen conditions are reported. TABLE B-Ia. Static Pressure Coefficient Variation with Reynolds Number at Specific Locations Around the Duct.

Location	Re	Cp	Location	Re	Ср
10°inside	218,500 280,000 316,000 353,000 410,000 480,000	593 693 727 744 763 777	10°outside	276,000 300,500 380,000 428,000 474,000 529,000	. 186 . 205 . 205 . 171 . 207 . 205
30°inside	302,000 323,000 360,000 421,000	-1.827 -1.821 -1.800 -1.784	30°outside	279,000 383,000 538,000	. 408 . 412 . 415
50°inside	302,000 302,500 355,000 418,000 490,000	-2.180 -2.179 -2.161 -2.167 -2.171	50°outside	275,000 309,000 377,000 426,000 483,000 540,000	. 458 . 459 . 458 . 455 . 459 . 463
70°inside	265,000 290,000 332,000 385,000 433,000	-2.246 -2.269 -2.269 -2.272 -2.272	70°outside 90°outside	418,000 531,000 275,000	. 450 . 455 . 452 . 462
110°inside	435,000 490,000 277,500 302,500	-2.303 -2.140 -2.165		338,000 397,000 477,000 531,000	. 453 . 453 . 453 . 453
120° ingido	441,000 499,000	-2.169 -2.162 -2.175	110°outside	279,000 306.000 375,000 416,000	. 459 . 458 . 457 . 455
130 inside	223,000 300,000 340,000 393,000	-1.660 -1.696 -1.703	130° outside	481,000 538,000 268,000	. 450 . 453 . 443
150°inside	454,000 502,000 244,000	-1.741 -1.752 -1.269	100 0005100	388,000 533,000	. 427 . 425
	288,000 325,000 363,000 453,000	-1.285 -1.326 -1.347 -1.402	150°outside	270,000 398,000 535,000	. 405 . 387 . 382
170°inside	507,000 263,000 294,000 331,000 379,000 460,000 508,000	-1.376 -1.166 -1.183 -1.185 -1.215 -1.260 -1.305	170°outside	272,000 311,000 386,000 473,000 544,000	.319 .331 .308 .303 .300

TABLE B-Ia. (Concluded) Static Pressure Coefficient Variation with Reynolds Number at Specific Locations Around the Duct.

Loca	Location		Ср
36.8cm	upst	273,000 303,000 377,000 408,000 472,000 532,000	.002 002 010 012 014 015
11.4cm	upst	273,000 397,000 541,500	088 106 119
6.9cm	dnst	227,000 300,000 354,000 398,000 458,000 532,000	494 663 632 645 649 633
17.5cm	dnst	273,000 313,000 383,000 487,000 539,000	342 358 382 388 388

an an Agusta

TABLE B-Ib. Static Pressure Coefficient Variation Around the Duct at Fixed Reynolds Numbers.

	Cp	Cp	Ср	Ср
Location	Re= 200,00	0 Re= 300,000	Re= 400,000	Re= 500,000
(° around tu	rn)			
10°inside	623	688	753	818
30°inside	-1.865	-1.827	-1.790	-1.753
50°inside	-2.180	-2.175	-2.170	-2.166
70°inside	-2.243	-2.259	-2.276	-2.292
110°inside	-2.144	-2.154	-2.165	-2.175
130°inside	-1.596	-1.652	-1.708	-1.764
150°inside	-1.256	-1.304	-1.352	-1.399
170°inside	-1.124	-1.179	-1.234	-1.289
10°outside	. 190	. 193	. 196	. 200
30°outside	. 406	. 409	. 412	. 414
50°outside	. 456	. 457	. 459	. 460
70°outside	. 450	. 451	. 452	. 453
90°outside	. 460	. 458	. 455	. 452
110°outside	. 461	. 458	. 455	. 452
130°outside	. 445	. 438	. 431	. 425
150°outside	. 409	. 400	. 391	. 383
170°outside	. 331	. 322	. 312	. 302
11.4 cm upst	;081	092	104	115
36.8 cm upst	. 004	002	009	016
6.9 cm dnst	;559	593	627	660
(inside)				
17.5 cm dnst	:339	355	371	387

87

,

TABLE B-Ic.	Least Squ	ares Coeffic	ients for	the S	Static
	Pressure	Coefficient	Variation	With	Reynolds
	Number				-

.

•

.

Location	A	В						
(inside surf 1.14H upst. 10° 30° 50° 70° 110° 130° 150° 170° •67H dnst.	ace) +1.148x10 ⁻⁷ -6.486 " +3.732 " +4.624 " -1.640 " -1.003 " -5.596 " -4.770 " -5.498 " -3.369 "	0580 0494 -1.939 -2.189 -2.210 -2.124 -1.484 -1.161 -1.484						
(outside surface)								
1.74H upst. 10° 30° 50° 70° 90° 110° 130° 150° 170° 0.78H dnst. 1.72H "	-6.662x10 ⁻⁷ -3.229x10 ⁻⁸ +2.643 " +1.177 " +1.060 " -2.723 " -2.993 " -6.607 " -8.620 " -9.724 " +5.993x10 ⁻⁷ -1.610 "	+.0178 +.1835 +.4011 +.4539 +.4480 +.4658 +.4673 +.4673 +.4673 +.4259 +.3508 -1.392 3069						

Where; c_p= ARe +B

> 10H Upstream of the Turn Temp = $7.3^{\circ}C$ $v = 1.413 \times 10^{-6} m^2/sec$

		V - 1.4	IJX10 m / 505			
у/Н . 0076	Re 222,000	U/Um .717	$\sqrt{\frac{1}{u^2}} U_m$. 101 . 105	у/н	Re U/Um 520,000 1.103	√ u ² /U _m . 022
	277,500 332,000 370,000 468,000	. 752 . 758 . 744 . 749 . 749	. 103 . 114 . 101 . 097	.6944	266,000 1.084 377,000 1.082 526,000 1.071	.016 .011 .013
. 0126	250,500 309,000	.736 .755	. 096 . 102	.8586	240,500 1.051 382,500 1.056 534,000 1.062	.017 .017 .018
	383,000 470,500 538,000	.754 .747 .746	.109 .092 .097	. 9343	258,500 1.044 379,000 1.044 528,000 1.049	.040 .032 .039
. 0202	242,000 300,500 387,000 463,000 532,500	.735 .781 .783 .769 .765	.096 .112 .105 .093 .091	.9596	277,500 1.002 292,000 1.010 384,000 1.002 437,000 .977 542.500 .996	.063 .057 .050 .058 .063
. 0303	300,000 382,000 470,000 536,500	.790 .778 .779 .777	. 107 . 097 . 096 . 093	.9848	259,500 .891 298,000 .898 404,000 .897 480.000 .882	. 104 . 066 . 064 . 070
.0505	261,000 301,000 388,000 471,000	.797 .800 .798 .811	. 104 . 104 . 100 . 094	. 9924	547,000 .895 263,000 .852 304,000 .866 405 000 .873	.074 .074 .071 .062
. 1010	257,000 390,500 522,500	.856 .859 .859	. 107 . 109 . 107		482,500 .855 547,500 .859	. 072 . 078
. 2020	255,000 390,500 532,500	.960 .974 .947	.106 .089 .110			
.3030	252,000 405,500 547,000	1.014 1.008 1.007	.083 .075 .081			
.5050	260,500 308,000 396,000 473,000 535,000 217,000 371,000	1.066 1.081 1.068 1.068 1.071 1.079 1.114	. 023 . 026 . 025 . 026 . 023 . 022 . 027			

			on infect, o	ourse seree	at BAIL.		
		1.7H Up Temp = ∨ = 1.5	ostream of t 3.6 [°] C 591x10 ⁻⁶ m ² /s	he Turn ec			
у/н 0,005	Re 192,600 273,300 333,300 440,900 487,200	U/Um .621 .575 .576 .683 .688	$ \sqrt{\frac{2}{u^{\prime}}U_{m}} 074 089 104 073 066 $	$\sqrt{v^2} v_m$	עּע∕ זע שע∕ זע	Angle (deg)	V / U m
. 0125	195,500 283,900 335,900 451,200	.731 .730 .766 .780	.071 .082 .064 .060				
. 0300	196,500 307,300 341,000 466,100	.802 .806 .815 .813	.059 .061 .063 .064				
. 0500	216,400 312,900 369,700 441,200	.959 .904 .899 .869	.067 .067 .066 .059	.112 .094 .118	0177 0074 0062 0091	-1.2 0.3 0.4 1.2	0199 .0046 .0066 .0189
. 1000	200,400 300,400 367,200 453,600	.879 .873 .896 .865	.055 .062 .054 .053	.044 .082	0058 0038 0005 0004	0.3 0.6 0.3 0.3	.0049 .0085 .0041 .0038
. 3000	202,800 301,600 368,400 465,300	. 937 . 942 . 962 . 935	.043 .045 .041 .048	.022 .034 .044 .027	0028 0079 0097 0144	-0.6 -0.3 -1.0 0.2	0101 0053 0173 .0026
. 5000	202,600 302,800 367,800 463,900	.975 .961 .997 .969	.029 .028 .030 .031	.028 .028 .026 .026	0016 0042 0056 0078	-0.7 0.3 2.1 -0.3	0121 .0054 .0373 0056
.6850	200,400 291,900 375,600 1 474,800	.981 .992 .019 .980	.020 .018 .019 .024	.016 .015 .020 .008	0003 0007 0004 0006	0.2 0.1 -0.5 -0.6	.0030 .0019 0084 0101
.8850	195,200 295,800 367,200 468,600	.876 .904 .918 .913	.048 .048 .044 .045	.041 .125 .042 .007	.0090 0416 .0078 .0153	-0.1 -0.9 0.6 0.0	0014 0148 .0009 .0001

		Start of Temp = 3 $\sqrt{1.58}$	the Turn 3.5 ^o C 34x10 ⁻⁶ m ² /se	20			
у/н .0075	Re 210,200 352,900 462,800	U/Um 1.105 1.040 1.130	√u ² /U _m . 053 . 048 . 043	$\sqrt{v_{p}^{2}} \upsilon_{m}$	<u>υ</u> ν∕υ _m ²	Angle (deg)	V/Um
.0125	198,600 348,400 477,000	1.127 1.138 1.126	.049 .046 .043				
. 0300	202,300 353,500 477,000	1.112 1.129 1.125	.046 .043 .041				
. 0500	195,900 361,700 480,900	1.112 1.130 1.118	.046 .042 .041	. 026 . 069 . 197	0046 0038 .1284	-6.2 -5.9 -5.7	121 116 111
. 1000	197,500 353,300 471,200	1.087 1.118 1.099	.042 .052 .039	.039 .017 .021	0053 0063 0112	-7.7 -7.8 -8.3	147 153 161
. 3000	197,500 335,800 468,800	1.011 1.024 1.020	.036 .035 .034	.029 .030 .031	0035 0056 0088	-10.7 -10.1 -10.6	192 183 190
.5000	200,400 336,300 439,500	1.084 1.044 1.047	. 028 . 026 . 027	.023 .023 .020	0009 0028 0034	-10.3 -10.0 -10.1	197 184 170
.6850	196,900 340,200 423,300	. 987 . 989 . 973	. 043 . 033	.089 .034 .016	0331 .0031 .0050	11.1 -8.1 -8.8	. 193 150
.8850	182,700 352,500 431,500	.711 .715 .733	.097 .079 .075	. 084 . 026	.0114 .0243 .0295	-5.4 -5.2 -5.6	068 065 072
.9550	192,000 358,700 431,700	. 465 . 470 . 488	.074 .092 .100				

		90 deg Temp = ∨ = 1.	. Around the 3.3 ^o C 601x10 ⁻⁶ m ² /s	Turn ec			
у/н .0125	Re 199,000 278,000 417,000	U/Um 1.757 1.717 1.653	√u ² /U _m . 061 . 075 . 076	√√2 ² ∪m	<u></u> υν/ υ _m ²	Angle (deg)	V/Um
. 0500	193,000 309,000 412,000	1.705 1.700 1.655	.051 .045 .047				
. 1000	188,000 304,000 403,000	1.519 1.501 1.516	.040 .042 .042				
. 3000	199,000 298,000 408,000	1.163 1.176 1.148	.031 .030 .034				
. 5000	194,000 302,000 418,000	.996 .999 .964	.073 .053 .063	.074 .076 .027	.0317 .0402 .0056	2.0 1.3 1.4	.0356 .0222 .0241
.6850	176,000 306,000 420,000	.771 .763 .771	.116 .094 .140	.119 .122 .088	.0925 .1323 .1377	3.9 3.2 1.2	.0525 .0424 .0169
.8850	192,000 306,000 403,000	.593 .596 .654	.088 .081 .173	. 109 . 123	.0485 .0675 .0512	0.9 0.1 7.4	. 0098 . 0009 . 0849
.9550	199,000 302,000 417,000	.591 .600 .582	.091 .086 .077				
.9800	197,000 306,000 421,000	.556 .572 .558	.087 .079 .079				
. 9995	195,000 277,000 412,000	.537 .540 .545	.088 .075 .081				

		170 de Temp = ∨ = 1.	g Around the 5.1°C 519x10 ⁻⁶ m ² /se	Turn c			
у/Н	Re	U/Um	$\sqrt{\overline{u_{l}^{2}}} \upsilon_{m}$	$\sqrt{v^2/u_m}$	\overline{uv} / v_m^2	Angle (deg)	V/Um
. 2000	190,000 306,000	1.433 1.424	.051 .047	. 097	. 0037	16.6	. 4329
	455,000	1.394	. 044	. 097	0173	16.4	.4104
. 3000	186,500 291,500 457,000	1.219 1.330 1.311	.047 .048 .043				
. 5000	184,000 296,000 461,000	1.028 1.166 1.158	.071 .065 .071				
.6850	185,500 300,000 463,000	.889 1.001 .977	.072 .070 .073				
.9250	188,000 324,000 455,000	.781 .924 .912	068 069 068				
.9850	183,000 300,000 464,000	.729 .822 .811	.066 .069 .056				

.

Exit of the Turn Temp = $4.3^{\circ}C$ v = $1.568 \times 10^{-6} \text{m}^2/\text{sec}$

у/Н	Re	U/Um	$\sqrt{u^2/U_m}$	$\sqrt{v^2/U_m}$	ūv∕ U _m ²	V/Um
. 1000	148,000 312,000 438,000	1.295 1.117 1.096	. 104 . 265 . 201	. 0856	. 000365	.508 .488 .387
. 2000	172,000	1.207	.045	.0912	000497	. 442
	324,000	1.241	.059	.0766	000196	. 515
	452,000	1.259	.051	.0768	000101	. 523
. 3000	162,000	1.197	.053	.1111	.000748	. 403
	335,000	1.238	.050	.0827	00838	. 463
	461,000	1.209	.044	.0806	000391	. 457
. 5000	156,000	1.013	.067	. 1592	002140	.290
	333,000	1.116	.052	. 1434	000614	.327
	457,000	1.089	.049	. 1512	.001230	.311
.6850	161,000	.944	.069	. 1970	.00394	. 149
	328,000	1.030	.058	. 1815	.00155	. 221
	457,000	1.004	.061	. 1702	.000234	. 203
.8850	156,000 341,000 458,000	.920 .975 .962	.064 .053 .062			

> 0.5H Downstream of the Turn Temp = 5.7° C $v = 1.512 \times 10^{-6} \text{m}^2/\text{sec}$

у/Н	Re	U/Um	$\sqrt{\overline{u^2}} U_m$	$\sqrt{v^2/v_m}$	\overline{uv} / U_m^2	Angle (deg)	V/Um
. 2000	204,000 383,000 546,000	1.058 .989 1.032	. 113 . 133 . 181	. 228 . 171	2214 .0004 .0276	-22.6 0.3 0.6	4416 .0057 .0103
. 3000	209,000 397,000 5 49, 000	1.122 1.088 1.172	.071 .082 .075	.085 .087 .089	.0089 0387 0129	6.1 5.6 5.6	. 1205 . 1076 . 1148
.5000	211,000 397,000 549,000	1.092 1.062 1.164	.064 .056 .059	. 136 . 099 . 115	.0100 0114 .0200	7.6 7.2 6.8	. 1450 . 1349 . 1398
.6850	207,000 403,000 549,000	1.151 1.055 1.127	.070 .058 .056	. 188 . 139 . 160	.0026 0134 .0669	5.7 6.3 5.1	. 1141 . 1161 . 1014
.8850	205,000 375,000 547,000	1.148 1.140 1.125	.076 .069 .065				
.9600	205,000 409,500 553,000	1.125 1.049 1.121	.065 .060 .063				
.9850	205,000 397,000 549,000	1.108 1.037	.069 .059				
. 9925	205,000 401,000 549,000	1.041 .959 1.033	.093 .073 .073				

C ')

TABLE B-IIa.	(Concluded) Mean and	Turbulent Velocity Variations with	Reynolds
	Number. Roughness or	Inlet, Coarse Screen at Exit.	

.....

3.05H Downstream of the Turn Temp = 8.2° C $v = 1.382 \times 10^{-6} \text{m}^2/\text{sec}$									
у/Н . 0075	Re 208,000 274,000 391,000 470,000 556,000	U/Um .531 .580 .587 .519 .543	$\sqrt{\frac{1}{2}}$ Um . 106 . 140 . 136 . 138 . 135	√√2 ⁰ m	<u>נ</u> ע ט ²	V∕Um			
. 0125	216,000 314,000 384,000 483,000 560,000	.532 .572 .601 .614 .614	. 103 . 131 . 130 . 144 . 135						
. 0300	212,000 288,000 375,000 483,000 546,000	. 602 . 677 . 685 . 684 . 717	. 114 . 128 . 157 . 147 . 129						
. 1000	210,000 285,000 377,000 448,000 533,000	.715 .763 .792 .791 .779	. 122 . 148 . 162 . 152 . 141	.094 .131 .090 .140	0032 0064 0042 0026 0004	0009 0036 0135 0252 0109			
. 3000	196,000 340,000 442,500 521,000	.948 .948 .930 .919	. 186 . 170 . 146 . 167	. 125 . 100 . 147 . 081	0098 0050 0035 0048	040 061 058 059			
. 5000	207,000 332,000 400,000 518,000	1.077 1.082 1.212 1.093	. 133 . 143 . 158 . 142	. 137 . 115	0042 0030 0011 0009	.001 028 005 015			
.6850	204,000 345,000 445,000 514,000	1.140 1.148 1.148 1.163	.114 .158 .108 .100	. 133 . 158 . 090 . 111	0008 .0001 0011 .0012	.015 .009 .017 .017			
. 9000	173,000 276,000 364,000 460,000 540,000	1.157 1.120 1.122 1.120 1.120 1.142	.075 .075 .069 .078 .074	.097 .089 .092 .065 .086	.0012 .0010 .0006 .0010 .0014	.0090 0070 0093 0072 0033			
.9700	174,000 271,000 367,000 452,000 529,000	1.137 1.107 1.112 1.123 1.145	.097 .100 .087 .090 .095						
. 9875	181,000 298,000 363,000 457,000 527,000	1.125 1.085 1.102 1.099 1.104	.114 .107 .101 .111 .113						
. 9925	153,000 217,000 295,000 364,000 443,000 485,000 524,000	1.181 1.086 1.059 1.074 1.073 1.071 1.086	. 113 . 128 . 131 . 108 . 126 . 126 . 112						

TABLE B-IIb. Mean and Turbulent Velocity Distributions.

Re=	200,000		300,000		400,000		500,000	
у/Н	U/Um	$\sqrt{u^2}/U_m$	U/U _m	$\sqrt{u^2}/U_m$	U/U _m	$\sqrt{u^2}/U_m$	ປ/ປ _m	$\sqrt{u^2}/U_m$
0.0076 0.0126 0.0202 0.0303 0.0505 0.1010 0.2020 0.3030 0.5050 0.6940 0.8590 0.9340 0.9600 0.9850 0.9920	0.698 0.714 0.749 0.783 0.848 0.936 1.020 1.080 1.090 1.050 1.050 1.040 1.020 0.886 0.827	0.0990 0.0920 0.0830 0.0910 0.1040 0.1070 0.1070 0.0860 0.0210 0.0240 0.0165 0.0460 0.0980 0.0785	0.7569 0.7800 0.7931 0.8039 0.8618 0.9631 1.0080 1.0760 1.0900 1.0560 1.0410 1.0080 0.8987 0.8669	0.1090 0.1010 0.1120 0.1070 0.1035 0.1070 0.0800 0.0250 0.0140 0.0165 0.0360 0.0550 0.0655 0.0710	0.7432 0.7503 0.7676 0.8588 0.9696 1.0080 1.0660 1.0750 1.0570 1.0570 1.0440 0.9837 0.8952 0.8751	0.0980 0.1065 0.1030 0.0995 0.1090 0.0950 0.0750 0.0275 0.0120 0.0170 0.0320 0.0520 0.0640 0.0630	0.7503 0.7673 0.8584 0.8029 0.8584 0.9514 1.0100 1.0690 1.0690 1.0590 1.0470 0.9818 0.8841 0.8532	0.0950 0.0925 0.0920 0.1080 0.0950 0.1080 0.1050 0.0770 0.0245 0.0130 0.0175 0.0365 0.0620 0.0710 0.0735

Station 10 H ahead of turn

1.71 H upstream

Re≖	200	,000	300,	,000	400,000		500,000	
у/Н	U/U_m	√u ² /U _m	U/U_m	$U/U_{\rm m} = \sqrt{u^2/U_{\rm m}} U$		√u ² /U _m	U/U _m	$\sqrt{u^2}/U_m$
0.0050 0.0125 0.0300 0.1000 0.3000 0.5000 0.6850 0.8850 0.8850 0.9550 0.9800	0.618 0.731 0.801 0.846 0.897 0.988 1.051 1.105 1.022 0.912 0.800	0.0748 0.0705 0.0583 0.0552 0.0533 0.0432 0.0352 0.0208 0.0208 0.0540 0.0599 0.0712	0.5720 0.7400 0.8050 0.8470 0.8970 1.0040 1.0680 1.0680 1.0290 0.9200 0.8300	0.0985 0.0762 0.0605 0.0550 0.0525 0.0442 0.0327 0.0222 0.0535 0.0625 0.0758	0.6430 0.7770 0.8130 0.8470 0.8960 1.0000 1.0640 1.1110 1.0320 0.9190 0.8500	0.0842 0.0599 0.0640 0.0562 0.0538 0.0479 0.0323 0.0258 0.0525 0.0608 0.0757	0.6910 0.7810 0.8140 0.8450 0.9970 1.0610 1.1100 1.0290 0.9070 0.8450	0.0692 0.0598 0.0639 0.0577 0.0552 0.0491 0.0340 0.0282 0.0552 0.0635 0.0778

Start of turn

Re=	200,000		300,000		400,000		500,000	
у/Н	U/U_m	$\sqrt{u^2}/U_m$	υ/u _m	$\sqrt{u^2}/U_m$	U/U_m	$\sqrt{u^2}/U_m$	U/U _m	$\sqrt{u^2}/U_m$
0.0120 0.0300 0.0500 0.1000 0.5000 0.6850 0.8850 0.9550	1.129 1.111 1.115 1.090 0.979 0.708 0.452	0.0435 0.0465 0.0465 0.0420 0.0275 0.0420 0.0935 0.0750	1.1390 1.1260 1.1320 1.1200 1.0410 0.9760 0.7050 0.4480	0.0455 0.0450 0.0445 0.0515 0.0260 0.0350 0.0825 0.0855	1.1380 1.1270 1.1270 1.1120 1.0430 0.9650 0.7230 0.4790	0.0460 0.0420 0.0415 0.0495 0.0265 0.0330 0.0760 3.0970	1.1300 1.1270 1.1210 1.1030 1.0470 0.9750 0.7370 0.4940	0.0445 0.0410 0.0410 0.0430 0.0275 0.0335 0.0745 0.1025

$$\Gamma = 8.1^{\circ}C$$

$$v = 1.38 \times 10^{-6} m^2/sec$$

Re=	200,000		300,000		400,000		500,000	
у/Н	U/U_m	$\sqrt{u^2}/U_m$	U/U_	$\sqrt{u^2}/U_m$	U/U_	$\sqrt{u^2}/U_m$	U/U_m	$\sqrt{u^2}/U_m$
0.0100 0.0150 0.0200 0.0300 0.0625 0.0750 0.1000 0.2000 0.3000 0.5000 0.6850 0.9600 0.9850	0.0410 0.0930 0.1140 0.2140 0.4540 0.4540 0.4370 0.7340 1.0620 1.1220 1.0850 1.1020 1.1240 1.1240 1.1240	0.1260 0.2200 0.2140 0.2600 0.3160 0.3560 0.2810 0.1130 0.0700 0.0640 0.0720 0.0760 0.0760	-0.0840 -0.0820 -0.0730 0.0050 0.0800 0.1490 0.2800 0.4960 1.0570 1.1630 1.1320 1.1610 1.1480 1.1280	0.2100 0.2080 0.2000 0.2440 0.2740 0.2930 0.3210 0.2640 0.1150 0.0780 0.0590 0.0620 0.0710 0.0620 0.0720	-0.0600 -0.0270 -0.0090 0.0480 0.1030 0.1440 0.3050 0.4900 1.0600 1.1710 1.1520 1.1520 1.1430 1.1430	0.1540 0.1800 0.1790 0.2150 0.2420 0.2520 0.2880 0.2600 0.1380 0.0820 0.0570 0.0570 0.0570 0.0680 0.0620	-0.0030 0.0120 0.0430 0.1090 0.1790 0.3600 0.4630 1.0480 1.1750 1.1690 1.1380 1.1320 1.1180	0.1540 0.1560 0.1580 0.2180 0.2180 0.2630 0.3020 0.1830 0.0760 0.0620 0.0550 0.0640 0.0630

.508 after turn

3.03 H downstream of the turn

Re=	200	,000	300,000		400,000		500,000	
у/Н	U/U_m	$\sqrt{u^2}/U_m$	U/U _m	U/U _m √u ² /U _m ($\sqrt{u^2}/U_m$	U/U_m	$\sqrt{u^2}/U_m$
0.0076 0.0126 0.0303 0.1010 0.2020 0.3030 0.5050 0.6920 0.8990 0.9700 0.9870 0.9870	0.5340 0.5340 0.5900 0.6870 0.9290 0.9620 1.0630 1.1470 1.1290 1.1070	0.0980 0.0970 0.1130 0.1260 0.1860 0.1330 0.1320 0.0760 0.0980 0.1330 0.1330	0.5490 0.5530 0.6740 0.7720 0.8600 0.9460 1.0580 1.1380 1.1140 1.1000 1.0930	0.1390 0.1230 0.1230 0.1500 0.1750 0.1390 0.1490 0.0750 0.0970 0.1070	0.5400 0.6110 0.6760 0.7870 0.8580 0.9380 1.0760 1.1440 1.1200 1.1140 1.0960	0.1370 0.1330 0.1550 0.1590 0.1570 0.1580 0.1130 0.0720 0.0880 0.1160	0.5230 0.6000 0.6830 0.7810 0.8340 0.9190 1.0830 1.1620 1.1280 1.1280 1.1280	0.1370 0.1400 0.1440 0.1450 0.1610 0.1600 0.1060 0.0750 0.0950 0.1120

TABLE B-IIb. (Continued). Mean and Turbulent Velocity Distributions.

Re=	200,000		300,000		400,000		500,000	
y/H	U/U _m	$\sqrt{u^2}/U_m$	U/U_m	$J/U_{\rm m} = \sqrt{u^2}/U_{\rm m}$		$\sqrt{u^2}/U_m$	U/U _m	$\sqrt{u^2}/U_m$
0.0120 0.0500 0.1000 0.3000 0.6850 0.8850 0.9550 0.9800 0.9950	1.751 1.702 1.518 1.167 0.994 0.767 0.589 0.554 0.536	0.0610 0.0510 0.0410 0.0315 0.0725 0.1100 0.1090 0.0910 0.0860 0.0875	1.7000 1.6980 1.5230 1.1690 0.9980 0.7610 0.5990 0.5700 0.5390	0.0760 0.0460 0.0420 0.0300 0.0535 0.1090 0.0950 0.0860 0.0800 0.0790	1.6520 1.6520 1.5020 1.1430 0.9680 0.7650 0.6520 0.5870 0.5620 0.5430	0.0770 0.0470 0.0420 0.0340 0.0605 0.1080 0.1070 0.0785 0.0800 0.0760	1.6220 1.6300 1.4860 1.1190 0.9470 0.6480 0.5720 0.5500 0.5500	0.0775 0.0490 0.0410 0.0370 0.0670 0.1030 0.1050 0.0750 0.0800 0.0740

90 degrees around turn

170 degrees around turn

Re=	200,000		300,000		400	,000	500,000	
у/Н	υ/υ _m	√u ² /U _m	U/Um	$\sqrt{u^2}/U_m$	U/U_m	√u ² /∪ _m	U/U _m	$\sqrt{u^2}/U_m$
0.0050 0.0100 0.0150 0.0200 0.0300 0.0500 0.1000 0.2000 0.3000 0.5000 0.5000 0.5500 0.9250 0.9750	0.1064 0.1596 0.3377 0.6015 0.7959 1.1450 1.2760 1.4120 1.2760 1.0080 0.8849 0.7818 0.7818	0.2400 0.3200 0.3080 0.3760 0.2740 0.0660 0.0510 0.0475 0.0720 0.0720 0.0690 0.0670	-0.0480 -0.3470 -0.0120 0.1024 0.3712 0.8224 1.2760 1.4360 1.3180 0.9856 0.8896 0.8200	0.1080 0.1690 0.2230 0.3720 0.3810 0.1300 0.0490 0.0480 0.0720 0.0708 0.0701 0.0700	-0.0286 -0.0077 0.0270 0.0762 0.2417 0.6321 1.2370 1.3900 1.2960 1.0710 0.9851 0.9167 0.7976	0.0990 0.1690 0.2190 0.2360 0.3680 0.4150 0.0468 0.0471 0.0468 0.0471 0.0715 0.0700 0.0698 0.0668	-0.0205 -0.0040 0.0187 0.0808 0.2638 0.6884 1.2780 1.3910 1.3120 1.0780 0.9768 0.9098 0.8223	0.0730 0.1570 0.1940 0.2320 0.3440 0.4180 0.1100 0.0450 0.0430 0.0710 0.0721 0.0682 0.0569

y/H U/U_m $\sqrt{u^2}/U_m$ U/U_m $\sqrt{u^2}/U_m$ U/U_m 0.0100 -0.0936 0.1580 -0.1060 0.1340 -0.0647 0.0130 0.0000 0.2090 -0.0985 1.3400 -0.0511 0.0150 0.0430 -0.2320 -0.0579 0.1590 -0.0520	√u ² /U _m 0.1120 0.1090	U/U _m -0.0611 -0.0521	$\sqrt{u^2/U_m}$ 0.1040 0.1040
0.0100 -0.0936 0.1580 -0.1060 0.1340 -0.0647 0.0130 0.0000 0.2090 -0.0985 1.3400 -0.0511 0.0150 0.0430 -0.1150 -0.1150 -0.0560 0.0200 0.2320 -0.0578 0.1590 -0.0320	0.1120 0.1090	-0.0611 -0.0521	0.1040
0.0200 0.1030 0.2330 -0.0012 0.0088 0.0250 0.2370 -0.0012 0.0088 0.0300 0.3810 0.3830 0.0580 0.2800 0.0400 0.4890 0.3640 0.1890 0.3440 0.1860 0.0500 0.6660 0.3480 0.3020 0.3870 0.2880 0.1000 1.1780 0.2080 1.1230 0.2633 1.0950 0.2000 1.2130 0.0532 1.2400 0.0512 1.2038 0.5000 1.0660 0.0701 1.1120 0.0540 1.0950	0.0925 0.2320 0.3320 0.3850 0.2140 0.0545 0.0468 0.0505	0.0544 -0.0121 0.0263 0.0814 0.2080 0.3180 1.0930 1.2580 1.2080 1.0850	0.0685 0.2130 0.3290 0.3820 0.1820 0.0503 0.0438 0.0500

Exit around turn

150 Tem √ =	deg. Aroun p = 8.8°C 1.356x10-6	d the Tun m ² /sec	rn	160 deg. Around the Turn Temp = $8.8^{\circ}C$ $v = 1.356 \times 10^{-6} \text{m}^2/\text{sec}$					
у/н .0050	Re 201,400 260,500 316,900 427,200 429,200 511,000	U/Um .561 .460 .472 .446 .447 .431	√u7Um .602 .349 .320 .325 .317 .460	% Rev 8.6 11.8 8.9 9.7 8.4 6.4	у/Н .0050	Re 195,700 192,200 330,800 413,500 522,800	U/Um .648 .456 .252 .257 .263	√u ² /Um .521 .370 .295 .294 .303	% Rev 4.3 11.7 24.6 24.0 23.6
.0100	201,100 321,500 427,200 511,600	.579 .715 .654 .579	.621 .352 .820 .300	16.9 2.5 2.9 2.6	.0100	318,700 408,700 510,000 199,500	.315 .268 .228 .509	.336 .300 .279 .388	22.0 22.7 25.2 8.2
.0150	201,000 305,900 435,200 517,600	.999 .641 .607 .647	. 324 . 394 . 365 . 500	0.3 4.0 3.8 2.4	.0150	200,000 305,000 399,500 495,700 196,800	.546 .265 .258 .231 .577	.399 .327 .301 .289 .393	8.1 25.5 24.2 27.2 8.2
. 0200	297,500 420,500 488,100 201,100	.862 .823 .799 1.166	.385 .369 .497 .296	2.1 1.4 .0	.0200	197,500 303,000 400,900 506,400	.750 .417 .413 .351	.409 .388 .359 .301	4.3 18.5 14.9 14.5
. 0300	259,100 259,400 311,200 310,000 415,500	.850 .818 .833 .837 .795	.380 .379 .375 .379 .341	1.6 1.9 1.8 1.5 0.8	. 0300	192,700 312,100 416,400 489,300	1.122 .830 .709 .678	.311 .405 .383 .395	0.3 3.9 3.6 4.3
. 0500	493,200 202,700	.743 .748 1.357	. 414 . 426 . 131	1.9 6.1	. 0500	194,700 322,400 394,500 504,600	1.221 1.189 1.180 1.085	. 171 . 298 . 299 . 331	.0 0.2 .0 .0
	308,900 421,700 510,300	1.395 1.376 1.436	. 375 . 119 . 254		. 0750	193,600 306,200 403,900	1.298 1.344 1.358	.093 .130 .123	
.0750	203,700 323,500 428,800 520,500	1.332 1.406 1.413 1.492	. 163 . 130 . 086 . 132		. 1000	500,200 200,900 312,100	1.348 1.289 1.366	. 129 . 085 . 065	
. 1000	211,400 259,100 321,700 431,500 514,600	1.282 1.386 1.400 1.406 1.392	.063 .074 .069 .068 .075			498,400	1.365	. 079	`

TABLE B-IIc. Velocity and Percent Flow Reversal in the Separation Bubble. Roughness on Inlet, Coarse Screen at Exit.

170 Temy V =	deg. Around the Tu $p = 8.3^{\circ}C$ $1.375 \times 10^{-6} m^2/sec$	ırn	180 deg. Around the Turn Temp = 8.4° C $v = 1.374 \times 10^{-6} \text{m}^2/\text{sec}$					
у/н .0075	Re U/Um 258,000039	√u²/Um . 195 . 221	% Rev 77.3 79.8	у/Н 0075	Re U/Um 291,800086	√u2⁄Um .219	% Rev 74.8	
	406,000034 509,000030	. 541 . 230	71.1 74.8	0100	291,800 - 103 422,100 - 075 511,400 - 082	.232 .317 .187	74.9 71.4 74.1	
.0100	295,000019 196,000 .248 408,000016 477,000026	. 222 . 369 . 235 . 232	67.7 32.3 65.6 66.0	0150	510,700071 410,800098 291,400071	. 225 . 237 . 247	70.0 69.8 72.7	
.0150	297,000 .045 191,000 .372 303,000 .025	. 270 . 409 . 258	58.3 23.2 61.2	0200	291,600057 423,500040 504,300044	. 246 . 247 . 246	70.4 66.0 66.4	
	414,000 .050 503,000 .023	. 254	59.0	0400	197,000 507,400 .229	. 468 . 386	12.3 34.7	
.0200	205,000 .277 487,000 .104	. 412 . 309 293	32.6 45.8 49.1		396,900 .221 287,200 .224	. 396 . 419	35.9 36.9	
	299,000 .098	. 305	50.6 33.7	0500	506,300 .287 402,100 .324	.389 .431	28.9 28.3 31 9	
.0300	299,000 .253 421,000 .227 479,000 .207	. 384 . 373 . 355	35.2 35.9 35.4	0750	289,400 . 289 289,600 . 708	. 465	9.1 8 9	
.0500	191,000 1.095 483,000 .628 412,000 .662 296,500 .664	.337 .556 .450 .461	1.5 10.7 9.5 10.3		415,200 .712 499,300 .656 197,000 1.070	. 440 . 324	9.4 1.2	
. 0075	295,000 1.156 413,000 1.128 505,000 1.066 200,000 1.217	. 324 . 343 . 347 . 173	0.8 0.9 1.8 0.1					
. 1000	200,000 1.255 481,000 1.355 396,000 1.291 302,000 1.271	. 099 . 196 . 174 . 171	.0 .0 0.1 .0					

TABLE B-IIc. (Continued) Velocity and Percent Flow Reversal in the Separation Bubble. Roughness on Inlet, Coarse Screen at Exit. TABLE B-IIc. (Concluded) Velocity and Percent Reversal in the Separation Bubble. Roughness on Inlet, Coarse Screen at Exit.

Te V	505H Downstream of emp = $8.2^{\circ}C$ = $1.379 \times 10^{-6} m^2/sec$	the Turn	1.0H Downstream of the Turn Temp = $8.0^{\circ}C$ v = $1.518 \times 10^{-6} m^2/sec$					
у/н .0076	Re U/Um 315,500 - 177 358,000 - 049	√u7⁄Um .329	% Rev 80.3 76.1	у/н . 0075	Re 245,000 312,000 418,000	U/Um . 101 . 070	√u ² /Um . 184 . 159	% Rev 28.9 22.8
. 0101	313,000212 314,000223 409,000214 502,000218	. 264 . 262 . 270 . 263	80.4 81.6 81.0 78.7		508,000 545,000 208,000	. 094 . 098 . 203	. 207 . 170 . 181 . 191	21.1 19.3 21.9 15.1
. 0152	294,000178 415,000180 507,000166	. 275 . 276 . 257	77.0 76.8 78.7	. 0125	205,000 323,000 423,000 530,000	.341 .147 .165 .101	. 183 . 219 . 213 . 206	0.6 12.4 17.1 16.9
. 0202	299,000175 396,000169 507,000155	. 279 . 283 . 256	74.7 74.9 75.8	. 0300	208,000 357,000 542,000	.393 .243 .301	. 150 . 237 . 195	0.2 12.1 1.7
. 0303	292,000 - 124 423,000 - 105 502,000 - 092 417,000 - 118	.289 .321 .275 .298	67.0 71.9 66.6 68.2	.75 Tem v =	8H Downstre p = 8.2°C 1.379x10 ⁻⁶	eam of th ⁵ m ² /sec	e Turn	
.0505	292,000055 407,000 .005 502,000011	.341 .342 .317	59.2 52.2 54.8	у/ Н .0075	Re 210,000 310,400 410,900	U/Um .263 .048	$\sqrt{u^2/Um}$. 303 . 253	% Rev 23.2 55.2
. 0758	207,000 .292 312,000 .145 410,000 .162 502,000 .118	.410 .407 .378 .378	30.5 42.6 39.0 46.9	. 0100	206,000 309,600 402,000	.039 .210 .091	.242 .153 .261 .291 .307	53.3 63.8 25.6 44.7 45.0
. 1010	199,500 .460 313,000 .276 410,000 .331 507,500 .272	.427 .432 .419 .392	18.2 31.0 27.0 30.3	.0150	508,200 212,000 313,600 402,200	. 102 . 252 . 145 . 158	. 282 . 286 . 310	43.2 24.7 36.9
. 1515	216,000 .671 310,000 .682 409,000 .663 505,000 .641	. 421 . 434 . 423 . 407	9.0 8.8 8.7 8.5	. 0200	516,200 204,000 314,000	. 173 . 329 . 145	.291 .284 .310	33.6 16.2 36.4
. 2020	213,000 .901 305,500 .956 416,000 .920 497,000 .914	.375 .377 .389 .377	3.7 2.4 2.7 2.6	. 0300	203,000 308,400	. 182 . 179 . 360 . 183	. 333 . 296 . 274 . 310	351 31.2 12.5 33.9
. 3030	212,000 1.134 305,500 1.216 411,500 1.205 496,000 1.162	.248 .264 .262 .273	0.3 0.4 0.1 0.1	. 0500	198,000 310,900 416,400 511,100	. 208 . 238 . 443 . 272 . 276 . 282	.312 .300 .263 .301 .324 .298	29.0 23.6 7.3 22.8 22.7 20.0
TABLE B-IId. Mean Velocity Distributions With Different Exit Screens. Roughness on Inlet.

90 Degrees Around the Turn

	Dens	e Screen	
Re=	197,000	292,100	377,200
U _m =	2.58m/s	3.82m/s	4.93m/s
y/H	u/u	u/u	u/n
.008	1.267	1.410	1.387
.010	1.578	1.531	1.515
.020	1.649	1.657	1.608
.050	1.615	1.678	1.610
.102	1.530	1.518	1.486
.203	1.339	1.347	1.328
.305	1.202	1.215	1.191
.500	0.999	1.015	1.001
.699	0.762	0.779	0.773
. 899	0.594	0.620	0.608
.950	0.577	0.582	0.587
.975	0.557	0.572	0.576

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		No Se	creen	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re= 199,000	291,500	385,400	463,700
y/H U/Um U/Um .008 1.613 1.582 .010 1.663 1.654 .020 1.663 1.648 .020 1.643 1.648 .030 1.643 1.648 .030 1.643 1.648 .030 1.643 1.648 .030 1.648 1.648 .030 1.648 1.601 .100 1.496 1.497 .100 1.335 1.336 .200 1.335 1.336 .200 1.196 1.195 .200 1.196 0.983 .886 0.719 0.740 .886 0.595 0.617	U _m = 2.58m/s	3.79m/s	5.00m/s	6.02m/s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H U/Um	U/Um	u∕um	u/Um
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 1.613	1.582	1.621	1.628
.020 1.653 1.648 .030 1.648 1.648 .050 1.614 1.618 .050 1.614 1.601 .100 1.496 1.497 .100 1.335 1.336 .200 1.335 1.336 .200 1.196 1.195 .300 1.196 0.983 .886 0.719 0.740 .886 0.595 0.617	0 1.663	1.654	1.664	1.645
.030 1.648 1.648 .050 1.614 1.601 .100 1.496 1.497 .200 1.335 1.336 .200 1.196 1.195 .300 1.196 0.983 .490 0.976 0.983 .886 0.595 0.617	0 1.653	1.648	1.639	1.632
.050 1.614 1.601 .100 1.496 1.497 .200 1.335 1.336 .200 1.196 1.195 .300 1.196 0.983 .490 0.976 0.983 .886 0.595 0.617	0 1.648	1.648	1.638	1.604
. 100 1.496 1.497 . 200 1.335 1.336 . 300 1.196 1.195 . 490 0.976 0.983 . 688 0.719 0.740 . 886 0.595 0.617	0 1 614	11.601	1.600	1.567
.200 1.335 1.336 .300 1.196 1.195 .490 0.976 0.983 .688 0.719 0.740 .886 0.595 0.617	0 1 496	1.497	1.494	1.465
.300 1.196 1.195 .490 0.976 0.983 .688 0.719 0.740 .886 0.595 0.617	0 1 335	1.336	1.327	1.299
.490 0.976 0.983 .688 0.719 0.740 .886 0.595 0.617	0 1 196	1.195	1.192	1.178
.688 0.719 0.740 .886 0.595 0.617	0 0 976	0.983	0.974	0.971
.886 0.595 0.617	8 0.719	0.740	0.752	0.756
	6 0.595	0.617	0.626	0.625
.936 0.578 0.569	6 0.578	0.569	0.584	0.595

the Turn o Screen	291,500 385,400 463,700	3.81m/s 5.04m/s 6.06m/s		028 045 073	013 018 036	050 .039 .008	15.0 15.3 1.105	415 477 415	428 128 828	1.077 1.105 1.06/	1 236 1.248 1.245			1.201 1.212 1.200	1.118 1.136 1.132	
u u	385,4	5.041	n∕n	- 04	- 01	. 03	1.15		1 1 7 1	1.10	1.24	1 0		1.2]	1.13	
No Scree	291,500	3.81m/s	u/Um	028	013	050	150	101.	.428	1.077	1 236		1.224	1.201	1.118	
	199,000	: 2.60m/s	U/Um	!	320	550		. 120	. 893	1 174	1 1 2 2	777.7	1.198	1.155	1.058	
	Re=	1 ∎ 1	٣v				040	. USU	.050	100		. 100	.200	300		

APPENDIX C

TABULATED DATA FOR FLOW WITH SMOOTH INLET SURFACES

The initial evaluation of the flow in the turn-around duct was made with smooth inlet surfaces. These preliminary measurements were made using a laser tracker system at nominally low Reynolds numbers. The measurements tabulated in Appendices A and B were made using a laser counter system. While the laser tracker mean velocity measurements agree reasonably well with the laser counter results over much of the flow field, the tracker velocities close to the surface appear to be too high. The data served to identify the major features of the flow in the turn-around duct. However, the data may be too limited to be used as a bases for improvement or computer models.

Table C-I lists the static pressure coefficients obtained for a Reynolds number range from 77,700 to 207,000. The data were obtained by setting the flow Reynolds number and then measuring the pressure difference with a diaphragm pressure transducer at each location around the turn. At the low flows it was more difficult to maintain the constant Reynolds number, thus some scatter in the individual values of c_p occurred.

Table C-IIa lists the mean velocities obtained with the laser tracker system for a nominal Reynolds number of 86,000. Figure C-1 identifies the location of the 11 stations listed on Table C-IIa. U is the tangential component of velocity and V is the radial component of velocity. The angle α correspond to flow toward the inner surface.

The tracker system mean velocity evaluations were found to be too high near the surface when compared to the "Log Law." Tracker measurements become increasingly less reliable in highly turbulent flow and when the scattering particle density decreases. However, comparison of the measured velocities near the surface with the expected log law variation suggested the error was related to the distance from the surface -- and not the turbulence level, Figure C-2. The following relation was developed to correct the measurements.

 $U_{corr} = U_{mes} [1 - 0.25 e^{-7.2y}]$ (for y in cm) (C-1)

Table C-IIa lists the mean velocity values corrected - Corr (Near Wall) using equation (C-1).

The original measurements with the laser tracker system did not employ a frequency shifter (Bragg Cell). Once the separation bubble on the inside surface at the exit of the turn was identified, measurements with the frequency shifter optics were made in the separation region. Table C-IIa lists the velocities obtained in the separation region. These data in the separation region are viewed as preliminary, since the tracker limitations are severely taxed in the highly fluctuating flow. Table C-IIb lists the mean and turbulent velocities measured for different values of Reynolds number at a large number of locations around the duct. The correction for the mean velocities near the surface obtained from equation (C-1) are listed separately in Table C-IIc. The turbulent velocities, $\sqrt{u^2}$, may also be aliased near the surfaces, but it was not possible to develop a correction. The measurements reported in Appendices A and B suggest the turbulence measurements with the tracker system, Table C-IIb, are possibly too small in magnitude. The low values of the fluctuating velocities may be due to the inability of the tracker to follow large changes in the velocity.

Figure C-1. Station Locations Around the Duct.

Figure C-2. Laser Velocimeter Correction Near the Surface.

Re = U _m = T = υ =	77,000 1.17m/s 5.2 °C 1.51-6	91,700 1.32m/s 6.8 °C 1.44-6	113,000 1.62m/s 6.8 °C 1.44-6	126,000 1.82m/s 6.8 °C 1.44-6	161,000 2.30m/s 7.1 °C 1.43-6	179,000 2.58m/s 6.8 °C 1.44-6	189,000 2.85m/s 5.5 °C 1.51-6	207,000 3.12m/s 5.2 °C 1.51-6m ² /s
Location 69cm 93 113	Cp -0.0653 -0.0867 -0.1029	Cp -0.0604 -0.0778 -0.0998	Cp -0.0694 -0.0903 -0.1337	Cp -0.0578 -0.0777 -0.1206	Cp 0.0172 0.0037 -0.0545	Cp 0.1102 0.1177 0.1152	Cp -0.0109 -0.0158 -0.0656	Cp 0.1278 0.0888 0.0691
Outside Surface 10 Degrees 30 50 70 90 110	0.1097 0.3144 0.4135 0.4166 0.3430	0.1580 0.2360 0.2563 0.4166 0.3425	0.1812 0.2779 0.3001 0.4166 0.3876	0.2020 0.3012 0.3321 0.4166 0.4128	0.2250 0.3363 0.3845 0.4166 0.4436	0.2238 0.3190 0.3569 0.4166 0.4188	0.1914 0.2561 0.3851 0.4166 0.3456	0.2783 0.3848 0.4075
130 150 170 Inside	0.3867 0.4129 0.2846 0.2612	0.3297 0.3597 0.2998 0.2104	0.3986 0.4093 0.3431 0.2650	0.4108 0.4262 0.3594 0.2776	0.4427 0.4448 0.3951 0.2909	0.3923 0.4203 0.3630 0.2568	0.4277 0.4259 0.3630 0.2374	0.4017 0.2643
Surface 10 Degrees 30 50 70 90 110 130 150 170	-1.8700 -2.6090 -2.8280 -2.8740 -3.2470 -2.7190 -2.5480 -1.8650 -1.4060	-1.8470 -2.5500 -2.8400 -2.9650 -2.7390 -2.5590 -2.1160 -1.6020	-1.8550 -2.5630 -2.8490 -3.0030 -2.7210 -2.5590 -2.1590 -1.5450	-1.8610 -2.4770 -2.7380 -2.9160 -2.7090 -2.5580 -2.1310 -1.5370	-1.5360 -2.8470 -3.0100 -2.8740 -3.1020 -2.7070 -1.9380 -1.6930 -1.2490	-1.7610 -2.6120 -2.8190 -3.1040 -2.5670 -2.3520 -1.8080 -1.7360	-2.0210 -2.4970 -2.8130 -2.8740 -3.1270 -2.6130 -2.2940 -1.7380 -1.5160	-2.0070 -2.4160 -2.9540 -2.8740 -3.0520 -2.6780 -2.3630 -1.8740 -1.6730
Downstream of Turn 10cm 20	-0.6055 -0.5358	-0.6135 -0.5367	-0.5990 -0.5361	-0.6027 -0.5403	-0.4724 -0.3885	-0.7150 -0.6131	-0.8053 -0.5853	-0.8873 -0.5675

TABLE C-I. Static Pressure Coefficient Distributions. Smooth Inlet; Dense Screen at Exit.

	Static Re = 8 U _m = 1 υ = 1.	on No. 1 37,100 1.22 m/s .394x10 ⁻⁶	m²/s	Static Re = 8 $U_m = 1$ v = 1	on No. 2 35,500 1.18 m/s .386x10 ⁻⁶	m ² /s	Static Re = δ U _m = 1 v = 1	on No. 3 84,400 1.17 m/s .386x10 ⁻⁶	m ² /s
у/Н	U/U _m	٧/U _m	Angle Deg	U/U_m	٧/U _m	Ang le Deg	U/U_m	V/Um	Angle Deg
0.0050 0.0127 0.0254 0.0635 0.1270 0.2540 0.3810 0.5000 0.6350 0.7620 0.8890 0.9530 0.9910 0.9980 # Corr. 0.0050 0.0125 0.0254 0.0635 0.9110 0.9980	0.7951 0.8396 0.9556 1.0130 1.0230 1.0230 1.0250 1.0310 1.0250 1.0130 0.9266 0.8364 0.7996 (Near 0.6575 0.7562 0.8527 0.9529 0.7264 0.6332	- - - 0.0288 -0.0009 0.0132 0.0138 0.0101 0.0266 0.0256 0.0299 0.0206 0.0314 0.0288	1.84 -0.05 0.76 0.53 1.40 1.35 1.15 1.14 1.91 1.96	0.7061 0.7493 0.7914 0.8882 0.9615 1.0080 1.0340 1.0420 1.0420 0.9817 0.9520 0.8727 0.7802 0.5837 0.6744 0.7589 0.8860 0.7578 0.6181	- -0.1410 -0.1200 0.0034 0.0279 0.0322 0.0195 0.0238 0.0119 0.0178 0.0279 0.0161 0.0500	- -10.60 -8.54 0.24 1.62 1.79 1.04 1.25 0.62 0.90 1.49 0.98 3.22	0.7671 0.7962 0.8238 0.9126 0.9900 1.0600 1.0600 1.0680 1.0640 0.9435 0.8604 0.7826 0.6059 0.6346 0.7958 0.7906 0.9103 0.6795 0.4797	- 0.0660 -0.0369 -0.0145 0.0223 0.0120 0.0198 0.0145 0.0206 0.0249 0.0120 0.0283	4.70 -2.51 -0.88 1.60 1.19 0.63 1.01 0.78 1.11 1.47 0.76 2.07

TABLE C-IIa. Mean Velocity and Angle Measurements.

	Station No.4 Re = 87,400 $U_m = 1.24m/s$ $v = 1.386 \times 10^{-6}$	⁵ m ² /s	Static Re = 8 $U_m = 1$ v = 1	on No. 5 39,700 1.24m/s .386x10 ⁻⁶ 1	π ² /s
у/Н	u/u <u>m</u> v/u <u>m</u>	Ang le Deg	U/U_m	٧/U _m	Ang le Deg
0.0050 0.0127 0.0254 0.0635 0.1270 0.2540 0.3810 0.5000 0.6350 0.7620 0.9530 0.9910 0.9980 # Corr. 0.0050 0.0125 0.0254 0.0635 0.9110 0.9980	1.2160 - 1.2300 0.0145 1.2130 -0.1010 1.2150 -0.1540 1.1900 -0.1860 1.1150 -0.2250 1.0520 -0.2190 0.9919 -0.2040 0.9154 -0.1670 0.6856 -0.0370 0.5214 -0.0510 (Near Wall) 1.0060 1.2300 1.1650 1.2120	- - - - - - - - - - - - - - - - - - -	1.6830 1.6790 1.5710 1.4680 1.2610 1.1120 0.9919 0.8367 0.7025 0.5113 0.4760 0.4466 1.6810 1.6810 1.6120 1.5670 0.3878	0.0285 0.0269 0.0095 -0.0167 -0.0071 0.0079 0.0071 0.0261 0.1180 0.0600 0.0490	0.98 0.95 0.34 -0.63 -0.27 0.39 1.38 1.75 9.51 6.16 5.98

	Static Re = 8 $U_m = 1$ v = 1.	on No. 6 35,300 18m/s .386x10 ⁻⁶ r	n ² /s	Station Re = 8 $U_m = 1$ v = 1.	n No. 7 2,100 .14m/s 380x10 ⁻⁶ n	n ² /s	Station Re = 81 U _m = 1. υ = 1.3	n No. 8 1,900 13m/s 380x10 ⁻⁶ n	1 ² /s
у/н	U/U_	v/um	Ang le Deg	ບ/ບ _m	V/U _m	Ang le Deg	U/U_m	V/Um	Angle Deg
0.0051 0.0127 0.0254 0.0635 0.1270 0.2540 0.3810 0.5000 0.6350 0.7620 0.8890 0.9530 0.9910 # Corr. 0.0050 0.1270 0.0254 0.0635 0.1270 0.9850	1.5670 1.8890 1.8340 1.7260 1.2850 1.1270 0.9544 0.8435 0.7387 0.7251 .7156 (Near 1 1.5660 1.8174 1.8290 0.5128	-0.0340 0.0080 -0.0140 -0.0120 0.0470 0.1220 0.1660 0.0520 0.3120	-1.03 0.24 -0.44 -0.47 2.07 2.69 6.82 10.70 3.63 21.60	1.1310 1.4740 0.1540 1.5240 1.2500 1.0805 0.9561 0.8404 0.7611 0.6479 0.0632 0.6066 0.9351 1.3260 1.4790 1.5200	0.0820 0.0290 0.0274 0.0550 0.0820 0.0890 0.1120 0.0760 0.0990 0.0440 0.0110	3.16 1.07 0.88 2.13 3.67 4.60 6.47 4.98 7.38 3.66 0.92	0.5739 0.5986 0.8141 1.0090 1.1700 1.1420 1.0620 0.9912 0.9450 0.9030 0.8680 0.8534 0.8534 0.8222 Separat -0.064 -0.075 0.106 0.459	0.113 0.269 0.371 0.342 0.332 0.277 0.208 0.144 0.048 0.070 ion % Rev 78 75 19 6	8.24 13.90 17.20 16.20 17.10 15.10 12.20 7.36 3.08 4.62

TABLE C-IIa. (Concluded). Mean Velocity and Angle Measurements.

	Station Re = 9 $U_m = 1$ v = 1.	n No. 9 4,100 .30m/s 382x10 ⁻⁶	m ² /s	Station Re = 9 $U_m = 1$ v = 1.	n No. 10 2,800 .28m/s 380x10 ⁻⁶	m ² /s	Statio Re = 9 U _m = 1 υ = 1.	n No. 11 2,000 .27m/s 380x10 ⁻⁶ r	n ² /s
y/H	U/Um	٧/Um	Angle Deg	U/U_m	v/Um	Ang le Deg	U/U _m	۷/U _m	Angle Deg
0.0051 0.0127 0.0254 0.2540 0.2540 0.2540 0.2540 0.3810 0.5000 0.6350 0.7620 0.8890 0.9910 0.0050 0.1270 0.0254 0.0635 0.1270 0.9850 0.9910	0.4190 0.3857 0.3755 0.4790 0.7849 1.0900 1.1140 1.0690 1.1090 1.0870 1.0920 1.1130 1.0530 0.1150 0.1300 0.0840 0.0490 0.8270	-0.136 -0.893 -0.028 0.060 0.079 0.078 0.097 0.014 -0.004 -0.042 % Rev 97 88 76 65 9	-17.50 -7.92 -1.93 3.06 4.02 4.11 4.85 0.70 -0.27 -2.15	0.5203 0.5108 0.5457 0.6685 0.7597 0.9662 1.0570 1.0860 1.0820 1.0820 1.0600 *.9779 -0.0520 -0.0240 0.3640 0.3640	-0.223 -0.010 -0.097 -0.055 -0.008 0.001 -0.004 -0.012 0.004 * Rev 85 61 9 3 2	54.80 -20.10 -0.77 -6.43 -3.19 -0.44 0.05 -0.24 0.22 -0.58 0.25	0.7174 0.7145 0.7460 0.7894 0.8182 0.8756 0.9331 1.0000 1.0250 1.0340 1.0390 1.0170 <u>0.8905</u> (Near b 0.5930 0.6400 0.7160 0.7870	0.289 -0.130 1.090 -0.025 -0.002 0.012 -0.013 0.004 0.013 0.007 0.036	21.60 -9.69 7.44 -1.69 -0.10 0.68 -0.70 0.23 0.68 0.38 2.02

TABLE C-IIb. Mean and Turbulent Velocity Distributions Around the Duct. Smooth Inlet; Dense Screen at Exit.

		Re = U _m = Ι = ν	74,700 1.161 m/s 4.4 °C 1.55 x 10	sec D-6m ² /sec	;		Re = U _m = ; I = ; υ = ;	171,000 2.654 m/s 4.4 °C 1.55 x 10	sec D-6m ² /se	c
у/н	U/Um	Angle Deg	√u ² /U _m	√ ^{v2} /∪ _m	UV/Um ²	U/U_m	Ang le Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	ŪV/U _m ²
0.013 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500	0.8805 0.9567 0.9911 1.0200 1.0200 1.0270 1.0320 1.0390 1.0440 1.0470 1.0510		0.0527 0.0493 0.0389 0.0360 0.0297 0.0284 0.0269 0.0262 0.0258 0.0244 0.0268	- - - - 0.0353 0.0284 0.0292 0.0303 0.0261 0.0259 0.0246	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} - \\ \hline 1.0080 \\ \hline 1.0150 \\ \hline 1.0150 \\ \hline 1.0180 \\ \hline 1.0160 \\ \hline 1.0210 \\ \hline 1.0230 \\ \hline 1.0270 \\ \hline 1.0290 \\ \hline 1.0290 \\ \hline 1.0300 \end{array}$	- 	0.0161 0.0182 0.0168 0.0179 0.0173 0.0155 0.0137 0.0132 0.0133	- 0.0255 0.0188 0.0205 0.0194 0.0191 0.0184 0.0180 0.0171	- -0.000058 -0.000024 -0.000057 -0.000051 -0.000051 -0.000010 0.000005
0.500 0.619 0.695 0.797 0.848 0.898 0.924 0.949 0.959 0.970 0.987 0.992	1.0450 1.0450 1.0400 1.0350 1.0340 1.0100 <u>0.9782</u> 0.9530 0.9144 0.9005 0.8411 0.8285	- 0.7 0.8 0.9 1.0 1.1 1.4 - - -	0.0234 0.0227 0.0237 0.0264 0.0308 0.0423 0.0556 0.0598 0.0766 0.0722 0.0814 0.0814	0.0251 0.0239 0.0273 0.0363 0.0446 0.0591 - - - - -	- 0.00003 0.00001 0.00006 0.00012 0.00024 0.00048 - - - - - -	1.0250 1.0270 1.0220 1.0180 1.0130 	0.6 0.6 0.8 1.2 - - -	0.0138 0.0143 0.0147 0.0181 0.0213 - 0.0386 0.0449 0.0497 0.0511 0.0560	0.0183 0.0184 0.0209 0.0259 - - - - - - - - -	0.000015 0.000013 0.000029 0.000094

113 H upstream of the turn

1.52 ahead of the turn

		Re = Um = T = ט =	79,400 1.261 m/s 3.6 °C 1.59 x 10	sec)-6m ² /sec	3		Re = U_ = 1 = υ =	147,000 2.343 m/ 3.3 °C 1.59 x 1	sec 0-6m ² /se	c
у/Н	U/U_m	Ang le Deg	√u ² /U _m	$\sqrt{v^2}/u_m$		U/U_m	Ang le Deg	$\sqrt{u^2}/U_{\rm m}$	√v ² /∪ _m	UV/Um ²
0.008 0.010 0.013 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500 0.619 0.695 0.797 0.846 0.898 0.924 0.956 0.970 0.987 0.992	10.8187 0.8487 0.8758 0.9014 10.9207 10.9596 0.9918 1.0250 1.0760 1.0760 1.0760 1.0760 1.0760 1.07830 0.9973 0.9973 0.9628 0.9127 0.8685 0.8257 0.8073 0.7824 0.6848 0.6848 0.6848 0.6510	1.3 2.1 0.1 0.4 0.1 0.3	0.0642 0.0627 0.0635 0.0642 0.0516 0.0572 0.0531 0.0443 0.0342 0.0251 0.0203 0.0193 0.0217 0.0269 0.0368 0.0485 0.0562 0.0631 0.0664 0.0708 0.0687 0.0699 0.0724 0.0758	0.0894 0.0159 0.0255 0.0518 0.0233 0.0238	-0.000350 -0.000050 -0.000093 0.00103C 0.000020 -0.000050	0.8433 0.8509 0.8877 0.9014 0.9154 0.9591 0.9827 1.0150 1.0420 1.0420 1.0450 1.0450 1.0410 0.9910 0.9625 0.9070 0.9625 0.9070 0.8782 0.8233 0.7964 0.7214 0.6911	-0.2 2.3 0.7 -0.3 0.4 2.5 2.5 2.1 2.3 2.7 0.9	0.0471 0.0503 0.0530 0.0534 0.0531 0.0483 0.0483 0.0489 0.0382 0.0241 0.0150 0.0151 0.0151 0.0127 0.0145 0.0248 0.0422 0.0494 0.0575 0.0571 0.0582 0.0597 0.0611 0.0578 0.0580	0.0407 0.0204 0.0165 0.0170 0.0147 0.0149 0.0156 0.0163 0.0256 0.0045	-0.000267 -0.000110 -0.000032 -0.000020 0.000020 0.000047 0.000225 0.000560 0.000574 0.000464

TABLE C-IIb. (Continued.) Mean and Turbulent Velocity Distributions Around the Duct. Smooth Inlet; Dense Screen at Exit.

	Re = 7 U _m = 1 T = 3 υ = 1	3,200 .163 m/sec .4 °C .59 x 10 ⁻⁶ m ² /s	ec		$\begin{array}{c} \mathbf{Re} = 1\\ \mathbf{U}_{\mathbf{m}} = 2\\ \mathbf{I} = 3\\ \boldsymbol{\upsilon} = 1 \end{array}$	42,000 .257 m/s .2 °C .59 x 10	ec ⁻⁶ m ² /sec	
y/H	Angle U/U _m Deg	$\sqrt{u^2}/U_m \sqrt{v^2}/U_n$	UV/Um ²	U/Um	Angle Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	
0.008 0.013 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500	1.3460 1.3500 1.3500 1.3520 1.3240 -10.1 1.2960 -10.5 1.2500 -11.8 1.1890 -12.2 1.1360 -12.7 1.0590 -12.5	0.0436 0.0414 0.0402 0.0412 0.0386 0.0376 0.026 0.0256 0.023 0.0176 0.018 0.0178 0.015 0.0201 0.019	2 -0.000230 1 -0.000210 3 -0.00069 0 -0.000040 9 -0.00007 0 0.000040	1.3370 1.3340 1.3340 1.3290 1.3290 1.3230 1.3230 1.3070 1.2640 1.2150 1.1470 1.0960 1.0220	-10.0 -10.1 -11.0 -12.1 -12.3 -12.0	0.0411 0.0424 0.0425 0.0402 0.0389 0.0314 0.0186 0.0193 0.0163 0.0159 0.0226	- 0.0307 0.0158 0.0161 0.0172 0.0178 0.0213	-0.000219 -0.000062 -0.000020 0.000026 0.000036 0.000095
0.500 0.619 0.695 0.797 0.846 0.898 0.924 0.949 0.956 0.970 0.985	1.0580 0.9767 -9.7 0.9232 -8.6 0.8449 -6.2 0.7679 -3.6 0.7029 -3.8 <u>0.6471</u> 0.5614 0.5082	0.0312 0.0384 0.029 0.0486 0.031 0.0614 0.034 0.0723 0.041 0.0781 0.057 0.0824 0.0908 0.0981	4 0.000280 7 0.000420 1 0.000640 3 0.000961 3 0.000320	0.9783 0.9079 0.8728 0.8412 0.7873 0.7146 0.6744 0.5993 0.5702 0.4754 0.2726	-12.0 -11.6 -9.0 -7.3 -4.6 -3.5	0.0210 0.0312 0.0438 0.0601 0.0644 0.0740 0.0790 0.0838 0.0863 0.0793 0.0337	0.0193 0.0215 0.0243 0.0151 0.0329 0.0351	0.00053 0.00093 0.000170 0.000476 0.000467 0.000591

Start of the turn

10 degrees around the turn

		Re = 8 U _m = 1 T = 3 υ = 1	1,400 .293 m/s .6 °C .59 x 10	ec ⁻⁶ m ² /sec			Re = 1 U _m = 1 I = 3 υ = 1	09,000 .735 m/s .4 °C .59 x 10	ec ⁻⁶ m ² /sec			Re = 1 U _m = 2 I = 3 υ = 1	34,000 .134 m/sec .3 °C .59 x 10-	c 6m ² /sec	
у/н	U/U_	Angle Deg	$\sqrt{u^2}/U_m$	√ <mark>√2</mark> /∪ _m	UV/Um ²	U/U_m	Angle Deg	$\sqrt{u^2}/U_m$	√ v ² /∪ _m	<u></u> 2	U/U_m	Angle Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	$\overline{\rm UV}/{\rm U_m^2}$
0.005 0.008 0.010 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500 0.500	1.4670 1.4750 1.4750 1.4760 1.4730 1.4760 1.4731 1.4580 1.4310 1.3390 1.3370 1.2750 1.1730 1.1190 1.0140 1.0270 0.9205	-4.9 -5.6 -4.8 -6.6 -6.9 -7.8 -9.1 -8.3 -9.6 -7.8 -7.8 -9.5	0.0446 0.0444 0.0431 0.0435 0.0410 0.0394 0.0376 0.0351 0.0270 0.0248 0.0208 0.0223 0.0306 0.0278 0.0423	- - - - - 0.0442 0.0198 0.0363 0.0379 0.0271 0.0265 0.0219 0.0240 0.0246 0.0233 0.0284 0.02336	-0.000095 -0.000440 -0.000100 -0.000100 -0.000130 -0.000083 -0.000010 0.000010 0.000010 0.000012 0.000180 0.000190 0.000190 0.000606	- 1.4340 1.4290 1.4290 1.4290 1.4290 1.4200 1.4200 1.3810 1.3290 1.2700 1.1760 1.1100 1.0220 1.0030 0.9122	- - - - - - - - - - - - - - - - - - -	- 0.0359 0.0368 0.0377 0.0372 0.0367 0.0342 0.0305 0.0244 0.0219 0.0173 0.0183 0.0250 0.0261 0.0366	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	 1.4690 1.4590 1.4590 1.4560 1.4560 1.4280 1.3950 1.3350 1.2740 1.1660 1.1060 1.0010 0.9169	-4.3 -4.7 -5.6 -5.7 -6.6 -7.7 -7.8 -7.9 -6.1	0.0311 0.0329 0.0350 0.0343 0.0336 0.0311 0.0267 0.0221 0.0179 0.0168 0.0215 0.0265 0.0396	0.0193 0.0123 0.0216 0.0224 0.0152 0.0182 0.0168 0.0125 0.0188 0.0125	0.000020 -0.000035 -0.000022 -0.000020 -0.000010 0.000006 0.000035 0.000073 0.000200 0.000465
0.615 0.695 0.797 0.846 0.898 0.924 0.949 0.956 0.970 0.987 0.990	0.9205 0.8637 0.7590 0.6784 0.6048 <u>0.5567</u> 0.4791 0.4374 0.4027 0.3233 <u>0.3188</u>	-6.5 -4.6 -2.9 0.4	0.0423 0.0511 0.0723 0.0811 0.0996 0.1037 0.1043 0.1028 0.0863 0.0778	0.0330	0.000617	0.8122 0.8488 0.7599 0.7140 0.6396 <u>0.5941</u> 0.5117 0.4811 0.4811 0.3882 <u>0.3870</u>	-4.4 -2.3 -0.8 2.0 3.9	0.0498 0.0612 0.0656 0.0757 0.0861 0.0964 0.1004 0.1022 0.0986 0.0908	0.0268 0.0348 0.0435 0.0563 0.0512	0.000651 0.001080 0.001270 0.001200 0.001190	0.8629 0.7570 0.7057 0.6230 0.5733 0.4717	-4.6 -1.7 0.1 3.3	0.0474 0.0625 0.0691 0.0807 0.0881 0.0891	0.0303 0.0299 0.0831 0.0535	0.000663 0.000952 0.001350 0.000830

Data indashed boxes corrected for near wall effect; Table C-IIc.

TABLE C-IIb. (Continued.) Mean and Turbulent Velocity Distributions Around the Duct. Smooth Inlet; Dense Screen at Exit.

	Re ປິດ ປັ	= 87,600 = 1.391 m/ = 3.3 °C = 1.59 x 1	sec 0 ⁻⁶ m ² /sec	;	Re = 154,000 $U_m = 2.441 \text{ m/sec}$ T = 3.3 °C $v = 1.59 \times 10^{-6} \text{m}^2/\text{sec}$					
y/H	Ang U/U _m De	$\int_{g}^{1e} \sqrt{u^2} U_{m}$	√ ^{√2} /∪ _m	<u></u> 2	U/U_m	Angle Deg	√u ² /∪ _m	$\sqrt{v^2}/U_m$	<u></u> /U_m ²	
0.013 0.030 0.041 0.051 0.102 0.152 0.203 0.305 0.381	1.6120 1.6120 1.6040 -2 <u>1.5900</u> -3 <u>1.5520</u> -0 1.4490 -2 1.3640 -2 1.2010 -3 1.0990 -1	0.0371 0.0356 3 0.0338 3 0.0349 9 0.0311 7 0.0241 6 0.0218 4 0.0208 9 0.0236	0.0389 0.0317 0.0332 0.0239 0.0251 0.0250 0.0297	0.000020 0.000091 0.000120 0.000030 0.000072 0.000062 0.000180	1.5220	-2.7 -0.6	0.0278	0.0216 0.0189	0.000130 0.000078	
0.500 0.500 0.615 0.695 0.797 0.846 0.898	0.9656 0.9373 1 0.8142 2 0.7791 5 0.6835 8 0.6206 8 0.5882 9	0.0352 4 0.0384 9 0.0538 8 0.0527 6 0.0767 3 0.0822 4 0.1032	0.0324 0.0482 0.0495 0.1038 0.0650 0.0703	0.000470 0.001280 0.001210 0.005951 0.003260 0.005446	0.9514 0.8376 0.7992 0.7182 0.6789	0.7 4.0 6.2 8.9 8.7	0.0265 0.0462 0.0243 0.0506 0.0547 0.0593	0.0327 0.0375 0.0661 0.0566	0.000438 0.001120 0.001280	
0.924 0.949 0.956 0.970 0.987 0.990	0.5534 0.5104 0.5032 0.4874 0.4567	0.1010 0.1014 0.0940 0.0920 0.0947			0.5956 0.5391 0.5198 0.5016 0.4762 0.4687	15.6 14.5	0.0618 0.0710 0.0797 0.0797 0.0797 0.0745	0.0880 0.0844	0.001250	

45 degrees around the turn

90 degrees around the turn

		Re = ! Up = ! U = !	94,500 1.501 m/s 3.3 °C 1.59 x 10	sec) ⁻⁶ m ² /sec	;	Re = 138,000 U _m = 2.193 m/sec I = 3.3 °C $v = 1.59 \times 10^{-6} m^2/sec$				Re = 151,000 $U_{\rm m}$ = 2.404 m/sec I = 3.6 °C v = 1.59 x 10 ⁻⁶ m ² /sec					
у/н	U/U _m	Angle Deg	$\sqrt{u^2}/U_m$	√ v ² /∪ _m	<u>UV</u> /U _m ²	U/U_m	Ang le Deg	√u ² /∪ _m	√v² /∪	UV/U²	U/U_	Ang le Deg	$\sqrt{u^2}/U_m$	√ <mark>√2</mark> /∪"	. <u>.</u>
0.100 0.013 0.030 0.041 0.051 0.076 0.102 0.203 0.305 0.381 0.500 0.615 0.695 0.797 0.846 0.898 0.924 0.956 0.970 0.987	1.6730 1.6870 1.6870 1.6680 1.6490 1.5610 1.4600 1.3550 1.1790 1.0600 0.9068 0.9125 0.8493 0.8034 0.6962 0.6523 0.5961 0.5625 0.5625 0.5520 0.5520 0.5520 0.5520 0.5380	-0.2 -1.5 -0.8 -1.2 -1.3 -1.4 0.2 -1.2 7.5 2.7 4.4 3.6 5.9 0.6	0.0453 0.0424 0.0456 0.0436 0.0374 0.0324 0.0331 0.0462 0.0735 0.0935 0.0857 0.0831 0.0866 0.0849 0.0884 0.0766 0.0776 0.0778 0.0776 0.0778 0.0790 0.0845	0.0221 0.0279 0.0320 0.0401 0.0546 0.0822 0.1393 0.1113 0.1391 0.1162 0.1155 0.1271	0.000433 0.000631 0.000150 0.000150 0.000380 0.000421 0.006690 0.002530 0.003360 0.004210 0.003950 0.001720	1.6300 1.6580 1.6580 1.6580 1.6580 1.5900 1.5390 1.4400 1.3420 1.1780 0.9388 0.9242 0.8334 0.6970 0.6748 0.6161 0.6788 0.59261 0.58391 0.5654	0.1 -1.0 -0.7 -0.4 -0.6 0.7 -0.1 2.4 3.4 1.3 2.8 3.5 4.1 4.7 3.5	0.0304 0.0351 0.0368 0.0368 0.0333 0.0310 0.0247 0.0223 0.0281 0.0367 0.0413 0.0634 0.0702 0.0779 0.0863 0.0784 0.0787 0.0804 0.0792 0.0723 0.0754	0.0234 0.0152 0.0295 0.0306 0.0383 0.0504 0.0658 0.0727 0.1029 0.1029 0.0989 0.1144 0.0797 0.0820	0.000241 0.000309 0.00255 0.000282 0.000100 0.000150 0.000323 0.000435 0.000887 0.000641 0.002740 0.002740 0.002420 0.001790	1.6310 1.6370 1.6370 1.5740 1.5740 1.5230 1.4190 1.3210 1.1590 1.0510 0.8848 0.9237 0.8291 0.7936 0.7185 0.6917 0.6482 0.6316 0.6212 0.6070 0.6042 0.6072 0.6042 0.5927	-1.5 0.0 0.1 0.0 -1.0 -1.6 0.7 0.2 1.3 3.4 4.4 3.4 6.1 5.6 8.1 4.0 2.7	0.0344 0.0364 0.0320 0.0265 0.0321 0.0332 0.0287 0.0292 0.0282 0.0282 0.0458 0.0815 0.0650 0.0727 0.0770 0.0770 0.0772 0.0774 0.0754 0.0727 0.0725 0.0745 0.0737	0.0366 0.0400 0.0278 0.0355 0.0332 0.0203 0.0707 0.0913 0.0758 0.1038 0.1073 0.0794 0.0704 0.0766 0.0385 0.0623	0.000178 0.000120 0.000196 0.000439 0.000294 0.000294 0.000294 0.000230 -0.000230 -0.001210 -0.000642 -0.000490 0.000730 0.00026 0.001860 0.002090

TARIE C-TID	(Continued.) Mean and Turbulent Velocit	y Distributions
	Around the Duct. Smooth Inlet; Dense Sc	reen at Exit.

		Re = 8 U _m = 1 T = 3 υ = 1	36,500 L.374 m/s 3.6 °C L.59 x 10	ec) ⁻⁶ m ² /sec		Re = 161,000 U _m = 2.561 m/sec T = 3.6 °C v = 1.59 x 10^{-6} m ² /sec					
у/Н	U/Um.	Angle Deg	$\sqrt{u^2}/U_m$	√v ² /∪ _m	UV/Um ²	υ/U _m	Ang le Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	UV/Um ²	
0.015 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500 0.615 0.695 0.797 0.846 0.898 0.924 0.946 0.956 0.970 0.987	1.4680 1.5690 1.5690 1.5190 1.4940 1.4100 1.3420 1.1420 1.0240 0.9095 0.8869 0.8358 0.8174 0.7331 0.7114 0.69455 0.6504 0.6411 0.6178	0.7 0.4 0.8 0.1 1.1 1.7 1.8 -3.4 -6.7 -5.8 -3.6 -3.8 -3.1 -0.2 -0.1	0.0734 0.0577 0.0551 0.0553 0.0515 0.0503 0.0648 0.0858 0.0952 1.0420 0.0964 1.0330 0.0964 1.0330 0.0964 0.0895 0.0793 0.0780 0.0787 0.0789 0.0781 0.0719 0.0648 0.0711	0.0372 0.0547 0.0850 0.0838 0.1268 0.1416 0.1662 0.1743 0.1539 0.1431 0.1297 0.1153 0.1052 0.0908	0.000522 0.000556 0.000260 -0.000905 -0.000728 0.001250 0.000630 0.003970 0.006140 0.004530 0.004420 0.004420 0.004350 0.002720 0.001910 0.001470	1.4080 1.4270 1.4390 1.4460 1.4210 1.3640 1.3030 1.1770 0.9693 0.9534 0.8081 0.7950 0.7189 0.6900 0.6779 0.6779 0.6771 0.6615 0.6686 0.6541	-1.0 0.7 0.8 5.0 3.5 3.4 2.9 3.0 2.6 1.8 1.9 2.8 0.2 2.6	0.0512 0.0513 0.0452 0.0384 0.0316 0.0320 0.0376 0.0410 0.0537 0.0637 0.0773 0.0637 0.0707 0.0806 0.0730 0.0697 0.0614 0.0694 0.0659 0.0618 0.0465	0.0469 0.0338 0.0259 0.0510 0.0551 0.0743 0.0594 0.1082 0.0755 0.0931 0.0995 0.0927 0.0979 0.0718	-0.000930 -0.000814 -0.00085 -0.00085 -0.00047 -0.001010 -0.000389 -0.000847 0.000068 0.000769 0.000440 0.00096 0.001560 -0.000154	

135 degrees around the turn

180 degrees around the turn

		Re = 8 U _m = 1 I = 4 υ = 1	3,100 .272 m/s .7 °C .531 × 1	ec 0 ⁻⁶ m ² /se	c	Re = 99,700 $U_m = 1.582 \text{ m/sec}$ $T = 3.6 ^{\circ}C$ $v = 1.589 \times 10^{-6} \text{m}^2/\text{sec}$				Re = 181,000 Up = 2.871 m/sec T = 3.7 °C $v = 1.589 \times 10^{-6} m^2/sec$					
	U/U_	Angle Deg	$\sqrt{u^2}/U_m$	√ <mark>√2</mark> /∪_m	<u></u> 2	U/U_	Ang le Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	<u></u> 2	U/U _m	Angle Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	UV/U _m ²
0.005 0.013 0.030 0.041 0.051 0.076 0.102 0.203 0.305 0.381 0.500 0.615 0.695 0.797 0.846 0.924 0.949 0.956 0.970 0.987	0.5111 0.5895 0.9013 0.9746 1.0450 1.2280 1.2310 1.1810 1.0960 1.0460 0.9902 0.9578 0.9418 0.9147 0.8934 0.9147 0.8934 0.8435 0.8435 0.8358 0.8004	10.8 12.0 11.9 16.0 13.4 10.5 9.0 5.6 0.6 -2.4 -3.4 -2.5 -1.9 -1.3 -0.2 -0.9	0.0693 0.0481 0.1538 0.1471 0.1322 0.0615 0.0700 0.0842 0.0880 0.0923 0.0889 0.0879 0.0806 0.0779 0.0806 0.0775 0.0676 0.0672 0.0655 0.0674 0.0689	0.1062 0.0871 0.0562 0.1117 0.1360 0.1522 0.1743 0.1833 0.1647 0.1470 0.1301 0.1177 0.0916 0.0882 0.0668	-0.003280 0.004500 0.001380 0.000017 0.000540 -0.000540 -0.003340 -0.000670 0.001380 0.002350 0.002750 0.002520 0.001380 0.00140 0.00140	0.9694 1.0570 1.1150 1.2170 1.2550 1.1770 1.2550 1.0630 1.0290 0.9996 0.9936 0.9936 0.9972 0.9507 0.9189 0.9012 0.8790 0.8790 0.8746 0.8618 0.8618 0.8447	14.0 12.2 13.7 11.6 7.4 4.0 0.6 0.9 -2.6 -4.0 -2.5 -0.5 -1.0 -0.8	0.0228 0.0767 0.0817 0.0759 0.0862 0.0878 0.0705 0.0628 0.0796 0.0842 0.0753 0.0724 0.0724 0.0723 0.0729 0.0724 0.0712 0.0605 0.0519 0.0426 0.0393 0.0356	0.0418 0.0717 0.1221 0.1333 0.1426 0.1286 0.1316 0.1316 0.1316 0.1260 0.1358 0.0978 0.3930	0.004480 0.002130 0.001570 -0.000650 -0.001420 -0.001210 0.000670 0.001820 0.002720 0.004010 0.002570 0.001170 0.001900 0.000810	1.1410 1.1770 1.1580 1.1920 1.2120 1.2020 1.2020 1.1260 1.0550 1.0280 0.9879 0.9631 0.9297 0.8990 0.8795 0.8500	17.3 20.3 19.5 9.6 5.3 0.9 -9.5	0.0471 0.0620 0.0554 0.0695 0.0679 0.0510 0.0526 0.0564 0.0581 0.0339 0.0610 0.0442 0.0507 0.0288 0.0222	0.0511 0.0446 0.0424 0.0708 0.0727 0.0852 0.0216	-0.000860 0.002510 0.001460 0.000180 0.000970 0.000690 -0.000320

Data in solid boxes in separation region, questionable measurements.

TABLE C-IIb.	(Continued.) Me	an and Turbulent	Velocity	Distributions
	Around the Duct.	Smooth Inlet;	Dense Scre	en at Exit.

		Re = U _m = Ι = υ =	79,100 1.177 m/: 5.8 °C 1.482 x	sec 10 ⁻⁶ m ² /se	ec		Re = ປ _ກ = ໄ = ນ =	170,000 2.534 m/s 5.6 °C 1.482 x	sec 10 ⁻⁶ m ² /s	ec
у/Н	U/U_m	Ang le Deg	$\sqrt{u^2}/U_m$	√¥ ² /∪ _m	<u>UV</u> /U _m ²	U/U_m	Ang le Deg	√u ² /U _m	$\sqrt{v^2}/U_m$	UV/Um ²
0.030 0.041 0.051 0.102 0.152 0.203 0.305 0.381 0.500 0.615 0.695 0.797 0.846 0.898 0.924 0.949 0.956	0.4081 0.6178 0.7771 0.9972 1.1370 1.1240 1.0980 1.0810 1.0530 1.0540 1.0430 1.0430 1.0440 1.0440 1.0430	-26.2 -23.9 -4.2 -2.4 2.3 7.3 5.2 4.4 0.2 0.5 1.1 -0.1 8.3 0.0 -1.0	0.1569 0.1761 0.1844 0.1572 0.1186 0.0909 0.0823 0.0868 0.0868 0.0809 0.0905 0.0901 0.0761 0.0704 0.0725 0.0677	0.0386 0.1183 0.1099 0.1292 0.1506 0.1828 0.1828 0.1741 0.1564 0.1457 0.1129 0.1140	-0.003130 0.000450 -0.006380 0.001480 0.001480 0.00140 0.00350 -0.001170 0.000980 0.000980 0.000800 0.001060 0.002090 -0.000150 0.001160 0.000970	0.7359 0.7551 0.7534 0.9681 1.0340 1.0660 1.1390 1.1090 1.0530 1.0170 0.9969 0.9906 0.9870 0.9699 0.9601 0.9580 0.9521	-1.7 -9.5 -3.5 -2.8 1.7 3.0 0.8 0.2 0.1 -0.1 -0.3 0.0 -0.6 -1.1 2.2	0.0402 0.0574 0.0786 0.0647 0.0852 0.0845 0.0691 0.0639 0.0631 0.0641 0.0641 0.0754 0.0679 0.0663 0.0579 0.0584 0.0584	0.0747 0.0688 0.0897 0.0768 0.0601 0.0795 0.0859 0.0982 0.0832 0.0832 0.0884 0.0824 0.0816	0.000240 0.000610 -0.000530 -0.000220 -0.000100 -0.00190 -0.001360 -0.00190 0.000460 0.001120 0.000810 0.001010 0.000700
0.970 0.982	1.0710 1.0410		0.0779 0.0749			0.9598 0.9570		0.0503 0.0414		

0.508 H downstream of the turn

1.52 H downstream of the turn

		Re = Um = Ι = υ =	81,100 1.205 m/s 5.8 °C 1.482 x 1	sec 10 ⁻⁶ m ² /s	ec	Re = 163,000 Um = T = 5.8 °C $v = 1.482 \times 10^{-6} m^{2}/sec$					
у/Н	U/U_m	Ang le Deg	$\sqrt{u^2}/U_m$	√ v ² /∪ _m	UV/U _m 2	U/U_m	Ang le Deg	$\sqrt{u^2}/U_m$	$\sqrt{v^2}/U_m$	<u>UV</u> /U _m ²	
0.005 0.013 0.030 0.041 0.051 0.076 0.102 0.152 0.203 0.305 0.381 0.500	*0.4631 0.5701 0.6477 0.6373 0.6578 0.8121 0.8890 0.9031 0.9813 1.0580 1.0510 1.0610	-15.2 -8.2 -7.8 -4.7 -3.2 -0.9 -0.7 0.6	0.0750 0.1526 0.1609 0.1661 0.1662 0.1572 0.1500 0.1572 0.1448 0.1144 0.1093 0.1051	0.1968 0.1643 0.0994 0.1108 0.1238 0.1309 0.1375	-0.001960 0.003190 -0.001230 -0.002550 -0.001540 -0.000250 -0.000250 -0.000410 -0.000090	0.8249 0.8243 0.7913 0.8415 0.8374 0.8994 0.9516 0.9775 1.0070 1.0240 1.0250 1.0420	-2.4 -4.4 -5.2 -2.5 -3.5 -0.9 -1.4 -1.3	0.0306 0.0630 0.0794 0.0827 0.0926 0.0792 0.0905 0.0885 0.0885 0.0885 0.0857 0.0857 0.0850	0.0509 0.0946 0.0823 0.0820 0.0942 0.1006 0.0960	-0.000370 0.001640 0.001140 -0.000180 0.000350 -0.000400 -0.000320 -0.000840	
0.500 0.615 0.695 0.797 0.846 0.898 0.924 0.949 0.956 0.970 0.987	1.0760 1.0730 1.0750 1.0760 1.0710 1.0600 1.0580 1.0520 1.0450 1.0450 1.0060	0.6 1.0 0.7 1.4 1.0 1.8 3.4	0.0990 0.0914 0.0841 0.0762 0.0785 0.0739 0.0758 0.0794 0.0813 0.0995	0.1418 0.1471 0.1301 0.1197 0.1088 0.0968	-0.001920 -0.000840 -0.000430 0.000480 0.000360 0.000350 0.000910	1.0400 1.0350 1.0540 1.0250 <u>1.0170</u> 1.0100 1.0100 1.0080 1.0040 0.9847	-2.5 -0.3 -0.8 -0.3 0.9 1.9 -0.1	0.0876 0.0811 0.0651 0.0655 0.0657 0.0657 0.0661 0.0694 0.0695 0.0662	0.0953 0.1094 0.1044 0.0951 0.0851 0.0246 0.0830	0.000570 -0.00010 0.00300 0.001090 0.000160 0.001780 -0.000890	

*y/H = .008

TABLE C-IIb.	(Concluded.) Mean and Turbulent Velocity Distribution Around the Duct Smooth Inlet: Dense Screen at Exit.
	Around the Duct. Smooth Infet; Dense Screen at LATT.

		Re = 8 U _m = 1 T = 6 υ = 1	32,200 1.235 m/s 5.7 °C 1.454 x 1	ec .0 ⁻⁶ m ² /se	:C			Re = 1 U ₁₀ = 2 T = 6 υ = 1	169,000 2.590 m/s 5.0 °C 1.477 x 1	sec .0 ⁻⁶ m ² /se	:C
у/н	U/U_m	Angle Deg	√u ² /∪ _m	√v ^z /u _m	<u>.</u> UV/U _m ²	у/Н	A U/U _m	ng le Deg	√u ² /U _m	$\sqrt{v^2}/U_m$	<u>UV</u> /U _m ²
0.008 0.015 0.025 0.051 0.076 0.127 0.178 0.279 0.355 0.472	10.5970 10.7029 10.7480 10.8196 0.8611 0.8907 0.9186 0.9926 1.0070 1.0030	-3.1 -0.3 -0.1 -0.3 0.5 2.1 3.3	0.1319 0.1435 0.1492 0.1447 0.1437 0.1454 0.1454 0.1444 0.1386 0.1354 0.1217	0.0920 0.1006 0.0875 0.1185 0.1272 0.1149	-0.001000 -0.001920 -0.000800 -0.001890 -0.002420 -0.001550	0.027 0.053 0.078 0.129 0.180 0.282 0.358 0.472	0.8391 0.9190 0.9375 0.9929 0.9863 1.0090 1.0170 1.0050	-1.7 -0.9 -1.5 -2.2 -2.4 -1.4	0.0781 0.0575 0.0783 0.0736 0.0808 0.0739	0.0559 0.0482 0.0926 0.0572 0.0524	-0.000100 -0.000860 0.000010 -0.000660 -0.000260
0.615 0.695 0.797 0.846 0.898 0.924 0.949 0.956 0.970 0.987 0.992	$\begin{array}{c} 1.0650\\ 1.0810\\ 1.0850\\ 1.0910\\ 1.1000\\ \underline{1.1000}\\ 1.09300\\ 1.0980\\ 1.0850\\ 1.0850\\ 1.0590\\ \underline{1.0990}\\ 1.0090\end{array}$	3.6 3.9 2.5 3.4 2.1 2.6	0.1062 0.0958 0.0872 0.0870 0.0888 0.0830 0.0858 0.0833 0.0884 0.0905 0.1004	0.1289 0.1168 0.1085 0.0990 0.0938 0.0805	-0.000210 -0.001980 -0.000290 0.000410 -0.000020 -0.000010	0.615 0.695 0.797 0.846 0.898 0.924 0.949 0.956 0.970 0.987 0.992	1.0140 1.0260 1.0150 1.0160 1.0160 1.0210 1.0160 0.9951 0.9967 0.9914 0.9741	-0.7 -0.3 1.3 1.0 1.3 2.0 2.7 2.4	0.0748 0.0813 0.0570 0.0622 0.0603 0.0567 0.0602 0.0634 0.0598 0.0638 0.0272	0.0663 0.0819 0.0663 0.0688 0.0636 0.0361 0.0069 0.0474	-0.000050 0.000370 0.000610 -0.000120 -0.00150 -0.001410 -0.000150 0.000630

3.05 H downstream of the turn

	11.3	Нир	1.52	Нир	0 Deg	rees	10 Degrees			
Re =	74,000	171,000	79,400	147,000	73,200	142,000	81,400	109,000	134,000	
у/Н	U/U_	u/u _m	U/U _m	U/Um	ป/ป _m	U/U _m	U/U_m	U/U_m	U/Um	
0.005 0.008 0.010 0.013 0.030 0.041 0.051	0.793 0.930 0.977 0.998	0.976 1.001 1.014	0.701 0.764 0.851 0.890 0.914	0.742 0.766 0.863 0.890 0.909	1.210 1.312 1.331 1.344	1.144 1.201 1.297 1.312 1.320	1.212 1.297 1.328 1.431 1.448 1.418	1.261 1.286 1.386 1.411 1.411	1.257 1.315 1.419 1.442 1.442	
0.992 0.990 0.987 0.970 0.959 0.949	0.709 0.756 0.874 0.903 0.948	0.806 0.905 0.930 0.953	0.556 0.616 0.761 0.798 0.819	0.592 0.649 0.774 0.812 0.842	0.500 0.558	0.250 0.462 0.563 0.609	0.281 0.290 0.391 0.432 0.476	0.341 0.350 0.448 0.474 0.508	0.468	

TABLE C-IIc. Near Wall Velocity Corrections for the Measurements Reported in TABLE C-IIb.

	45 Deg	rees	9	0 degrees		135 d	egrees	1	80 degree	s
Re =	87,600	145,000	94,500	138,000	151,000	86,500	161,000	83,100	99,700	181,000
у/Н	U/U _m	U/U_m	U/U _m	U/U_m	U/U_m	U/U_m	U/U_m	U/U_m	U/U _m	U/U _m
0.010 0.013 0.030 0.041 0.051	1.451 1.567 1.582 1.580		1.505 1.641 1.647 1.639	1.432 1.459 1.626 1.612	1.471 1.598 1.610 1.623	*1.346 1.548 1.537	1.392 1.416		Separati	on
0.990 0.987 0.970 0.959 0.949	0.412 0.473 0.497 0.506	0.412 0.428 0.488 0.513 0.536	0.483 0.536 0.558 0.558	0.509 0.567 0.582 0.589	0.534 0.587 0.599 0.618	0.557 0.623 0.639 0.646	0.589 0.650 0.652 0.670	0.721 0.812 0.831 0.844	0.761 0.838 0.863 0.873	

[.508 H dw		1.52 H dw		3.05 H dw	
Re =	79,100	170,000	81,000	163,000	82,200	169,000
у/Н	U/U_m	U/U_m	U/U_	U/U_	U/U_m	U/U _m
0.008 0.015 0.025 0.051 0.028 0.053 0.079 0.130					0.511 0.644 0.718 0.814	0.718 0.843 0.900 0.986
0.992 0.987 0.970 0.959 0.949	0.968+ 1.041 1.038 1.038	0.891+ 0.933 0.939 0.951	0.979 1.032 1.045	0.886 0.976 0.995 1.004	0.864 0.953 1.054 1.083 1.086	0.833 0.892 0.968 0.981 1.010

See Table C-IIb for specific y-values.

+ y/H = .982

APPENDIX D

SPANWISE FLOW EVALUATION

The spanwise variation of the flow was investigated for a range of flow conditions. As noted, Figure 8, the flow was nearly two dimensional over the center region of the duct. Only near the side walls were major deviations measured. The spanwise measurements were made by varying the cross beam focusing lens. The lens actuator could be moved 20 cm, and either the lens was shifted to a new position of a shorter focal length lens was employed.

Figure D-1 shows the spanwise mean and tangential turbulent velocity variations near the inner wall. The measurement at 160 degrees around the turn show the largest deviations. The excursions at the 160 degree location correlate with the onset of the inner surface separation bubble. The major effect of the separation is noted in the excursions of the tangential turbulent component.

Figure D-2 shows measurements made 3H dowmstream of the turn exit, which is beyond the extent of the inner separation bubble. The large excursions of the tangential turbulent component did not occur beyond the region of separation.

Figure D-3 shows the spanwise variation with Reynolds number of the flow near the inner surface for 160 degrees around the turn. The mean velocity variations are nearly independent of the Reynolds number even near the onset of separation. The tangential turbulent velocities, Figure D-3b, are found to be sensitive to the three-dimensional effects.

Figure D-4 shows spanwise measurements made in the separation region (0.508H downstream of the turn exit). As noted above the three dimensional effects are magnified in the separation region. However, outside the separation bubble (y = 3.81 cm) the flow remains reasonably two dimensional. No pronounced effects of the non-uniformity were found in the tangential turbulent velocity, Figure D-4b. Deviations of the mean velocity profiles in the separation region at different spanwise locations are shoh@ on Figure D-4c. While a moderate deviation in the profiles occur, the extent of the reversed flow region is not greatly altered.

The spanwise velocity variations at 90 degrees around the turn are shown on Figure D-5. The location was investigated for possible indications of the Taylor-Gortler vortex effects. The mean velocity measurements, Figure D-5a and b, do not suggest a pronounced periodic spanwise variation that would be expected if stationary vortex structures were present. Flow visualization suggested that a highly time dependent array of vorticies may be present. The time dependent movement of the vorticies would appear to smooth out the spanwise variations. Only the radial turbulent velocity spanwise variations, Figure D-5d, appears to suggest a periodic deviation. The original flow measurements indicated the extremely large radial turbulent velocities, which were thought to be caused by a vortex motion.

The present results from the spanwise surveys would appear to justify the use of the two-dimensional assumptions in computing the bulk of the flow field. Only in the separation region are the three-dimensional variations of importance.

Figure D-6 shows the spanwise variation at the turn exit for the case of no exit screen. The measurements were made at the channel centerline. The flow in this no exit screen case made it very close to two-dimensional.

Figure D-1. Spanwise Velocity Variation Near the Inner Surface. y = 0.5 to 0.8cm, Roughness on the Inlet, Coarse Exit Screen.

on the Inlet.

Figure D-4. Spanwise Velocity Variation in the Separation Bubble, 0.508H Downstream of the Turn. Roughness on the Inlet, Coarse Screen at the Exit.

....

