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GALERKIN FINITE DIFFERENCE LAPLACIAN OPERATORS ON ISOLATED UNSTRUCTURED TRIANGULAR MESHES

BY LINEAR COMBINATIONS

Kenneth J. Baumeister

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The Calerkin weighted residual technique using lin-
ear triangular weight functions is emploved to develop
finite difference formulae in Cartesian coordinates for
the Laplacian operator on isolated unstructured trian-
gular grids. The weighted residual coefficients asso-
ciated with the weak formulation of the Laplacian
operator along with linear combinations of the residual
equations are used to develop the algorithm. The algo-
rithm was tested for a wide variety of unstructured
meshes and found to give satisfactory results.

NOMENCLATURE

A area

Ae element area, see Fig. 1

AT total cell area, see Fig. 1

Ay Voronoi (finite difference) area

B bias constant, Eq. (13)

f linear combination factor, Eq. (22)
h coordinate spacing distance

M number of elements in cell

N linear interpolation function

W weight function, see Eg. (2)

X axial distance coordinate

y transverse distance coordinate

a weighted residual coefficient, Eq. (2)
B property constant, Eq. (1)

$ dependent variable, Eq. (1)

Subscripts

e+ index. Eq. (8)

fd finite difference or Taylor series

i element index, Eq. (10) and Fig. 1

k element index, Eq. (10) and Fig. 1

¥ total number of elements

n global node index, Egs. (6) and (7), Fig. 1

nm index, Eg. (9)

o central node index

P number of outer nodal points. see Fig. 1
a index, Eq. (11)

i index, Eq. (5)

Superscripts
~ numerical estimate
- average value, Eq. {B3)
(e) element value
n global element index, Eg. (3)
nm global element index, Egqs. (3) and (8)
[NTROBUCTION

Linear triangular finite element theories
(Baumeister and Horowitz, 1984) have been successfully
applied to the Fourier transformed linearized gas

dynamics equations ("steady” state equations) in the
study of noise propagation in variable area ducts and



the acoustic design of turbofan engine nacelles. Simj-
larly. transient solutions to the acoustic wave equa-
tion have used conventional finite difference operators
and elliptic mapping methods (Raad and White. 1986) to
successful mode! nojse propagation in ducts with varia-
ble geometry. Advantageously, the transient solutiong
eliminate the Storage of the very large global matrix
associated with the "steady” state solution of wave
Propagation problems. However, at the present time the
transient technique employing elliptic mapping has been
unsuccessful in predicting the acoustic far field radi-
ation pattern from aircraft inlets. To overcome this
problem. the present study is concerned with adapting
previously developed "steady” state triangular finite
element mesh generators (Baumeister and Horowitz, 1984)
for use in transient variable geometry acoustics or
electromagnetics in the form of unstructured finite
difference theory.

In developing unstructured finite difference equa-
tions, [ameson (1987) (Eq. (4.10)) has applied the
standard weighted residual Galerkin method to obtain a
time dependent discretization of the Euler equations
for an unstructured triangular mesh. Erlebacher (1985)
has utilized variational methods on a pointwise basis
to establish a difference algorithm for the Laplacian
operator for a central difference cell similar to that
shown in Fig. 1. Unfortunately, from a pointwise per-
spective, Erlebacher has shown that the difference
algorithms that result from a variational approach are
only zero order accurate {Erlebacher, 1985, p. 42) for
the Laplacian aperator on nonuniform unstructured grids
as well as many uniform grids. Baumeister {1988)
obtained similar results using the Galerkin weighted
residual techniques. The Galerkin algorithms in
Baumeister (1988) for the Laplacian operator were con-
sidered valid for a general unstructured grid when used
only in conjunction with a complete global grid systenm.
as commonly employed in conventional finite element
analysis. Baumeister (1988) also showed that finite
element and finite difference (Taylor series) algorithms
are related by an area rule and that the finite element
algorithm wil] agree with a Taylor serjes approach on a
global average.

At present, the difference expression for the
Laplacian operator based on variational theory is valid
on a local grid only under restricted conditions, namely
when the area rule is satisfied (Baumeister, 1988) .
generate finite difference approximations for the
Laplacian operator which are valid for local single
cells such as shown in Fig. 1, the present paper will
utilize the global Galerkin weighted residual technique
in conjunction with linear combinations of the weighted
residual equations.

GALERKIN WEIGHTED RESIDUAL FORMULATION

The Laplacian operator plays a major role in the
study of acoustic and electromagnetic wave propagation.
Consider the following expression for the Laplacian
operator

7 - BV (1)
where ¢ is a scalar or potential quantity and B s
a variable property coefficient that depends on its

spatial orientation. To obtain the finite difference
expressions for this Laplacian operator at some point
labeled o, a finite difference cell is defined by con-
necting the P nodal (grid) points surrounding the
central grid point o as shown in Fig. 1. This dif-
ference cell of total area AT is then divided into
discrete triangular areas Ae staked out by nodal
(grid) points P as shown in Fig. 1. The number of

(Xq.yq)
1)

~ TOTAL
AREA

(>
FIGURE 1. - FINITE DIFFERENCE CELL
CONF IGURATION,

connected areas {called an element of the cell) needed
to define the difference #quation for node o ig
labeled VM.

Using the weak formulation of the method of
weighted residuals (Lapidus and Pinder, 1982, p. 443),
the Laplacian operator in Eq. (1) can be integrated to
obtain (see Appendix A for brief derivation)

f fr [-vwo ' BV$}dA = %y - b

+ Q R
n(bn

+asd, - .

2
%pbp {2)
the spatial weight W is
linear interpolation func-
indicates that
for the poten-

Using the Galerkin approach,
approximated by the standard
tions and the hat over the potential ¢

it is the approximate numerical solution

tial. ¢, represents the potential at any general
nodal point n. The value of the general $n coeffi-
cients depends only on the location of the grid points
(Xn.¥n) and the Property coefficient 8 and are of the
form

- {nm) (nml][ .
a, = ~[B 744 Voo = vy -y )

* (Xn - xn—)(xn— - XOJ} - [B(n)/4A(n)J[(yn - yn+)

* ¥y, - Yol + xy, - Xa) (g - Xn+]J

a, = - ggi [B(e)/4A(e)}[(ye - ye+)2 + (xe+ - VeJZJ (4)
The indices are defined as
Sqp =0 @#p o or by, =1 a =p (3)
n- =0 -1+ P§y (6}
N+ =n+ 1+ P§yp {(7)
e+ = e + 1+ P§gp (8)
nmo=n -1+ M§y (9)
with element areas given by Lapidus, and Pinder, 1982,

p. 110 (Eq. (3.1.1))

ale) _ (%)[xo[yj -y ) ¢ xj(yk =Ygl + X (yg - Yj)]
(10)



LAPLACIAN OPERATOR operators that appear 1in the iiterature (Rektorys.
1969, p. 1114). However. this will not generallv he

The present paper will establish a relationship the case. as discussed eaﬁller in relation ro Eribacher
hetween the Laplacian operator and the a coeffici- and Baumeister s works and aiso discussed in Lapidus
ents from the method of weighted residuals as given by and Pinder (1982). p. 105. For uniform grids. of the
Eqs. {3) and (4). An expression for the Laplacian of type displayed in Figs. 4 to 5. the finite difference
the form and finite element expressions for the Laplacian opera-

tor will differ with the conventional Taylor series
724 = Flag. 23, . - ) (11} difference equation. Only when the bias constant B
- defined by the following area rule is identical to zero
is desired. Using the result from Appendix B for a will the finite element algorithm and Taylor series
linear shape function, the Laplacian can be expressed approximations be equal.
as
b+ 2. b, + ayb, + agd 8 Ay (13
2 X : 2?9 R - — -1
%y - 0% 1% e p?p (12) E (13)

Ay is the Voronoi neighborhood (Eribacher, 1985} or
the area normally employed in the finite difference
analysis and is the area enclosed by the dashed line
in Figs. 2 to 5. Baumeister (1988) presents a simple
algorithm to determine the Voronoi {(finite difference)
area for an unstructured grid based on the « coeffi-
cients in Egs. (3) and (4).

If B is not zero in Eq. (13). the coefficients
in front of the weighted residual expression for the

where At is the total area of the cell.

For the six point hexagon difference grid systems
as shown in Figs. 2 and 3. the difference equations for
the Laplacian as calculated from Eq. (12} are in agree-
ment with the standard Taylor series finite difference

(3 (2>

FIGURE 3. - UNIFORM & NODE SLANTED HEXAGON
GRID.

@y + O, t Dy + O, - 4 BGLOBA|~1x2h2+(—1/u)uh2=o
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FIGURE 4. - GLOBAL CONVERGENCE EXAMPLE WITH RECTANGULAR ELEMENTS.
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FIGURE 5. - GLOBAL CONVERGENCE WITH TRIANGULAR GRIDS.

Laplacian operator will differ from the expression for
the Taylor series expression by a factor of 1 plus 8.
If B 1is zero, a single pattern of uniform elements
can normally be placed in a regular domain. For the
uniform grid systems in Figs. 2 to 5, the area rule
leads to the following simple relationship between the
weighted residual expression for the Laplacian operator
{Eq. (12)) and the standard Taylor series (finite dif-
ference) representation

2, - Ay
¢ g}‘ ol ¢q (14)

For the conventional four point square difference grid.
as shown in the upper right of Fig. 4, the difference
equation for the Laplacian is different by a factor of
372 from the conventional Taylor series representation
of the Laplacian operator {Rektorys, 1969, p. 1114), as
predicted by Eg. (14). Similarly, the eight-node Sys-
tem shown in the upper right in Fig. 4 differs by a
factor of 3/1. However, since the method of weighted
residual (as applied in finite element theory) is guar-
anteed to converge, these are acceptable formulae pro-
vided they are applied to a consistent global mesh and
not a single arbitrary cell. The purpose of the
present paper 1s to adapt Eq. (12) so that it can be
applied on a local grid independent of the surrounding
grid,

Although the weighted residual difference equation
for the Laplacian operator in Fig. 4 differ in each
cell from the standard Taylor series difference equa-
tion. from a global point of view the Taylor series and
weighted residual equations will average out to the
same value. Since B is not zero, the glabal domain
will be filled with different element types, as shown
in the combined mesh of Fig. 4. In the case shown in
Fig. 4. the area average of the eight-node element com-
bined with the four-node element will be such that the
Taylor series will be valid. Ais shown in Fig. 4. the
average global value of B s equal to zero. (B is a
measure of the difference between the finite element
and Taylor Series as just defined.) A similar situa-
tion occurs for triangular grids as shown in Fig. 3.

Figure 6 displays the difference equations devel-
oped from Eq. {12) for a nonuniform six-nnde cell. 3s
discussed previously. the Laplacian operator shown in
Fig. 6 is valid when taken in conjunction with the
other grid systems that surround it in a given finite
element type domain. However. since the bias of
-0.1367 is differeat from zero, the difference equation
displayed in Fig. 5 will not be valid for a local iso-
lated cell. For nonuniform grids. the following test
functions will be used to check the validity of the
difference formula on a local unstructured nonuniforp
grid.

) Il

1 X y Xy X~ y= (13)

The difference equation in Fig. 6 satisfies the 1, x.
and y test functions: however, it does not satisfy
the xy, x°, and the y2 test functions. It does how-
ever satisfy an 2 + y2 test function which leads to
a simple formula for the Voronoi area in terms of the
a coefficients (Baumeister, 1988, Eq. (10)).

Equation (12) will now be adapted to produce dif-
ference equations valid on a local grid. That is, a
difference equation which satisfies the six constraints
given in Eq. (15).

MODIFIED LAPLACIAN OPERATORS

The method of linear combinations will be used in
the next section of this paper to adapt the method of
residuals to obtain local convergence for uniform grids
and unstructured grids of general shape. For conven-
ience, a modified version of Eq. {12) will be used in
the combination process.

As shown by the area rule. if the bias constant is
equal to zero (B = 0), then Eq. (13) becomes

= A (16}

Equation (16) combined with Eq. (12) yields

2 - %% * by by v gty
- A

(B =0} (17)



AXIAL COORDINATE, Y

AXIAL COORDINATE. X

2.3070, + By + 19.3850z *

vlo = 0.864

80.38u

6.4610, + 11.0/7@5 + 1.38ud¢ - 11.6159

FIGURE 6. - NONUNIFORM 6 NODE GRID SYSTEM.

where Ay is the Voronoi area of the cell and the a
values are given by Eqs. (3) and {4). Surprisingly,
Fq. (17) was checked against a number of uniform grids
such as shown in Figs. 1 and 5 where B was not equal
to zero and was found to be identical to the Taylor
series representation which satisfies the conditions
given by Eq. (15).

in the linear combination process to follow, arbi-
trary constants will be assigned to the Laplacian oper-
ators. Therefore, either Eq. (12) or {17} could be
used in the weighting process for unstructured grids
since they only differ by a constant for a given dif-
ference cell. However, since Eq. (17) fortuitously
seems to work for all uniform grids system, Egq. (17)
will be employed in the superposition process.

LINEAR COMBINATION FOR UNSTRUCTURED GRIDS

The method of linear combinations has been
employed in the past to obtain higher order difference
equation for finite difference grid systems. For
example, Salvadori and Baron (1962). p. 235, used lin-
ear combinations of a four-node system to obtain the
difference equation for the eight-node system shown in
Fig. 7. In this case the difference equation for the
eight-node system can be written as

(3 ()

O * 0 * Og * Og - 40

3 - I
779 = f171$ - fj'ja {8}

Equation (18} automatically satisfies the first four
conditions of Eg. (13) since operators t and > individ-
ually meet these conditions of a zero galued taplacian.
Substituting either the «2 or the y- term into

"

Eq. (18) requires a Laplacian value of 2 or that

1= fq +f9 i13)
Thus. there are an infinite number of combinations of
difference equations that can represent the eight-node
grid system in Fig. 7. For example if 1y = 2/3 and

f, = 1/3 the difference equation for the Laplacian
becomes {Rektorys. 1969. p. 1114}

i
7%
4(¢ + ¢3 + ¢5 + ¢7] + (@2 + b% + 06 + ¢8) - 20¢0

)
gh™

1

{20)

or if fy - 1/3 and fp =2/3 the difference equation
for the Laplacian takes on the form

(2) ) (3 (2)

(8) (6) (73 (8)

(5 () h
*—4 o +
-t h —
(¥R )
Oy + O + Oc + Oy - 1O 2
V12®=1 370 "% o vio -

n2

2h?

FIGURE 7. - LINEAR COMBINATION OF OPERATORS USING FINITE DIFFERENCE THEORY.
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This is the identical expression obtained from finjte
element theory using bilinear weight functions (Lapidus
and Pinder, 1982, p. 104). Although both equations are
equally valid, the round-off errors associated with
each equation are different. 4n evaluation of the
round-of f error can be found in reference (Salvadori .
and Baron, 1962, p. 236). ’7;¢: 7;¢J 7:¢’

will be to determine the Laplacian operator for the ” .
left-hand cell shown in Fig. 8. This main cell is V“Qi 7;@’ 7-¢,
labeled f; while the fa and f3 cells are subdivi- ! = 3
sions of the main cell using only a portion of the grid

points to define the cell. The Laplacian operator for 7% 72¢[ 72¢
cell 1 can be expressed as the linear combination of 1 ’ 2 3 ‘
these cells in the following form with g representing =y

LTI PR by - by - $; + by v O, - ®g - 8®0 The inown values of the Laplacian rterms 'n Eqs. (221

'0 123) are easily determined from Eq. 171 with +he
Jh x coefficrents evaluated ‘rom the known nosiiion ar
121 the 3rid nornts as required ia Zas. 131 and (4). The

bn  values used to evaiuate the Laplacian rerms :q
EQs. {23} o 126] are de(grmxne directly from the rriaj
functions «y. «=. and y=.

In matrix form, Egs. {23} to (23) can he written
In compact form as

3 2} " |
i

The first example of the linear combination method | p=xy © Tp=xy

p=y2 p=y

the unknown linear combination coefficients:

Equation {22) satisfies identically the first three
conditions in Eq. (15) for any values of the f con-
stants since £q. (17) satisfies these conditions.
later three conditions in Eq. (15) will be satisfied
by a simultaneous solution of the following three con-
straint equations with unknown f1, f2. and f4
coefficients:

(¢

(¢

Equation (26) is a very simple system easily solved by

2 2 5 9 third-order determinants for the values of fy. f2. and
V¢ = f17I¢ + f27;¢ + f375¢ (22) fq.
b The Laplacian difference equation for the six-node
grid in Fig. 8 is shown by the formula in the lower
portion of the figure. This equation meets all the
The test conditions given by Eq. (15). Other subdivisions
of cell 1 could have been performed to obtain a dif-
ferent form of the difference equation. Similar to
Eqs. (20) and (21). it is expected that these equations
would also have different values of the round-off
error.

Similar results for the five-node cell system are
shown in Fig. 9. An attempt to adapt the approach to
the four-node system in Fig. 10 proved unsuccessful .

Xy constraint)

2 2 2 . .
f171¢‘ + f777¢’ + f373¢f =0 {23) Apparently, the matrix equations are linearly dependent
$=xy 7 Tgexy $=xy in this case and a solution is not possible.
x2 constraint) HIGHER ACCURACY
2 2 2 Increasing the number of grid points in the dif-
f171¢l ) + f272¢f R * f373°’ , =2 (24) ference operator generally improves the accuracy of
$=x= P=x~ $=x= finite difference algorithms. 1 similar improvement in
the accuracy could be obtain from Eq. (26) by extending
y2 constraint) the relationships shown in Eq. {15) to include higher
order terms in the Pascaj polynomial triangle. The
2 2 2 _ Pascal's triangle for complete polynomials in terms of
f1vl¢l 5 * f272¢’i 5 M f373¢ . 2 (25) two variables « and y can be written as:
$=y< $=y< =y~
(3)01.25.21 (3)

(3)

(2 . 2)
) (1.75,1.51
)

10.1.25) A
\Y/ )
o
1.25, 5] (5)
(1)12,.251
8
631,01 6)
2 2
t,v,zm 1LY, 0 1595°0

v20 - 0.264440, + 0434990, + 0.7121905 + 1.38700, + 0.550u505 + 0.80539 - 4. 16450,
FIGURE 8. - SIX NODE LOCAL LAPLACIAN OPERATOR.
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(3){1.25.21

(3} (3)
(2) (2>
s )
) 11.75.1.5] )
£0.1.25) 2 &
\ N\, /,
N (QB]
[2..25])
(5) )

(511,01

R

2 2 2
11V] U] !?Vz ¢ t3Vs 0

v’ - -0.0338130, + 0.86560, + 0.3922205 * 1.79210, * 1.29840g - 4.31450,
FIGURE 9. - FIVE NODE LOCAL LAPLACIAN QPERATOR.

(2)
n
)
3

v.20 £,9,20 {57570

(2)1.25.21] (2)

@

()

FIGURE 10. - FOUR NODE LOCAL LAPLACIAN OPERATOR.

APPENDIX i - DERIVATION GALERKIN AEIGHTED RESIDUAL

1
EQUATIONS
X y
<2 Xy y2 Let § be an approximate weighted residual solu-
3 2 2 3 tion for the potential 9 defined by Laplace s equa-
X 7y ¥ y tion. VNext. the total cell area AT is divided into
xt Yy 2y xy3 yi (27) M elements as shown in Fig. 1. The spatial dependence

of % in each element can be approximated by

[f a sufficient number of external nodes exist,

Eq. (26) could be extended to include the cubic or even _ =3 - -

the quadratic terms in Eq. (27). This should improve ¢(e)(x,y) D N}e)[x,y]¢§6} - {N(E)J{o(e)} (A1)
the accuracy to the difference algorithm by decreasing i=1

the truncation error.

(in Fig. 1: 0 = 1. j =2, k=3)
CONCLUSIONS
The standard linear local element shape function yle)
The Galerkin weighted residual technique using is employed here. These common linear pyramid like

d the method of interpolation functions \ are presented in most

linear triangular weight functions an
finite element texts (Lapidus and Pinder, 1982, p. 111,

linear combinations are employed to develop finite dif-

ference formulae in Cartesian coordinates for the Eg. (3.1.14)}). The superscript {e) is used to designate
Laplacian operator on local unstructured triangular the element value. Likewise the superscript (e) on
grids. The algorithm was tested for a wide variety of the ¢; designates the i nodes associated with a
unstructured meshes and found to give satisfactory particular element.

results.



The weak formulation of the weighted residual
approach 1s used (Lapidus and Pinder. 1882, p. 43 -
integration by parts plus the divergence theorem) along
with the Galerk:in approximation to obtain the standard
text book weighted residual approximation for the
Laplacian:

d {e) 77
z 8ty

e=al :

\ [—7N£e) - 7[N[e']{¢‘e)}]dA -0 (a2)

e

Equation (A2) can now be easily evaluated using
conventional finite element theory to obtain the dif-
ference coefficients listed in Eq. {2) in the body of
this report for the central cell node labeled o.

APPENDIX B - AVERAGE OPERATORS

Consider the partial differential equation of the
form

2 59
7®+8x=0 {B1)

Employing the Galerkin weight residual solution of
Eq. (B1) for the four-node cell in the upper right of
Fig. 1 vields

b, - ¢
]

[aydy « aydy vagey v ap, - %) + h[“‘E‘"‘

{B2)

The coefficients associated for the Laplacian have been
left in general form while the coefficient of the first
derivative have been written for the specific grid
associated with the four-node grid of Fig. 4.

[t is desired to put Eq. (B2) in a more familiar
form which coincides with the standard Taylor Series
finite difference approach. The average difference
value of the first derivative using the method of
residual can be written as (Baumeister, 1988,

Appendix B)

gg—j jAT NO dA = h[[@1 - ¢3)/3] (B3)

In this case, the integral of the weight Ny over the
total cell area is equal to A7/3. which was determined
with the aid of the standard area integration formula
(Lapidus and Pinder, 1982, P. 112) or as shown expli-
citly in Allaire (19835), p. 45). Therefore, in

Eq. (B2). division by the area factor Ar/3 will con-
vert the weighted residual coefficients into the
Taylor series difference approximations for the first
derivative. Furthermore. for the specific four-node
grid shown in Fig. 4, AT corresponds to 2hZ. thus

Eq. (B2) becomes

(22) = 29 - a8y v as, - %) {’1 )
oy L !
3

184

The right-hand term is immediately recognized as the
Tavlor series difference approximation for the tirst
derivative term in Eq. (B1) for the four-node irid sys-
tem shown in Fig. 4. Likewise. the ieft-nand term can
be taken to be the Lapiactan difference 2quation 4$so-
Giated with the first term in Eq. (B1} and is the nasis
for Eq. {12) in the body of this report. A similar
derivation would apply to more general !inear second-
order partial differential such as the Helmholtz
equation,
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