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GALERKIN FINITE DIFFERENCE LAPLACIAN OPERATORS ON ISOLATED UNSTRUCTURED TRIANGULAR MESHES

BY LINEAR COMBINATIONS

Kenneth J. Baumeister

National Aeronautics and Space Administration
Lewis Research Center
Cleve)and, Ohio 44135

hBSTRACT

The GaLerkin weighted residual technique using Lin-
ear triangular +eight functions is employed to develop
finite difference formulae in Cartesian coordinates for

the Laplacian operator on isolated unstructured trian-
gular grids. The weighted residual coefficients asso-
ciated with the weak formulation of the Laplacian
operator along with linear combinations of the residual

equations are used to develop the algorithm. The algo-
rithm was tested for a wide variety of unstructured
meshes and found to give satisfactory results.

NOMENCLATURE

area

element area, see Fig. 1

total cell area, see Fig. 1

Voronoi (finite difference) area

bias constant, Eq. {13)

linear combination factor, Eq. (22)

coordinate spacing distance

number of elements in cell

linear interpolation function

weight function, see Eq. (2)

axial distance coordinate

transverse distance coordinate

weighted residual coefficient, Eq. (2)

property constant, Eq. (I}

dependent variable, Eq. (1)
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Superscripts

~ numerical estimate

- average value, Eq. (B3)

(e) element value

n

Subscripts

index, Eq. (8)

finite difference or Taylor series

element index, gq. (10) and Vig. 1

element index, Eq. (10) and Fig. 1

total number of elements

global node index, Eqs. (6) and {7), Fig. 1

index, Eq. (9)

central node index

number of outer nodal points, see Fig. 1

index, Eq. (11)

index, Eq. (5)

global element index, Eq. (3)

global element index, Eqs. (3) and (8)

INTRODUCTION

Linear triangular finite element theories
(Baumeister and Horowitz, 1984) have been successfully
applied to the Fourier transformed linearized gas
dynamics equations ("steady" state equations] in the

study of noise propagation in variable area ducts and



theacousticdesignof turbofanenginenacelles. Simi-
larly, transient solutions to the acoustic wave equa-
tion have used conventional finite difference operators
and elliptic mapping methods (Rand and White, 1986) to

successful model noise propagation in ducts with varia-
ble geometry. Advantageously, the transient solutions
eliminate the storage of the very large global matrix
associated with the 'steady' state solution of wave
propagation problems. However, at the present time the
transient technique employing elliptic mapping has been
unsuccessful in predicting the acoustic far field radi-

ation pattern from aircraft inlets. To overcome this
problem, the present study is concerned with adapting
previously developed "steady" state triangular finite
element mesh generators (Baumeister and Horowitz, 1984)
for use in transient variable geometry acoustics or
electromagnetics in the form of unstructured finite
difference theory.

In developing unstructured finite difference equa-
tions, Iameson (1987) (Eq. (4.10)) has applied the

standard weighted residual Galerkin method to obtain a
time dependent discretization of the Euler equations
for an unstructured triangular mesh. Erlebaoher (1985)
has utilized variational methods on a pointwise basis

to establish a difference algorithm for the Laplacian
operator for a central difference cell similar to that
shown in Fig. 1. Unfortunately, from a pointwise per-
spective, Erlebacher has shown that the difference
algorithms that result from a variational approach are
only zero order accurate (Erlebacher, 1985, p. 42) for
the Laplacian operator on nonuniform unstructured grids

as well as many uniform grids. Baumeister (1988)
obtained similar results using the Calerkin weighted
residual techniques, The Galerkin algorithms in
Battmeister {1988) for the Laplacian operator were con-
sidered valid for a general unstructured grid when used
only in conjunction with a complete global grid system,
as commonly employed in conventional finite element
analysis. Baumeister (1988) also showed that finite

element and finite difference (Taylor series) algorithms
are related by an area rule and that the finite element
algorithm will agree with a Taylor series approach on a

global average.
At present, the difference expression for the

Laplacian operator based on variational theory is valid
on a local grid only under restricted conditions, namely
when the area rule is satisfied (Baumeister, 1988). To
generate finite difference approximations for the

Laplacian operator which are valid for local single
cells such as shown in Fig. 1, the present paper will
utilize the global Calerkin weighted residual technique
in conjunction with linear combinations of the weighted
residual equations.

GALERKIN WEIGHTED RESIDUAL FO_FOLATION

The Laplacian operator plays a major role in the
study of acoustic and electromagnetic wave propagation.

Consider the following expression for the Laplacian
operator

v • _v# (1)

where _ is a scalar or potential quantity and _ is
a variable property coefficient that depends on its
spatial orientation. To obtain the finite difference
expressions for this Laplacian operator at some point
labeled o, a finite difference cell is defined by con-

necting the P nodal (grid) points surrounding the
central grid point o as shown in Fig. 1, This dif-
ference ceil of total area AT is then divided into

discrete triangular areas Ae staked out by nodal
(grid) points P as shown in Fig. 1, The nt_ber of

(xl,Yl)

TOIAt.

(x2"Y2) AREA

AT

(x3,Y3)
(P)

(3)

<j) _k)

FIGURE I. - FINITE DIFFERENCECELL

CONFIGURATION.

connected areas (called an element of the cell} needed
to define the difference equation for node o is
labeled _.

Using the weak formulation of the method of
weighted residuals [Lapidus and Pinder, 1982, p. 443),
the Laplacian operator in Eq, (1] can be integrated to
obtain (see Appendix A for brief derivation}

+ %% + . . + ap_p
(2)

Using the Galerkin approach, the spatial weight W is
approximated by the standard linear interpolation func-
tions and the hat over the potential @ indicates that
it is the approximate numerical solution for the poten-
tial, @n represents the potential at any general
nodal point n. The value of the general @n coeffi-
cients depends only on the location of the grid points

(xn,Yn) and the property coefficient _ and are of the
form

C_n :-[f3(nm)/4A(nm)][(yn_ - Yn)(Y o - Yn_)

+ (x n -Xn_)(Xn_- Xo) ] - [_3(n)/4A(n)][(Y n - Yn+)

x (Yn+ - Yo ) + (Xn+ - Xn)(Xo - Xn+)] (3)

M

ct 0
e=l

[l%(e)/4A(e)][(Ye- Ye+ )2 + (×e+- Xe)2] (4)

The indices are defined as

8a, M = 0 = , _ or 8=, u = 1 _ = _ (5)

n- : n - I + PSn, l (6)

n+ : n + 1 + PSn, p (7)

e+ = e + I + PSe, p {8)

um = n - I ÷ _&n,l (9)

with element areas given by Lapidus, and Pinder, 1982,

p. 110 (Eq. (3.1.1))

(Io)



LAPLACIAN OPERATOR

The present paper will establish a relationship

between the Laplacian operator and the _ coeffici-

ents from the method of weighted residuals as given by

Eqs. [3) and (4], An expression for the Laplacian of

the form

V2¢ = fill. _2 .... ) (li)

is desired. Using the result from Appendix B for a

linear shape function, the Laplacian can be expressed

as

?2@ = 10¢0 + 'll¢l ÷ _2@2 + ' ' . ap@p (12)

AT

3

where _T is the total area of the ceil,

For the six point hexagon difference grid systems

as shown in Figs. 2 and 3. the difference equations for

the Lap[acian as calculated from Eq. 112) are in agree-

ment _th the standard Taylor series finite difference

t
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FIGURE 2. - UNIFORM 6 NODE HEXAGON GRID.

n2

operators that appear tn the literature [Rektorys,

I969, p. 1114). However. this _1lI not generally be
the case, as discussed earlier in relation _o Er!bacher

and Baumeister s works and a!so discussed in Lapidus

and P_nder Itq82). p, i05. For uniform grids, of the

t_e displayed in Figs. 4 to 5, the finite difference

and fintte element expressions for the Laplacian opera-

tot will differ with the conventional Taylor series

difference equation. Only when the bias constant B

defined by the following area rule is identical to zero

will the finite element a[goritl'lm and Taylor series

approximations be equal.

3A V

B =-_- l
(13)

Av is the Voronoi neighborhood (Erlbacher, 1985) or

the area normally employed in the finite difference

analysis and is the area enclosed by the dashed line

in Figs. 2 to 5, Baumeister (1988) presents a simple

algorithm to determine the Voronoi {finite difference)

area for an unstructured grid based on the _ coeffi-

cients in Eqs. (3) and (4).

[f B is not zero in Eq. (131, the coefficients

in front of the weighted residual expression for the

T
h

(3) (2)

_N_ TNK_/'-- AI =3h2

"

(5) (6)

Av = h 2

2 _I + _2 + @4 + 05 - 4_0

V ¢ = h2

FIGURE 3. - UNIFORM 6 NODE SLANTED HEXAGON

GRID.
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FIGURE q. - GLOBAL CONVERGENCE EX/V_PLE WITH RECTANGULAR ELEMEN[S,
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FIGURE 5. - GLOBAL CONVERGENCEWIIH tRIANGULARGRIDS.

Laplacian operator will differ from the expression for
the Taylor series expression by a factor of 1 plus O,
If B is zero, a single pattern of uniform elements
can normally be placed in a regular domain. For the

uniform grid systems in Figs. 2 to 5, the area rule
leads to the following simple relationship between the
weighted residual expression for the Laplacian operator
(Eq, (121) and the standard Taylor series (finite dif-
ference) representation

= 3AV

72_ V 72_tfd
(14)

For the conventional four point square difference grid,

as shown in the upper right of Fig. 4, the difference
equation for the Laplacian is different by a factor of
3/2 from the conventional Taylor series representation

of the Laplacian operator (Rektorys, 1969, p. 1114), as
predicted by Eq. (14). Similarly, the eight-node sys-
tem shown in the upper right in Fig. 4 differs by a
factor of 3/4. However, since the method of weighted
residual (as applied in finite element theory) is guar-

anteed to converge, these are acceptable formulae pro-
vided they are applied to a consistent global mesh and
not a single arbitrary cell. The purpose of the
present paper is to adapt Eq. ([21 so that it can be
applied on a local grid independent of the surrounding
grid.

Although the weighted residual difference equation
for the Laplacian operator in Fig. 4 differ in each
cell from the standard Taylor series difference equa-
tion. from a global point of view the Taylor series and

weighted residual equations wilt average out to the
same value. Since B is not zero, the global domain
will be filled with different element types, as shown
in the combined mesh of Fig. 4. In the case shown in
Fig, 4. the area average of the eight-node element com-
bined with the four-node element will be such that the

Taylor series will be valid. As shown in Fig. 4, the
average global value of B is equal to zero. (g is a
measure of the difference between the finite etement

and Taylor Series as just defined,) A similar situa-
tion occurs for triangular grids as shown in Fig. 5.

Ftgure 6 displays the difference equations de_ei-
oped from Eq. {121 for a nonuniform slx-node cell, As

discussed previously, the Laptacian operator shown in
Fig. 6 is valid when taken in coniunction with the
other grid systems that surround tt tn a given finite
element t_e domain, However, since the bias of

-0.1367 is different from zero, the difference equation
displayed in Fig. 6 will not be valid for a local iso-
lated cell, For nonuniform grids, the following test
funct:ons wzil be used to check the validity of the
difference formula on a local unstructured nonuniform

grid.

I x y xy x 2 y2 (15)

The difference equation in Fig. 6 satisfies the 1, x,
and y test functions; however, it does not satisfy

y2 test functions It does how-the xy, x 2, and the

ever satisfy an x2 _ y2 test function which leads to
a simple formula for the Voronoi area in terms of the

coefficients (Baumeister, 1988, Eq. (101).

Equation (12) will now be adapted to produce dif-
ference equations valid on a local grid. That is, a
difference equation which satisfies the six constraints
given in Eq. (15),

_IODIFIED LAPLAC[AN OPERATORS

The method of linear combinations will be used in

the next section of this paper to adapt the method of
residuals to obtain local convergence for uniform grids
and unstructured grids of general shape, For conven-

ience, a modified version of gq. (12/ will be used in
the combination process.

As shown by the area rule, if the bias constant is
equal to zero (B = 01, then Eq, (13) becomes

hT
5- = AV (16}

Equation (16) combined with Eq, (12) yields

=0@0 + _1@1 * a2_2 * . . _p_p

7-_ = AV
(B = O) (17}
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FIGURE 6. - NONUNIFORM 6 NODE GRID SYSTEM.

where AV is the Voronoi area of the cell and the

values are given by Eqs. (3) and (4). Surprisingly,

Eq. (17) was checked against a number of uniform grids

such as shown in Figs, 4 and 5 where B was not equal
to zero and was found to be identical to the Taylor

series representation which satisfies the conditions

given by Eq. (15).
In the linear combination process to follow, arbi-

trary constants will be assigned to the Laplacian oper-

ators. Therefore, either Eq. (12) or (17} could be

used in the weighting process for unstructured grids

since they only differ by a constant for a given dif-

ference cell. However, since Eq. (17) fortuitously

seems to work for all uniform grids system, Eq. (17)

will be employed in the superposition process.

LINEAR COMBINATION FOR UNSTRUCTURED GRIDS

The method of linear combinations has been

employed in the past to obtain higher order difference

equation for finite difference grid systems. For

example, Salvadori and Baron (1962), p. 235, used lin-

ear combinations of a four-node system to obtain the

difference equation for the eight-node system shown in

Fig. 7. In this case the difference equation for the

eight-node system can be written as

724) = f17_ - f_,7___ I'_3

(5)

Equation (18) automatically satisfies the first four

conditions of Eq. (15) since operators ! and 2 indivia-

ually _eet these conditions o[ a zero valued tapIacian.

Substituting either the x 2 or the y2 term :nto

Eq, (18) requires a Laplaclan value of 2 or that

I = ft *f_ (I_)

Thus, there are an infinite number of combinations of

difference equations that can represent the eight-node

grid system in Fig. 7. For example if fl = 2/3 and

f2 = 1/3 the difference equation for the Laplacian

becomes (Rektorys, 1969, p, 1114)

72_

4('1 + #3 * _5 + ¢7 ) _ (_2 * _4 * _6 * ¢8 ) - 2°*o
= 9

6h"

(2o)

or if fl = l/3 and f2 = 2/3 the difference equation
for the Laplacian takes on the form

(6) (7) (8)

V20

FIGURE 7. - LINEAR COBBINAIION OF OPERAIORS USING FINIIE DIFFERENCE IttEORY.

(7)

20 0] + $3 + 05 _ 07 - 4_0 2 02 + 04 + 06 + 08 - 400v = v20 =
h 2 2h 2

.,q[-.- h --_

(G) (8)

(3) (q) (2)

(0) (1)

- +
h (0)

(])(5) •

(q) (3) (2)



*I *-I_,_ -*3 " '4 * '_5 + 'I_6 + _7 " '8 - 8*072+ -
3h 2

This is the identical expression obtained from finite

element theory using bilinear weight functions (Lapidus
and PAnder, 1982, p. 1041. Although both equations are
equally valid, the round-off errors associated with
each equation are different. An evaluation of the
round-off error can be found in reference (Satvadori
and Baron, 1962, p. 2361,

The first example of the linear combination method
will be to determine the Laplacian operator for the
left-hand cell shown in Fig. 8. This main cell is

labeled ft while the f2 and f3 ceils are subdivi-
sions of the main ceil using only a portion of the grid

points to define the cell. The Laplacian operator for
cell 1 can be expressed as the linear combination of
these cells in the following form with f's representing
the unknown linear combination coefficients:

") 9 ') 0

7-+ = f17_+ + f27_.+ + faY3, <,_)_.

Equation (22) satisfies identically the first three
conditions in Eq. (15) for any values of the f con-
stants since Eq. (171 satisfies these conditions. The
later three conditions in Eq. (151 will be satisfied
by a simultaneous solution of the following three con-

straint equations with unknown fl, f2, and f3
coefficients:

(_ = xy constraint)

fly , + _, + = 0 (23)
• =xy _=xy _=xy

(_ = x2 constraint]

9 9 9

f1%+1 + fJZ,t - qv?+ I : 2

(¢ : y2 constraint)

9 9

qb:y2 - - @:y2 _O:y2

The known ',';_iues of the Lap[ac_an terms :n Eqs. 12:;t
to 125] _re easily deter:n_ned from Eq. _i-I w_th :he
:t coefficients evaiuated from tar !<nown position of
the grid points is required ::: :qs. _;1 and i41. ,"he

:_n values ,:sod to evaiuate the :.api:_c:an _er'ns :n

Eqs. i231 ;o t261 are determine directly from the trial
funct:ons '<y. ',,-. aIld ',.'-.

In matrix form, Eqs. {23t to [251 can be a,r,tten

in compact form as

[71_l_:xy = '+='xw" *:xy

7_ 7_+I¢ x2 7_*I
i'i :x2 - :,

, =ye -+.y2 +.y=

f
I

f_ i

f3

(26)

Equation (26) is a very simple system easily solved by

third-order determinants for the values of fl, f', and
f3.

The Laplacian difference equation for the six-node
grid in Fig. 8 is shown by the formula in the lower
portion of the figure. This equation meets all the
test conditions given by Eq. {15). Other subdivisions
of cell 1 could have been performed to obtain a dif-

ferent form of the difference equation. Similar to
Eqs. (20) and (21). it ts expected that _hese equations
would also have different values of the round-off

error.
Similar results for the five-node cell system are

shown in Fig. 9, An attempt to adapt the approach to
the four-node system in Fig, 10 proved unsuccessful.
Apparently, the matrix equations are linearly dependent
in this case and a solution is not possible.

HIGHER ACCURACY

Increasing the number of grid points in the dif-
ference operator generally improves the accuracy of
finite difference algorithms. _ similar improvement in
the accuracy could be obtain from Eq. [261 by extending
the relationships sho_n in Eq. (15) to _nclude higher

order terms in the Pasta[ polynomial triangle. The
Pascal's triangle for complete polynomials in terms of
two variables x and y can be written as:

(31[1,25,21 (3)

_(2) 2)
( (

IO. 1.251

I .25..51

(51_(1) 12,.25t

(6) I 1,01 (6)

flvl20 f2v22

v'2_ = 0.26q44_ 1 + 0.45,99%, o.z_2m% + _._970% + 0.550q_ 5 + 0.8053_ 6

FIGURE 8. - SIX NODE LOCAL LAPLACIANOPERATOR.
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(3)11.25,21 (3) (3)

(2) _(2)

75.1.51 ( (1)

(4)I (4)

_12,.25}

[0,I.251

(5)[1.01 (5) (5)

flV125 12v22_ I3v_2 0

_,20 = 0.03381301 . 0.865_ 2 + 0.3922203 _ 1.792104 * 1.2984_ 5

FIGURE 9, - FiVE NODELOCALLAPLACIANOPERA;OR.

- 4.314500

10,,51

(2)[.25,21 (2)

(3),_ I (3)

U(4)

flY720 f2_22_

FIGURE 10. - FOUR NODE LOCAL LAPLACIAN OPERMOR.

(2)

(1)

x y

x2 xy y2

x 3 x2y xy2 y3

x 4 x3y x2y2 xy3 y4 (27)

If a sufficient number of external nodes exist,

Eq. (26) could be extended to include the cubic or even
the quadratic terms in Eq. (27). This should improve
the accuracy to the difference algorithm by decreasing
the truncation error.

CONCLUSIONS

The Galerkin weighted residual technique using
linear triangular weight functions and the method of

linear combinations are employed to develop finite dif-
ference formulae in Cartesian coordinates for the

Laplacian operator on local unstructured triangular
grids. The algorithm was tested for a wide variety of
unstructured meshes and found to give satisfactory
results,

APPENDIX _ - DERIVATION GALERKIN _EIGHEED RESIDUAL

EQUATIONS

Let $ be an approximate weighted residual solu-
tion for the potential _ defined by Laplace s equa-

tion. Next. the total cell area _T is divided into
elements as shown in Fig. I. The spatial dependence

of $ in each element can be approximated by

i=3

$(e)(x,Y) = C _le)(x'Yl¢l e) [_(el]{¢(e) t
i=l

(AI)

(in Fig. I: 0 = l, j = 2, k = 3)

The standard linear local element shape function N{ e)
is employed here. These common linear pyramid like
interpolation functions N are presented in most

finite element texts (Lapidus and Pinder, 1982, p. lit,
Eq. (3.1.4)). The superscript (e) is used to designate
the element value. Likewise the superscript (e) on
the _i designates the i nodes associated with a
particular element.



The weak formulation of the weighted residual

approach ts used (Laptdus and Pinder, 1982, p. 44J -
integration by parts plus _he divergence theorem) along

with the Ga!erk:n approximation to obtain the standard

text book _eighted residual approximation for the
Laplacian:

M

sir) i _ d'_7NIe_
e=l )t L 0

e

(?,2

Equation IA2) can now be easily evaluated using

conventional finite element theory to obtain the dif-
ference coefficients listed in Eq. {2) in the body of
this report for the central cell node labeled o.

APPENDIX B - AVERAGE OPERATORS

Consider the partial differential equation of the
form

72) _ 8x =

Employing the Galerkin weight residual solution of

Eq. tB1) for the four-node cell in the upper right of
Fig. 4 yields

(B2

The coefficients associated for the Laplacian have been
left in general form while the coefficient of the first

derivative have been written for the specific grid
associated with the four-node grid of Fig. 4.

It is desired to put Eq. (B2) in a more familiar
form which coincides with the standard Taylor Series

finite difference approach. The average difference
value of the first derivative using the method of
residual can be written as (Baumeister, 1988,

Appendix B)

8_ " NO dA = h[(_ t - _3}/3] (B3]

In this case, the integral of the weight _o over the
total cell area is equal to AT/3, which was determined
with the aid of the standard area integration formula
(Lapidus and Pinder, 1982, p. 112) or as shown expli-
citly in Allaire (1985), p. 45). Therefore, in

Eq. (B2), division by the area factor AT/3 will con-
vert the weighted residual coefficients into the
Taylor series difference approximations for the first
derivative. Furthermore, for the specific four-node

grid shown in Fig. 4. AT corresponds to 2h 2, thus
Eq. (B2) becomes

= (3

3 IB41

The right-hand term is immediately recognized as the
Taylor ser_es difference approx:_ation for the first
derivative term _n Eq. IBI) for the four-node gr_d _vs-

tem shown in Fi_. 4, I.ikewlse. the left-hand term can
be taken to be the Lapiaczan difference equatlon asso-
ciated _ith the first term in Eq. IBI)and is the basis
for Eq. (t2l in the body of _his report. _ similar

derivation would apply to more general linear second-
order partial differential such as the HeImholtz

equation.
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