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Introduction

The purpose of this research is to develop a rigorous theory and corresponding com-

putational algorithms for a variety of problems regarding the analysis of composite beams

and plates. The modeling approach is intended to be applicable to both static and dy-

namic analysis of generally anisotropic, nonhomogeneous beams and plates. The major

part of the effort during this first reporting period has been devoted to development of a

theory for analysis of the local deformation of plates. In addition, some work has been

performed on global deformation of beams. Because of the strong parallel between beams

and plates, we will treat the two together as thin bodies, especially where we believe it

will aid in clarifying to the reader the meaning of certain terminology and the motivation

behind certain mathematical operations.

Background

The static and dynamic analysis of beams and plates is of fundamental importance in

many engineering problems. In design and analysis of modern aerospace systems, subsys-

tems which consist of laminated plates or composite beams are often encountered such as

wing, fuselage, and rotor blade structures. Classical beam and plate theories are known

to be adequate for many applications. For beams or plates with anisotropic and nonho-

mogeneous construction, however, these theories suffer from several sources of inaccuracy.

For example, composite beams - even those which axe slender - can be very flexible in

shear. When such beams are analyzed by classical theories, which generally ignore shear

deformation, certain kinematical quantities and associated constitutive couplings are ab-

sent which are known to be important. Rehfield, Atflgan, and Hodges (1990) concluded

that such phenomena can influence the global deformation in thin-walled beams designed

for extension-twist coupling by as much as a factor of two! One of the chief mechanisms for

this large effect is a coupling between bending and shear deformation due to anisotropic

materials (see, Rehfield and Atllgan, 1989).

This conclusion also holds for beams which are not necessarily thin-walled; how-

ever, the cross sectional analysis of general nonhomogeneous, anisotropic beams cannot

be treated without finite elements. Unlike classical beam or plate theories, theories for

composite beams or plates must contain some means of calculating the elastic properties.

These properties are not merely material moduli multiplied by certain integrals over the

section of the beam. A review by Hodges (1990a) covers most of the literature dealing

with modeling of beams prior to 1988. A similar treatment of composite plates, in which

the determination of properties is carried out as a separate analysis, appears to be missing
from the literature.

The analysis of deformation for composite thin bodies normally must be done as

an iterative process. There are local deformation analyses, which determine the elastic

constants and details of local deformation in terms of global deformation parameters. Also

there are global analyses, which determine the global (beam- or plate-like deformation such

as bending, extension, torsion, and shear) deformation. One could proceed as follows: (1)

calculate the local deformation and elastic constants for the undeformed structure; (2) use



the resulting elastic constants in a global deformation analysis; (3) recalculate the local

deformation for the deformed structure; (4) stop the process if the elastic constants do

not change more than some tolerance or else go back to step 2. Most plates and many

beams do not exhibit a sufficiently large local deformation (which we will call warping) to

require more than one calculation of properties. In other words, elastic constants which

are determined based on the undeformed state may be sufficient even for geometrically

nonlinear analyses.

There is another aspect of research which we originally proposed, that being the use of

space-time finite elements to treat the global dynamics of beams. In the time between the

submittal of our proposal to the Aerostructures Directorate and its being funded, another

of our proposals was funded. It had been under review at the National Science Foundation

for a long time; among other things, it concerns the dynamics of beams by space-time finite

elements. Since both of these grants have this common subject matter as subsets of their

programs, we intend to treat this portion of the research as jointly funded. Prof. David

A. Peters and Dr. Weiyu Zhou have contributed to the NSF work, and thus, indirectly to

this project.

Most finite element procedures for time-dependent phenomena are based on semi-

discretizations; finite elements are used in space to reduce to a system of ordinary differen-

tial equations. This kind of procedure is widely used in practice and fairly well understood.

Space-time finite elements have been rarely used in solutions of engineering dynamic prob-

lems. Classic time integration methods are usually included in computational procedures.

Recent developments of the space-time finite element method allow application of approx-

imation techniques to the spatial and temporal domains. Special schemes lead to highly

efficient algorithms that reduce both memory requirements and number of arithmetical

operations.

The use of space-time finite elements presents yet another duality. The static and

frequency-domain global deformation analyses for plates are solved on the 2-D domain of

the plate; the space-time dynamics of beams can be cast as a 2-D problem with simulta-

neous spatial and temporal discretizations.

Previous Work Related to Beams

Although there has been much work published in the literature on beams and plates,

a unified approach such as we are undertaking has not received very much attention.

Furthermore, most of what does exist in the literature applies to beams only. Thus, before

getting into plate references, we will describe the analogous type of analysis for beams with

the hope of clarifying what we have begun to do for plates.

Berdichevsky (1981) was the first to prove, from variational-asymptotic considera-

tions, that nonlinear analysis of beams can be split into two separate problems: the local

deformation is a linear 2-D problem, and the global deformation is a nonlinear 1-D prob-

lem. The global deformation analysis of beams can be undertaken by use of 6 displacement

variables associated with a cross section of a beam. The variables describe displacement

of a point in the cross section and rotation of the cross section as a rigid body. There are
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also 6 generalized strains (extension and two shearing strains at the reference line, twist,

and two bending "curvatures") and 6 stress resultants (axial force and two components

of shear force, twisting moment, and two components of bending moment); these must

be related by elastic constants. This way of describing the global deformation requires at

most 21 elastic constants (a symmetric 6 × 6 matrix).

Beam Local Deformation To find these constants, all possible local deformations (i.e.,

warping) of the cross section must be taken into account, although they can be assumed

small. Here warping refers not only to out-of-plane distortion of the cross section during

torsional deformation as in classical theories, but in-plane and out-of-plane deformation;

these are fully coupled when the beam is nonhomogeneous and anisotropic.

As pointed out by Hodges (1990a), the work by Giavotto et al. (1983) is the most gen-

eral of all the published works. Giavotto et al. (1983) developed a finite element approach

for determining the elastic constants for an arbitrarily nonhomogeneous, anisotropic beam.

This approach makes use of a two-dimensional finite element mesh representative of the

beam cross section geometry and material properties. The results, in addition to the ma-

trix of elastic constants, include the distribution of warping displacements per unit values

of each of the stress resultants (section forces and moments in the cross section basis) and

the three-dimensional stress and strain values throughout the cross section per unit values

of the stress resultants.

Because of the generality of the work of Giavotto et al. (1983), we have adapted a ver-

sion of the code developed by Giavotto, Borri, and their associates for obtaining the elastic

constants for anisotropic beams. Its only shortcoming is its rather long computer times for

calculating properties of realistic composite beams. For this reason, under Army Research

Office sponsorship, we are also developing a theory based on the variational-asymptotic

method as formulated and applied to nonlinear analysis of isotropic shells by Berdichevsky

(1978, 1979). This method has some promise of yielding a more computationally efficient

algorithm for extracting the properties.

Beam Global Deformation These elastic constants can then be used to find either linear

or nonlinear global deformation, free-vibration modes and frequencies (see, Hodges and

Atllgan et al., 1989, 1990), and buckling behavior (see, Rehfield and Atllgan, 1989). Vari-

ous modal, direct numerical integration, and finite element methods exist for this purpose.

Because of their computational efficiency and modeling flexibility, finite element methods

are quite popular. Displacement finite element methods for geometrically nonlinear behav-

ior of beams, however, require numerical quadrature of highly nonlinear functions of the

beam deformation. This tends to make the numerical solution procedure quite inefficient.

On the other hand, with a mixed method such as that of Hodges (1990b), numerical ele-

ment quadrature can be avoided (as long as applied load terms that are explicit in the axial

coordinate are integrable in closed form). Such a nonlinear global analysis gives the beam

displacements, rotations, extensional strain, shear strains, twist, bending curvatures, and

sectional forces and moments to a comparable level of accuracy. It should be noted that



one can then use these results for forces and moments to find pointwise stress or strain

levels throughout the cross section using the cross sectional finite element mesh.

Beam behavior in the time domain can be calculated by finite elements. For the

dynamics of beams, recent work in the field of space-time finite elements applied to struc-

tural dynamics are described and reviewed by Bajer and Bonthoux (1988). There have

been several developments in this area for time domain analysis of simple linear oscillators

and rigid bladed helicopter rotors; for example Borri et al. (1985, 1988), Borri (1986), and

Peters and Izadpanah (1988). The results indicate that finite elements in time provide a

way of determining the dynamic behavior of a deformable body undergoing time-dependent

loading. We have concentrated our work on the determination of the dynamic response

of flexible structures by simultaneous discretization of the spatial and temporal domains.

The main purpose is to determine if this methodology can be made feasible.

Previous Work Related to Plates

Reissner (1985) departed from a three-dimensional statement of the problem recalling

the fact that in the absence of the adjective thin, plate theory would be no more than

a class of boundary value problems in three-dimensional elasticity. He gave an excellent

sociological-historical survey with his interpretations of the nature of approximations and

their consequences. He also touched upon the qualitative differences in the modeling of

laminated plates. Since we believe that a consistent plate theory should include all possible

deformations, our starting point is, naturally, the three-dimensional kinematics.

The analysis of laminated plates has attracted an enormous amount of attention. A

description of the plate problem, analogous to the beam, has not been published to the

best of our knowledge. Although the review articles by Bert (1984) and Noor and Burton

(1989) contain hundreds of references which treat the laminated plate problem, all of them

use some sort of explicit, analytic, through-the-thickness assumptions for displacement.

While this is not incorrect, simple, low-order theories of this type will not yield correct

stresses and strains through the thickness. The reason for this is rather obvious: in a

laminated plate where each layer has distinct material properties, the actual displacement

is not and cannot be analytic. When the assumed displacement is differentiated to yield

the strain, the approximate strain will also be analytic while the actual strain may be

discontinuous. Higher-order theories will be more accurate, but at a potentially high cost.

There are alternatives. One is to use a family of approaches as outlined and reviewed

by Librescu and Reddy (1989) in which breaking the plate into finite elements through the

thickness is advocated. This will yield the correct answer, but, again, at a potentially high

computational cost. Another alternative is to derive a local deformation theory similar to
that for the beam described above.

Present Approach

Plate Modelinq In this research, we are developing such a computational method for

determining the elastic constants for laminated plates. The approach is very similar to
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that describedabovefor beams. Yet, to the best of our knowledge, the present approach

has never been attempted. We originally set out to solve the interior St.-Venant solution

for the plate by finite elements in a manner that is strictly analogous to the approach of

Giavotto et al. (1983) for the beam problem. After applying the finitc element method,

a set of linear equations were obtained that were very similar to those of Giavotto et

al. (1983). Solution of these equations in a manner similar to the earlier ones, however,

turned out to be difficult. Thus, we turned to an approximate solution based on the

variational-asymptotic method.

The domain of the local deformation problem for the beam is planar (2-D), just as the

global deformation problem for the plate is. On the other hand, the global deformation

problem for the beam is solved along a line (l-D), just as the local deformation problem for

the plate is. For the local deformation of the plate, instead of an arbitrary interior cross

section as with the beam, we work with an arbitrary interior normal line element of the

plate (a line of material points normal to the reference surface of the plate). The tractions

acting on this line element are used to obtain a variational principle governing the local
stress resultants and deformation of the line element. The variational principle leads to a

symmetric 8 × 8 matrix of elastic constants (for a total of 36) based on the linear relation

between the 8 stress resultants and 8 generalized strains.

As with the beam problem, the elastic constants will be determined from a finite

element code that is linear. This code will enable us to calculate the elastic constants for

an arbitrary laminated plate. In this report, after presentation of the theory, we present

some preliminary results. These results, which essentially duplicate classical theory, were

obtained to check out the methodology and the code.

Dynamics of Beams An important step towards obtaining a general and consistent form

of beam elastodynamic equations was taken by Hodges (1990b). Therein, geometrically

nonlinear beam elastodynamic equations as derived from Hamilton's Principle; also, using

appropriate Lagrange multipliers a mixed variational formulation suitable for space-time

finite element discretization was developed. In order to exploit the usefulness of space-time

finite elements we decided to start from the very basic linear equations for longitudinal

dynamics of a beam, a special case of Hodges (1990b), and their solutions. In this report,

after a brief treatment of the theory, there are a few preliminary results presented.

The report closes with a description of work to be undertaken during the next reporting

period.

Unified Variational Formulation for Anisotropic Plates

Our starting point is the nonlinear kinematics of deformation for plates. We will

develop the three-dimensional Biot strain field based upon the kinematical development of

Danielson (1989). After this, we will formulate the strain energy. Finally, approximations

of this strain energy function will be discussed and asymptotically correct solutions for

the through-the-thickness analysis of isotropic plates, as well as the corresponding elastic

constants, will be given.
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Kinematics

A plate is a flexible body in which matter is distributed about a planar surface so

that one dimension is significantly smaller than the other two. (Much of our analysis

can be easily extended to treat shells, but herein we will consider only plates.) The

reference surface is an arbitrary planar surface, not necessarily the mid-surface of the

plate. Throughout the analysis, Greek indices assume values 1 or 2, Latin indices assume

values 1, 2, and 3 and repeated indices are summed over their ranges. Let us establish

a Cartesian coordinate system xi so that xa denote lengths along orthogonal lines in the

reference surface and x3 is the distance the normal to the reference surface. Let bi denote

an orthogonal reference triad along the undeformed coordinate lines. The position vector

to an arbitrary point along the normal line is

r*(xl,X2, x3) = r(Xl,X2) + x3b3 = xibi (1)

Covariant and contravariant undeformed base vectors are defined as, respectively,

0r*

gi ----_/x/

1 Or* Or*

g'--2 -_eijk-'_-'x/goxj ×

(2)

where g = det(gi • gj). For this analysis, both reduce to

gi = gi = bi (3)

In a similar manner, consider the deformed state configuration. The particle which

had position vector r*(xl,x2,x3) in the undeformed plate now has position vector

R*(xl, x2, x3) relative to the same point, which can be represented by

R*(xl,x2,x3) - R(xl, x2) + x3B3(xl,x2) + wi(xl,x2,x3)Bi(xl,x2) (4)

where R(x,,x2) = r(x,,x2) + u(xl,x2) and u = uibi is the displacement vector of the

points on the reference surface and wi(zl,x2,z3) is the general local (i.e., warping) dis-

placement of an arbitrary point on the normal line, consisting of both in- and out-of-plane

components, so that all possible deformations are considered (Figs. 1, 2). The relationship

between Bi and bi is given by

Bi(xl,x2) = Cij(x,,x2)bj (5)

where C(xl, x2) is the matrix of direction cosines. Covariant deformed base vectors

OR*

Gi- Oxi (6)
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can be obtained by standard means. It should be noted, however, the measure numbers Wi

provide redundant information since the normal line undergoes rigid-body displacement

due to ui and rigid-body rotation due to C. Therefore, some means of removing this

redundancy must be introduced. For a plate, we can choose the unit vectors Bi so that

wi is small, at least in some sense. Setting an appropriate number of weighted average

displacements to zero is one way to remove the redundancy. This can be conveniently done

by the finite element method and will be dealt with below.

Here we restrict ourselves to the case when strain and local rotation are small so that

the three-dimensional Biot strain can be expressed as

A+A T
r* - I (7)

2

where Aid = Bi • Gkg k • bj is the deformation gradient matrix and I is the 3 x 3 identity

matrix. Here P* is a 3 x 3 symmetric matrix. Introducing the column matrix w with

components wi, one can expressed the three-dimensional strain field as a 6 x 1 column

matrix P : [Fll 2Fa2 F22 2P13 2P23 i_33 jT so that

F = "He + I3w,3 + Ilw,1 + I2w,2 (8)

where ( ),i denotes the partial differentiation with respect to xi and

I1 =

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

_0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

.0 0 0

0 0

0 0

0 0

1 0

0 1

0 0

x3 0

0 x3

0 0

0 0

0 0

0 0

-0

1

0
/2= 0

0

.0

0

0

1

0

0

0

0

0

X3

0

0

0

0

0

0

0

1

0

h

0 0 0"

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1
(9)

and e = ['r /£J T, the intrinsic strain measure which is function of only xa. Also 7 =

['_'11 2")'12 722 2713 23'23J T and /£ = [/£1x 2/£12 t_22J T are the so-called force and moment

strain measures. Note that 71a and 722 are the extensional strains of the reference surface,

3'a2 is the shear strain in the plane of the reference surface, ')'a3 are the transverse shear

strains of the normal line element,/£aa and /£22 are the elastic components of the bending

curvature, and /£12 is the elastic twist. The force and moment strain measures are so
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designated because they are conjugate to the actual running stress and moment resultants,

respectively.

Since warping displacements are supposed to be quite small, the few nonlinear terms

in the strain field, which couple w and e, have been neglected in Eq. (8). The form of the

strain field is of great importance because it is now linear in 7, x, and w and its derivatives.

If the top and the bottom of the line element through the thickness of the plate are free

of tractions, application of the principle of virtual work to an infinitesimal line element,

would lead to a system of linear equations over the one-dimensional line element governing

w. The warping could then be determined in terms of these intrinsic strain measures or

stress resultants as in Giavotto et al. (1983). This would lead to a unique two-dimensional

strain energy function U(7, x). The elastic law could then be put in a form

where F and M are column matrices F = [Fll F12 /_22 F13 F23J T and M =

[Mll M12 M22J T. Here Fll and F22 are the in-plane stretching stress resultants, F12

is the in-plane shear stress resultant, Faa, are the transverse shear stress resultants; Mll

and M22 are the bending moment resultants and M12 is the twisting moment resultant,

all expressed in the Bi basis. The elastic stiffness matrix relating F and M to q, and tc is

8x8. The matrixAis5×5, Dis3x3, andBis5 ×3.

Even though this methodology is successful for beam formulations (for linear analysis

see Giavotto et al., 1983, and for nonlinear analysis see Atllgan and Hodges, 1990), it has

not been completely resolved for plate analysis. (This analysis is outlined in the Appendix

as far as we have been able to take it.) Therefore, we have changed our methodology from

direct to asymptotical analysis.

Strain Energy and Approximations

One of the most consistent ways to obtain the constitutive law for thin-body (i. e. beam

and plate/shell) analysis is the use of asymptotical analysis. Literature for the successful

analysis of asymptotical methods for beams can be found in Hodges (1987) and Atllgan and

Hodges (1990) and for plates in Noor and Burton (1989). In addition to the direct asymp-

totical analysis, which is applied to differential equations, Berdichevsky (1978, 1979) devel-

oped the variational-asymptotical analysis, which is applied to functionals. Berdichevsky

and his co-workers applied this method successfully to beams and shells for static and

dynamic analysis. An outline and a simple application of this method to beam analysis

can be found in Berdichevsky (1980). In what follows we will apply this method to non-

homogeneous and anisotropic plates to obtain the most consistent approximations of the

constitutive law.

Three-Dimensional Strain Energy for Anisotropic Plates

The three-dimensional strain energy for an anisotropic plate can be written as
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U = -_ FTDFdxadA (11)

where D is the 6 x 6 symmetric material stiffness matrix which relates the three-dimensional

Biot strain F to the three-dimensional Jaumann stress Z. The form of this matrix can be

found in Jones (1975) for all possible type of material structures ranging from transversely

isotropic case to most general anisotropy. The Jaumann stress is also arranged in a 6 x 1

column matrix form Z = [Zll Z12 Z22 Z13 Z23 Z33J T so that

z = Dr (12)

Since warping is a three-dimensional function of all coordinates, for most general

configurations, it is not possible to deal with it only through the thickness. Therefore, one

should discretize the warping as follows

W(Xl,X2,Xs) = N (x3) W (xl,x2) (13)

Then, using this together with Eq. (8) in Eq. (11), one can obtain the strain energy as

follows

1/A[eTAe+

eTRTw + WTRe + WTEW+

T T T
6.TLTW,a + W,_L_e + +wo,

WTM_W_]dA

(14)

where

A = Jfh "HTD'Hdx3

La = J_h NT IT DT-_dx3

R = f N'TITD'Hdx3 E = r./h N'TITDI3N'dx3

(15)

and where ( )' denotes differentiation with respect to x3. Because the description of the

displacement is 5 times redundant, the rigid-body portion of the warping degrees of freedom

must be removed in forming these equations. After this, the matrix E will be positive

definite. The rigid-body portion of w can be removed by constraining the finite element
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nodes. In order to do this, we set w3 = 0 at the reference surface and w_ = 0 at the upper

and lower surfaces.

Development of Finite Element Approximations for Anisotropic Plates

The zeroth approximation of the strain energy can be obtained by neglecting the

warping completely. Then, the energy is only due to the global measures of the deformation

and the stiffness matrix of the plate is just the matrix A. It can be shown that the matrix

A gives an upper bound for the stiffnesses.

A first approximation of this functional can be obtained by taking only the first

two lines of the strain energy functional. (This approximation cannot be called the first

approximation until it is proven. We address this below.) These four terms are considered

to be the most dominant terms in the strain energy functional. The reason for this is

that differentiation with respect to the in-plane coordinates xl and x2 will always result

in smaller magnitudes than differentiation with respect to the thickness coordinate x3.

Therefore, the energy obtained by the remainder terms should be smaller than the first

four terms. The first approximation of the strain energy functional then reads

U* = 1 r/( eT Ae + eT RTW + W T Re + W T EW) dA
2 JA

(16)

Since at the beginning we consider warping to be an arbitrary quantity, independent of the

global strain measures, the Euler-Lagrange equation associated with W will be obtained

from this functional by taking a straightforward variations of with respect to W yielding

Re + EW = 0 (17)

From this we obtain a relationship between our global strain measure e and the warping

W to be

W = -E-1Re (18)

In order to prove that this is t,he first approximation we need to find the second approxi-

mation. It can be shown by using a parallel development with that of Berdichevsky (1979)

that the solution obtained here is the first approximation.

In order to find the stiffness martix, Eq. (18) is used in the first approximation of the

strain energy functional, F-_I. (16) which gives

U* = 12/A eT (A- RTE-'R) edA
(19)
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This is the the first approximation for the strain energy. Derivative of the strain energy
with respect to the global strain measureeresults in the conjugate measuresof the section
stress resultants

Q= IF MJ T (OU*'_ T
= ) (20)

This relation suffices the existence of a relationship between stress resultants and the

global measure of strains through an elastic law, which we call the first approximation of

the matrix of elastic stiffness constants, S*, as in Eq. (10)

Q = s*e (21)

Following the above operation, S* can then be found as

S* = A- RTE-1R (22)

The matrix representing the first-order warping contribution to the stiffness matrix,

RTE-1R, is positive definite. It can also be shown that a finite element approximation for

the first asymptotic approximation S* will be an upper bound on the actual stiffnesses.

The First Approximation for Isotropic Plates

When we reduce our equations to the isotropic case it is possible to obtain an analytical

solution for warping and the stiffness matrix. Using Eq. (16) for the isotropic case (for the

first approximation for isotropic case, it is not necessary to discretize the warping) gives

the warping displacements as follows

el _ W2 _ 0

w3 = -2v [(711 + 722)
!. X3 +(/£11--{-m22)-_]

(23)

where v is Poisson's ratio. The the elastic stiffness constants can be expressed in terms of

v, Young's modulus E, and the shear modulus G. For the first approximation, the matrix

of elastic constants is found to be
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S* .____

Eh Eh
0 (l_--_-U_)v 0 0 0 0 0

0 Gh 0 0 0 0 0 0
Eh Eh

_/,' 0 (l_v2) 0 0 0 0 0

0 0 0 Gh 0 0 0 0

0 0 0 0 Gh 0 0 0
Eh a Eh 3

0 0 0 0 0 12(i_v2) 0 12(1_v:_) I/

Eh 3

0 0 0 0 0 0 _ 0
Eh s Eh a

0 0 0 0 0 :20__2)v 0 :2(t-_=)

(24)

It can be seen that for the first approximation our results are exactly the same as those from

classical isotropic plate theory. Since classical plate theory makes use of the plane stress

assumption we see that the first approximation of our general functional also coincides

with the plane stress assumption. If we were to neglect the warping starting from the

beginning of our analysis then the stiffness values would be overestimated. The important

point here is that classical isotropic plate theory does include warping!

As a first step in developing a numerical procedure, a finite element code has been

written to evaluate the warping and the elastic constants for the isotropic case. Two-noded

elements were used with C o continuous shape functions. Results which have been obtained

coincide almost identically with classical theory, and the agreement becomes much better

as more elements are taken. An example output from our finite element program is shown

in Fig. 3. The distribution of warping through the thickness due to 711 + 3'22 and all+ a22,

respectively, are plotted in Figs. 4 and 5.

Elastodynamics of Beams

In this section, we describe a simplified case for longitudinal dynamics of a beam. We

begin with the equations of motion and develop a weak form for mixed space-time finite

elements. Finally, we present some numerical results.

Linear Rod Elastodynamic Equations

The equation of motion for a rod is given as

F'- P + f = 0 (25)

where F is the internal axial force, P is the linear momentum, and f is the force applied

to the rod. All of these quantities are scalars and are functions of both space and time.

The linear rod kinematics is defined by a single displacement variable u. The velocity

of the rod is obtained by differentiating the displacement with respect to time. Then the

velocity of any point along the rod generator is
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(26)

The strainof the rod can be obtained by differentiatingthe displacement with respect to

the spatialvariable.So that the strainis

= u' (27)

The constitutive laws for the rod, which connect the strain and velocity to axial force

and linear momentum, can be simply written as

F = #e P = my (28)

The response of the rod can then be obtained by solving these equations simultane-

ously. Because of the simplicity of the structure, analytical solutions exist for some simple

loadings. Thus, some inital and two-point boundary value problems can be used as bench-

mark cases in which space-time finite element method based upon above equations can be

compared with some analytical solutions in the literature.

Weak Formulation for Space-Time Finite Elements

It is possible to obtain a weak formulation for a rod by just speciMizing the weak

form given by Hodges (1990b). However, since for this simple model we have such a

simple constitutive law, one may find it useful to satisfy the constitutive relationships

(algebraic equations) strongly. In this way we do not introduce any more unknowns than

are necessary. Consequently, the following weak form can be obtained

A(_,0
(29)

where (_u, SP, and _F are test functions. It can be seen that one of the important properties

of this functional is that none of the unknowns are ever differentiated. All the spatial and

temporal differentiations are performed over the test functions. Weak forms with this

property have been termed as "the weakest possible form" by Atllgan (1989). However, by

allowing differentiation only over test functions yields a form such that the field equations

now govern the test functions; note that they govern the trial functions in the primitive

weak form. Since one may assign any function as a test function, the Green functions

of the field equations could be chosen as test functions. The method using this kind of

weak form has been called the "boundary element method" in the literature. Therefore,

even though the weak forms can be same, selection of different shape functions can lead

different solution strategies. This simple example can show that the differences in finite and
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boundary element techniques are superficial; both are coming from the same background.

More details along these lines and weak forms for theoretical mechanics will be found in a

paper under preperation.

Applications

The initial value problem of a cantilevered rod subjected to a suddenly applied load

(Heaviside step function) at the free end is considered. This is a classical wave propagation

problem for which the force and linear momentum are discontinuous. This problem was

also investigated by Iura et al. (1988) by using a different weak form and by Mansur and

Brebbia (1984) by using the boundary element method.

Our space-time element is rectangular. With the weak form, Eq. (29), we have chosen

the following shape functions. For u, F, and P, constants were chosen in the element

interior. For the boundary, u is a constant but distinct value from the interior on each

of the space and time boundaries. On the other hand, F and P are represented by Dirac
delta functions at the element corners. The test functions 6F and 6P are linear in the

space and time directions, respectively; and 6u is bilinear in space and time directions.

Our results are shown in Figs. 6 - 8 for the displacement, force, and linear momentum.

Notice the discontinuous quantities are predicted accurately. Similar restdts for a case with

initial displacement are shown in Figs. 9 - 11. In both cases, the results match the exact

solution.

Future Work

In the near future we will develop the second approximation for plate analysis. When

applied to the isotropic plate, this will result in a computational method for generating,

as a check, the so-called "shear-correction factors." After validation of the code, we will

then extend it to treat anisotropic, laminated plate problems.

For the work on beam elastodynamics, we will continue to expand the capability of

the analysis to deal with periodic excitation, arbitrary beam deformation, and nonlinear

problems.
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Appendix

Consider a line element through the plate thickness (Fig. 12). The principle of virtual

work for this filament can be written as follows

(_ 6sTZadx3),, = jfh6FTZdx3
(30)

where 6s is the virtual displacement of an arbitrary point on the normal line ele-

ment, 6F is a three-dimensional virtual strain, and Z is the three-dimensional stress

measure conjugate to the strain, arranged in a 6 x 1 column matrix form Z :
T

[Zll Z12 Z22 Z13 Z23 Z33J • The tractions on the lateral surfaces of the line
elements are written as

Zi=LZ,1 Z,2 Zi3J T Z2=LZ22 z,2 z23J T (31)
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This principle enforces the weak satisfaction of the three-dimensional equilibrium
equations, and traction-free upper and lower surfaces. This is clearly analogous to the
beam St. Venant problem, except that this is for a one-dimensionalline element through
the thicknessof a plate.

Let us decomposethe displacementfield into warping and rigid body displacement
components

8, } (32)s=w+u+x3 02

where w and u are 3 x 1 column matrices for warping and the displacement of the reference

surface, respectively. As outlined in the text, it is possible to find the three-dimensional
strain as

F : _-__ At- I3w,3 -'kllw,1 +I2w,2 (33)

where matrices 7-_,/3, /1, and/2 are defined in the text. The stress-strain relationship is

given as Z = DF. Substitution of Eq. (33) into the principle of virtual work, and discretiz-

ing warping as w = N(z3)W (xl, x2) one can obtain the following system of equations

A B D

B T C E

D T E T H

i T jT K T

J W,2
K W

L e
}=

_D1,1 -}- _D2,2

Q

(34)

where

Q= [F M] T

F = JEll F12

/.

"Pc, = /_ NT zc,dx3

F22 Fi3 F:3 ] T

and the matrices are defined as

M= [Mll M12 /_/22J T

(35)

A = J_h NTITDI1 Ndx3

C = Jib NTITDI2Ndx3

H = J(h NTITDI3Ndx3

J = _ NTITD"Hdx3

B = J_h NTITDI2Ndx3

D = J_h NTITDI3Ndx3

I = J_h NTITDTldx3

K = J_hNTITDTldx3

E = J(h NTIZ2'DIaNdx3

L = J_h 7"{'TDT-{'dx3

(36)
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Eq. (34) can be reduced to one matrix equation governing the warping. However, in order

to solve that equation, one must find a scalar algebraic equation governed by each stress

resultant (each element of Q). Since we have not been able to find such an equation,

we have changed methods. It may be possible to find a solution for Eq. (34) by using a

different approach, and this possiblity is still open.
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Figure 4: The distribution of warping through the thickness due to 7a 1 + ")'22
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Figure 5: The distribution of warping through the thickness due to I¢11 + t¢22
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Figure 6: Displacement distribution in space-time domain due to heaviside step function
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Figure 7: Force distribution in space-time domain due to heaviside step function
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Figure 8: Linear momentumdistribution in space-timedomain due to heavisidestep func-
tion
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Figure 9: Displacement distribution in space-time domain due to initial displacement
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Figure 10: Forcedistribution in space-timedomain due to initial displacement
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Figure 11: Linear momentum distribution in space-time domain due to initial displacement
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