
NASA Contractor Report 182058

SOFTWARE REQUIREMENTS

Guidance and Control Software

Development Specification

(NASA-t.R- l-_?05,j) S_FT_AR_ P,LGUIREMFNTS:

(;!JrnA_CF A,'_:_ C,J_IT_UI.. _dFTWARc D_VFLT_P_,-C__iT

3P_CI_ICATIr_'_ (Kesr.orch TriJngl+; Inst.)

ll) i' C_CL O_F _

Ngo-z6_21

B. Edward Withers, Don C. Rich,

Douglas S. Lowman, and R. C. Bucklan, l

RESEARCH TRIANGLE INSTITUTE

Research Triangle Park, North Carolina

Contract NAS1-17964

June 1990

N/ A
National Aeronauhcs and
Space AdmJn_stration

Langley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19900017211 2020-03-19T22:23:21+00:00Z

SOFTWARE REQUIREMENTS

Guidance and Control Software

Development Specification

RTCA DO-178A Document Number 2

Release number: 2.1

Prepared for:

NASA-Langley Research Center under contract

NAS1-17964: Task Assignment No. 8.

Prepared by:

Author(s): B. Edward Withers
Don C. Rich

Douglas S. Lowman
R. C. Buckland

Reviewer(s): RTI - Anita M. Shagnea
Janet R. Dunham

NASA - G. Earle Migneault
Bernice Becher

George B. Finelli

Software R & D Department

Center for Digital Systems Research

Research Triangle Institute

Research Triangle Park, North Carolina 27709

ACKNOWLED(; EMENT

Thesespecificationswerereverse-engineeredfrom a simulationprogram
writtenby EarleMigneaultduringtheearlyseventiesto studytheprobabil-
ity of successof the 1976Viking Landermissionsto Mars. We are grateful

to him for identifying such an interesting problem to be studied.

ill

PRECEDING PAGE BLANK NOT FILMED

Preface

The Guidance and Control Software Devel,)t)ment Specification is document

2 in a series of fifteen documents which fulfill the Radio Technical Commis-

sion for Aeronautics RTCA/DO-178A gui(lelines, "Software Considerations

in Airborne Systems and Equipment Certification [1]." The documents are

numbered as specified in the DO-178A g,idelines. The documents in the

series are used to demonstrate complian_:e with the DO-178A guidelines

by describing the application of the procedures and techniques used during

the development of flight software. These documents were prepared un-

der contract with NASA-Langley Research Center as a part of their long

term research program addressing the fun,]amentals of the software failure

process.

This project consists of two complemelltary goals: first, to develop soft-

ware for use by the Research Triangle Institute (RTI) in the software error

studies research program sponsored by NASA-Langley Research Center [2];

second, to use and assess the RTCA/DO-178A guidelines for the Federal

Aviation Administration (FAA). The two goals are complementary in that

the use of the structured DO-178A guidelines in the development of the

software will ensure that the test specimens of software have been devel-

oped according to the industry standards for flight critical software. The

error studies research analyses will then be conducted using high quality

software specimens.

The implementations will be subjected to two different software test-

ing environments: verification of each implementation according to the

RTCA/DO-178A guidelines and replicated random testing in a configura-

tion which runs more than one test specimen at a time. The term imple-

mentations refers to bodies of code written by different programmers, while

a version is a piece of code at a particular state (i.e., version 2.0 is the result

of code review). This research effort involves the gathering of product and

process data from every phase of software development for later analysis.

More information on the goals of the Gui&tnce and Control Software (GCS)

project are available in the GCS Plan for Soflu,are Aspects of Certification.

The series consists of the following documents:

GCS Configuration Index Document no. I

GCS Development Specification Document no. 2

v

iv

GCS Design Descriptions One for each software implementation. Doc-
ument no. 3

GCS Programmer's Manual Document no. 4, includes Software De-

sign Standards, document no. 12.

GCS Configuration Management Plan Do,:ument no. 5A

- Software Quality Assurance Plan for GCS Document no. 5B

GCS Source Listing One for each software implementation. Document
no. 6

GCS Source Code One for each software i nplementation. Document
no. 7

GCS Ezecutable Object Code One for each software implementation.

Not available on hardcopy. Document no. 8

GCS Support/Development System Configuration Description Docu-
ment no. 9

GCS Accomplishment Summary Document no. 10

Software Verification Plan for GCS Document no. 11

GCS Development Specification Review Description Document no.
llA

- GCS Simulator (GCS_SIM)System Description Document no. 13

- GCS Simulator (GCS_SIM) Certification Plan Document no. 13A

GCS Plan for Software Aspects of Certification Document no. 14

vi

FOREWOI_D

This specificationdefinesthefourth problemto bestudiedasapart of a
seriesof controlledcasestudiessponsoredby NASA-LangleyResearchCen-
ter. Thesestudiesaddressthefundamentalsof the softwarefailureprocess.
Thegoalis to developa methodfor assessing,andengineering,reliableand
safesoftware.

This fourthproblem,aguidanceandcontrolsystemfor aplanetaryland-

ing vehicle, represents an order of magnitude increase ill problem complex-

ity over the previous problems studied. It is specified using an extension

to the popular method of structured analysis. This specification method

was selected instead of a formal one for _he sole purpose of not making the

specification development activity a research effort in itself. In addition, the

intent of the study is to observe failures, given that the software has been

developed using a quality-oriented, state-of-the-art engineering approach.

Note that this specification is written for an experienced programmer

with two or more years of full-time industrial programming experience us-

ing a scientific programming language. The programmer should have an

adequate background, either through college courses or job training in math-

ematics, physics, differential equations, and numerical integration. In addi-

tion, an individual well-versed in aeronautical engineering should be avail-

able to answer programming questions concerning vehicle dynamics.

Much effort has been expended in making this specification as error free

as possible. It has been validated by extensive peer review and informal

walkthrough, coding a prototype implelaentation, and using an extended

structured analysis design tool.

Janet R. Dunham

Edward Withers

March 18, 1988

vii

2

3

4

5

Contents

Preface v

INTRODUCTION 1

PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE 3

VEHICLE CONFIGURATION 3

TERMINAL DESCENT 6

VEHICLE DYNAMICS 6

Frames of Reference 6

Linear Velocity 8
Vehicle Position 8

Angular Velocity 8
Vehicle Attitude 8

Acceleration 8

Further Reading 10
Notation 10

VEHICLE GUIDANCE 11

ENGINES 12

Axial Engine (Thrust) Control 12

Roll Engine Control 12

LEVEL 0 SPECIFICATION 13

LEVEL 1 SPECIFICATION 19

LEVEL 2 SPECIFICATION 23

LEVEL 3 SPECIFICATION 31

2.1 AECLP - Axial Engine Control Law Processing 33

2.2 ARSP - Altimeter Radar Sensor Processing 37

2.3 ASP - Accelerometer Sensor Processing 41

2.4 CP - Communications Processing 45

2.5 CRCP - Chute Release Control Processing 49

2.6 GSP - Gyroscope Sensor Processing 51

2.7 GP - Guidance Processing 53

2.8 RECLP - Roll Engine Control Law Processing 61

2.9 TDLRSP - Touch Down Landing Radar Sensor Processing... 65

2.10 TDSP - Touch Down Sensor Processing 71

2.11 TSP - Temperature Sensor Processing 73

tx

PRECEDING PAGE BLANK NOT FILMED

viii

6 SYSTEM TIMING AND MEMORY SPACE REQUIRE-
MENTS 77
TIMING REQUIREMENTS 79

ModelTime 79
ResponseTimes.......................... 80

MEMORYSPACEREQUIREMENTS................ 82

DATA REQUIREMENTS DICTIONARY 83

PART I.DATA ELEMENT DESCRIPTIONS 85

PART II.CONTENTS OF DATA STORES 99

PART Ill.LIST OF CONTROL VARIABLES

AND DATA CONDITIONS I03

A FORMAT OF THIS SPECIFICATION 109

INTRODUCTION TO FORMAT 111

B IMPLEMENTATION NOTES 113

INTERFACE 115

C NUMERICAL INTEGRATION INSTRUCTIONS 119

X

List of Figures

1,1 TltE LANDING VEHICLE DURING DESCENT 4

1.2 A TYPICAL TERMINAL DESCENT TRAJECTORY 5

1.3 ENGINEERING ILLUSTRATION OF VEHICLE 9

2.1 DATA CONTEXT DIAGRAM FOR THE GCS 17

2.2 GCS CONTROL CONTEXT DIAGRAM 18

3.1 PROCESS 0. GCS 21

3.2 CONTROL 0. GCS 22

4.1 PROCESS 2. RUN_GCS 26

4.2 CONTROL2. RUN_GCS 27

5.1 VELOCITY ALTITUDE CONTOUR 57

5.2 GRAPH FOR DERIVING ROLL ENGINE COMMANDS . . 63

5.3 DOPPLER RADAR BEAM LOCATIONS 66

5.4 DOPPLER RADAR BEAM ANGLES 69

5.5 CALIBRATION OF THERMOCOUPLE PAIR 75

6.1 TYPICAL TIME LINE 80

A.1 GRAPHICAL SYMBOLS USED IN FLOW DIAGRAMS . . 112

B.1 DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMEN-

TATIONS 116

zci

List of Tables

3.1 CONTROl, 0. GCS - SPECIFICATION I 22

4.1 CONTROL 2. RUN_GCS- SPFCIFICATION 1 28

4.2 CONTROL 2. RUN_GCS - SPFCIFICATION 2 29

4.3 CONTROL 2. RUN_GCS - SPECIFICATION 3 29

5.1 DETERMINATION OF AXIAL ENGINE TEMPERATURE 34

5.2 PeL,)_L, and Teb CONTROL LAW COEFFICIENTS 35
5.3 DETERMINATION OF ERROR TERMS 36

5.4 USE OF STATUS IN CALCULATION OF ALTITUDE . . . 39

5.5 PACKET VARIABLES 47

5.6 SAMPLE MASK 47

5.7 EXAMPLE OF PACKET 48

5.8 DIFFERENTIAL EQUATIONS 56

5.9 GUIDANCE PHASES 58

5.10 AVERAGING DOPPLER RADAR BEAMS IN LOCK 68

6.1 TIMING REQUIREMENTS ' 81

6.2 MEMORY SPACE REQUIREMENTS 82

7.1 DATA STORE: GUIDANCE_STATE 99

7.2 DATA STORE: EXTERNAL 100

7.3 DATA STORE: SENSOR_OUTPUT 100

7.4 DATA STORE: RUN_PARAMETERS 101

7.5 DATA STORE: RUN_PARAMETERS (cont.) 102

7.6 CONTROL VARIABLES (OPTIONAL USAGE) 103

7.7 DATA CONDITIONS (REQUIRED USAGE) 103
7.8 INITIALIZATION DATA 104

7.9 INITIALIZATION DATA (cont.) 105

7.10 INITIALIZATION DATA (cont.) 106

7.11 INITIALIZATION DATA (cont.) 107

C.1 INITIAL VALUES PROVIDED FOR USE IN INTEGRA-

TION 122

xiil

PRECEDING PAGE BLANK NOT FILMED

xii

xiv

1. INTRODUCTION

PURPOSE OF THE GUIDANCE AND CONTROL

SOFTWARE

The purpose of the Guidance and Contr_,l Software (GCS) is to:

1. provide guidance and engine control of the vehicle (shown in Fig-

ure 1.1) during its terminal phase of descent onto a surface and

2. communicate sensory information about the vehicle and its descent to

some other receiving device.

A typical terminal phase of descent traj(.ctory is shown in Figure 1.2.

The initialization of the GCS starts the sensing of vehicle altitude. When

a pre-defined engine ignition altitude is sensed by the altimeter radar, the

GCS begins guidance and control of the vehicle. The axial and roll en-

gines are ignited; while the axial engines are warming up, the parachute

remains connected to the vehicle. During this engine warm-up phase, the

aerodynamics of the parachute dictate the trajectory followed by the ve-

hicle. Vehicle attitude is maintained by firing the engines in a throttled-

down condition. Once the main engines become hot, the parachute is re-

leased and the GCS attempts to maintain the descent of the vehicle along

a pre-determined velocity-altitude contour. The vehicle descends along this

contour until a pre-defined engine shut off altitude is reached or touchdown

is sensed. After all engines are shut off, the vehicle free-falls to the surface.

VEHICLE CONFIGURATION

The vehicle to be controlled is a guidance package containing sensors which

obtain information about the vehicle state, a guidance and control computer,

and actuators providing the thrust necessary for maintaining a safe descent.

The vehicle has three accelerometers (one for each body axis), one doppler

radar with four beams, one altimeter radar, two temperature sensors, three

strapped-down gyroscopes, three opposed pairs of roll engines, three axial

thrust engines, one parachute release actuator, and a touch down sensor.

The vehicle has a hexagonal, box-like shape with three legs and a surface

sensing rod protruding from its undersurface.

PRECEDING PAGE BLANK NOT FILMED

Figure 1.1: TIlE LANDING VEHICLE DURING DESCENT

Figure1.2:A TYPICAL TERMINAL DESCENTTRAJECTORY

/
/

/

E.q_ s 13o_. W_aO

P',-,o._e 3 /_ ,_.

PI'_ _. se h, z,

Zr

5

ORIGINAL PAGE IS

OF POOR QUALITY

TERMINAL DESCENT

Prior to the terminal descent phase, the vehicle falls with a parachute at-

tached. This parachute is released seconds after the engines ignite and termi-

nal descent begins. During terminal descent, the vehicle follows a modified

gravity-turn guidance law until a pre-determined altitude is reached. The

atmosphere introduces drag forces, including the random effects of wind.

Differentially throttled engines slow the vehicle down. These engines can

control the vehicle's orientation, and roll engines control the vehicle's roll

rate. Roll control is necessary to keep the doppler radars in lock and insure

that the desired touch down attitude (land on two legs prior to the third)
is maintained.

The velocity during descent follows the pre-determined velocity altitude

contour. At approximately 60 feet above the planet surface, the vehicle is

maintained at a constant descent velocity of ten feet per second. Once the

surface is sensed, all engines are shut down and the vehicle free falls to the
surface.

VEHICLE DYNAMICS

Frames of Reference

Terminal descent is described in terms of two coordinate systems:

1. the surface-oriented coordinate system, and

2. the vehicle-oriented coordinate system.

In the surface coordinate system, the /'p axis is viewed as normal to the

surface and points down as shown in Figure 1.2. The ffp axis points north,

and the gp points east.

By defining a unit vector as a vector of length equal to one unit along

each axis in both the planetary and vehicular frames of reference, a relation

between these two frames of reference may be established. Any vector can

then be defined as a multiple of the unit vector along each of the axes defined
in the frame of reference. Thus, the velocity of the vehicle I7 may be defined

in the vehicle's frame of reference as: V:_i,_ + V_j,_ + Vz, k_,, where _u,)_, and

]c,_are the unit vectors in the z, y, and z directions of the vehicles coordinate

system (unit vectors are usually represented by lower case i, j, or k with a

hat to show that they are unit vectors). V_, V_, and V_, represent the

components of the vehicle velocity in the given direction. At the same time,

the velocity of the vehicle may be described in the planetary coordinate

system as: Vxp_p + l,'up)p + Vzj%, where the subscript p represents planetary

rather than vehicle coordinates. Note, since the two coordinate systems are

not oriented in the same direction, the values of Vx_ will not be equal to Vxp,

but the magnitude of the total vector 17 will be the same in both systems.

Also the difference in the magnitudes of individual components represents

the difference in relative orientation between the two coordinate systems.

The dot product (d. b') is defined as the magnitude of d multiplied by

the magnitude of b and then by the cosine of the angle between the vectors,

_- _ = lallblcosz_

The dot product is used to project g onto b and can be used to project a

vector in one frame of reference onto another one. Rather than calculate

the needed cosines each time a vector must be transformed from one frame

of reference into another, the cosines of the angles between each unit vector

of the vehicular and planetary coordinate systems are computed and placed

into a direction cosine matrix. This matrix is then used along with the

vector's magnitude in each dimension of the original frame of reference to

compute a dot product. This product gives the vector's magnitude in each
dimension of the new frame of reference.

The transformation between the vehicle and the surface coordinate sys-

tems at time t is specified by a matrix of direction cosines,

(ll 12 13)(cosO(zv, lp) cosO(iv,3r) cosO(zv, k,))
ml m2 r,L3 = cosO(fo,;p) cosO(j.,j,,) cosO(j,_,A:p)

., , co,0¢z ,yp)coseCZo, p),

where 0(_,)) denotes the angle between vectors _ and j, etc.

The change in orientation of the vehicle during descent makes the update

of the direction cosine matrix necessary at each time step. This update is

specified in the following equation:

(, / (0.d/dt ml m2 m3 = -r, 0 ml m2 m3

nl rt2 n3 t qv -Pv t nl n2 n3 t

where the matrix containing the pv, qv, and r_ terms is the rate of rotation

about the axes of the vehicle which may be obtained from sensor values.

Linear Velocity

The linear compone_lts of velocity for the vehicle during terminal descent

are denoted by x',, li., and z'v in tile vehicle coordinate system and by x'p, lip,

and z:p in the surface coordinate system, where the dot (') notation indicates

derivatives with respect to time.

Vehicle Position

Vehicle position is expressed in terms of the surface coordinate system by

transforming change in position (velocity)in the vehicle coordinate system

into change in position ill the surface frame and integrating as follows:

9p = 12 m2 n2 li_

zP t 13 m3 n3 t Z'v

and

y; = fly dr

zp t _P t

Angular Velocity

Roll, pitch, and yaw angular velocities are represented by the quantities

p_, q_., and r_ in the vehicle frame of reference only. Roll is about the

£_ axis, pitch is about the fro axis, and yaw is about the :?. axis, as shown

in Figure 1.3. A more in-depth explanation of angular velocity naming

conventions and other related material may be found in section II, part B

of Reference [3].

Vehicle Attitude

The vehicle attitude at time t is a function of the vehicle attitude (known

by reference to celestial objects) at the start of descent at time to and the

cumulative changes in attitude from time to to time t .

Acceleration

The linear components of acceleration for the vehicle in the vehicle frame of

reference during terminal descent are denoted by ai'v, y'_, and _ respectively.

Figure 1.3:ENGINEERINGILLUSTRATION OF VEHICLE

---I y" BoL.o_ V_e,,, -.
(_ko t

_ A,ie, I F..];.¢ CI]

OF POOR QUALITY

Further Reading

The subjects of vector mathematics, transformations between frames of ref-

erences, vector calculus, and rotating coordinate systems may not be suffi-

ciently covered here for the user; however, such depth is not intended for this

document. Chapter 4 of Classical Mechanics [4] contains a detailed explana-

tion of rigid body motion and transformation of vectors into multiple frames

of reference or coordinate systems. Chapters 15 and 16 of Engineering Me-

chanics [5] contains a more basic approach to the same ideas of multiple

frames of reference and vector mechanics. Chapter 14 of [6] and Chapter 5

of [7] also discuss rotational motion and multiple frames of reference, as well

as vector mechanics and calculus. Two other books of possible interest are

[8] and [9]. Both cover the mechanics of particles and dynamics, with strong

references to particle trajectories and rocket dynamics. Also, these texts are

basic in nature and require only a rudimentary knowledge of physics, math,

or engineering.

Notation

Throughout this specification, matrix operations (particularly multiplica-

tion), are required, and on some occasions, non-standard operations are

used upon matrices. The following symbols are used to denote the types of

multiplication to be applied.

Dots (.) Small dots are used to denote scalar multiplication. For example:

3.4=12

Multiplication sign × This symbol is used to denote standard matrix

multiplication. This does NOT imply a cross product, nor strictly

a dot product. The definition of this type of operation is given below:

AxB=C

where
n

Ci./= _ Aik • B_j.
k=l

Asterisks (*) Asterisks are used in conjunction with index markers to

show that the operations are to be conducted on individual elements

10

of arraysor vectorsas if they werescalars.This is often the case
whencalculatingsensorvaluesor other similar functionswhenmul-
tiple scalarsaregroupedtogetherfor convenience.Forexample,the
followingequationis listedin ASP:

Theequationfor measuredaccelerationthenbecomes:

A_ACCELERA7'ION_M(i) = A_BIAS(i)+A_GAIN(i),A_COUNTER(i)

where i rangcs from] to 3 and represents the three directions x, y,
and z.

In this case, the first element of A_ACCELERATION_M would be
calculated as follows:

A_ACCELERATION_M(1) = A_BIAS(1)+A_GAIN(1),A_COUNTER(1).

No Operator In those cases where variables, matrices, or scalars are lo-

cated directly beside each other with no operator between, standard

multiplication is implied. Thus two matrices collocated would be mul-

tiplied as if they had the × operator between them, while two scalars

would be multiplied as if they had the • operator between them. Also,

if a scalar and a matrix (of one or more dimensions) were collocated,

then the scalar would be multiplied by each element of the matrix and

a new matrix of equal dimensions would be generated.

It should be noted that throughout this specification, the words matrix

and array are often interchanged. No significance should be placed upon the

use of one word as opposed to use of the other.

VEHICLE GUIDANCE

Vehicle guidance is accomplished by varying the engine thrust so that the ve-

hicle follows a single pre-determined velocity/altitude contour. This contour

is made available during GCS initialization. Applying too great a decelera-

tion early in the descent brings the vehicle velocity to its terminal value too

high above the surface, resulting in insufficient propellant for final descent.

Applying too small a thrust lets the vehicle impact the surface with too

great a velocity. Either condition could be disastrous. As soon as the touch

down sensor touches the surface, the engines are shut off. Approximately

11

ninetypercentof propellantor thrust is usedto minimizegravity losses;tile
remainingten percentis usedfor steering.

A gravity-turnsteeringlawis mechanizedbyrotatingthevehiclein pitch
and yawuntil thebody'slateralaxisvelocitiesarezero(causingthe thrust
axistopointalougthetotal velocityvector).Theactionof gravitycausesthe
thrust axisto rotatetowardthe verticalasthetotal velocityis reduced.An
arbitrary roll orientationis maintainedwith anattitude hold modeduring
the descent.

ENGINES

The vehicle has three axial engines that supply the force necessary to slow

the vehicle and allow it to safely land. Roll is controlled by three pairs of

roll engines on the lander supplying rotational thrust. Figure 1.3 shows the

axial and roll engines and the resulting thrust forces they impart to the

vehicle.

Axial Engine (Thrust) Control

Three thrust engines first orient the vehicle so that their combined thrust

vector opposes the vehicle's velocity vector. Thrust (a.xial direction) engine

control is a function of pitch error, yaw error, thrust error, and deviation

from the velocity altitude contour. A combination of proportional and in-

tegral control (PI) logic is applied to pitch and yaw control. The integral

portion helps to reduce the steady-state pitch and yaw error.

If no thrust error or velocity-altitude contour deviation occurs, then axial

engine response provides only pitch and yaw control via the PI control law.

Use of this control law implies that the overshoot problem for pitch-yaw

control is probably small.

Thrust control is implemented by a proportional-integral-derivative (PID)

control law. The derivative control added here damps out overshoot.

Roll Engine Control

Roll control is attained by pulsing the three pairs of roll engines and is a

function of roll angle deviation and roll rate (pv) about the z axis. Roll

engine specific impulse and thrust per unit time are conslant with the in-

tegrated thrust controlled by pulse rate. Angle deviations are controlled

within a very small range of 0.25 to 0.35 degrees.

12

2. LEVEL 0 SPECIFICATION

14

The GCS will operatewithin a redundant,distributed-processingframe-
work. It will providean interfacebetweenthesensors(rate of descent,atti-
tude,etc.) andtheengines(roll andaxial). The purposeof the GCSis to
keepthe vehicledescendingalongthe pre-determinedvelocity-altitudecon-
tour whichhasbeenchosento conserveenoughfuel to effecta safeattitude
andimpactuponlanding.

The GCSeffectsthis controlby:

• processingthefollowingsensorinformation:

- accelerationdata from the threeaccelerometers- one for each
vehicleaxis,

- rangerate datafrom foursplayeddopplerradar beams,
- altitudedata fromonealtimeterradar,

- temperaturedata from a solid-statetemperaturesensorand a

thermocouple pair temperature sensor,

- rates of rotation from three strapped-down gyroscopes one for

each vehicle axis, and

- sensing of touch down by the touch down sensor.

• determining the appropriate commands for the axial and roll engines

and the chute release mechanism and issuing them to keep the vehicle

on a pre-determined velocity/altitude contour.

The GCS also transmits telemetry data and rendezvous with GCS_SIM [10],
the simulator and controller.

Versions of the GCS developed from this specification may be executed

singly or in parallel. Output from multiple versions at various synchroniza-

tion points will be voted to control the vehicle. One of the effects of this

design on the specification has been a constraint to use only specific system

services. In particular, a rendezvous routine will be provided and should

be invoked, as specified in the implementation_notes [Appendix B]. Other

system services and library routines are explicitly excluded from use by the

programmers.

When programming, the modules shown in this specification need not be

treated as totally separate units. The programmer determines the organi-

zation of the code with two mandatory requirements. The data stores must

be organized as given, and the code must work within the context of the

15

PRECEDING PAGE BLANK NOT FILMED

timing requirements of the system as given. For purposes of flight system

design, all components of the system are considered flight critical as defined

t)v RTCA document I)O-178A[1].

16

Figure 2.1: I)ATA CONTEXT DIAGRAM FOR TIlE GCS

r

A¢¢elerometers

(3)

L a

Altimeter

RLdar

(])

Acceleration

DLtL

AItiLude

Dat&

r

I

I Rendezvous

GCS.SIM L.

(11
I

I

...... J

1

AxiaJ

Enl_ines

(z)

Doppler

Rad&r

(1)

r

Gyroscopes

(3)

Velocity

DLtL

Temper&ture

Sensors

(2)

-- -- -F - -

Rota_tion 1 Ambiea!

Rate Temperature

Dat& D_ta

GCS

Axi_

Ensine

Comm_nds

Roll

Enl_ine

Command.

Roll

EnsineJ

(3 p.dr)

17

Touch Down

SenLor

(])

Touch

Down

StLte

It
]

PaLrLchule

Releue
Signal

I
I I

I Psr_chute I

I Releue Switch

' (1) '
I t

I I

Vehicle

St&re

DLIL

Telemetry

HLrdwsre

(!)

Figure 2.2: GCS CONTROL CONTEXT DIAGRAM

r "1

I

I Rendeivoum

GCS.SIM L.

(s)
I

t

...... J

r

Altimeler

R,dar

(I)

} ON

GCS

/

I

Axi,Ll

Engines t

(_)
I

I

...... J

j ON/OFF
THRUST

1
I
i ON/OFF

PULSE

I

Roll

En_n¢.

(3 p-_,)

18

r

Touch Down

Sensor

I OFF

I l
I

I
• _ _ _t _ _ ,i

i I

l P,r a_chuse i

I Releue Swi|ch t

J (_) J

I I

I I

1
I ON/OFF

I
I
I
I

Telemetry

H_,zdw&re

(i)

3. LEVEL 1 SPECIFICATION

20

Figure 3.1: PROC, ESS 0. GCS

Initialization Data I

INIT_GCS

[

' I
I

RE-SWITCH G UIDANCE-STATE

TDLRS P..SWITCH

TDS P..SWITCH

I

I

. ;
SENSOR-INPUT

I I

L- ,

RUN-PARAMETERS

2

RUN.GCS

l
I I

! CONTROL AND TELEMETRY !

! OUTPUTS ,

I I

21

PRECEDING PAGE BLANK NOT FILMED

Figure 3.2: CONTROL 0. GCS

Specification !

START SIGNAL

INITA)ONE/I

_.E..S WITCH / 1

['DSP.SWITCH lJ.._._

] TDLRSP...qWITCH 2
1NIT_GCS RUN_GCS

NIT_.__._m0._Z/a __

I RUN_DONE/I

I

EXIT

Table 3.1: CONTROL 0. GCS- SPECIFICATION 1

CONTROL VARIABLE STATE

Start Signal = 1 Init_GCS
INIT_DONE = 1 Run_GCS

RUN_DONE = I Inactive

22

4. LEVEL 2 SPECIFICATION

24

PROCESS1. INIT_GCS

PURPOSE INIT_GCSinitializesthe guidanceandcontrolsoftware.

INPUT

OUTPUT [See Tables 7.8-7.11.]

PROCESS Init_GCS will be executed on the first call to rendezvous.

Both Init_GCS and rendezvous will be supplied to the programmer. There

should be a call to rendezvous prior to executing each sub-frame. The first

call will execute Init_GCS, which will load any needed initial values for later

use.

* LOAD INITIAL VALUES - Load initial values for velocity, altitude,

and attitude, as well as any others, such as the constant gains and off-
sets that are needed. The values to be loaded in are shown in the table

INITIALIZATION DATA in part III of the DATA DICTIONARY.

• TURN ON SWITCHES - Turn on the Roll Engine Switch, the Touch

Down Landing Radar Switch, and the Touch Down Sensor Switch.

• SET FRAME COUNTER - The frame counter will be initialized to

some number representing the next frame to be executed. This allows

the option of starting execution at some point beyond the first frame

of a trajectory.

25

PRECEDING PAGE BLANK NOT FILMED _ _-_ .ll_lTrJlIlOflAi._

Figure 4.1: PROCESS 2. RUN_GCS

RUN_PARAMETERS

i i
, SENSOR DATA *

+i

,itlL
SENSOR.OUTPUT

II

GUIDANCE.STATE

I

gC]

i i
i i

' CONTROL AND TELEMETRY ',"
!
, OUTPUT ,
i i
i i

......................

26

PACKET

Figure 4.2: CONTROl, 2. RUN_GCS

SPEC 1

I J J] I I I
ASP. GSP_ TSP_ ARSP. TDLHfP_ TDSP. CP_

ASP_ GSP_ TSP_ ARSP_ TDLR.:P_ TDSP_

SPEC 2

J

IGP-DONE/1

AECLP.DONE[0 RECLP_DONE/O

[
RECLP-DONE/I

SPEC 3

J
I

RCP..DONE/O

I
CRCP...DON E/1

27

Table 4.1: CONTROL 2. RUN_GCS- SPECIFICATION 1

SCItEDULING

Sensor Processing Sub-Frame "T'
ARSP 2

ASP 1

CP 1

GSP 1

TDLRSP 2

TDSP 5

TSP 2

Guidance Processing Sub-Frame 'T'
CP 1

GP 1

Control Law Processing Sub-Frame 'T'
AECLP 1

CP 1

CRCP 5

RECLP 1

Above is a table listing each process in the GCS according to the subframe where

they should be executed. A number 'T' is located along with the process name. This

number indicates that the process should be executed every' "Ith" frame. Note that

all processes are executed during frame number 1. Also note that execution of the

GCS may begin at any frame number and should operate as if it had been running

from the beginning of the trajectory. There are minor sequencing constraints to

be imposed .port the modules in each subframe. During the sensor processing

subfra,ne, TSP should be executed before any of the other modules, and CP should

be executed last. In the guidance and control subframes, CP should be executed

after tile other modules. Lastly, during lhe control subframe, AECLP needs to

be executed before CRCP. All modules not specified here may be executed in any

order within their subframes. On the first, and subsequent, calls to rendezvous,

FRAME_COUNTER will be returned to the application containing the correct

value for operation. The value in FRAME_COUNTER should be compared to the

numbers listed below to determine if a process should be executed. As an example,

ARSP has a number of 2, which means that it executes every other frame; while

ASP has a number of 1, meaning it executes every frame; and TDSP has a number

of 5, so it executes only every fifth frame. Chapter 6 provides additional information

on tinting requirements.
28

Table4.2:CONTROL2. RUN_GCS- SPECIFICATION2

"I" [
1
1
1
1
1
1

INPU_ IfControl Variable I Value

ARSP_DONE 1

ASP_DONE 1

GSP_DONE 1

TSP_DONE 1

TDLRSP-DON E 1

TDSP_DONE 1

OUTPUT [

Control Variable [Value

Activate

Process

GP_DONE 0 GP

Table 4.3: CONTROL 2. RUN_GCS - SPECIFICATION 3

I '_P_ il O_T_UTIIA_tivateI,'r' I Co_,trol Variable [Value Control Variable I Val"e II Pro¢_

I 1 I GP_DONE I 1 II AECLP_DONE I 0 11AECLP I

} 1 I GP_DONE I 1 II RECLP_DONE l 0 II RECLP I

[__ GP-DONE _ CHUTE_RELEASED _0orl H CRCP J

29

30

5. LEVEL 3 SPECIFICATION

PRECEDING PAGE BLANK NOT FILMED _RG| 3._.._IN]--_][10.N_j_ I

32

2.1 AECLP - Axial Engine Control Law Processing

PURPOSE '].'lie AECLP module computes the valve settings for each

of the three main (axial) engines. Measurements of the vehicle's velocity',

acceleration, and roll rates are combined to produce error signals for the

pitch, yaw, and thrust of the vehicle. These error signals are then mixed to

produce the axial engine valve settings.

INPUT

A_ACC ELERATION

AE_SWITCH

CHUTE_RELEASED

FRAME_COUNTER

FULL_UP_TIME

ENGIN ES_ON _ALTIT U DE

GAX

GP_ROTATION

GP1

GPY

GR

GVE

GVI

GW[

PEINTEGRAL

PEAVIIN

TEANIT

TEAIAX

TE_DROP

YEANTEGRAL

YE_.MIN

AE_STATUS

AE_TEMP

D E LTA _T

FRAME_ENGINESAGNITED

CONTOUR_CROSSED

GA

GP_ALTITUDE

GP_VELOCITY

GP2

GQ
GV

GVEI

GW

OMEGA

PE_MAX

TE_INTEGRAL

TELIMIT

TE_MIN

VELOCITY_ERROR

YE_MAX

OUTPUT

AE_CMD

AE_TEMP

PEANTEGRAL

TEIIMIT

AENTATUS

INTERNAL_CMD

TEANTEGRAL

YEANTEGRAL

33

PRECEDING PAGE BLANK NOT FILMED

PROCESS Computation of the axial engine valve settings requires the

following steps:

• DETERMINE IF AXIAL ENGINES ARE SWITCHED ON -

If AE_SWITCII is set to OFF, then set AE_CMD = 0, set axial en-

gine status to healthy and proceed directly to the step "COMMAND

ENGINES".

• DETERMINE ENGINE TEMPERATURE -

Engine temperature is determined according to the events in Table 5.1.

Table 5.1: DETERMINATION OF AXIAL ENGINE TEMPERATURE

Current Event Next

Axial Engine Axial Engine

Temperature Temperature

-Cold GP_.ALTITUDE > Altitude to start Cold

engines

Cold Warming_up

Warmi ng_u p

(GP_ALTITUDE < Altitude to

start engines) and

(FRAME_COUNTER-

FRAME_ENGINES_IGNITED).

DELTA_T < FULL_UP_TIME

(GP_ALTITUDE < Altitude to

start engines) and

(FRAME_COUNTER-

FRAME_ENGINES_IGNITED).
DELTA_T > FULL_UP_TIME

Hot

, COMPUTE LIMITING ERRORS -

Compute limiting vehicle pitch (P_), yaw (Y_), and thrust (T_)

errors using the following Proportional-Integral-Derivative (P-I-

D) control law: t = ao + a_O + a_XX_INTEGRAL. In

these equations, X X_I N T EG RAL = X X_I N T E G RAL + ffo Odt

and XX is to be replaced with one of the following; PE, YE,

or TE depending on the type of error being calculated. Note

34

that to is the beginning of the time step and t is the end of

the time step; and the integration for PE and YE begins when

the engines are turned on, while the integration for TE begins

when the engines get hot. The terms of this control law, used for

calculating P_ and yL, are given in Table 5.2, where p_, q_, and

r_ are input as elements of GP.ROTATION; x't, _/_, and i, are

input in GP_VELOCITY; _'v is input in A.ACCELERATION;

and the gains are input as specified. If either PE_MIN > pL

or PE_MAX < pL, then pL should be set to either PE_MIN or

PE_MAX respectively. Similarly, boundary values hold for](_L

and TL.

The variable TE_LIMIT is provided for use in calculating TL since

the equation for T L is differential in nature, thus requires an input

value for each time step and it is also bounded by a maximum
and minimum value. TE_LIMIT should be calculated as given in

Table 5.2. Then T L is set to TE_MAX if TE_LIMIT is greater

than or equal to TE_MAX; or T L is set to TE_\IIN if TELIMIT

is less than or equal to TE_MIN; or finally, if TE_LIMIT is within

the region bounded by TE_MAX and TE__MIN, TL is set equal

to TELIMIT. Thus TE_LIMIT is not bounded by TE_MAX and

TE_MIN, but contains a valid value for use as an input to the

calculations during the next frame.

Table 5.2: pL, yeL, and T L CONTROL LAW COEFFICIENTS

I aO _1 _2

P_ GQ .q. GW GWI z'./x'.

yL -GR .r_ GV GVI y'_/ x'_
ars-LJ M _+O M EGA,TE..LIM ITd_

GA
-GAX'_'_ GVE GVEI VELOCITY_ERROR

• COMPUTE PITCH, YAW, AND THRUST ERRORS

- Pitch, yaw, and thrust errors should then be calculated according

to Table 5.3.

• COMPUTE AXIAL ENGINE VALVE SETTINGS -

Given a pitch, yaw, and thrust error, (P_ , Ye , T_), the valve settings

(AE_CMD) for each of the three main engines are calculated as:

35

Table5.3: DETERMINATIONOF ERRORTERMS

AE_
SWITCH

CHUTE_
RELEASED

CONTOUR_

CROSSED
P_ Y_ T.

TE_DROP

1 0 0,1 GQ.qv -GR.rv TEANIT
0 0,1 0,1 0 0 0

INTERNAL_CMD := (c 1oGP2 -GPY 1 × Y_

G P2 G PY 1 T_

which will result in each element of the INTERNAL_CMD vector being

a real value. This value should be converted into an integer value

between 0 and 127 and placed into the appropriate element of the

AE_CMD vector. The mapping for the conversion from real to integer
values should be as follows:

INTERNAL_CMD AE_CMD

I<0.0 A=0

0.0 < I < 1.0 0 _<A _< 127

1.0 < I A = 127

with INTERNAL_CMD between 0 and 1.0 being converted linearly

(with truncation) to a value of AE_CMD between 0 and 127.

• COMMAND ENGINES - Once the correct value of AE_CMD has been

determined, it will automatically be transmitted to the engines during

the next call to the GCS_SIM_RENDEZVOUS routine provided in

the GCS_SIM rendezvous package. (See Appendix B. Implementation

Notes)

• SET AXIAL ENGINE STATUS TO HEALTHY

36

2.2 ARSP - Altimeter Radar Sensor Processing

PURPOSE The vehicle has one altimeler radar. The ARSP module reads

the altimeter counter provided by this radar and converts the data into a
measure of distance to the surface.

INPUT

AR_ALTITUDE

AR_FREQUENCY
K_ALT

AR_COUNTER

AR_STATUS

OUTPUT I. AR-ALTITUDEK_ALT I AR-STATUS I

PROCESS Note that AR_ALTITUDE, AR_STATUS, and K_ALT are five

element arrays containing the present value as well as the previous four

values of altitude, status, and state respectively. Also note that as the new

value is calculated, it is placed into the "zeroth" position; the others are

rotated to the (i+lst) position in the array, where i is the index of the

current position for that value. The value whose index is out of bounds is

dropped. The processing of the altimeter counter data (AR_COUNTER)

into the vehicle's altitude above the planet's terrain depends on whether

or not an echo is received by the altimeter radar for the current time step.

The distance covered by the radio pulses emitted from the altimeter radar

is directly proportional to the time between transmission and reception of

its echo. A 10-bit digital counter (AR_COUNTER) is started as the radar

pulse is transmitted. The counter increments AR_FREQUENCY times per

second. The 10-bit value is placed into the lower ten bits of the 16-bit
counter.

• READ SENSOR-

Upon return from the call to GCS_SIM_RENDEZVOUS prior to this

subframe, an updated value will have been put into AR_COUNTER.

This value should be used for the present iteration of ARSP.

• DETERMINE ALTITUDE - When the altitude is calculated, rotate

the AR.ALTITUDE array down by one place, and put the calculated

value in the "zeroth" position of AR__ALTITUDE.

- ECHO RECEIVED -

Convert the AR_COUNTER value to a distance to be returned

37

in lhe variableAR_ALTITUI)Eby tile followingequation:

AR_ALT'ITUDE =
AR_COI'NTER. 3E8_

AR_F REQU E N CY .2

ECIIO NOT RECEIVED -

If an echo is not received, AR_COUNTER will return all ones.

To smooth the estimate of altitude, fit a third-order polynomial

to the previous four values of AR_ALTITUDE. This polynomial

fit should then be used to extrapolate an altitude value for the

current time step. This extrapolation should be done even if one

or more previous values of AR_STATUS is unhealthy. In the case

of one or more unhealthy values, the extapolated value will not

be used, but should be calculated.

* SET ALTIMETER RADAR STATUS -

The values in AR_STATUS and K_ALT should be rotated and when

they are calculated, the new values should be placed in the "zero"

position as were the altitude values. Set the altimeter status accord-

ing to Table 5.4 and determine the value of K_ALT for use in the

GUIDANCE PROCESSOR.

38

Table5.4: USEOF STATUSIN CALCUI,ATION OF ALTITUDE

r CONDITION AR_STATUS ACTION

Echo returned Healthy K_ALT= 1
No echo returned Failed K_ALT=I

but used healthy

values in polynomial
No echo returned Failed K_ALT=0

and one or more

failed values in the

previous four time steps

This table is used to deterinine the method to calculate the altitude. Each

of the possible states of the radar is listed along with the appropriate actions
for that situation.

39

40

2.3 ASP - Accelerometer Sensor Processing

PURPOSE Three accelerometers, located at the vehicle's center of grav-

ity, are slightly misaligned along the vehicle's i,,_7_ , and Z, axes. Each

accelerometer produces a 16-bit binary value (A_COUNTER), represented

as the magnitude portion of a sign magnitude number which is a linear

function of the acceleration along its axis. The sign of the counter will al-

ways be positive, but the offset given in A_BIAS will be negative or zero,

so if the magnitude in A_COUNTER is smaller than that of A_BIAS, the

acceleration is negative. The Acceleration Sensor Processing (ASP) module

provides measures of the vehicle accelerations through the conversion and

digital filtering of this raw accelerometer data.

INPUT

A_ACCELERATION

A_COUNTER

A_SCALE

ALPHA_MATRIX

G1

A_BIAS

A_GAIN_0

A_STATUS

ATMOSP H ERIC_TEM P

G2

OUTPUT [A_ACCELERATION I A_STATUS]

PROCESS The processing of the accelerometer data (A_COUNTER)

into vehicle accelerations (A_ACCELERATION) requires three steps:

READ ACCELEROMETER -

Upon return from the call to GCS_SIM__RENDEZVOUS prior to this

subframe, an updated value will have been put into A_COUNTER.

This value should be used for the present iteration of ASP.

REMOVE CHARACTERISTIC BIAS - Each accelerometer has a

characteristic DC bias (A_BIAS) which must be removed from the

signaJ prior to conversion. The acceleration is a linear function of its

A_COUNTER value where the gain specifies the slope and the offset

(A_BIAS) specifies the intercept.

The standard gain (A_GAIN_0) must be adjusted for the effects of

temperature prior to the conversion of the raw accelerometer values.

The adjusted gafin is a quadratic function of the ambient temperature

(ATMOSPHERIC_TEMP) and the standard g_in.

41

PRECEDING PAGE BLANK NOT FILMED
i__'..-,- INII,1_110It lil,kl

That is,

A_GAIN(i) := A_GAIN_O(i) + (GI.ATMOSPHERICYEMP)

+ (G2. ATMOSPHERIC_TEMP 2)

where i ranges from 1 to 3 and represents the three directions x, y,
and z.

Where A_GAIN_0 is the standard gain. A_GAIN_0, A_BIAS, G1, and

G2 are set during initialization mode. The equation for measured
acceleration then becomes:

A_ACCELERATION_M(i) = A_BIAS(i)+A_GAIN(i),A_COUNTER(i)

where i ranges from 1 to 3 and represents the three directions x, y,
and z.

• CORRECT FOR MISALIGNMENT - Each accelerometer is slightly

misaligned from the true vehicle axes. The following multiplier ma-

trix, which is based on small angle approximations, corrects for this

misalignment. The matrix is used for transforming the measured ac-
celeration data into the true vehicle accelerations.

ALPHA_MATRIX =
I 1 -axz (_x_)

oty z 1 -otyar

-Otzy Ozz 1

and

A_ACCELERATION = ALPHA.MATRIX × A.ACCELERATION_M

The input variable, ALPHA_MATRIX, defines the values of the a's

in this multiplier matrix. For example, ALPHA_MATRIX(I,3), a,y

defines the angle of rotation about the vehicle's ft. axis between the

.g_ axis and the misaligned _, axis. The other misalignment angles

are defined similarly, based upon a right-handed coordinate system.

These misaiignment angles are set during GCS initialization mode.

• DETERMINE ACCELERATIONS AND ACCELEROMETER STA-

TUS - The variable A_STATUS is a four-element array in each of the

three physical dimensions, and contains the present and previous three

42

valuesofstatusfor each accelerometer. The variable A_ACCELERAT1ON

is a five-element array in each of the three dimensions (x, y, and z.)

A_ACCELERATION contains the present and previous four values of

acceleration. They are to be rotated similar to those in 2.2 ARSP.

If one or more of the previous three values of status is unhealthy,

use the present value of A_ACCELERATION and set the current

value of A_STATUS to healthy.

If the previous values of status are healthy, check for extreme val-

ues and set A_STATUS and A_ACCELERATION according to

the equations below. The accelerometer processing includes fil-

tering of the calculated accelerations along each axis (i.e filtering

of (x_, y_, :i_,)t), ignoring or eliminating calculated accelerations

which are out of range. To effect this filtering, the means and

standard deviations of each component of these accelerations are

to be computed using the calculated accelerations from the pre-

vious three time steps. That is, for the current time step t and

the measurement of acceleration along the x axis let

= x_ii)

i=t-3

be the current sample mean and

be the current sample standard deviation. If

IP. - iL(t)l > A_SCALE. b

then set

where _'_(t) is the acceleration along the x axis for the current

time step. Similar equations hold for eliminating outliers in the

measures of acceleration along the y and z axes.

43

, If the calculationfor the current time stepfor any compo-
nent (lifters from the meanby morethan A_SCAI,Etimes
the standarddeviation,then that componentshouldbe re-
placedby its currentmeanandA_STATUSshouldbeset to
unhealthy.

• If the calculatedvalueof accelerationis within thespecified
rangeof themean,usethecalculatedvalueandplaceit into
A_ACCELERATION.Thensetthe statusto healthy.

44

2.4 CP - Communications Processing

PURPOSE Data from the vehicle sensors and guidance processor is re-

layed back to the orbiting platform for later analysis. The CP module con-

verts the sensed data into a data packet appropriate for radio transmission.

INPUT

AE_CMD

COMM_SYNC_PATTERN

GUIDANCE_STATE

SENSOR_OUTPUT

C_STATUS

FRAM E_CO U NTER

RE_CMD

OUTPUT [CSTATUSI PACKET]

PROCESS Ttle data packet, PACKET, prepared for transmission is orga-

nized to sequentially contain a synchronization pattern, a sequence number,

checksum information, new sample mask, and the data itself.

The construction of the packet requires five steps:

* CONSTRUCT PACKET:

- GET SYNCHRONIZATION PATTERN - The synchronization

pattern is provided in the variable COMM_SYNC_PATTERN. It

is a 16-bit pattern dictated by the design of the receiving com-

munications equipment.

- DETERMINE SEQUENCE NUMBER - The sequence number

identifies the packet of data that is being sent. It is a byte

value in the range 0..255.The sequence number will be 0 dur-

ing the first subframe of frame number 1. Sequence numbers

repeat after the 255th packet and can be calculated based on the

FRAME_COUNTER and the subframe where the present call to

CP was made.

- PREPARE SAMPLE MASK - The sample mask is a boolean vec-

tor where "ones" represent variables that have been sampled since

the previous transmission. Any variables listed in Table 5.5 that

may have changed during the present sub-frame should be marked
in the mask and transmitted. Values that have been rotated into

subsequent elements of an array are not considered "new" and
thus do not have to be transmitted. This eliminates the need to

45

maintainpreviousvalueson all variables and also eliminates mak-

ing comparisons to determine which variables should be sent. A

position should represent each variable contained in either GUID-
ANCE_STATE or SENSOR_OUTPUT in addition to AE_CMD

and RE_CMD. These variables should be arranged as shown in
Table 5.5.

- PREPARE DATA SECTION - The data section of the packet
contains the sixteen bit vMues for the elements of the variables

in Table 5.5 that may have new samples available. Values that

have been rotated into subsequent elements of an array are not
considered "new" and thus do not have to be transmitted. The

data are concatenated in the order given by the sample mask,

starting with the most significant bit (i.e. left most bit). Vari-

ables should be packed to the nearest byte boundary; thus, a

single element of PACKET could contain a logical*l and the first

byte of the variable that follows it. Arrays should be sent with

the first index changing most rapidly. It should be noted that

some arrays have terms that are constant (e.g. the off-diagonai

terms of K_MATRIX and the diagonal terms of G__ROTATION)

and since these terms can never have "new" values, they should
not be transmitted.

- CALCULATE CHECKSUM - The data checksum is calculated

on the entire packet (excluding the checksum) using the stan-

dard CRC-16 polynomial as defined in [11]. The calculation of

the checksum should begin with the COMM_SYNC_PATTERN

portion of PACKET, and conclude with the last variable to be

sent during the current subframe. Any unused parts of PACKET

should be ignored for the calculation of the checksum.

• SEND PACKET - The data packet created, PACKET, will automat-

ically be transmitted during the next call to RENDEZVOUS.

• SET COMMUNICATOR STATUS TO HEALTHY

46

Table 5.5: PACKET VARIABLES

AE_CMD

AR_ALTITUDE

A-ACCELERATION

CONTOUR_CROSSED

GP_ATTITUDE

GP_VELOCITY

K_ALT

RE_CMD

TDLR.STATUS

TD_SENSED

VELOCITY_ERROR

AE_STATUS

A R_STAT U S

A_STATUS

C_STATUS

GP_PHASE

G_ROTATION

K_MATR1X

RE_STATUS

TDLR_VELOCITY

TE_INTEGRAL

YE_INTEGRAL

AE_TEMP

ATMOSPHERIC_TEM P

CH UTE_RELEASED

G P_A LTITU DE

G P_ROTATION

G_STATUS

PEANTEGRAL

TDLR_STATE

TDS_STATUS

TS_STATU S

When read by rows, this table represents the alphabetical listing of variables

that are to appear in the data section of the packet.

Table 5.6: SAMPLE MASK

IN_ORMAT'ONSENTIA1"IC ZtEXAMPLE MASK 1 1 0 ... 1

Note: this table gives information only on the order of the packet. The

packet should be packed to a byte-boundary limit into integer*2 elements.

47

Table 5.7: EXAMPLE OF PACKET

• • r TCOM M_S5 N C_PAT FERN

SEQUENCE NUMBER
SAMPLE MASK

DA.TA SECTION

containing the
variables that

may have changed

since last packet

CHECKSUM

Note: this table is one byte wide, but any section containing three vertical

dots represents one that may be more than one byte long (e.g. DATA

SECTION). Also note that the variables inserted into PACKET are inserted

in the VAX standard byte order.

48

2.5 CRCP - Chute Release Control Processing

PURPOSE The CRCP module implements the release of the parachute

which is attached at the beginning of the terminal descent phase.

INPUT I AE_TEMP [CHUTE_RELEASED t

OUTPUT I CHUTE_RELEASED]

PROCESS If the chute has been released, leave CltUTE_RELEASED at

the same value and this signal will be automatically transmitted to the chute

release mechanism during the next call to the rendezvous routine provided to

the user (See Appendix B. Implementation Notes). If the chute has not been

released, the engine temperature will determine whether or not to release

the chute. If the engines are hot (i.e. AE_TEMP is HOT), then release the
chute by setting CHUTE_RELEASED to 1.

49

50

2.6 GSP - Gyroscope Sensor Processing

PURPOSE Three fiber-optic ring gyroscopes are located on tile lander,

one for each of tile x. y, and z axes as shown. The Gyroscope Sensor

Processing (GSP) module provides a measure of the vehicle's rotation rates

through the conversion and filtering of the raw gyroscope data.

INPUT

ATMOSPIIERIC_TEMP

G4

G_GAIN_0

G_ROTATION

G3

G_COUNTER

G_OFFSET

G_STATUS

OUTPUT [G_ROTATION [G_STATUS[

PROCESS The output from each of the gyroscope (G_COUNTER) is a

16-bit quantity divided into 2 parts: the lower 14 bits represent the vehi-

cle's rate of rotation about that axis and the high-order bit reprcsents the

direction of this rotation. This is a sign-magnitude representation of the

counter value that only uses the lower 14 bits of the magnitude portion of

the number. Following is a map of G_COUNTER:

where D = direction, and X = unused. The high bit set to 1 indicates a

negative rotation consistent with a right-handed coordinate system.

* Rotate the values of G_ROTATION so the present values are in the

"zeroth" position of the time dimension and the previous values are

rotated to the (i+lst) position in the array, where i is the index of

the current position for that value. The value whose index is out of

bounds is dropped.

• ADJUST GAIN - The standard gain (G_GAIN_0) must be adjusted

for the effects of temperature prior to the conversion of the raw gyro-

scope values. The adjusted gain is a quadratic function of the ambient

temperature (ATMOSPHERIC_TEMP) and the standard gain.

51

PRECEDING PAGE BLANK NOT FILMED _11 _'"_) |N'I'ENIIONAIlUi DIliJiNIL

That is,

G.GAIN(i) := G_GAIN_O(i) + (G3- ATMOSPHERIC_TEMP)

+ (G4 • ATMOSPHERIC_TEMP 2)

where i ranges from 1 to 3 and represents the three directions x, y,
_nd z.

where G_GAIN_0, G3, and G4 are set during GCS initiaJization mode.

• CONVERT G_COUNTER - The rotation rate is linear with respect to

the unprocessed gyroscope values, i.e. the lower 14 bits must be con-

verted. G_GAIN is the multiplier for this conversion and G_OFFSET

is the constant offset. The equation for converting counter to rotation
then becomes:

G_ROTATION(i) = G_OFFSET(i)+G_GAIN(i),(G_COUNTER(i))

where i ranges from 1 to 3 and represents the three directions x, y,
_nd z.

• SET GYROSCOPE STATUS TO HEALTHY.

52

2.7 GP - Guidance Processing

PURPOSE GP uses tile information available from ASP, ARSP, CRCP,

GSP, TDLRSP, and TDSP and the results of its previous computations to

control the vehicle's state during terminal descent.

INPUT

A_ACCELERATION

AE_TEMP

CHUTE_RELEASED

CONTOUR_CROSSED

D E LTA_T

ENGINES_ON_ALTITUD E

GP__,LTITUDE

GP_PttASE

G RAVITY

K_ALT

RE_SWITCH

TDLR_VELOCITY

AE_SWITCH

AR_,_LTITU DE

CONTOUR_ALTITUDE

CONTOUR_VELOCITY

DROP_HEIGHT

FRAME_COUNTER

GP_ATTITUDE

GP_VELOCITY

G_ROTATION

K_MATRIX

TD_SENSED

TDS_STATUS

OUTPUT

AE_SWITCH

FRAME_ENGINESAG NITED

GP_ATTITUDE

GP_ROTATION

RE_SWITCH

CONTOUR_CROSSED

GP_ALTITUDE

GP_PHASE

GP_VELOCITY

VELOCITY_ERROR

ARRAYS The variables GP_ATTITUDE, GP_ALTITUDE, and

GP_VELOCITY are five element arrays in each of their spatial dimensions

and contain enough previous values to provide the required history for inte-

gration in updating the vehicle and guidance states. The most recent values

are in the array locations indexed by the lower numbers. Thus the "zero" po-

sition represents the present values. This implies that before calculating the

values for the present time step, all values in such arrays should be rotated

by placing the "three" value into the "four" position, then the "two" value

into the "three" position, etc. This will leave the "zero" position ready for

the soon-to-be-calculated value and will discard the "four" position value.

PROCESS The Guidance Processor computes the velocity, altitude, and

attitude to be used in controlling the engines.

53

• SET UP TIlE GI)__ROTATION MATRIX -G_ROTATION contains

three values: p, q, and r. These values must be placed into a 3 x 3

matrix in the correct positions for later calculations. This matrix is

GP_ROTATION and is organized as follows:

GP_ROTATION =
0 r -q)

-r 0 p

q -p 0

Note that GP_ROTATION does not include any time histories, thus

it may be convenient to use a temporary variable during calculation
to hold the time histories of GP_ROTATION or to use elements di-

rectly from G_ROTATION. However, GP_ROTATION does describe

the correct matrix orientation for operations and upon exiting from

GP should contain the correct values for the present time step.

• CALCULATE NEW VALUES OF VELOCITY, ALTITUDE, AND

ATTITUDE -

The velocity, altitude, and attitude are each calculated by:

1. finding a rate of change from known values then

2. integrating this rate of change through one time step by some

method of integration providing the accuracy specified.

For instance:

t J(dtXt = Xt-l + -1

where X represents the rates of change of velocity, altitude, or attitude.

These are calculated according to the following formula: _t(variable)
= a× Variable + fl + correction term. Table 5.8 shows the values of

the variables, a, fl, and the correction terms.

Note:

1. Gravity is given as a scalar although it is actually a vector quan-

tity. To obtain the correct quantity, the scalar given should be

multiplied by the last column of the GP_ATTITUDE matrix to

produce a column vector appropriate to the equation.

2. The equation for rate of change of altitude uses GP_ATTITUDE
and GP_VELOCITY. The third column of GP_ATTITUDE should

54

.

be treated as a row for this calculation. Thus element (1,3) of
GP_ATTITUDE becomes the first element in a vector of one row

and three columns. The element (2,3) becomes the second ele-

ment, aad (3,3) is the third element in this vector. This row-

vector is then multiplied by the column-vector GP_VELOCITY

to produce a scalar.

All matrices are referenced with the row being the first index, the

column being the second index, and time being the last if there
is a time dimension.

The correction terms represent a difference between the guidance pro-
cessors value and the radar's value. The correction term is turned on

or off by the "K" terms which are determined in the respective radar

processors.

* DETERMINE IF ENGINES SHOULD BE ON OR OFF -

Axial engines should:

1. remain unchanged ifGP_ALTITUDE > ENGINES_ON_ALTITUDE

2. be set to "on" if GP_ALTITUDE _< ENGINES_ON_ALTITUDE

3. be set to "off" if GP_ALTITUDE is < DROP_HEIGHT

4. be set to "off" if TD.SENSED is 1.

Higher numbered conditions override lower numbered conditions; thus

if the engines have been turned off by 3 or 4, condition 2 can never

turn them on again.

If the axial engines are turned on during this frame,
FRAMEENGINES.JGNITED should be set with the current value

of FRAME_COUNTER for the later use of AECLP in determining
engine temperature. FRAME_ENGINES_IGNITED will be initialized

to zero, and should only be changed during the frame when the axial
engines are turned on.

Roll engines should be on unless the axial engines have been turned

off due to conditions 3 or 4 above. Note that roll engines may only be

turned off; they can never be turned on again even if neither condition
3 nor 4 remains valid.

Engines are turned on or off by setting the SWITCH variables to the

appropriate values.

55

Table5.8: DIFFERENTIAL EQUATIONS

[VariabJe [_ I _

GP...4TTITUDE GP.-ROTATION 0
GP.VELOCITY GP_ROTATION GRAVITYeGP..ATTITUDE(,.31+

A_ACCELERATION

oe from] _,o 3
GP..ALTITUDE 0 -GP.ATTITUDEx

GP-VELOCITY

CorrectlortTerrn$

0
K-MATRIX x

(TDLR_VELOCITY-

GP_VELOCITY_

K..ALT . (AR..ALTITU D E--

GP..ALTITUDF_,)

DETERMINE VELOCITY ERROR - Calculate the difference be-

tween the velocity of the craft and the optimal velocity of the craft at

the vehicle altitude (Shown in Figure 5.1.) This distance is actually a
difference between two velocities and is called VELOCITY_ERROR.

This error term should be calculated by finding the present altitude

in CONTOUR_ALTITUDE and using interpolation, if necessary, then

locating the corresponding velocity in CONTOUR_VELOCITY also

using interpolation, if necessary. VELOCITY_ERROR is used in AE-

CLP, and it is also used to set the CONTOUR_CROSSED switch. The

equation for VELOCITY_ERROR is given below:

VELOCITY_ERROR = [GP_VELOCITYI-CONTOUR_VELOCITY

DETERMINE IF CONTOUR HAS BEEN CROSSED -

If CONTOUR_CROSSED has not been set and the contour has been

encountered, set CONTOUR_CROSSED to 1; otherwise leave it alone.

56

Figure5.1:VELOCITY AIXITUDE CONTOUR
Shownare two possibletrajectories,with the point alongeachwherethe
contouris first sensedandalsoanexampleof VELOCITY_ERROR.Note:
the altitudewherethe enginesare turnedon shouldbe the earliestpoint
to checkcrossingthecontour,eventhoughtile trajectorymayhavecrossed
the contourat somegreateraltitude. Note that the velocity aJtitudecon-
tour is containedin two variables: CONTOUR_ALTITUDEand CON-
TOUR_VELOCITY.Theseareboth arrayswith 100elementsthat contain
knownpointsalongthe contour.It shouldbe notedthat the point in the
first elementis the lowestaltitudegivenandastlle indexnumberincreases,
altitude increases.Sincenot all of thesearrayelementsmaybe needed,all
unusedelementsbeyondthehighestgivenaltitudewill be filledwith zeroes,
andthat thevalueof zeroisnevergivenfor altitudeexceptasthis filler.The
valueof velocityat anyotherpoint may"befoundbylinear interpolation(or
extrapolationif the valueis outsidethe rangeof the suppliedcontour)at
thegivenvehiclealtitude.

h

h

/

/
/

/
/

57

DETERMINE GUIDANCE PHASE - The guidance phase (GP_PHASE)

is determined according to the events in Table 5.9. These phases are

based upon information that may be provided by processes other than

the guidance processor.

Table 5.9: GUIDANCE PHASES

I PaASE 1
1

2

2

3

STATE

Chute attached

Englues off

Touch down not sen._ed

Chute attached

Engine. on

Touch down not sensed

Chute attached

Engines on

Touch down not sensed

Chute released

AEial Engines Hot

Touch down not sensed

Chute released

Axial Engines Hot

Touch down not sensed

Chute released

Axial Engines Hot

Touch down not sensed

Chute rele_.ed

Engine. off"

Touch down not sensed

Chuie released

Engines off.

Touch down not sensed

EVENT

Altitude for turning

engines on is sensed

Axial engines become hot

and the chute is released

Touch down i. sensed

Altitude _

DROPJ-[E[GHT and

TDS.STATUS -- healthy

touch down not sensed

ALtitude _ '

DROP-HEIGHT and

TDS.STATUS = failed

Touch down is sensed

Toucb down i, sen.ed

TD$.STATUS = failed

NEXT PHA_E :

3

End GCS

End GCS

End GCS

End GCS

• End GCS

NEXT STATE

Chute &ttached

Engines on

Touch down not sensed

Chute Released

Axial Engines Hot

Touch down not sensed

Chute attached

Engines off

Touch down sensed

Chute H.ele_ed

Engine_ off

Touch down not sen_,ed

Chute Released

En_nes off

Touch down not sensed

Chute Rele'a.ed "

Eo_ne, off

Touch down sensed

Chute ReleaJed

Engines off

Touch down sensed

'Chute Re|e"_se d

Enffines off

Touch down not sensed

- PHASE 1 : If the altitude provided by the guidance processor is

less than or equal to the engines-on altitude, begin Phase 2.

- PHASE 2 : If the axial engines have become hot and the parachute

has been released, begin Phase 3. If touch down is sensed, end

GCS.

- PHASE 3 : If touch down has not been sensed and DROP_IIEIGHT

has not been reached, then control the axial and roll engines

to cause the lander to follow a gravity-turn steering descent. If

DROP_HEIGHT is reached and TDS_STATUS is healthy, begin
Phase 4. If DROP_HEIGHT is reached and TDS_STATUS is

failed, send final packet, and end GCS. If touch down is sensed,

send finaJ packet, and end GCS.

58

- PHASE4 : If touchdownhasnotbeensensedandTDS_STATUS
is healthy,free-fallto surface.If touchdownhasnot beensensed
and TI)S_STATUSis failed,sendfinal packetand endGCS.If
touchdownhasbeensensed,sendfinal packetand endGCS.

It shouldbe notedthat under certainconditions,the next phaseis
"End GCS".Thismeansthat the implementationshouldstopitselfat
theendof the presentsub-frame.Thus,in all cases,a cleanshutdown
of GCSimplementationsshouldendjust after CommunicationsPro-
cessingdnring theGuidancesub-frame,but beforecalling rendezvous.

59

60

2.8 RECLP - Roll Engine Control Law Processing

PURPOSE RECLP generates the roll engine command which controls

the firing pulse and direction of the roll engines.

INPUT

DELTA_T

P1

P3

RE_STAT U S

T H ETA

THETA2

G_ROTATION

P2

P4

RE_SWITCH

THETA1

OUTPUT [RE-CMDIRE-STATUSTHETA

PROCESS Control of the lander is achieved by generating commands as

functions of the error between a given state variable and its ideal value.

These errors are limited and amplified to yield control values. The transfor-

mations to accomplish this are as follows:

• DETERMINE IF ENGINES ARE ON - If RE_SWITCH is off, then

RE_CMD = 0; and proceed directly to commanding engines.

• DETERMINE PULSE INTENSITY AND DIRECTION - The pulse

intensity and direction is derived from the graph shown in Figure 5.2

using (Pv)t. Note that the x axis represents the integral of the roll

rate. This is really the present angle of roll. This integral should be

calculated by Euler's method. As an example, THETA = THETA +

(integral of roll for this step). Also note that when the vehicle status

is located on a boundary between two or more roll command regions,

the lowest intensity signal should be used to avoid over-commanding

the engines.

• DETERMINE ROLL ENGINE COMMAND - The pulse intensity and

direction is packed in the lowest three lower-order bits of the actual

roll engine command, RE_CMD as shown.

xlxlxl.., xlIIIID I
161 x51 x41... 14]3121 x I

61

PRECEDING PAGE BLANK NOT FILMED

where X = unused, I = intensity, and D = direction. I and D range in

values as shown in the data dictionary.

• COMMAND ENGINES -

Once RE_CMD has been set with the correct value, it will automati-

cally be sent to the engines during the next call to GCS_SIM_RENDEZVOUS.

. SET ROLL ENGINE STATUS TO HEALTHY.

62

Figure5.2: GRAI'H FORDERIVING ROI,L ENGINECOMMANDS

P

63

ORIGINAL PAGE IS

OF POOR QUALITY

64

2.9 TDLRSP - Touch Down Landing Radar Sensor

Processing

PURPOSE A single touch down landing radar (TDI,R) gauges the ve-

locity of tile vehicle during terminal descent. This radar is a doppler radar

with four radar beams, each which emanates from the vehicle's center of

gravity with a slight offset from the vehicle's z_. axis, The radar beams form

the edges of the pyramid as shown in Figure 5.3 .

The Touch Down Landing Radar Sensor Processing (TDLRSP) module

converts measurements of the frequency shift of each beams reflection into

vehicle velocities. The receivers associated with each beam may not find

a usable reflection, though. If no usable reflection is found, the receiver

returns a status of beam in search mode.

INPUT

DELTA_T

FRAME_COUNTER

TDLR_ANGLES

TDLR_GAIN

TDLR_OFFSET

TDLR_STATUS

FRAME_BEAM_UNLOCKED

K_MATRIX

TDLR_COUNTER

TDLR_LOCK_TIME

TDLR_STATE

TDLR_VELOCITY

OUTPUT

FRAME_.BEAM _UNLOCKED

TDLR_STATE

TDLR_VELOCITY

K_MATRIX

TDLR_STATUS

PROCESS The value returned by each beam (TDLR_COUNTER) is

proportional to the beam frequency shift down that beam, which is, in

turn, proportional to the velocity down that beam. The processing of the

TDLR_COUNTER data into the component velocities along the vehicle's

:_, if, and 5"axes requires five steps.

* ROTATE VALUES - Rearrange the values located in TDLR_VELOCITY
and K.MATRIX so that each value is moved to the variable with the

next larger index. Thus the values are rotated to the (i+lst) position

in the array, where i is the index of the current position for that value.

The value whose index is out of bounds is dropped. For example, the

"zeroth" position is left empty for new values and the value that was

in the "zeroth" position is now in the first position, etc. and the value

that was in the fourth position is lost.

65

PRECEDING PAGE _I RNK f'_CT r_,_',',

L II.., N]I IIOIIIIII IICMI,

Figure 5.3: DOPPI,ER RADAR BEAM LO('ATIONS

I
//i ,..... I

/

.- I I
/ !/

/1 I
/ !

J

/ s !

/ /,./ It

_ / /f s [

I I

/ _ [

4

66

* DETERMINERADARBEAM STATES- Theprocessingof thefour
radar beamsdependson the stateof tho radar,i.e. whetheror not
eachof the four beamsis searchingor in lock. If TDI,R_STATEis
LOCKED,and tile receiverfor a beamdoesnot sensean echo(i.e.
the beamis in searchmode),the correspondingTDLR_COUNTER
valuewill bezero;TDLR_STATEshouldbesetto UNLOCKEDand
FRAME_BEAM_UNLOCKEDshouldbesetto thecurrentframecount.
If thepreviousstateofTDLR_STATEisUNLOCKED,FRAME_BEAM_UNLOCKED
shouldbeusedto ignorethe beamfor TDLR_LOCK_TIMEseconds
of realtime,thusdeterminingthe currentvalueof TDLR_STATE.At
the beginningof a trajectory,FRAME_BEAM_UNLOCKEDwill be
setto zero,thusmeaningthat the beamhasneverbeenunlocked.If
TDLR_STATEis not UNLOCKEDdue to the aboveconditions,it
shouldbesetto LOCKED.

* DETERMINE BEAM VELOCITIES - A beamvelocity is a linear
functionofits TDLR_COUNTERvaluewherethegain(TDLR_GAIN)
specifiestheslopeandtheoffset(TDLR_OFFSET)specifiesthe inter-
cept. TDLR_GAINandTDLR_OFFSETaresetduring GCSinitial-
izationmode.Theequationfor velocityisgivenbelow.

BEAM_VELOCITY(i) = TDLR_OFFSET+TDLR_GAIN,(TDLR_COUNTER(i))

where i ranges from 1 to 4 and represents the four radar beams.

• AVERAGE BEAM VELOCITIES AND CONVERT TO BODY

VELOCITIES - The beam velocities are resolved as specified in Table

5.10. The resolved beam velocities are then converted to vehicle body

velocities using the offset angles ot , /_ , and 7 as shown in Figure

5.4. Note that the conversion from resolved beam velocities to body

velocities is done with the following equations:

COS Q

By-
cos

BZ

Bz-
cos 7

Bx, B v, B_ are actually the values of the elements of TDLR_VELOCITY.

Since the Guidance Processor needs to know which velocities it can use,

67

Table5.10:AVERAGINGDOPPLERRADARBEAMSIN LOCK

BEAMS

IN LOCK

on

BI

B2

B3

B4

BI, B2

BI , B3

B1, B4

B2, B3

B2, B4

B3, B4

B 1, B2, B3

B1, B2, B4

Bl, B3, B4

B2, B3, B4

BI, B2, B3, B 4

Bz Kz B_ K_ Bz K=

0 0 0 0 0 0

o 0 o 0 0 0

0 0 0 0 0 0

O 0 0 0 0 0

0 0 0 0 0 0

0 0 (an -- b2)/;_ _ 0 0

(B 1 + B3)/2 1 0 0 0 0

0 0 0 0 (B 1 - B4)/2 I

o o o o (B2 - B3)/2 1

(,92 + B4)/2 1 o o o o

o o (B4 - B3)/2 l o o

(B_ + e3)/2 a (e_ - B_)I2 _ (B_ - B3)12

(B 2 + 84)12 1 (B a - B2)I_ 1 (B 1 - B4)12 1

(B l + B3)12 1 (B, i - B3)12 1 (B 1 - B4)12 1

(B 2 + B4)12 1 (B 4 -- B3)/2) 1 (B 2 - B3)/2 1

(81 + B2 + B 3 + B4)/4 1 (B 1 -'B 2 - B 3 4- B4)/4 1 (B 1 + B 2 - B 3 - B4)/4 1

the K_MATRIX must be defined according to the usable velocities.

The following equation shows the K_MATRIX in which the variables

should be replaced with a 1 if there is a usable velocity available, or a
0 if not as shown in Table 5.10.

K_MATRIX =
K_ 0 0]
0 K v 0
0 0 K=

, SET TDLR_STATUS - Set TDLR_STATUS to healthy.

68

Figure 5.4: DOPPLER RADAR BEAM AN(;LES

/
f

69

70

2.10 TDSP - Touch Down Sensor Processing

PURPOSE The touch down sensor is attached to tile end of a rod which

is attached to the bottom of the vehicle. Its purpose is to trigger engine
shutdown when the vehicle is at the correct distance from the surface. This

shutdown is necessary to:

1. avoid the stirring up of dust and debris and

2. avoid scorching immediate area of the experiment site,

INPUT [TD_COUNTERITDS_STATUSJ

OUTPUT [TD_SENSED [TDS_STATUS]

PROCESS The touch down sensor is a simple switch at the end of a pole

on the underside of the lander. It should normally return one of only two

16-bit values, all "ones" or all "zeroes". Note that this value includes setting

the sign bit as well as the 15 magnitude bits.

• DETERMINE IF TOUCH DOWN HAS BEEN SENSED:

m If all ones are returned, set TD_SENSED to 1.

If all zeroes are returned, set TD.SENSED to 0.

If any combination of "ones" and "zeroes" is returned other than

all on or all off, assume that the sensor has failed due to electrical

noise and set TDS_STATUS to failed. Once TDS_STATUS is set

to failed, it should remain set to failed for all following frames.

The normal state of the switch is all zeroes ('off'). If all of the

readings for the last time step are all ones ('on') then the current

processed value for the sensor is 'on', signifying touch down has

been sensed. At all other times, the processed value is 'off'; thus,

if the status is set to failed, the value should be set to 'not sensed',

and the guidance processor should decide when the vehicle has
touched down.

71

PRECEDING PAGE BLANK NOT FILMED I

72

2.11 TSP - Temperature Sensor Processing

PURPOSE A temperature gauge on the vehicle is used to adjust the

response of the acceleromet_ and gyroscope. The gauge contains two tem-

perature sensing devices: a solid-state sensor and a matched pair of thermo-

couples. The Temperature Sensor Processing (TSP) module determines the

ambient temperature, using either the solid-state sensor or the thermocouple

pair in a manner maxilnizing the accuracy of the measurement.

INPUT

M1

M3

SS_TEMP

T2

T4

TS_STATUS

M2

M4

T1

T3

THERMO_TEMP

OUTPUT [ATMOSPHERIC_TEMP {TSSTATUS [

PROCESS The processing of raw temperature data from the solid-state

sensor and thermocouple pair, SS_TEMP and THERMO_TEMP, is based

on the solid-state sensor being less accurate than the thermocouple pair, but

having a greater usable operating range. The temperature values from the

solid-state sensor are highly quantized and are used to adjust the values of

the other sensors when they indicate temperatures outside the range of the

thermocouple pair.

The processing of SS_TEMP and THERMO_TEMP into an accurate

measure of temperature (ATMOSPHERIC_TEMP) requires several steps.

The steps are described below, but are not given in any particular order be-

cause the steps to be taken may vary depending upon the values of SS_TEMP

and THERMO_TEMP.

• CONVERSION OF SOLID STATE TEMPERATURE (SS_TEMP) -

The response of the solid-state temperature sensor is linear with re-

spect to the ambient temperature and is computed using the two cal-

ibration points (M1,T1) and (M2,T2) which characterize the line and

are set during GCS initialization.

• CONVERSION OF TItERMOCOUPLE PAIR TEMPERATURE

(THERMO_TEMP) - The response of the thermocouple pair is cali-

73

PPECEDfN_ PAGE P,.A:,,.:. [_!OT F1W, ED

brated differently depending on the region (linear or parabolic) where

the measurement lies. See Figure 5.5.

- THERMO_TEMP lies within the linear region - The linear region

is bounded by the calibration points used by the thermocouple

sensor (i.e [M3,T3] and [M4,T4] inclusive). Temperatures mea-

sured within this region are calibrated accordingly.

- THERMO_TEMP lies within one of the parabolic regions - The

upper and lower parabolic regions extend plus or minus 15 per-

cent of the difference between the measured calibration points,

M4 and M3, respectively. These parabolic regions each intersect

the line at the calibration points. The rate of change in tempera-

ture, with respect to the thermocouple measurements, is contin-

uous at these intersections. The upper (and lower) parabolas are

defined so that the temperature goes up (or down) as the square

of the measurement value. The parabolas are offset along both

the temperature and measurement axes. By using the values of

T3, T4, M3, and M4 and the fact that the function is continuous

at the endpoints, the offsets for the parabolas may be determined;

and the equations for the parabolas may be generated.

* SELECT MOST ACCURATE ESTIMATE - If the temperature de-

rived from SS_TEMP falls within the accurate temperature response

zone of the thermocouple pair, (the linear as well as parabolic regions),

then the value returned by the thermocouple pair should be used; oth-

erwise, the value returned by the solid-state sensor should be used.

* SET STATUS TO HEALTHY - Set the values of both elements of

TS_STATUS to HEALTHY.

74

Figure 5.5: CAI, IBRATION OF J'HERMOCOUPLE PAIR

" Upper

..... ii

i j
I I

L, .eo.,- I I

/ ,I

Jl,- C -41

P_-.o. bo I,¢ Re_,o_

o.JsL--4 _.

I I
il
II

T
t.a._

_- O. _5 L

7 I
Ii
If

M
,/

75

76

6. SYSTEM TIMING AND MEMORY SPACE

REQUIREMENTS

PRECEDINC PAGE 13LANK ._OT FILMED

78

TIMING REQUIREMENTS

The GCS must operate within certain timing constraints to be able to pro-

vide signals to the vehicle rapidly enough to properly control tile system.

To allow the GCS to control the vehicle at the proper rate, each module

must execute within a specified time, so that all modules to be executed

can complete before the end of the subframe. These execution times must

be determined by the minimum time available, which is also the time that

the most processes are to execute. Some processes execute at a lower fre-

quency than others; thus for some frames, there may be processes that are

not executed, leaving extra time remaining in the frame after the last pro-

cess finishes and before the next subframe begins. However, there will also

be frames during which all processes execute, and thus the time allocated

for each module is strictly limited.

Model Time

The GCS is part of a larger simulation that consists of GCS_SIM and one

or more versions of the GCS. When these two parts (GCS and GCS_SIM)

are combined, they approximate the behavior of the environment around a

planetary lander (wind, gravity, etc.), the physical behavior of the lander

(acceleration, engine thrust, etc.); and the on-board control algorithms

(GP, AECLP, etc.). Since the experiment being conducted is interested

in detection of software errors, the part of the simulation under study is

only the GCS. Thus GCS becomes the "model" upon which tests will be

conducted. For realism, constraints in timing and memory are being placed

on GCS to simulate the restricted environment of typical embedded systems

aboard air/spacecraft. Thus, the constraints and requirements listed that

refer to the "model" are only those limitations being placed on a single

version of the GCS, and the programmers should treat them as restrictions
on their code without concern for the simulator within which their code will

run.

The model operates with three subframes making up each frame, and

each frame executes within a period of DELTA_T. Therefore, each subframe

has a duration of < DELTA_T Note that returning from a: call to rendezvous
-- 3 *

is a signal to increment the subframe. At the end of the control law process-

ing subframe, FRAME_COUNTER will be updated by rendezvous, and the

correct value will be returned. Figure 6.1 shows an abbreviated timeline for

the system.

79

PRECEDING PAGE BLANK NOT FILMED

Response Times

Software throughput timing shall not exceed the total time allotted for each

frame. Synchronization points demarcate the end of each frame.

Execution timing and memory space requirements are levied against the

following three sub-frames per time step which occur sequentially:

Sub-Frame I SENSOR DATA PROCESSING

Sub-Frame II GUIDANCE PROCESSING

Sub-Frame III ENGINE CONTROL PROCESSING

Figure 6.1: TYPICAL TIME LINE

Frame 1 Fr,me 2 Ftsme 3

INIT.GCS

$P GP CLP

Sub.|rsme Sub-frsme Sub-frame

SP GP CLP

Sub-frsm¢ Sub-frame Sub.frame

RUN.GCS

i

SP GP CLP

Sub-fr,me Sub-frame Sub-frame

8O

Table6.1depictsthe timing requirementsper frame.

Table6.1: TIMING REQUIREMENTS

SUBFRAME TIME
REQUIREMENTS

I tbd
II tbd
III tbd

Theserequirementswill be determinedafter testingof the GCSproto-
typeversionis completed.

81

MEMORY SPACE REQUIREMENTS

The memory allowed for each version will include the global space needed

for the required data stores, as well as some space for internal variables. It

should be remembered that the applications cannot carry any global values

from frame to frame except those explicitly contained within the data stores.

The values of memory sizes listed in Table 6.2 include both the global space

and all allowable internal space for use by the applications.

Table 6.2: MEMORY SPACE REQUIREMENTS

SUBFRAME SPACE

REQUIREMENTS

I tbd

II tbd

III tbd

82

7. DATA REQUIREMENTS DICTIONARY

84

PART I. DATA ELEMENT DESCRIPTIONS

The following template has been constructed for defining the data elements

referenced in this specification:

NAME:

DESCRIPTION:

USED IN:

UNITS:

RANGE:

DATA TYPE:

ATTRIBUTE:

DATA STORE LOCATION:

ACCURACY:

NAME This field gives the name of the variable used in the specification.

The variable name used during coding must be the same as specified.

DESCRIPTION This field gives a brief description of the variable.

USED IN This field provides a reference to the modules using this variable.

UNITS This field indicates the unit of measure for the data contained in

the variable being defined.

RANGE This field specifies the permissible range of data values for the

variable.

DATA TYPE The data type field specifies the data type to be used when

declaring the variable during coding.

ATTRIBUTE This field indicates whether or not the variable contains

data, control information, or a data condition.

DATA STORE LOCATION This field references the common region

where the variable must be stored.

ACCURACY This field dictates the degree of accuracy required for out-

put comparisons to be made during voting. 1

lln the data dictionary, accuracy is listed as N/A where accuracy is not applicable,
or TBD where accuracy is (T)o (B)e (D)etermined later. A formal modification will be
released when the values of the accuracy requirements have been approved.

85

86

NAME: A..ACCELERAT[ON

D_'SCRIPTION: vehide _cce|er_tions

USED IN: 21 AECLP, 23 ASP, 2.7 GP

UNITS: _

RANGE: [-20, 20]

DATA TYPE: array (I .3, 0. 4) of real*8

ATTRIBUTE; d_.ta

DATA STORE LOCATION: SENSOR-OUTPUT

ACCURACY: TBD

NAME: A.BIAS

DESCRIPTION: characteris¢ic bias in the

accelerometer measurements

USED IN: 2.3 ASP

UNITS: meter_
_ec 2

RANGE: [-30, 0]

DATA TYPE: array (1.3) of reM'8

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: A_COUNTER

DESCRIPTION: accelerations along the .@, 17, and

USED IN: 23 ASP

UNITS: none

RANGE:[0, 215 -- l]

DATA TYPE: array (I .3) oI Inte&er*2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: A-G AIN.0

DESCRIPTION: Jtandard &ain in the &cceler,tions

USED IN: 2.3 ASP

UNITS: _

RANGE: [0, I]

DATA TYPE: nrray (I_3) of re_l"8

ATTRIBUTE: data

DATA STORE LOCATION: RUN..PARAMETERS

ACCURACY: N/A

NAME: A..SCA LE

DESCRIPTION: multiplicative constan¢

used to determine limit on deviation

accelerometer values.

USED IN: 2.3 ASP

UNITS: none

RANGE [0, 215 -- 1]

DATA TYPE: Integer*4

ATTRIBUTE: d_ta

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: A.STATUS

DESCRIPTION: Fl_g indicatin$

whether or not the &cceterometer_ are

working properly.

USED IN: 2.3 ASP, 2.4 CP

UNITS: none

RANGE: [0 := healthy, l:=unhealthy]

DATA TYPE: array (1..3, 0..3) of lo$icM"!

ATTRIBUTE: data

DATA STORE LOCATION:GUIDANCE.STATE

ACCURACY: N/A

NAME: AECLP.DONE

DESCRIPTION Flag indicating

completion of AECLP t,L._k

USED IN: 2, RUN_GCS

UNITS: none

RANGE: [0: runnin& of task 2 I AECLP incomplete,

1: runnin& of ta_k 2.1 AECLP complete]

DATA TYPE: loKical'l

ATTRIBUTE: control

DATA STORE LOCATION none

ACCURACY: N/A

NAME: AE.CMD

DESCRIPTION: Valve settings for the

,xial entries,

USED IN: 21 AECLP, 24 CP

UNITS: none

RANGE: [0, 127]

DATA TYPE: array (13) oI Integer'2

ATTRIBUTE: d,ta

DATA STORE LOCATION: EXTERNAL

ACCURACY: TED

NAME: A E-STATUS

DESCRIPTION Flag indicating

whether or not axial engines are

workin& properly.

USED IN: 2.1 AECLP, 2 4 CP

UNITS: none

RANGE: [0: Healthy,

1: Failed.]

DATA TYPE: lo/&dcalSl

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: N/A

NAME: AE.SWITCH

DESCRIPTION: Fla& indicatin&

whether or not axi_ en&ines are

fumed on.

USED IN: 2.1 AECLP, 2 7 GP

UNITS: none

RANGE: [0: _xial engines are off,

i: axial en&ines are on]

DATA TYPE: Iogical*l

ATTRIBUTE: dMa condition

DATA STORE LOCATION GUIDANCE

ACCURACY: N/A

NAME: AE_TEMP

DESCRIPTION: Temperature of

axial en&dneJ when they

,re turned On.

USED IN: 21 AECLP, 2 4 CP, 25 CRCP, 2.7 GP

UNITS: none

RANGE: [0: Cold, l:W_.rming-Up,

2:Hot]

DATA TYPE: lo$'ical=l

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE-STATE

ACCURACY: N/A

87

FP,ECED_NG PAGE BLANK NOT FILMED _ltlf.lli_

NAME' ALPHA.MATRIX

DESCRIPTION MAtri_ ol mis.tlignment angle5

USED IN 23 ASP

IINITS none

RANGE: [-*r, _]

DATA TYPE: array (1.3, 1..3) of real*8

ATTRIBUTE: dat_

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: AR..ALTITU DE

DESCRIPTION: _ltimeter radar height

above terrain

USED IN 2.2 ARSP, 2.4 CP, 2.? GP

UNITS: metert

RANGE: [0, 2000]

DATA TYPE: Array (0..4)of real=8

ATTRIBUTE: date

DATA STORE LOCATION: SENSOR-OUTPUT

ACCURACY: TED

NAME: AR.COUNTER

DESCRIPTION counter containing ehtpsed time

since tranamis*ion of radar pul6e

USED IN 22 ARSP

UNITS: Cycle*

RANGE i-I, 210 -- I]

DATA TYPE: Integer*2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY N/A

NAME: AR_FREQUENCY

DESCRIPTION: increment frequency of

AR_COUNTER

USED IN: 2.2 ARSP

UNITS

RANGE: [1, 10]

DATA TYPE: real=8

ATTRIBUTE: data,

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY N/A

NAME: AR..STATUS

DESCRIPTION: etatu* of the nhimeter rtdart

USED IN: 2.2 ARSP. 2.4 CP

UNITS: none

RANGE: [0 := healthy, l:=fniled]

DATA TYPE array (0..4) of Iogical*l

ATTRIBUTE: d,tt

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: N/A

NAME: ARSP-DONE

DESCRIPTION: Flag indicating

completion of ARSP task.

USED IN:2, KUN.GCS

UNITS: none

RANGE: [0: running of tadtk 2.2 ARSP incomplete,

1: running of t_tk 2.2 ARSP complete]

DATA TYPE: logictd'I

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: ASP-DONE

DESCRIPTION: Flag indicttdng

completion of GCS.

USED IN: 2 RUN_GCS

UNITS: none

RANGE'. |0: running of t*,*k 23 ASP incomplete,

1: running of t_k 2.3 ASP complete]

DATA TYPE: logical"!

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: ATMOSPHERICoTEMP

DESCRIPTION: atmospher/c tempertture

USED IN: 2.3 ASP, 2.4 CP, 2.6 GSP, 211 TSP

UNITS: degree* centigrtde

RANGE: {-250, 250]

DATA TYPE: real=8

ATTRIBUTE: d,ta

DATA STORE LOCATION: SENSOR.OUTPUT,

ACCURACY: TBD

NAME: C2TATUS

DESCRIPTION: Flag indic*tin&

whether or not the communication_ processor i*

working properly.

USED IN: 2.*, CP

UNITS: none

RANGE: [0 := he_dthy, l:=leiled]

DATA TYPE: Iogic=lsl

ATTRIBUTE: data

DATA STORE LOCATION:GUIDANCE_STATE

ACCURACY: N/A

NAME: CHUTE-RELEASED

DESCRIPTION: *ign_l iadic*ttlag parachute

hu been released

USED IN,. 2 1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP

UNITS: none

RANGE: |0: Chute Attached,

l: Chute Releued]

DATA TYPE: IoglcaJ*l

ATTRIBUTE doll condition

DATA STORE LOCATION: GUIDANCE-STATE

ACCURACY: NIA

NAME: COMM.SYNC-PATTERN

DESCRIPTION: *izteen bit ,ynchronlzation pattern

USED IN: 24 CP

UNITS none

RANGE: [1 t0ll00l IOII00{0]

DATA TYPE: IntegerS2

ATTRIBUTE: date

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: CONTOUR.ALTITUDE

DESCRIPTION: Altitude in Velocity-*,hitude contour.

(the h in 'V(h)')

USED IN: 2,7 GP

UNITS: kilometer*

RANGE: [0, 2]

DATA TYPE: trr_y (l..I00) of re_'8

ATTRIBUTE: d&t6

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

88

NAME: CONTOIr R_CRO$SED

DESCRIPTION: Indicate, if the velocity

altitude contour h*_ been sensed.

USED IN: 21 AECLP, 24 CP, 27 GP

UNITS: none

RANGE: [0:- contour not sensed, h= contour sensed]

DATA TYPE: logical°l

ATTRIBUTE: data condition

DATA STORE LOCATION GUIDANCE.STATE

ACCURACY: N/A

NAME: ENGINES.ON-ALTITU DE

DESCRIPTION: Altitude at

which the axial engines are

turned on.

USED IN: 2.1 AECLP, 2 7 GP

UNITS: meters

RANGE: [0, 2000]

DATA TYPE: reat*8

ATTRIBUTE: data condition

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: CONTOUR-VELOCITY

DESCRIPTION: Velocity in Velocity-altitude contour

(the V in 'V(h)')

USED IN: 2.7 GP

UNITS: _

RANGE: [0, 0.5]

DATA TYPE: array (1 100) of reM*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: CP-DONE

DESCRIPTION: Flag indicating

completion of 24 CP task.

USED IN: 2 RUN.GCS

UNITS: none

RANGE: [0: running of t,_k 2.4 CP incomplete,

1: running of taJk 2.4 CP complete]

DATA TYPE: Io&icaI*l

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: CRCP_DON E

DESCRIPTION: Flag indicating

completion of 2.,$ CRCP ta.lk.

USED IN: 2. RUN_GCS

UNITS: none

RANGE: [0: running of t_k 2.5 CRCP incomplete,

I: running of task 2.5 CRCP complete)

DATA TYPE: logicM*I

ATTRIBUTE: control

DATA STORE LOCATION none

ACCURACY: N/A

NAME: DELTA-T

DESCRIPTION: Time itep duration

NAME: FRAME_BEAM_UNLOCKED

DESCRIPTION: Variable containing the number

of the frame during which the radar be&m

unlocked

USED IN: 2.9 TDLRSP

UNITS: none

RANGE: [0, 231 - I]

DATA TYPE: array (I_.4) of Integer'4

ATTRIBUTE: det_

DATA STORE LOCATION: GUIDANCE

ACCURACY: TBD

NAME: FRAME-COUNTER

DESCRIPTION: Counter containing the number

of the pre*ent frame

USED IN: 2.1 AECLP, 2.4 CP,

2.7 GP, 2.9 TDLRSP

UNITS: none

RANGE: [l, 231 -- I]

DATA TYPE: Integer=4

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: TBD

NAME: FRAME_ENGINES_IGNITED

DESCRIPTION: Variebl¢ containinlg the number

of the frame during which the enBine*

were ignited

USED IN: 21 AECLP, 2,7 GP

UNITS: none

RANGE: [0, 231 -- 11

DATA TYPE: Integer*4

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE

ACCURACY: TBD

USED IN 21 AECLP, 27 GP, 28 RECLP, 2.9 TDLRSPNAME : FULL-UP_TIME

UNITS: second*

RANGE: [0, 0,20]

DATA TYPE: reaJ*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN=PARAMETERS

ACCURACY: N/A

NAME: DROP-HEIGHT

DESCRIPTION: Height from which vehicle should

free-fall to surface

USED IN: 2.7 GP

UNITS: metere

RANGE: [0, I00]

DATA TYPE: rea.l'8

ATTRIBUTE: data

DATA STORE LOCATION: RUN=PARAMETERS

ACCURACY: N/A

DESCRIPTION: Time for axial engines to reach

optimum oper,tionM condition

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: [0, 80]

DATA TYPE: real*&

ATTRIBUTE: d&ta

DATA STORE LOCATION: RUN=PARAMETERS

ACCURACY: N/A

89

NAME G1

DESCRIPTION: <oe_cient used to a.dju:;t A_GAIN

USED IN 23 ASP

UNITS: _

RANGE: [-5, 5] •

DATA TYPE: re_,[*8

ATTRIBUTE: d _, t,_

DATA STORE LOCATION RUN.PARAMETERS

ACCURACY: N/A

NAME: G2

DESCRIPTION: coeffi¢ien'* u._ed to adjust A_GA|N

USED IN: 2.3 ASP

UNITS _

RANGE: (-S, 51
DATA TYPE: resl*8

ATTRIBUTE: d _.t a,

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: G3

DESCRIPTION: coefficient used to adjust G-GAIN

USED IN: 2.6 GSP

UNITS: _

RANGE: [-5, _]

DATA TYPE: re_l*8

ATTRIBUTE: d_,t J,

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY N/A

NAME: G¢

DESCRIPTION: coefficient u*ed to &diuJt G.GA|N

USED IN: 2.6 GSP

UNITS:

RANGE [-_. _1

DATA TYPE re&[=8

ATTRIBUTE: dA*8

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: G_COUNTER

DESCRIPTION: gyro*¢ope me,,urement of vehicle

rotB, tioa r&tel

USED IN: 26 GSP

UNITS: none

RANGE: [-(2 TM -- 1). 214 -- l}

DATA TYPE: _rr,y (1.3) o! Integer"2
ATTRIBUTE: d,LtL

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME G_G AIN.0

DESCRIPTION :.t,snd&rd K,w.in in vehicle rotation

r_,.te_ _.s rne.L_ured by the {_yloscopeJ

1JSI'][3 IN 2 6 G-_P

r_a.d.tazu
UNITS:

cou !
RANGE: [-I,

DATA TYPE .Lrr*¥ (1.3) oI real*8

ATTRIBUTE: d&t_.

DATA 5TOI_E LOCATION: RUN-PARAMETERS

ACCURACY N/A

NAME: G_OFFSET

DESCRIPTION: 6tLnd_,rd offset of the

ROTATION.RAW VLIues

USED IN: 2.6 GSP

UNITS:
Je¢

RANGE: |.0.5, 0.5]

DATA TYPE: ,Lrrm, y (1..3) ol re_d"8

ATTRIBUTE: diLa,

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: G_ROTATION

DESCRIPTION- vehicle rot_.lion r,sLel,

USED IN: 2.4 CP, 26 GSP, 27 GP, 2.6 RECLP

UNITS: Tadtanm
.gee

RANGE: 1.5.0, 50]

DATA TYPE: _iray (1..3, 0..4)of re_d"8

ATTRIBUTE: dm.t m.

DATA STORE LOCATION: SENSOR_OUTPUT

ACCURACY: TED

NAME: G._TATUS

DESCRIPTION: *t*tu* of the {gyro*cope*

USED IN'. 2.4 CP, 2.6 GSP

UNITS: none

RANGE: [0 := heathy, l:=fLiled]

DATA TYPE: IogicLl*l

ATTRIBUTE: d,st,L

DATA STORE LOCATION: GUIDANCE_STATE

ACCURACY: N/A

NAME: GA

DESCRIPTION. gLin

USED IN: 2.1 AECLP

UNITS:

RANGE: _. 50_

DATA TYPE: real=8

ATTRIBUTE: d_t_,

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: GAX

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: none

RANGE: [0. 15000]

DATA TYPE: renl*8

ATTRIBUTE: dais

DATA STORE LOCATION; RUN.PARAMETERS

ACCURACY: N/A

9O

NAME GP1

DESCRIPTION g_in

USED IN: 2.1 AECLP

UNITS none

RANGE: [-5, 5]

DATA TYPE: re_Im8

ATTRIBUTE: dsf,&

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N]A

NAME: GP2

DESCRIPTION: g_in

USED IN: 2.1 AECLP

UNITS: none

KANGE_ [-5, 5]
DATA TYPE: real=8

ATTRIBUTE: data

DATA STORE LOCATION: _UN...PARAMETERS

ACCURACY: N/A

NAME: GP..A LTITUDE

DESCRIPTION: Mtitude _s seen by

guidance processor

USED IN: 21 AECLP, 2.4 CP, 2.7 GP

UNITS: meters

RANGE: [0, 2500]

DATA TYPE: _rray (0-4) ol re_l=8

ATTRIBUTE: dat_

DATA STORE LOCATION: GUIDANCE-STATE

ACCURACY: TBD

NAME: GP.ATTITUDE

DESCRIPTION: _Ltitude _ seen by

guidance processor

USED IN: 2.4 CP, 2.7 GP

UNITS: none

RANGE: [-1, 1]

DATA TYPE: &rrsy (1..3, 1..3, 0..4) real_'8

ATTRIBUTE: d_l_

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: TBD

NAME: GP-DONE

DESCRIPTION: FIB| indicating

completion o| 2.7 GP tsJk.

USED IN: 2. RUN.GCS

UNITS: none

RANGE: [0: running of t&sk 2.7 GP incomplete.

I: running of ¢_,k 27 GP complete]

DATA TYPE: IogicM*l

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: G P..PHASE

DESCRIPTION: pha.Je of operation _ seen by

guidance processor

USED IN: 2.4 CP, 2.7 GP

UNITS: none

RANGE: [I, 4]

DATA TYPE: inteser*4

ATTRIBUTE: dLt_.

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: TBD

NAME: GP-ROTATION

DESCRIPTION rotation rates as determined by

the guidance ptoce.,.qng module

USED IN: 21 AECLP, 2 _, CP, 2.7 GP

UNITS:
se¢

RANGE I-s,5}
DATA TYPE array (1..3, 1.3) real'8

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE_STATE.

ACCURACY: TBD

NAME: GP.VELOCITY

DESCRIPTION: Velocity _s corrected by

the guidance algorithm.

USED IN: 2.1 AECLP, 2 4 CP, 2.7 GP

UNITS:
8ec

RANGE: [.100, 100]

DATA TYPE: array (1 3, 0 .4) of reM=8

ATTRIBUTE: d_ta

DATA STORE LOCATION: GUIDANCE_STATE

ACCURACY: TBD

NAME: GPY

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: none

RANGE: [-5, 5]

DATA TYPE: real*8

ATTRIBUTE: d _,t _.

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: GQ

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: [-S, S]

DATA TYPE: reM=8

ATTRIBUTE: d_ta

DATA STORE LOCATION: RUN..PARAMETERS

ACCURACY: N/A

NAME: GR

DESCRIPTION g_/n

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: [-5, 5]

DATA TYPE: reM=8

ATTRIBUTE: d&tat

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: GRAVITY

DESCRIPTION: SrAvity of planet

USED IN: 2.7 GP

UNITS:

RANGE: [0, I00]

DATA TYPE: reM'S

ATTRIBUTE: d_;a

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N)'A

91

NAME GSP..DONE

DESCRIPTION: Flag indicating

cornpletton o[" 2.6 GSP ta6k

USED IN 2 RUN_GCS

UNITS Binary

RANGE: [0: running of taJk 2.6 GSP incomplete,

1: running ol tuk 26 GSP complete]

DATA TYPE: Iogical*l

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: GUIDANCE-STATE

DESCRIPTION: Data store containing all

the status, state, and seneed variables

in alphabetical order.

USED IN: 21 AECLP, 2,2 AKSP, 2.3 ASP, 2.4 CP,

2.5 CRCP, 2.6 GSP, 2.7 GP, 2.8 RECLP, 2.9 TDLRSP,

2.10 TDSP, 2.11 TSP UNITS: N/A

RANGE: N/A

DATA TYPE: common

ATTRIBUTE: data store

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: N/A

NAME: GV

DESCRIPTION: gain

USED IN: 21 AECLP

UNITS:

RANGE: [_'_, 5] r

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME GVE

DESCRIPTION: g_o

USED IN 2.1 AECLP

UNITS: /second

RANGE: 1--104, 104]

DATA TYPE: real'8

ATTRIBUTE data

DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY N/A

NAME: GVEI

DESCRIPTION: gsia

USED IN: 2.1 AECLP

UNITS: �second 2

RANGE: I-s, 5]

DATA TYPE: real'8

ATTRIBUTE: dot6

DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY: N/A

NAME: GVI

DESCRIPTION: S .,,i a

USED IN: 2.1 AECLP

UNITS: /meter

RANGE: I-S, sl
DATA TYPE: rea|"8

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: GW

DESCRIPTION g_in

USED IN: 21 AECI. P

UNITS:
me{er

RANGE: [.5, 5]

DATA TYPE teM*8

ATTRIBUTE d_ta

DATA STORE LOCATION: P UN_PARAMETERS

ACCURACY N/A

NAME: GWI

DESCRIPTION: gain

USED IN: 21 AECLP

UNITS: /meter

RANGE: [-5, 5]

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: INIT-DONE

DESCRIPTION: Flag indicating

completion of GCS initiMization.

USED IN: 0 GCS

UNITS: none

RANGE: [O: initialization incomplete,

1: initiMiaation complete]

DATA TYPE: Iogical'l

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: INTERNAL_CMD

DESCRIPTION: ReM vector containing

the comma, rid to be _,enl to the axial

engines

USED IN: 2.1 AECLP

UNITS: none

RANGE: [-S, 5]

DATA TYPE array (1.3) oI real"8

ATTRIBUTE d6ta

DATA STORE LOCATION: GUIDANCE

ACCURACY TED

NAME: K-ALT

DESCRIPTION: Determines use o! altimeter radar

by guidance processor

USED IN: 22 ARSP, 2.4 CP, 2.7 GP

UNITS: none

RANGE: [0, I]

DATA TYPE array (04) of Integer*4
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: N/A

NAME: K.MATRIX

DESCRIPTION: Determines use of doppler rad.r

by guidance procelsor.

USED IN: 2.4 CP, 27 GP, 2,0 TDLRSP

UNITS: none

RANGE: [0, I]
DATA TYPE: arr.y (I..3, 1.3, 0..4) Integer"4

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE_STATE

ACCURACY: N/A

92

NAME: MI

DESCRIPTION Io_e: measured temperature

calibration point for .,Mid _t_te

_emper&|ure sensor

USED IN 2 11 TSP

UNITS: none

RANGE: [0 215 -- 1!

DATA TYPE: Integer'2

ATTRIBUTE da|a

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY N/A

NAME: M2

DESCRIPTION: upper measured temperature

calibration point for solid state

temper&Lure sensor

USED IN 211 TSP

UNITS: none

RANGE: [0, 215 -- I]

DATA TYPE: Integer*2

ATTRIBUTE: dat,

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: M3

DESCRIPTION: lower measured temperature

calibrstion point for Ihermocouple pair

temper&t ore sensor

USED IN 2.11 TSP

UNITS: none

RANGE [0, 215 -- 1]

DATA TYPE: Integer'2

ATTRIBUTE; dal,

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: M4

DESCRIPTION: upper meuured temper6ture

calibration point for shermocouple pair

temper.|nre sensor

USED IN 2.11 TSP

UNITS: none

RANGE: [0, 215 -- 1]

DATA TYPE Integer*2

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME OMEGA

DESCRIPTION: g_n of

angular velocity

USED IN 2.1 AECLP

UNITS: /second

RANGE [-50, 50]

DATA TYPE: tell'8

ATTRIBUTE: datl

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: P1

DESCRIPTION: pulse rate boundary
USED IN; 28 RECLP

UNITS: r_dian_/sec

RANGE: [0, 0 05]

DATA TYPE: re&I*8

ATTRIBUTE da, t_

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: P2

DESCRIPTION: pulse r&te boundary

USED IN: 28 RECLP

UNITS: radi&nL/sec.

RANGE: [0, 0.05]

DATA TYPE: real"8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: P3

DESCRIPTION: pulse rate boundary
USED IN: 2.8 RECLP

UNITS: radisns/sec.

RANGE: [0, 0.05]

DATA TYPE: zeM*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: P4

DESCRIPTION: pulse rate boundary

USED IN: 2.8 RECLP

UNITS: radi,n#/sec.

RANGE: [0, 0.05]

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN--PARAMETERS

ACCURACY: N/A

NAME: PACKET

DESCRIPTION: Packet of telemetry data
USED IN: 24 CP

UNITS: N/A

RANGE: N/A

DATA TYPE: _rray (1..25e) of Integer_2

ATTRIBUTE data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: PE_INTEGRAL

DESCRIPTION: Integr_d portion of Pitch

error equation

USED IN: 21 AECLP, 24 CP

UNITS: meters

RANGE: [-1000, 1000]

DATA TYPE: re.LI=8

ATTRIBUTE: dat&

DATA STORE LOCATION: GUIDANCE-STATE

ACCURACY: TBD

93

NAME: PE-Id AX

DESCRIPTION: M_ximum pitch error tolerable

USED IN: 2 I AECLP

UNITS: none

RANGE: [0, l]

DATA TYPE: re_L'8

ATTRIBUTE: data

DATA STOKE LOCATION RUN.PARAMETERS

ACCURACY', N/A

NAME: P E..MIN

DESCRIPTION: Minimum pitch error tolerable.

USED IN: 2 I AECLP

UNITS: none

RANGE: [-l, 0]

DATA TYPE: ren]'8

ATTRIBUTE: dnt8

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: RE-CMD

DESCRIPTION: roll engine command

USED IN: 2.4 CP, 2.8 RECLP

UNITS: none

RANGE: D (direction)[0=positive, l =negstive]

I (intensity) [0=off. l=minlmum. 2=intermedi,te,

3=m,ximum]

DATA TYPE: Integer"2

ATTRIBUTE: d,t,

DATA STOKE LOCATION: EXTERNAL

ACCURACY: TBD

NAME: RE-STATUS

DESCRIPTION: st,tug of the roll engines

USED IN: 2.4 CP, 28 KECLP

UNITS: none

RANGE: [0 := healthy, l:=Iniled]

DATA TYPE: lo_4c,l'l

ATTKIBUTE: d.tn

DATA STOKE LOCATION: GUIDANCE_STATE

ACCURACY: N/A

NAME: KE.SWITCH

DESCRIPTION: FI,g indic,tin&

whether or not the roll eaglnel ,re

turned on.

USED IN: INIT.GCS, 27 GP

UNITS: none

RANGE [0: roLL enEines ,re off.

I: roll engines are on]

DATA TYPE: logic_I'l

ATTRIBUTE: d,t, condition

DATA STOKE LOCATION: GUIDANCE

ACCURACY: N/A

NAME: RECLP-DONE

DESCRIPTION: Flng indicating

completion of 2.8 RECLP t_sk

USED IN: 2. RUN_GCS

UNITS: none

RANGE: [0: running of t,sk 28 RECLP incomplete.

1: running of tuk 2,8 RECLP complete]

DATA TYPE: logic,l"l

ATTRIBUTE: control

DATA STORE LOCATION none

ACCURACY: N/A

NAME: RUN-DONE

DESCRIPTION Flag indicating

completion of GCS

USED IN: 0 GCS

UNITS: none

RANGE: [0: running of GCS incomplete,

I: running of GCS complete]

DATA TYPE: logi,,l'l

ATTRIBUTE control

DATA STORE LOCATION none

ACCURACY: N/A

NAME: RUN-PARAMETERS

DESCRIPTION: Dat, store cont,ining ,11

the run p,r,meters in *lphabetic_l order.

USED IN: 2.2 ARSP, 2.3 ASP, 2.6 GSP,

2.9 TDLRSP, 210 TDSP, 211 TSP

UNITS: N/A

RANGE: N/A

DATA TYPE: common

ATTRIBUTE: dat8 store

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY N/A

NAME: SENSOR-OUTPUT

DESCRIPTION: D,tn store cont,ininz all

the sensor output in a.]ph,betica, I order.

USED IN: 2.2 ARSP, 2.3 ASP, 2.4 CP

2.6 GSP, 2.9 TDLRSP, 2.10 TDSP, 2.11 TSP

UNITS: N/A

RANGE: N/A

DATA TYPE: common

ATTRIBUTE: dst, store

DATA STORE LOCATION: SENSOR_OUTPUT

ACCURACY: N/A

NAME; SS -TEMP

DESCRIPTION: Solid state temper,tare data

USED IN: 2.11 TSP

UNITS: none

RANGE: [0, 215 -- I]

DATA TYPE Integer*2

ATTRIBUTE: d_t,

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: TI

DESCRIPTION: lower ,mbient temper,lure

c,libration point for solid |tare

|emper,ture sensor

USED IN: 211 TSP

UNITS: degrees Centigr,de

RANGE: [-250, 250]

DATA TYPE: tea/=8

ATTRIBUTE: darn

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

94

NAME: T2

DESCRIPTION: upper ambient temperature

calibration point for solid state

temperature sen_or

USED IN 2.11 TSP

UNITS: degrees Centigr&de

RANGE: [-250, 250]

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: T3

DESCRIPTION: lower ambient temperature

calibration point for thermocoupl¢ pair

temperature sensor

USED IN 2.11 TSP

UNITS: degrees Centigrade

RANGE: [-50, S0]

DATA TYPE: real'8

ATTRIBUTE: data

DATA STORE LOCATION_ RUN_PARAMETERS

ACCURACY: N/A

NAME: T4

DESCRIPTION: uppel ambient tempeTature

calibration point for thermocouple pair

temperature sensor

USED IN: 2.11 TSP

UNITS: degrees Centilrade

RANGE [-50, 50]

DATA TYPE: real*8

ATTRIBUTE: dat_,

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: TD-CO UNTER

DESCRIPTION: value returned by Touch Down Sensor

USED IN: 2.10 TDSP

UNITS: none

RANGE: [--215 , 215 - 1]

DATA TYPE: Integer*2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: TD.SENSED

DESCRIPTION: Flag indicating

whether or not touch down hu

been sensed.

USED IN: 2.4 CP, 2.7 GP, 2.10 TDSP

UNITS: none

RANGE; [0: touch down not sensed,

I: touch down)ensed]

DATA TYPE: logical*l

ATTRIBUTE: data condition

DATA STORE LOCATION: SENSOR.OUTPUT

ACCURACY: N/A

NAME TDLR.ANGLE3

DESCRIPTI£JN: vector of doppler radar beam

offset angles (i,e , a , _9, _)

USED IN 2 9 TDLRSP

UNITS: radian_

RANGE [0, _1

DATA TYPE: array (1 3) real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: TDLR.COUNTE R

DESCRIPTION: value returned by Doppler radar

USED IN: 29 TDLRSP

UNITS: none

RANGE' [0, 215 -- I]

DATA TYPE: array (1.._) Integer'2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: TDLR.G AIN

DESCRIPTION: gain in doppler radar beam

USED IN: 2.9 TDLRSP

UNITS: cou_n

RANGZ _Y,"?_
DATA TYPE: real=8

ATTRIBUTE: data

DATA STORE LOCATION: RUN..PARAMETERS

ACCURACY: N/A

NAME: TDLR.LOCK.TIME

DESCRIPTION: locking time of doppler radar bea, m

USED IN: 2.9 TDLRSP

UNITS: seconds

RANGE: [0, 80]

DATA TYPE: reM"g

ATTRIBUTE: data

DATA STORE LOCATION: RUN..PARAMETERS

ACCURACY: N/A

NAME: TDLR_OFFSET

DESCRIPTION offset in doppler radar beam

USED IN: 2g TDLRSP

UNITS:

RANGE: [-100, 0]

DATA TYPE: real'g

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY N/A

NAME: TDLR.STATE

DESCRIPTION: state of the touch down landing

r_dar beams.

USED IN: 2.4 CP, 2.0 TDLRSP

UNITS: none

RANGE: [0: Beam out of Lock,

1: Beam in Ioclt]

DATA TYPE: array (1..4) Iogicai*l

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE_STATE

ACCURACY: N/A

95

NAME: TDLR._TATUS

DESCRIPTION: status of the doppler rada,r

USED IN: 24 CP, 2.9 TDLRSP
UNITS: none

RANGE: [0 := healthy, l:=failed]

DATA TYPE: array (1..4) of logicalal
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: N/A

NAME: TDLR_VELOCITY

DESCRIPTION: Velocity aL computed by
the touch down landing radar.
USED IN: 24 CP, 2.7 GP, 2.9 TDLRSP

UNITS:
RANGE: [-100, i00]
DATA TYPE:array (1_3, 0..4) of real'8
ATTRIBUTE: dat,
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: TDLRS P..DONE

DESCRIPTION: Flag indicating
completion of 2.9 TDLRSP task
USED IN 2. RUN_GCS

UNITS: none

RANGE: [0: running of |&ak 211 TDLRSP incomplete,
I: running of task 2.10 TDSP complete]
DATA TYPE: IogicaJ'I
ATTRIBUTE: control
DATA STORE LOCATION: none

ACCURACY: N/A

NAME: TDLRSP.SWITCH

DESCRIPTION: Flag indicating
whether or not the touch down landing
radar aenmor proceaJor ia turned on.
USED IN: I. INIT_GCS
UNITS: none

RANGE: [0: procelaor is off',

1: procelsor is on.]
DATA TYPE: Iogical*l
ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE

ACCURACY: N/A

NAME: TDSP.DONE

DESCRIPTION: Flag indicating
completion of 2.10 TDSP tusk
USED IN: 2. RUN_GCS

UNITS: none

RANGE: [0: running ol task 2 10 TDSP incomplete,

I: running of tLak 2.10 TDSP complete]
DATA TYPE: logical'i
ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: TDSP.SWITCH

DESCRIPTION Flag indicating
whether or not the touch down sen*or

is turned on
USED IN: 0 GCS

UNITS: none

RANGE: [0: touch do=n sensor is off,
1: touch down sensor iL on]
DATA TYPE: log_ical°I
ATTRIBUTE: data condition

DATA STORE LOCATION: GU[DANCE
ACCURACY: N/A

NAME: TDS.._TAT U S

DESCRIPTION stltu, of the touch down sensor

USED IN: 2.4 CP, 2.7 GP, 2.10 TDSP

UNITS: none

RANGE: [0 :: healthy. I::l_iled]
DATA TYPE: logical'l
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY N/A

NAME: TE.DROP
DESCRIPTION: The axial thrust error when

axial engines are wnrm and the velocity
altitude contour ha4 not been intersected
USED IN: 2.1 AECLP

UNITS: none

RANGE: [-2, 2]
DATA TYPE: real'8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY: N/A

NAME: TE_INIT

DESCRIPTION: The azial thrust error

when the axial engines are cold
USED IN: 2.1 AECLP

UNITS: none

RANGE: [-2,2]
DATA TYPE: rent'S
ATTRIBUTE: data
DATA STORE LOCATION: RUN-PARAMETERS
ACCURACY: N/A

NAME: TE-INTEGRAL

DESCRIPTION: Integr_ portion of Thrust
error equation
USED IN: 21 AECLP. 2.4 CP
UNITS: meters
RANGE: [-1000, 1000]
DATA TYPE: real'$
ATTRIBUTE: data
DATA STORE LOCATION GUIDANCE.STATE
ACCURACY: TBD

NAME: TELIMIT

DESCRIPTION: Limiting thrust error
USED IN: 2.1 AECLP
UNITS: none

RANGE: [.10000, I0000]
DATA TYPE: real'$

ATTRIBUTE: Data
DATA STORE LOCATION: GUIDANCE.STATE
ACCURACY: TBD

96

NAME: TE_M AX

DESCRIPTION: Maximum thr.st error permissible

USED IN: 2.1 AECLP

UNIT.'3: none

RANGE. [-2, 21

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN..PARAMETERS

ACCURACY: N/A

NAME: TE 3vIIN

DESCRIPTION: Minimum thrust error tolerable.

USED IN 2,1 AECLP

UNITS: none

RANGE [-2, 2]

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: THERMO-TEMP

DESCRIPTION: thermocouple pair temperature

USED IN: 211 TSP

UNITS: none

RANGE: [0, 215 -- I]

DATA TYPE: Integei'=2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

NAME: THETA

DESCRIPTION: initial pulse angle

USED IN: 28 RECLP

UNITS: r_dians

RANGE: [-_r, lr]

DATA TYPE: real=8

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE

ACCURACY: TBD

NAME: THETAI

DESCRIPTION' puIJ¢ angle boundary

USED IN: 2.8 RECLP

UNITS: radians

RANGE: [0, 0.0S 1

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME: THETA2

DESCRIPTION: pulse angle boundary

USED IN: 28 RECLP

UNITS: radians

RANGE: [0, 005]

DATA TYPE: zeal*$

ATTRIBUTE: data

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

NAME TS.STATUS

DESCRIPTION: status of the temperature sensors

in _olld state, then thermocoup}e pair order

USED IN 24 CP, 2 II TSP

UNITS none

RANGE: [0 :-- healthy, I =failed]

DATA TYPE: array (1 2) of logicaI=l

ATTRIBUTE data

DATA STORE LOCATION GUIDANCE-STATE

ACCURACY: NIA

NAME: TSP.DONE

DESCRIPTION: Flag indicating

completion of 211 TSP rash

USED IN: 2. RUN.GCS

UNITS: none

RANGE: [0: running of task 211 TSP incomplete,

1: _unnlng of task 211 TSP complete]

DATA TYPE: logicM'l

ATTRIBUTE: control

DATA STORE LOCATION: none

ACCURACY: N/A

NAME: VELOCITY..ERROR

DESCRIPTION: Distance from velocity-altitude

contour. (Difference in velocities from actual

to deaired on contour

USED IN: 2.1 AECLP, 24 CP, 27 GP

UNITS:

RANGE: [-1500, 1500]

DATA TYPE: reM*8

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE-STATE

ACCURACY: TBD

NAME: YEANTEGRAL

DESCRIPTION: Integral portion ol Yaw

error equatiolt

USED IN: 21 AECLP, 2.4 CP

UNITS: meters

RANGE: [.1000, 1000]

DATA TYPE: realm8

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE.STATE

ACCURACY: TED

NAME: YE-M AX

DESCRIPTION: Maximum yaw error permissible

USED IN: 21 AECLP

UNITS: none

RANGE: [-I, I]

DATA TYPE: real*8

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS

ACCURACY: N/A

NAME: YE.MIN

DESCRIPTION: Minimum yaw error tolerable

USED IN: 2.1 AECLP

UNITS: none

RANGE: [-1, I]

DATA TYPE: reaI*8

ATTRIBUTE: dMa

DATA STORE LOCATION: RUN-PARAMETERS

ACCURACY: N/A

97

98

PART II. CONTENTS OF DATA STORES

Table 7.1: DATA STORE: GUIDANCE_STATE

VARIABLE NAME USED BY:

A.STATUS 2.3 ASP, 2.4 C.P

AE_STATUS

AE_SWITCH

AE_TEMP

AR_STATUS

C_STATUS

CHUTE_RELEASED

CONTOUR_CROSSED

FRAME. BEAM_UNLOCKED

FRAME_ENGINES_IGNITED 2.1

G_STATUS 2.4

2.1 AECLP, 2.4 CP

2.1 AECLP, 2.7 GP

2.1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP

2.2 ARSP, 2.4 CP
2.4 CP

2.1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP

2.1 AECLP, 2.4 CP, 2.7 GP
2.9 TDLRSP

AECLP, 2.7 GP

CP, 2.6 GSP
GP._ALTITUDE

GP_ATTITU DE

GP_PHASE

GP_ROTATION

GP_VELOCITY

INTERNAL_CMD

K_ALT

K_MATRIX

PE_INTEGRAL

RE_STATUS

RE_SWITCH

TDLR_STATE

TDLR_STATUS

TDLRSP_SWITCH

TDS.STATUS

TDSP_SWITCH

TEANTEGRAL

TE_LIMIT

TH ETA

TS_STATUS

VELOCITY_ERROR

YEANTEGRAL

2.4 CP, 2.7 GP, 2.1 AECLP

2.4 CP, 2.7 GP

2.4 CP, 2.7 GP

2.1 AECLP, 2.4 CP, 2.7 GP
2.1 AECLP, 2.4 CP, 2.7 GP
2.1 AECLP

2.2 ARSP, 2.4 CP, 2.7 GP

2.4 CP, 2.7 GP, 2.9 TDLRSP
2.1 AECLP, 2.4 CP

2.4 CP, 2.8 RECLP
INIT_GCS, 2.7 GP, 2.8 RECLP

2.4 CP, 2.7 GP, 2.9 TDLRSP

2.4 CP, 2.9 TDLRSP
INIT_GCS

2.4 CP, 2.7 GP, 2.10 TDSP
0. GCS

2.1 AECLP, 2.4 CP
2.1 AECLP

2.8 RECLP

2.4 CP, 2.11 TSP

2.1 AECLP, 2.4 CP, 2.7 GP
2.1 AECLP, 2.4 CP

99

PRECEDING PAGE BLANK NOT FILMED

Table 7.2: DATA STORE: EXTERNAL

VARIABLE NAME USED BY

A_COUNTER

AE_CMD

AR_COUNTER

FRAME_COUNTER
G_COUNTER

PACKET

RE_CMD

SS_TEMP

TD_COUNTER

TDLR_COUNTER

THERMO_TEM P

2.3 ASP

2.1 AECLP,2.4 CP
2.2 ARSP

2.1 AECLP, 2.4 CP, 2.7 GP, 2.9 TDLRSP
2.6 GSP

2.4 CP

2.8 RECLP, 2.4 C,P
2.11 TSP

2.10 TDSP

2.9 TDLRSP

2.11 TSP

Table 7.3: DATA STORE: SENSOR_OUTPUT

VARIABLE NAME USED BY:

A_ACCELERATION

AR_ALTITUDE

ATMOSPHERIC_TEMP

G_ROTATION

TD_SENSED

TDLR_VELOCITY

2.1 AECLP, 2.3 ASP, 2.4 CP, 2.7 GP

2.2 ARSP, 2.4 CP, 2.7 GP

2.3 ASP, 2'.4 CP, 2.6 GSP, 2.11 TSP

2.4 CP, 2.6 GSP, 2.7 GP, 2.8 RECLP

2.4 CP, 2.7 GP, 2.10 TDSP

2.4 CP, 2.7 GP, 2.9 TDLRSP

100

Table7.4:DATA STORE:RUN_PARAMETERS

VARIABLENAME
A_BIAS
A_GAIN_0
A_SCALE
ALPHA_MATRIX
AR_FREQUENCY
COMM_SYNC_PATTERN
CONTOUR_ALTITUDE

CONTOUR_VELOCITY
DELTA_T

DROP_HEIGHT

ENGINES_ON_ALTITUDE

FULL_UP_TIME
G1

G2

G3

G4

G_GAIN_0

G_OFFSET

GA

GAX

GP1

GP2

GPY

GQ
GR
G RAVlTY

GV

GVE

GVEI

GVI

GW
GWI

M1

M2

M3
M4

OMEGA

USED BY

2.3 ASP

2.3 ASP

2.3 ASP

2.3 ASP

2.2 ARSP

2.4 CP

2.7 GP

2.7 GP

2.7 GP, 2.8 RECLP, 2.9 TDLRSP
2.7 GP

2.1 AECLP, 2.7 GP
2.1 AECLP

2.3 ASP

2.3 ASP

2.6 GSP

2.6 GSP

2.6 GSP

2.6 GSP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP
2.7 GP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.11 TSP

2.11 TSP

2.11 TSP
2.11 TSP

2.1 AECLP

101

Table 7.5: DATA STORE: RUN_PARAMETERS (cont.)

VARIABLE NAME USED BY

PI

P2

P3

P4

PE_MAX

PE_MIN

T1

T2

T3

T4

2.8 RECLP

2.8 RECLP

2.8 RECLP

2.8 RECLP

2.1 AECLP

2.1 AECLP

2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

TDLR_ANGLES

TDLR_GAIN

TDLR_LOCK_TIME

TDLR_OFFSET

TE_DROP

TE_INIT

TE_MAX

TE_MIN

TH ETA 1

THETA2

YE_MAX

YE_MIN

2.9 TDLRSP

2.9 TDLRSP

2.9 TDLRSP

2.9 TDLRSP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.8 RECLP

2.8 RECLP

2.1 AECLP

2.1 AECLP

102

PART III. LIST OF CONTROL VARIABLES

AND DATA CONDITIONS

Table 7.6 CONTROL VARIABLES (OPTIONAL USAGE)

CONTROL VARIABLE NAME

AECLP_DONE

ARSP_DONE

ASP_DONE

CRCP_DON E

GP_DONE

GSP_DONE

TDLRSP_DONE

TDSP_DONE

TSP_DONE

Table 7.7 DATA CONDITIONS (REQUIRED USAGE)

DATA CONDITION VARIABLE NAME
AE_TEMP

CHUTE_RELEASED

TD_SENSED

TDLR..STATE

103

Table7.8:INITIALIZATION DATA

VARIABLE NAME USED BY

A_ACCELERATION 2.1 AECLP, 2.3 ASP, 2.4 CP, 2.7 GP

A_BIAS 2.3 ASP

A_COUNTER 2.3 ASP

A_GAIN_0 2.3 ASP

A_SCALE
A-STATUS

AE-STATUS

AE..SWITCH

2.3

2.3

2.1

2.1

AE_TEMP 2.1

ALPHA_MATRIX 2.3

ASP

ASP, 2.4 CP

AECLP, 2.4 CP

AECLP, 2.7 GP

AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP

ASP

A R_A LTITU DE 2.2

AR_COUNTER 2.2

AR_FREQUENCY 2.2
AR_STATUS 2.2

ATMOSPHERIC_TEMP 2.3

C.STATUS 2.4

CH UTE_RELEASED 2.1

COM M_SYNC__PATTERN 2.4

CONTOUR._ALTITUDE 2.7

CONTOUR_CROSSED 2.1

CONTOUR_VELOCITY 2.7

DELTA_T 2.7

DROP_.HEIGHT 2.7

ENGINES_ON_ALTITUDE 2.1

FRAME.BEAM_UNLOCKED 2.9

FRAME_COUNTER 2.1

FRAME_ENGINESJGNITED 2.1

FULL_UP_TIME 2.1

ARSP, 2.4 CP, 2.7 GP

ARSP

ARSP

ARSP, 2.4 CP

ASP, 2.4 CP, 2.6 GSP, 2.11TSP

CP

AECLP, 2.4 CP, 2.5 CRCP, 2.7GP

CP

GP

AECLP, 2.4 CP, 2.7 GP

GP

GP

GP

AECLP, 2.7 GP

TDLRSP

AECLP, 2.4 CP, 2.7 GP, 2.9 TDLRSP

AECLP, 2.7 GP
AECLP

104

Table7.9:INITIALIZATION DATA (cont.)

VARIABLE NAME USED BY

G1 2.3 ASP

G2

G3

G4

G_COUNTER
G_GAIN_0

G_OFFSET

G_ROTATIO N

G_STATUS

GA
GAX

GP1

GP2

GP_ALTITUDE

GP..ATTITUDE

GP_PBASE
GP_ROTATION

GP_VELOCITY

GPY

GQ
GR

GRAVITY

GV

GVE

GVEI

GVI

GW

GWI

2.3 ASP

2.6 GSP

2.6 GSP

2.6 GSP
2.6 GSP

2.6 GSP

2.4 CP, 2.6 GSP, 2.7 GP, 2.8 RECLP

2.4 CP, 2.6 GSP
2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.7 GP, 2.1 AECLP
2.7 GP

2.4 CP, 2.7 GP
2.7 GP, 2.8 RECLP

2.7 GP

2.1 AECLP
2.1 AECLP

2.1 AECLP

2.7 GP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

2.1 AECLP

105

Table7.10:INITIALIZATION DATA (cont.)

VARIABLENAME
K_ALT
K_MATRIX
M1
M2
M3
M4
OMEGA
P1
P2
P3
P4
PEANTEGRAL
PE_MAX
PE_MIN
RE_STATUS
RE_SWITCH
SS_TEMP
T1
q'2
T3
T4
TD_SENSED
TDLR_ANGLES
TDLR_COUNTER

USEDBY
2.2ARSP,2.4CP,2.7GP
2.4CP,2.7GP,2.9TDLRSP
2.11TSP
2.11TSP
2.11TSP
2.11TSP
2.1AECLP
2.8RECLP
2.8RECLP
2.8RECLP
2.8RECLP
2.1AECLP,2.4CP
2.1 AECLP

2.1 AECLP

2.4 CP, 2.8 RECLP
INIT_GCS, 2.7 GP, 2.8 RECLP
2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

2.4 CP, 2.7 GP, 2.10 TDSP
2.9 TDLRSP

2.10 TDSP

TDLR_GAIN 2.9

TDLR_LOCK_TIME 2.9

TDLR_OFFSET 2.9
TDLR_STATE 2.4

TDLR_STATUS 2.4

TDLR_VELOCITY 2.4

TDLRSP

TDLRSP

TDLRSP

CP, 2.7 GP, 2.9 TDLRSP

CP, 2.9 TDLRSP

CP, 2.7 GP, 2.9 TDLRSP

106

Table7.11: INITIALIZATION DATA (cont.)

VARIABLE NAME USED BY
TDLRSP_SWITCH

TDS_STATUS

TDSP_SWITCH

TE_DROP

TEANIT

TE_INTEGRAL

TE_LIMIT

TE_MAX

TE_MIN

THERMO_TEMP
THETA

THETA1

THETA2

TS_STATUS

VELOCITY_ERROR

YE_INTEGRAL
YE_MAX

YE_MIN

INIT_GCS

2.4 CP, 2.7 GP, 2.10 TDSP
0. GCS

2.1 AECLP

2.1 AECLP

2.1 AECLP, 2.4 CP
2.1 AECLP

2.1 AECLP

2.1 AECLP

2.11 TSP

2.8 RECLP

2.8 RECLP

2.8 RECLP

2.4 CP, 2.11 TSP

2.1 AECLP, 2.4 CP, 2.7 GP
2.1 AECLP, 2.4 CP
2.1 AECLP

2.1 A ECLP

107

108

A. FORMAT OF THIS SPECIFICATION

mi...__ ItTF.ttTbOH_L..Y

110

INTRODUCTION TO FORMAT

This specification uses the extended structured analysis method advocated

by tlatley [12, 13]. This method is based on a hierarchical approach to

defining functional modules and the associated data and control flows.

The documents constructed as a part of this specification include data

context and flow diagrams; control context and flow diagrams; process, con-

trol, and timing descriptions; and a requirements dictionary. Figure A.1

defines the graphical symbols used in the data flow and control flow dia-

grams respectively.

The data flow diagrams describe the processes, data flows, data stores,

and data conditions. The data context diagram is the highest-level data flow

diagram and represents the data flow for the entire system. Data conditions

are represented by directed arcs with broken lines.

The control flow diagrams describe processes, control signal flows, and

stores. The control signal flows are depicted using directed arcs with broken

lines. The control signals listed in the data dictionary may be implemented

by the programmer in any form desired, or they may be completely ignored

and the control of the program conducted through other means. They simply

show the logic involved in the system. Signal flows between the control

flow diagram and the control specification have a short bar at the end of

the directed arc. The control flow diagrams contain duplicate descriptions

of the processes represented on the data flow diagram. This duplication

of processes is consistent with the approach of slaving the control flow to

the data flow. The control context diagram representing the most abstract

control flow is similar to the data context diagram.

The control specifications describe the control requirements of a system.

These specifications contain the conditions when the processes detailed in

the data and control flow diagrams are activated and de-activated.

The requirements dictionary contains definitions for both data and con-

trol signals.

111

PRECEDING PAGE BLA_'_IXNOT FILMED _._...,.]NTI_NIIOIIALL, I BLANK

Figure A.I: GRAPHICAL SYMBOLS USED IN FLOW DIAGRAMS

PROCESS MODULE

e- --

, i
I I

I I

i I

SOURCE OR SINK

DATA STORE

4_
DATA CONDITION
OR CONTROL FLOW

CONTROL SPECIFICATION

DATA FLOW

112

B. IMPLEMENTATION NOTES

114

INTERFACE

Background

For the purposes of this research experiment, each GCS software implemen-

tation must function as if it were actually controlling a planetary lander. In

reality, each GCS implenmntation will be interacting with a software simula-

tor (GCS_SIM) that models the behavior of a physical lander when exposed

to the environmental forces of a planet.

Due to the fact that each GCS implementation must interact with GCS_SIM

as if it were connected to the lander hardware, there are some additional

requirements that are placed on a GCS implementation that help define a

software interface. The software interface to the simulator replaces the phys-

ical connection to planetary lander hardware through the use of a simulator

support utility and an additional requirement involving the organization of

the global data stores.

Simulator Support Utility

A single simulator support utility (GCS_SIM_RENDEZVOUS) is provided

to form a uniform interface between the GCS applications software and the

simulation environment (GCS_SIM). This utility is a routine which simpli-

fies the interface between the GCS implementations and the simulation of

the vehicle sensing and control mechanisms. This utility also includes a syn-

chronization mechanism for the configurations using more than one version

of the GCS. This routine provides the following support functions:

• Initialization for the Beginning of Terminal Descent

• Simulator Rendezvous Synchronization

* GCS Interface for Simulated Reads and Writes

Global Data Store Organization

Part III of the data dictionary of this specification contains descriptions of

four required data stores. Each of these data stores is to be located in a

separate, globally accessible data region. By dividing the global data stores

into four separate regions, they can be compared to components that would

be found on a hardware interface (See Figure B.1).

115

PRECEDII_tG PAGE BLANK NOT FILMED

Rom

i: External :

, ?

,u

I I10 Device

Simulated Hardware Interface

GCS_Slbl
Simulated Hardware

and

E nvlronment

Hardware Component Global Data Store (Software Interface)

Input/Output Device

Read-Only Memory

On-board Random Access Memory

On-board Random Access Memory

EXTERNAL

RUN_PARAMETERS

GUIDANCE_STATE

SENSOR_OUTPUT

Figure B.I: DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMEN-

TATIONS

116

In FORTRAN,this wouldmeanfour commonblockswith the labelsas
givenin theheaderfor eachdatastorelisting. There are ways of accomplish-

ing this same type of data region in other languages, but they are outside

the scope of this experiment.

Input/Output

The GCS_SIM_RENDEZVOUS routine simulates all of the input/output op-

erations for each GCS implementation. When using the rendezvous routine

with a GCS implementation, all data needed by rendezvous is passed via

the four global data stores and there are no additional parameters required.

All information read from or written to each GCS application will be trans-

ferred through the four global data stores defined in the data dictionary.

The programmer should note that although normally some type of range

checking/limiting would be included in control programs, there are some

restrictions being placed by this experiment. The programmer is allowed

to check values of variables to see if they are within the ranges specified

in the data dictionary, but if values are outside the specified range, NO

CHANGES should be made to them. For purposes of this experiment,

the calculated values need to be passed to the simulator. Values returned

from the simulator will always be within the specified range, so if the ap-

plication sends out-of-range values to the simulator, these values will be

put into range before being passed from the simulator to the next subframe

processes. This means that all inputs to subframes may be assumed to be

within the specified ranges.

Process

The GCS reads the sensor input values and processes them into control com-

mands which are averaged by GCS_SIM and written to the control surfaces.

Since GCS_SIM handles the orbit to terminal descent portion of each tra-

jectory, a rendezvous must be issued at the start of each trajectory to load

initial sensor values into each GCS application. Following the first call to

rendezvous (time step equal to zero), all GCS applications will synchronize

themselves by calling rendezvous at the end of each sub-frame. This ren-

dezvous, in effect, suspends the GCS implementations until the other GCS

implementations have processed this time step or have run out of time.

The calling convention for this GCS_SIM provided support utility is as
follows:

117

* GCS_SIM_RENI)EZVOUS(requires no par'a,_t_rs)

GCS Initialization

During the initialization phase of each GCS trajectory - the first call to

rendezvous - the frame counter value will be updated with the starting

frame for the particular trajectory. Under normal circumstances, the value

of the frame counter will be "1," but do not rely on that. As errors occur

in the GCS, they will be fixed; the trajectory may start at the beginning of

the last complete frame that was processed without error.

Local Variables

In an attempt to accommodate everyone, most of the variables needed to

manipulate functions within the GCS have been included in the data stores,

which can be found in the data dictionary. Since a GCS can be started at

the beginning of any frame, the programmer is responsible for establishing

acceptable initialization values for any local variables (any variable not listed

in the data dictionary) which may have been declared. Assume that some

of the GCS_SIM may initialize the GCS with a list of variables from some

saveset of previous global data store values.

By using the interface described above, the simulator can be transparent

to the implementation.

118

C. NUMERICAL INTEGRATION

INSTRUCTIONS

120

Three locations exist within the GCS specification requiring the use of a

highly accurate numerical integration method 1. These locations are the

calculations of GP_VELOCITY, GP_.ALTITUDE, and GP_-_TTITUDE in

the Guidance Processor. To maintain the necessary degree of accuracy in

certain output variables, three methods of numerical integration have been

designated as acceptable for coding: Adams-Moulton method, Hamming's

method, and the Runge-Kutta fourth-order method.

Each method is briefly described in the following paragraphs and refer-

ences to numerical analysis texts describing the method are provided. Algo-

rithms specified in either a text listed or another suitable numerical analysis

text should be used during coding.

Adams-Moulton Method requires values from the previous four time

steps to calculate the value at the next time step. The Adams-Moulton

method is a predictor/corrector method. Both [14] (pp. 346-7) and [16]

(pp. 478-81) explain the Adams-Moulton method.

Hamming's Method uses a predictor/corrector method similar to that

of Adams-Moulton. Hamming's method uses the same predictor as

Milne's, but uses a much simpler corrector formula. Milne's method

of integration was deemed to unstable for use, but Hamming's method

with the simpler corrector is sufficiently stable. A description of both

Hamming's method and Milne's method can be found in [14] (pp. 347-

8).

Runge-Kutta Fourth-Order Method The well-known Runge-Kutta fourth-

order method requires only the previous two values to calculate the

next value. References can be found in many texts including; [14]

(pp. 352-8), [15] (pp. 273-80), [16] (pp. 481-6), and [17] (pp. 152-4).

1Note: not all integration required by the GCS specification requites the use of one
of the methods listed in this appendix. More specifically, in computing TEJNTEGRAL,
PE_INTEGRAL, and YE..INTEGRAL, Euler's method provides sufficient accuracy and
simplicity and should be used. Information on Eulet's method may be found in: [14]
(pp. 31a-22), [ls] (pg. 223), and [16] (pp. 462-3).

121

PRECEDING PAGE BLANK NOT FILMED ¢_1,.._0 IHTtEHTIOIiN_JI BC.ANI

During the first time step, using a numerical integration method neces-

sitates some specification of previous values. These values will be provided

during initialization for the data elements provided in Table C.1.

Table C.I: INITIAL VALUES PROVIDED FOR USE IN INTEGRATION

A_ACCELERATION (1..3,0..4)

AR_ALTITUDE (0..4)

GP_ALTITUDE (0..4)

GP_ATTITUDE (I..3,I..3,0..4)

GP_VELOCITY (I..3,0..4)

G_ROTATION (I..3,0..4)

K_ALT (0..4)

K_MATRIX (1..3, 1..3, 0..4)

TDLR_VELOCITY (1..3, 0..4)

To insure that the numerical integration scheme coded provides sufficient

accuracy in the output variable, an Accuracy Validation Utility Program

(AVUP) will be used during acceptance testing.

122

Bibliography

[1] Federal Aviation Administration. One McPherson Square, 1425 K

Street N.W., Suite 500, Washington, DC 20005. Radio Technical Com-

mission for" Aeronautics Document RTCA/DO-178A, August 1986.

[2] George B. Finelli. Results of software error-data experiments. In

AIAA/AHS/ASEE Aircraft Design, Systems and Operations Confer-

ence, Atlanta, GA, September 1988.

[3] Harm Buning and D. T. Greenwood. Flight mechanics of space and

re-entry vehicles. Technical report, The University of Michigan Engi-

neering Summer Conferences, Summer 1964.

[4] Herbert Goldstein. Classical Mechanics. Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, USA, 1959.

[5] Irving H. Shames. Engineering Mechanics - Statics and Dynamics.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.

[6] Dan Edwin Christie. Vector Mechanics. McGraw-Hill Inc., New York,
1964.

[7] David Hestenes. New Foundations for Classical Mechanics. D. Reidel

Publishing Company, Boston, 1986.

[8] D. N. Burghes and A. M. Downs. Classical Mechanics and Control.

Ellis Horwood Limited, Coil House, Westergate, England, 1975.

[9] G. S. Light and J. B. Higham. Theoretical Mechanics. Longman Inc.,

New York, 1975.

[10] Don C. Rich and J. R. Dunham. Guidance and control software simula-

tor (gcs_sim) software specification. Technical Report NASA Contract

NAS1-17964; Task Assignment No. 8, Research Triangle Institute, Re-

search Triangle Park, NC, 1987.

[11] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., En-

glewood Cliffs, New Jersey, 1981.

[12] Derek J. Hatley. The use of structured methods in the develop-

ment of large, software-based avionics systems. In Proceedings of the

AIAA/IEEE 6th Digital Avionics Systems Conference, New York, De-
cember 1984.

[13]

[14]

[15]

[16]

[17]

Derek J. tlatley and hntiaz A. Pirbhai. Strategies for Real-Time System

Specification. Dorset liouse Publishing Company, New York, New York,
1987.

W. Allen Smith. Elementary Numerical Analysis. Harper & Row, New

York, 1979.

J. B. Scarborough. Numerical Mathematical Analysis. The Johns Hop-

kins Press, Baltimore, 1930.

Stephen M. Pizer. Numerical Computin9 and Mathematical Analysis.

Science Research Associates, Inc., Chicago, 1975.

Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integra-

tion. Academic Press, New York, 1975.

124

[WLSA
Nat,onal Aeronaul_C5 and

Spa_e Adrn._lsttatlon

1. Report No.

NASA CR- 182058

4. Title and Subtitle

Software Requirements •

Report Documentation Page

2. Government Accession No.

Guidance and Control Software

3. Recipienl's Cat'alog No.

5. Report Date

June 1990
Development Specification

7. Author(s)

B. E. Withers, D. C. Rich, b.
Buckland

S. Lowman, and R. C.

9. Purtormmg Organizalion Name and Address

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709-2194

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

6. Perforating Organization Code

B. Pedo,ning Organ=z;,t_on Report No.

10. Wurk Unit No.

505-66-21-01

1I. Col=tract of Gra,l| No.

NASI-17964

13. ['ype of Report and Period Cove,ed

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Technical Monitor:

Task 8 Report
George B. Finelli, Langley Research Center

16. Abstract

This document specifies the software requirements for an implementation of
Guidance and Control Software {GCS). The purpose of the GCS is to provide
guidance and engine control to a planetary landing vehicle during its terminal
descent onto a planetary surface and to communicate sensory information
about that vehicle and its descent to some receiving device. The specification

was developed using the structured analysis for real-time system specification
methodology by Hatley and Pirbhai and was based on a simulation program
used to study the probability of success of the 1976 Viking Lander missions to
Mars. Three versions of GCS are being generated for use in software error
studies research conducted by the Research Triangle Institute and the NASA
Langley Research Center.

17. Key Words (Suggested by Author(s))

Software Requirements

Specification
Guidance and Control Software (GCS)

Planetary Landing Vehicle

18. Distribution Statement

Unclassified-Unlimited

Subject Category 61

19. SecuriW Classil, Iof this report)

Unclassified

20. Security Cla_il. (ol thas pag=)

Unclassified
i

NASA FOHM 1(_,2.60Cl o_

