@ https://ntrs.nasa.gov/search.jsp?R=19900017211 2020-03-19T22:23:21+00:00Z

- I

NASA Contractor Report 182058

SOFTWARE REQUIREMENTS

Guidance and Control Software
Development Specification

(NATA-LR=-142055) SOFTWARE REGUIREMPNTS:
GUIDAMET AnD CUMT24L SUFTWARE DEVELNPMINT
SPeCITICATINN (Kesnarch Triangle Inst.)
il1> o C2CL Qy®
53/61

B. Edward Withers, Don C. Rich,
Douglas S. Lowman, and R. C. Bucklani

RESEARCH TRIANGLE INSTITUTE
Research Triangle Park, North Carolina

Contract NAS1-17964
June 1990

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

NIC-2h527

unct ss
02933n,

SOFTWARE REQUIREMENTS

Guidance and Control Software
Development Specification

RTCA DO-178A Document Number 2

Release number: 2.1

Prepared for:

NASA-Langley Research Center under contract
NAS1-17964; Task Assignment No. 8.

Prepared by:

Author(s): B. Edward Withers

Don C. Rich

Douglas S. Lowman

R. C. Buckland

Reviewer(s): RTI - Anita M. Shagnea
Janet R. Dunham

NASA - G. Earle Migneault

Bernice Becher

George B. Finelli

Software R & D Department
Center for Digital Systems Research

Research Triangle Institute
Research Triangle Park, North Carolina 27709

ACKNOWLEDGEMENT
These specifications were reverse-engineered from a simulation program
written by Earle Migneault during the early seventies to study the probabil-

ity of success of the 1976 Viking Lander missions to Mars. We are grateful
to him for identifying such an interesting problem to be studied.

1114

PRECEDING PAGE BLANK NOT FILMED

Preface

The Guidance and Control Software Development Specification is document
2in a series of fifteen documents which fulfill the Radio Technical Commis-
sion for Aeronautics RTCA/DO-178A guidelines, “Software Considerations
in Airborne Systems and Equipment Certification [1]." The documents are
numbered as specified in the DO-178A guidelines. The documents in the
series are used to demonstrate compliance with the DO-178A guidelines
by describing the application of the procedures and techniques used during
the development of flight software. These documents were prepared un-
der contract with NASA-Langley Research Center as a part of their long
term research program addressing the fundamentals of the software failure
process.

This project consists of two complementary goals: first, to develop soft-
ware for use by the Research Triangle Institute (RTI) in the software error
studies research program sponsored by NASA-Langley Research Center [2];
second, to use and assess the RTCA/DO-178A guidelines for the Federal
Aviation Administration (FAA). The two goals are complementary in that
the use of the structured DO-178A guidelines in the development of the
software will ensure that the test specimens of software have been devel-
oped according to the industry standards for flight critical software. The
error studies research analyses will then be conducted using high quality
software specimens.

The implementations will be subjected to two different software test-
ing environments: verification of each implementation according to the
RTCA/DO-178A guidelines and replicated random testing in a configura-
tion which runs more than one test specimen at a time. The term tmple-
mentations refers to bodies of code written by different programmers, while
a version is a piece of code at a particular state (i.e., version 2.0 is the result
of code review). This research effort involves the gathering of product and
process data from every phase of software development for later analysis.
More information on the goals of the Guidance and Control Software (GCS)
project are available in the GCS Plan for Software Aspects of Certification.

The series consists of the following documents:
- GCS Configuration Indez Document no. 1

- GCS Development Specification Document no. 2

amei_ |\ INTENTIONALLY BLANA
FRECECING FA

GE BLAN

GCS Design Descriptions One for each softwareimplementation. Doc-
ument no. 3

GCS Programmer’'s Manual Document no. 4, includes Software De-
sign Standards, document no. 12.

- GCS Configuration Management Plan Document no. 5A
Software Quality Assurance Plan for GCS Document no. 5B

GCS Source Listing One for each software implementation. Document
no. 6

GCS Source Code One for each software i nplementation. Document
no. 7

GCS Erecutable Object Code One for each software implementation.
Not available on hardcopy. Document no. 8

GCS Support/Development System Configuration Description Docu-
ment no. 9

GCS Accomplishment Summary Document no. 10
Software Verification Plan for GCS Document no. 11

GCS Development Specification Review Description Document no.
11A

GCS Simulator (GCS_SIM) System Description Document no. 13
GCS Simulator (GCS_SIM) Certification Plan Document no. 13A

GCS Plan for Software Aspects of Certification Document no. 14

vi

FOREWORD

This specification defines the fourth problem to be studied as a part of
series of controlled case studies sponsored by NASA-Langley Research Cen-
ter. These studies address the fundamentals of the software failure process.
The goal is to develop a method for assessing, and engineering, reliable and
safe software.

This fourth problem, a guidance and control system for a planetary land-
ing vehicle, represents an order of magnitude increase in problem complex-
ity over the previous problems studied. It is specified using an extension
to the popular method of structured analysis. This specification method
was selected instead of a formal one for the sole purpose of not making the
specification development activity a research effort in itself. In addition, the
intent of the study is to observe failures, given that the software has been
developed using a quality-oriented, state-of-the-art engineering approach.

Note that this specification is written for an experienced programmer
with two or more years of full-time industrial programming experience us-
ing a scientific programming language. The programmer should have an
adequate background, either through college courses or job training in math-
ematics, physics, differential equations, and numerical integration. In addi-
tion, an individual well-versed in aeronautical engineering should be avail-
able to answer programming questions concerning vehicle dynamics.

Much effort has been expended in making this specification as error {ree
as possible. It has been validated by extensive peer review and informal
walkthrough, coding a prototype implernentation, and using an extended
structured analysis design tool.

Janet R. Dunham

Edward Withers

March 18, 1988

vii

Contents

Preface v

1 INTRODUCTION 1
PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE 3
VEHICLE CONFIGURATION 3
TERMINAL DESCENT 6
VEHICLE DYNAMICS 6
Frames of Reference, . 6

Linear Velocity 8

Vehicle Position L. 8
Angular Velocity, 8

Vehicle Attitude 8
Acceleration L 8

Further Reading 10
Notation 10
VEHICLE GUIDANCE 11
ENGINES 12
Axial Engine (Thrust) Control 12

Roll Engine Control 12

2 LEVEL 0 SPECIFICATION 13
3 LEVEL 1 SPECIFICATION 19
4 LEVEL 2 SPECIFICATION 23
5 LEVEL 3 SPECIFICATION 31
2.1 AECLP - Axial Engine Control Law Processing 33
2.2 ARSP - Altimeter Radar Sensor Processing 37
2.3 ASP - Accelerometer Sensor Processing 41
2.4 CP - Communications Processing 45
2.5 CRCP - Chute Release Control Processing 49
2.6 GSP - Gyroscope Sensor Processing 51
2.7 GP - Guidance Processing 53
2.8 RECLP - Roll Engine Control Law Processing 61
2.9 TDLRSP - Touch Down Landing Radar Sensor Processing. . . 65
2.10 TDSP - Touch Down Sensor Processing. 71
2.11 TSP - Temperature Sensor Processing 73

PR . 1x
emce_V ||| INTENTIONALEX BLANK

PRECEDING PAGE BLANK NOT FiLMED

viii

6 SYSTEM TIMING AND MEMORY SPACE REQUIRE-

MENTS 77
TIMING REQUIREMENTS 79
Model Time 79
Response Times 80
MEMORY SPACE REQUIREMENTS 82
7 DATA REQUIREMENTS DICTIONARY 83
PART I. DATA ELEMENT DESCRIPTIONS 85
PART II. CONTENTS OF DATASTORES 99
PART III. LIST OF CONTROL VARIABLES
AND DATA CONDITIONS 103
A FORMAT OF THIS SPECIFICATION 109
INTRODUCTION TOFORMAT 111
B IMPLEMENTATION NOTES 113
INTERFACE 115

C NUMERICAL INTEGRATION INSTRUCTIONS 119

1.1
1.2
1.3

2.1
2.2

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
Al

B.1

List of Figures

THE LANDING VEHICLE DURING DESCENT.
A TYPICAL TERMINAL DESCENT TRAJECTORY
ENGINEERING ILLUSTRATION OF VEHICLE

DATA CONTEXT DIAGRAM FORTHEGCS
GCS CONTROL CONTEXT DIAGRAM

PROCESS 0. GCS« o i it i e i e s
CONTROL 0. GCS . . .« o o i e e

PROCESS 2. RUN.GCS v
CONTROL 2. RUNGCSo

VELOCITY ALTITUDE CONTOUR
GRAPH FOR DERIVING ROLL ENGINE COMMANDS . .
DOPPLER RADAR BEAM LOCATIONS
DOPPLER RADAR BEAM ANGLES
CALIBRATION OF THERMOCOUPLE PAIR

TYPICAL TIMELINE e
GRAPHICAL SYMBOLS USED IN FLOW DIAGRAMS . .

DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMEN-
TATIONS . . o o o e e e e e e e e e

x1

17
18

21
22

26
27

57
63
66
69
75

80
112

List of Tables

3.1 CONTROL 0. GCS - SPECIFICATION 1 22
4.1 CONTROL 2. RUN_GCS - SPECIFICATION 1 28
4.2 CONTROL 2. RUN_GCS - SPECIFICATION 2 29
4.3 CONTROL 2. RUN_GCS - SPECIFICATION 3 29
5.1 DETERMINATION OF AXIAL ENGINE TEMPERATURE 34
5.2 PcL, YCL, and TCL CONTROL LAW COEFFICIENTS 35
5.3 DETERMINATION OF ERROR TERMS 36
5.4 USE OF STATUS IN CALCULATION OF ALTITUDE . . . 39
5.5 PACKET VARIABLES 47
5.6 SAMPLE MASK 47
5.7 EXAMPLE OF PACKET 48
3.8 DIFFERENTIAL EQUATIONS 56
5.9 GUIDANCE PHASES 58
5.10 AVERAGING DOPPLER RADAR BEAMS IN LOCK 68
6.1 TIMING REQUIREMENTS e e 81
6.2 MEMORY SPACE REQUIREMENTS 82
7.1 DATA STORE: GUIDANCESTATE 99
7.2 DATA STORE: EXTERNAL 100
7.3 DATA STORE: SENSOR_OUTPUT 100
7.4 DATA STORE: RUN_PARAMETERS 101
7.5 DATA STORE: RUN_PARAMETERS (cont.) 102
7.6 CONTROL VARIABLES (OPTIONAL USAGE) 103
7.7 DATA CONDITIONS (REQUIRED USAGE) 103
7.8 INITIALIZATION DATA 104
7.9 INITIALIZATION DATA (comt.) 105
7.10 INITIALIZATION DATA (cont.), 106
7.11 INITIALIZATION DATA (comt.), 107
C.1 INITIAL VALUES PROVIDED FOR USE IN INTEGRA-
TION . 122
x1i4

ol i'\ ! Nmmj(w m“

PRECEDING PAGE BLANK NOT FILMED

LARK
i INTENTIONALLY B

1. INTRODUCTION

PURPOSE OF THE GUIDANCE AND CONTROL
SOFTWARE

The purpose of the Guidance and Control Software (GCS) is to:

1. provide guidance and engine control of the vehicle (shown in Fig-
ure 1.1) during its terminal phase of descent onto a surface and

2. commuricate sensory information about the vehicle and its descent to
some other receiving device.

A typical terminal phase of descent trajectory is shown in Figure 1.2.

The initialization of the GCS starts the sensing of vehicle altitude. When
a pre-defined engine ignition altitude is sensed by the altimeter radar, the
GCS begins guidance and control of the vehicle. The axial and roll en-
gines are ignited; while the axial engines are warming up, the parachute
remains connected to the vehicle. During this engine warm-up phase, the
aerodynamics of the parachute dictate the trajectory followed by the ve-
hicle. Vehicle attitude is maintained by firing the engines in a throttled-
down condition. Once the main engines become hot, the parachute is re-
leased and the GCS attempts to maintain the descent of the vehicle along
a pre-determined velocity-altitude contour. The vehicle descends along this
contour until a pre-defined engine shut off altitude is reached or touchdown
is sensed. After all engines are shut off, the vehicle free-falls to the surface.

VEHICLE CONFIGURATION

The vehicle to be controlled is a guidance package containing sensors which
obtain information about the vehicle state, a guidance and control computer,
and actuators providing the thrust necessary for maintaining a safe descent.
The vehicle has three accelerometers (one for each body axis), one doppler
radar with four beams, one altimeter radar, two temperature sensors, three
strapped-down gyroscopes, three opposed pairs of roll engines, three axial
thrust engines, one parachute release actuator, and a touch down sensor.
The vehicle has a hexagonal, box-like shape with three legs and a surface
sensing rod protruding from its undersurface.

L2 INTENTIONALLY Biang

PRECEDING PAGE BLANK NOT FILMED

Figure 1.1: THE LANDING VEHICLE DURING DESCENT

L

=M X

Xy

9

Ty

Figure 1.2: A TYPICAL TERMINAL DESCENT TRAJECTORY

/

—~Termwmal Descent Peqins

e

ORIGINAL PAGE |5
OF POOR QUALITY

TERMINAL DESCENT

Prior to the terminal descent phase, the vehicle falls with a parachute at-
tached. This parachute is released seconds after the engines ignite and termi-
nal descent begins. During terminal descent, the vehicle follows a modified
gravity-turn guidance law until a pre-determined altitude is reached. The
atmosphere introduces drag forces, including the random effects of wind.
Differentially throttled engines slow the vehicle down. These engines can
control the vehicle’s orientation, and roll engines control the vehicle’s roll
rate. Roll control is necessary to keep the doppler radars in lock and insure
that the desired touch down attitude (land on two legs prior to the third)
is maintained.

The velocity during descent follows the pre-determined velocity altitude
contour. At approximately 60 feet above the planet surface, the vehicle is
maintained at a constant descent velocity of ten feet per second. Once the
surface is sensed, all engines are shut down and the vehicle free falls to the
surface.

VEHICLE DYNAMICS

Frames of Reference

Terminal descent is described in terms of two coordinate systems:
1. the surface-oriented coordinate system, and
2. the vehicle-oriented coordinate system.

In the surface coordinate system, the 7, axis is viewed as normal to the
surface and points down as shown in Figure 1.2. The 7, axis points north,
and the g, points east.

By defining a unit vector as a vector of length equal to one unit along
each axis in both the planetary and vehicular frames of reference, a relation
between these two frames of reference may be established. Any vector can
then be defined as a multiple of the unit vector along each of the axes defined
in the frame of reference. Thus, the velocity of the vehicle V may be defined
in the vehicle’s frame of reference as: V,ﬂ., + Vyuj'u + V,vl;t.,, where 2.,, 3'.,, and
k, are the unit vectors in the r, y, and z directions of the vehicles coordinate
system (unit vectors are usually represented by lower case i, j, or k with a
hat to show that they are unit vectors). Vi, Vy,, and V,, represent the

components of the vehicle velocity in the given direction. At the same time,
the velocity of the vehicle may be described in the planetary coordinate
system as: prip + Ir’yp}'p + vzpic,,, where the subscript p represents planetary
rather than vehicle coordinates. Note, since the two coordinate systems are
not oriented in the same direction, the values of V;, will not be equal to Vip
but the magnitude of the total vector V will be the same in both systems.
Also the difference in the magnitudes of individual components represents
the difference in relative orientation between the two coordinate systems.
The dot product (- b) is defined as the magnitude of @ multiplied by
the magnitude of b and then by the cosine of the angle between the vectors,

@-b = |a||b| cos La@b

The dot product is used to project @ onto b and can be used to project a
vector in one frame of reference onto another one. Rather than calculate
the needed cosines each time a vector must be transformed from one frame
of reference into another, the cosines of the angles between each unit vector
of the vehicular and planetary coordinate systems are computed and placed
into a direction cosine matrix. This matrix is then used along with the
vector’s magnitude in each dimension of the original frame of reference to
compute a dot product. This product gives the vector’s magnitude in each
dimension of the new frame of reference.

The transformation between the vehicle and the surface coordinate sys-
tems at time ¢t is specified by a matrix of direction cosines,

L I, I cosﬂ(i:,,i;,) cosO(i:,,fp) cos0(i1,,k},)
m; my m3 = c0s0(Jy,1p) €088(Jy,Jp) €0SB(Jy, kp)

c0sB(ky, tp) cosB(ky,Jp) cosB(K,,kp)

t t

where 6(7,7) denotes the angle between vectors i and j, etc.

The change in orientation of the vehicle during descent makes the update
of the direction cosine matrix necessary at each time step. This update is
specified in the following equation:

L I I3 0 rn -q L &L i
d/dt| mi my mg3 =| -r, 0 Py m; mg ma

@ -po 0 ny ny n3

mn n; ni "

t t

where the matrix containing the p,, ¢,, and r, terms is the rate of rotation
about the axes of the vehicle which may be obtained from sensor values.

Linear Velocity

The linear components of velocity for the vehicle during terminal descent
are denoted by £, ¥, and Z, in the vehicle coordinate system and by z,, ¥p,
and 7, in the surface coordinate system, where the dot () notation indicates
derivatives with respect to time.

Vehicle Position

Vehicle position is expressed in terms of the surface coordinate system by
transforming change in position (velocity) in the vehicle coordinate system
into change in position in the surface frame and integrating as follows:

ip 11 m n :Ifu
Yp = I my ne Yy
Zp ¢ 13 ma n3 ¢ 2y ¢
and
Tp Zp
Yp = / Yo dr
ZP Zp ¢

Angular Velocity

Roll, pitch, and yaw angular velocities are represented by the quantities
Pus Gs, and 7, in the vehicle frame of reference only. Roll is about the
£, axis, pitch is about the §, axis, and yaw is about the 7, axis, as shown
in Figure 1.3. A more in-depth explanation of angular velocity naming
conventions and other related material may be found in section II, part B
of Reference [3].

Vehicle Attitude

The vehicle attitude at time t is a function of the vehicle attitude (known
by reference to celestial objects) at the start of descent at time to and the
cumulative changes in attitude from time fo to time ¢ .

Acceleration

The linear components of acceleration for the vehicle in the vehicle frame of
reference during terminal descent are denoted by Z, yu, and z, respectively.

8

Figure 1.3: ENGINEERING ILLUSTRATION OF VEHICLE

Boltowm View

(X out of saqe)

Anol E-"... (”

Faot Pad (2

Rol Engine ()

1 Side Ve
(r 6w of
Pege)
/{ — <D —\—— ,
Posibive
Asial twust
8 / \ 47 (‘{3\.)\
L2

ORIGITHAL PFCE IS
OF POOR QUALITY

Further Reading

The subjects of vector mathematics, transformations between frames of ref-
erences, vector calculus, and rotating coordinate systems may not be suffi-
ciently covered here for the user; however, such depth is not intended for this
document. Chapter 4 of Classical Mechanics[4] contains a detailed explana-
tion of rigid body motion and transformation of vectors into multiple frames
of reference or coordinate systems. Chapters 15 and 16 of Engineering Me-
chanics [5) contains a more basic approach to the same ideas of multiple
frames of reference and vector mechanics. Chapter 14 of [6] and Chapter 5
of [7) also discuss rotational motion and multiple frames of reference, as well
as vector mechanics and calculus. Two other books of possible interest are
8] and [9]. Both cover the mechanics of particles and dynamics, with strong
references to particle trajectories and rocket dynamics. Also, these texts are
basic in nature and require only a rudimentary knowledge of physics, math,
or engineering.

Notation

Throughout this specification, matrix operations (particularly multiplica-
tion), are required, and on some occasions, non-standard operations are
used upon matrices. The following symbols are used to denote the types of
multiplication to be applied.

Dots (-) Small dots are used to denote scalar multiplication. For example:
3-4=12
Multiplication sign x This symbol is used to denote standard matrix

multiplication. This does NOT imply a cross product, nor strictly
a dot product. The definition of this type of operation is given below:

AxB=C
where

Ci; = Y_ Ai - By;-
k=1

Asterisks (*) Asterisks are used in conjunction with index markers to
show that the operations are to be conducted on individual elements

10

of arrays or vectors as if they were scalars. This is often the case
when calculating sensor values or other similar functions when mul-
tiple scalars are grouped together for convenience. For example, the
following equation is listed in ASP:

The equation for measured acceleration then becomes:
A ACCELERATION _M(i) = A_BIAS(i)+AGAIN(i)xA.COUNTER(i)

where i ranges from 1 to 3 and represents the three directions X, Y,
and z.

In this case, the first element of A ACCELERATION_M would be
calculated as follows:

A-ACCELERATION_M(1) = A_BIAS(1)+A-GAIN(1)A.COUNTER(1),

No Operator In those cases where variables, matrices, or scalars are lo-
cated directly beside each other with no operator between, standard
multiplication is implied. Thus two matrices collocated would be mul-
tiplied as if they had the x operator between them, while two scalars
would be multiplied as if they had the - operator between them. Also,
if a scalar and a matrix (of one or more dimensions) were collocated,
then the scalar would be multiplied by each element of the matrix and
a new matrix of equal dimensions would be generated.

It should be noted that throughout this specification, the words matrix
and array are often interchanged. No significance should be placed upon the
use of one word as opposed to use of the other.

VEHICLE GUIDANCE

Vehicle guidance is accomplished by varying the engine thrust so that the ve-
hicle follows a single pre-determined velocity /altitude contour. This contour
is made available during GCS initialization. Applying too great a decelera-
tion early in the descent brings the vehicle velocity to its terminal value too
high above the surface, resulting in insufficient propellant for final descent.
Applying too small a thrust lets the vehicle impact the surface with too
great a velocity. Either condition could be disastrous. As soon as the touch
down sensor touches the surface, the engines are shut off. Approximately

11

ninety percent of propellant or thrust is used to minimize gravity losses; the
remaining ten percent is used for steering.

A gravity-turn steering law is mechanized by rotating the vehicle in pitch
and yaw until the body’s lateral axis velocities are zero (causing the thrust
axis to point along the total velocity vector). The action of gravity causes the
thrust axis to rotate toward the vertical as the total velocity is reduced. An
arbitrary roll orientation is maintained with an attitude hold mode during
the descent.

ENGINES

The vehicle has three axial engines that supply the force necessary to slow
the vehicle and allow it to safely land. Roll is controlled by three pairs of
roll engines on the lander supplying rotational thrust. Figure 1.3 shows the
axial and roll engines and the resulting thrust forces they impart to the
vehicle.

Axial Engine (Thrust) Control

Three thrust engines first orient the vehicle so that their combined thrust
vector opposes the vehicle’s velocity vector. Thrust (axial direction) engine
control is a function of pitch error, yaw error, thrust error, and deviation
from the velocity altitude contour. A combination of proportional and in-
tegral control (PI) logic is applied to pitch and yaw control. The integral
portion helps to reduce the steady-state pitch and yaw error.

If no thrust error or velocity-altitude contour deviation occurs, then axial
engine response provides only pitch and yaw control via the PI control law.
Use of this control law implies that the overshoot problem for pitch-yaw
control is probably small.

Thrust control is implemented by a proportional-integral-derivative (PID)
control law. The derivative control added here damps out overshoot.

Roll Engine Control

Roll control is attained by pulsing the three pairs of roll engines and is a
function of roll angle deviation and roll rate (p,) about the z axis. Roll
engine specific impulse and thrust per unit time are constant with the in-
tegrated thrust controlled by pulse rate. Angle deviations are controlled
within a very small range of 0.25 to 0.35 degrees.

12

2. LEVEL 0 SPECIFICATION

14

The GCS will operate within a redundant, distributed-processing frame-
work. It will provide an interface between the sensors (rate of descent, atti-
tude, etc.) and the engines (roll and axial). The purpose of the GCS is to
keep the vehicle descending along the pre-determined velocity-altitude con-
tour which has been chosen to conserve enough fuel to effect a safe attitude
and impact upon landing.

The GCS effects this control by:
* processing the following sensor information:

— acceleration data from the three accelerometers - one {or each
vehicle axis,

— range rate data from four splayed doppler radar beams,
— altitude data from one altimeter radar,

— temperature data from a solid-state temperature sensor and a
thermocouple pair temperature sensor,

— rates of rotation from three strapped-down gyroscopes - one for
each vehicle axis, and

— sensing of touch down by the touch down sensor.

¢ determining the appropriate commands for the axial and roll engines
and the chute release mechanism and issuing them to keep the vehicle
on a pre-determined velocity/altitude contour.

The GCS also transmits telemetry data and rendezvous with GCS_.SIM (10],
the simulator and controller.

Versions of the GCS developed from this specification may be executed
singly or in parallel. Output from multiple versions at various synchroniza-
tion points will be voted to control the vehicle. One of the effects of this
design on the specification has been a constraint to use only specific system
services. In particular, a rendezvous routine will be provided and should
be invoked, as specified in the implementation notes [Appendix B]. Other
system services and library routines are explicitly excluded from use by the
programmers.

When programming, the modules shown in this specification need not be
treated as totally separate units. The programmer determines the organi-
zation of the code with two mandatory requirements. The data stores must
be organized as given, and the code must work within the context of the

15

X BLANE
w /Y SNTENTIONALLY
PRECEDING pagE BLANK NOT FiLmep |

timing requirements of the system as given. For purposes of flight system
design, all components of the system are considered flight critical as defined

by RECA docnment DO-178A[1].

16

Figure 2.1: DATA CONTEXT DIAGRAM FOR THE GCS

Fm e = -y F- - = - - R F_——— - = - S F_— - = - = a L) - —— - a
1 I i I 1 ' ¥ [}] I ']
' ! U Altimeter | ! Doppler) [L i Temperature 1! I Touch Down |
t Accelerometers | ' Radar) | Radar i | Gyroscopes 1 I Sensors (1 Sensor 1
' (3) 1 I (1)) 1) I I (3) | I (2)) i (1) 1
] i I t I I 1 1 I ' [})
| i ') [} 1 I I 1 1 i]
e e = s Cm e o a4 ;___(__4 L—_—F_-J [Cm e = 4
Rotation Ambient Touch
Acceleration Altitude Velocity Rate Temperature Down
Data Data Data Data Data State
F-—-——- - b
] 1
1 GCSSIM 1 Rendezvous
! L~ — GCS
I (1)]
| [}
' 1
A - - - 4
Axial Roll I Parachute Vehicle
Engine Engine Release State
Commands Commands ‘—] Signal Dats
r=e -- -- 8 [t] r——-L-—\
[} | [} [} [} !
! Axial ! ! Roli | ! Parachute !
t Engines ! 1 Engines [! Release Switch !
! () ! , Gesin ' 1) !
I 1 [}
[} 1 | | [})
b m - e - rl L - am e - va . 4 bt e = - - 4
r---t__ -
[}]
I Telemetry |
' Hardware !
])
1
1 () t
]]
A - - - - o

17

Figure 2.2: GCS CONTROL CONTEXT DIAGRAM

Altimeter

Radar
(1)

N - - — - —

]

I Touch Down
! Sensor

! (1)
i

1

|
i
t
1
i
1
P

F---——--—- hl

t 1

§ GCS.SIM IRendeavous

: 1) | — e GCS

' 1

! 1

| S 4

ON/OFF ON/OFF
‘ THRUST PULSE j ON

r———l*—-'a r-—-L——'\ R
| ' | \ 1 '
! Axial ' | Roll t I Parachute !
' Engines 1 1 Engines ! | Release Switch !
! (3) ! L (3 pairy ! ! (1) !
' 1 ' | 1 1
[} | t t § [}
- = = = = 4 A e o o= e = - rl b o e o e - - 4

18

R

Telemetry
Hardware

)

- = —-— 4

3. LEVEL 1 SPECIFICATION

20

Figure 3.1: PROCESS 0. GCS

Initialization Data 1
INIT_GCS
RE.SWITCH GUIDANCE STATE RUN_PARAMETERS
TDLRSP SWITCH
TDSP.SWITCH

o ! 2
SENSOR.NPUT h RUN_GCS

]
t CONTROL AND TELEMETRY
1 OUTPUTS [

1

21

PRECED!NG PAGE BLANK NOT FILMED ‘»’m.fﬁ.__mmmuuu BLANK

Figure 3.2: CONTROL 0. GCS

Specification 1

1 T

T

| llNlTJ)ONE/l | RUN_DONE/1
RE_SWITCH/1
| - .
'DSP SWITCH/1
START SIGNAL . LDSPSWITCHA Z EXIT
o < I
’ INIT_GCS TDLRSP SWITCH/S RUN_GCS >

INIT DONE/1]

Table 3.1: CONTROL 0. GCS - SPECIFICATION 1

CONTROL VARIABLE | STATE
Start Signal = 1 Init_GCS
INIT_.DONE =1 Run_GCS
RUNDONE =1 Inactive

22

4. LEVEL 2 SPECIFICATION

24

PROCESS 1. INIT.GCS

PURPOSE INIT.GCS initializes the guidance and control software.

INPUT

QUTPUT LSee Tables 7.8-7.11.]

PROCESS Init.GCS will be executed on the first call to rendezvous.
Both Init_GCS and rendezvous will be supplied to the programmer. There
should be a call to rendezvous prior to executing each sub-frame. The first
call will execute Init_GCS, which will load any needed initial values for later
use.

e LOAD INITIAL VALUES - Load initial values for velocity, altitude,
and attitude, as well as any others, such as the constant gains and off-
sets that are needed. The values to be loaded in are shown in the table
INITIALIZATION DATA in part III of the DATA DICTIONARY.

e TURN ON SWITCHES - Turn on the Roll Engine Switch, the Touch
Down Landing Radar Switch, and the Touch Down Sensor Switch.

e SET FRAME COUNTER - The frame counter will be initialized to
some number representing the next frame to be executed. This allows
the option of starting execution at some point beyond the first frame
of a trajectory.

25

PRECEDING PAGE BLANK NOT FILMED m&_.mmm.ﬂm BLANK

Figure 4.1: PROCESS 2. RUN.GCS

ASP GSP TSP ARSP TDLRSP TDSP
SENSOR.OQUTPUT
RUN_PARAMETERS }————-——— GP
GUIDANCE.STATE =
RCP AECLP RECLP
S
'
1 PACKET

1
]
[
'
b
'
L]

CONTROL AND TELEMETRY

OUTPUT

CcP

Figure 4.2: CONTROL 2. RUN_GCS

| |

|

I

SPEC 1

SPEC 2

ASP._ G3SP_ TSP. ARSP. TDLR:P._ TDSP. CP.
DONE/O DONE/O DONE/0O DONE/O DONE;D DONE/O ONE/o
| | | [
ASP Gs3P TSP ARSP TDLRSP TDSP CP
| T | 1 | 1
ASP. G3P. TSP. ARSP_ TDLR:P. TDSP.
DONE/1 DONE/1 DONE/1 DONE/1 DONE /! DONE/1
1 |
|
GP_DONE/0
GP
I
|
lGPJ)ONE/l SPEC 3
| | |
| | |
AECLP_DONE/O RECLP_DONE/O CRCP_DONE/0
| |
AECLP RECLP CRCP
| 1 |
| | |
AECLPDONE/1 RECLP.DONE/I CRCP.DONE/I

|

27

|

Table 4.1: CONTROL 2. RUN_GCS - SPECIFICATION 1

[SCHEDULING]
Sensor Processing Sub-Frame "
ARSP 2
ASP 1
CcpP 1
GSP 1
TDLRSP 2

5

2

TDSP
TSP

Guidance Processing Sub-Frame ‘17
CP 1

GP 1

Control Law Processing Sub-Frame | “I"
AECLP 1
CP 1
CRCP 5
RECLP i

Above is a table listing each process in the GCS according to the subframe where
they should be executed. A number “I” is located along with the process name. This
number indicates that the process should be executed every “Ith” frame. Note that
all processes are executed during frame number 1. Also note that execution of the
GCS may begin at any frame number and should operate as if it had been running
from the beginning of the trajectory. There are minor sequencing constraints to
be imposed upon the modules in each subframe. During the sensor processing
subframe, ‘TSP should be executed before any of the other modules, and CP should
be executed last. In the guidance and control subframes, CP should be executed
after the other modules. Lastly, during the control subframe, AECLP needs to
be executed before CRCP. All modules not specified here may be executed in any
order within their subframes. On the first, and subsequent, calls to rendezvous,
FRAME_COUNTER will be returned to the application containing the correct
value for operation. The value in FRAME_COUNTER should be compared to the
numbers listed below to determine if a process should be executed. As an example,
ARSP has a number of 2, which means that it executes every other frame; while
ASP has a number of 1, meaning it executes every frame; and TDSP has a number
of 5, so it executes only every fifth frame. Chapter 6 provides additional information
on timing requirements.

28

Table 4.2: CONTROL 2. RUN_GCS - SPECIFICATION 2

INPUT OUTPUT Activate

“I” [Control Variable | Value || Control Variable | Value || Process
1 ARSP_DONE 1
ASP_.DONE 1
GSP_.DONE 1
TSP_DONE 1
1

1

GP_DONE 0 GP

TDLRSP DONE
TDSP_DONE

[[) S e

Table 4.3: CONTROL 2. RUN_GCS - SPECIFICATION 3

INPUT OUTPUT Activate

“T" | Control Variable | Value Control Variable | Value || Process
{ 1 | GP_.DONE | 1] AECLP.DONE [o T AECLP |
[1] GP.DONE | 1 RECLP.DONE [0] RECLP |
{ 5 | GP.DONE [1] CHUTE_RELEASED [0or 1] CRCP]

29

30

5. LEVEL 3 SPECIFICATION

PRECEDING PAGE BLANK NOT FILMED PAGE S0 __INTENTIONALLY BLANK

32

2.1 AECLP - Axial Engine Control Law Processing

PURPOSE The AECLP module computes the valve settings for each
of the three main (axial) engines. Measurements of the vehicle's velocity,
acceleration, and roll rates are combined to produce error signals for the
pitch, yaw, and thrust of the vehicle. These error signals are then mixed to

produce the axial engine valve settings.

AACCELERATION AESTATUS
AE_SWITCH AE.TEMP
CHUTE_RELEASED DELTA.T
FRAME.COUNTER FRAME_ENGINES_IGNITED
FULL_UP_.TIME CONTOUR_CROSSED
ENGINES ON ALTITUDE | GA
GAX GP ALTITUDE
GP_ROTATION GP_VELOCITY
GP1 GP2
GPY GQ
INPUT | GR GV
GVE GVEI
GVI W
GWI OMEGA
PEINTEGRAL PE_MAX
PE_MIN TEINTEGRAL
TEINIT TE_LIMIT
TE_MAX TE_MIN
TE_DROP VELOCITY_ERROR
YEINTEGRAL YEMAX
YEMIN
AE.CMD AFESTATUS
AETEMP INTERNAL.CMD
OUTPUT | b INTEGRAL | TEINTEGRAL
TE_LIMIT YEINTEGRAL

33

PRECEDING PAGE BLANK NOT FILMED

PROCESS Computation of the axial engine valve settings requires the
following steps:

e DETERMINE IF AXIAL ENGINES ARE SWITCHED ON -
f AE.SWITCH is set to OFF, then set AE.CMD = 0, set axial en-
gine status to healthy and proceed directly to the step “COMMAND
ENGINES”.

e DETERMINE ENGINE TEMPERATURE -
Engine temperature is determined according to the events in Table 5.1.

Table 5.1: DETERMINATION OF AXIAL ENGINE TEMPERATURE

Current Event Next
Axial Engine Axial Engine
Temperature Temperature
Cold GP_ALTITUDE > Altitude to start | Cold

engines
Cold (GP_ALTITUDE < Altitude to Warming_up

start engines) and

(FRAME_.COUNTER -
FRAME_ENGINES_IGNITED) -
DELTA.T < FULL.UP_TIME
Warming_up | (GP.ALTITUDE < Altitude to Hot
start engines) and

(FRAME_COUNTER -
FRAME_ENGINESIGNITED) -
DELTA.T > FULL_.UP.TIME

¢« COMPUTE LIMITING ERRORS -

~ Compute limiting vehicle pitch (PL), yaw (Y}), and thrust (TE)
errors using the following Proportional-Integral-Derivative (P-I-
D) control law: € = ag + a0 + ;XX INTEGRAL . In
these equations, X X INTEGRAL = XXJNTEGRAL+]?° fdt
and XX is to be replaced with one of the following; PE, YE,
or TE depending on the type of error being calculated. Note

34

that t, is the beginning of the time step and t is the end of
the time step; and the integration for PE and YE begins when
the engines are turned on, while the integration for TE begins
when the engines get hot. The terms of this control law, used for
calculating PF and Y.L, are given in Table 5.2, where p,, ¢,, and
r, are input as elements of GP_ROTATION; 7., 4., and 2, are
input in GP_VELOCITY; £, is input in A ACCELERATION;
and the gains are input as specified. If either PE MIN > pL
or PEMAX < PL, then PF should be set to either PE_MIN or
PE_MAX respectively. Similarly, boundary values hold for YL
and TL.

The variable TE_LIMIT is provided for use in calculating TL since
the equation for T/ is differential in nature, thus requires an input
value for each time step and it is also bounded by a maximum
and minimum value. TE_LIMIT should be calculated as given in
Table 5.2. Then T is set to TE.MAX if TELIMIT is greater
than or equal to TE.MAX; or TL is set to TEMIN if TE_LIMIT
is less than or equal to TE_MIN; or finally, if TE_LIMIT is within
the region bounded by TEMAX and TEMIN, TE is set equal
to TE_LIMIT. Thus TE_LIMIT is not bounded by TE MAX and
TEMIN, but contains a valid value for use as an input to the
calculations during the next frame.

Table 5.2: PL, YL, and TL CONTROL LAW COEFFICIENTS

€ ao a a2 0]
PL GQ ¢, GW GWI 20/,
YL _GRr, GV _GVI Yo/ %y
dTE_LTMIT -
aitOMECATELIMIT _G4x .5, GVE GVEL VELOCITY.ERROR

» COMPUTE PITCH, YAW, AND THRUST ERRORS

— Pitch, yaw, and thrust errors should then be calculated according
to Table 5.3.

e COMPUTE AXIAL ENGINE VALVE SETTINGS -
Given a pitch, yaw, and thrust error, (P, , Y. , T,), the valve settings
(AE_CMD) for each of the three main engines are calculated as:

35

Table 5.3: DETERMINATION OF ERROR TERMS

AE. CHUTE. | CONTOUR. || P. Y. T.
SWITCH | RELEASED | CROSSED
1 1 1 PL Y TL
I 1 0 PL YL | TE.DROP
I 0 0,1 GQ ¢ | ~GR . r, | TEINIT
0 0,1 0.1 0 0 0
GP1 0 1 P.
INTERNALCMD = GP2 -GPY 1 X Y.
GP2 GPY 1 T,

which will result in each element of the INTERNAL_CMD vector being
a real value. This value should be converted into an integer value
between 0 and 127 and placed into the appropriate element of the
AE_CMD vector. The mapping for the conversion from real to integer
values should be as follows:

INTERNAL_.CMD | AE.CMD
I<00 A=0
00<LI<10 0<A<L127
1.0<17 A=127

with INTERNAL_CMD between 0 and 1.0 being converted linearly
(with truncation) to a value of AE.CMD between 0 and 127.

COMMAND ENGINES - Once the correct value of AE_CMD has been
determined, it will automatically be transmitted to the engines during
the next call to the GCSSIM_RENDEZVOUS routine provided in
the GCS_SIM rendezvous package. (See Appendix B. Implementation
Notes)

e SET AXIAL ENGINE STATUS TO HEALTHY

36

2.2 ARSP - Altimeter Radar Sensor Processing

PURPOSE The vehicle has one altimeter radar. The ARSP module reads
the altimeter counter provided by this radar and converts the data into a
measure of distance to the surface.

AR_ALTITUDE AR_COUNTER
INPUT | AR_FREQUENCY | ARSSTATUS
K_ALT

AR_ALTITUDE | AR.STATUS

ouTPUT K ALT

PROCESS Notethat AR_ALTITUDE, AR_.STATUS, and K_ALT are five
element arrays containing the present value as well as the previous four
values of altitude, status, and state respectively. Also note that as the new
value is calculated, it is placed into the “zeroth” position; the others are
rotated to the (i+1st) position in the array, where i is the index of the
current position for that value. The value whose index is out of bounds is
dropped. The processing of the altimeter counter data (AR.COUNTER)
into the vehicle’s altitude above the planet’s terrain depends on whether
or not an echo is received by the altimeter radar for the current time step.
The distance covered by the radio pulses emitted from the altimeter radar
is directly proportional to the time between transmission and reception of
its echo. A 10-bit digital counter (AR.COUNTER) is started as the radar
pulse is transmitted. The counter increments AR_FREQUENCY times per
second. The 10-bit value is placed into the lower ten bits of the 16-bit
counter.

¢ READ SENSOR -
Upon return from the call to GCS_SIM_RENDEZVOQUS prior to this
subframe, an updated value will have been put into AR_.COUNTER.
This value should be used for the present iteration of ARSP.

o DETERMINE ALTITUDE - When the altitude is calculated, rotate
the AR_ALTITUDE array down by one place, and put the calculated
value in the “zeroth” position of AR_ALTITUDE.

-~ ECHO RECEIVED -
Convert the AR_.COUNTER value to a distance to be returned

37

in the variable AR_ALTITUDE by the following equation:

AR.COUNTER-3E8™-
AR FREQUENCY -2

ARALTITUDE =

- ECHO NOT RECEIVED -

If an echo is not received, AR_COUNTER will return all ones.
To smooth the estimate of altitude, fit a third-order polynomial
to the previous four values of AR_ALTITUDE. This polynomial
fit should then be used to extrapolate an altitude value for the
current time step. This extrapolation should be done even if one
or more previous values of AR_STATUS is unhealthy. In the case
of one or more unhealthy values, the extapolated value will not
be used, but should be calculated.

e SET ALTIMETER RADAR STATUS -
The values in AR_STATUS and K_ALT should be rotated and when
they are calculated, the new values should be placed in the “zero”
position as were the altitude values. Set the altimeter status accord-
ing to Table 5.4 and determine the value of K_ALT for use in the
GUIDANCE PROCESSOR.

38

Table 5.4: USE OF STATUS IN CALCULATION OF ALTITUDE

| CONDITION | AR_STATUS [ACTION |
Echo returned Healthy K_ALT=1
No echo returned Failed K_ALT=1

but used healthy
values in polynomial
No echo returned Failed K_ALT=0
and one or more
failed values in the
previous four time steps J

This table is used to determine the method to calculate the altitude. Each
of the possible states of the radar is listed along with the appropriate actions
for that situation.

39

40

2.3 ASP - Accelerometer Sensor Processing

PURPOSE Three accelerometers, located at the vehicle’s center of grav-
ity, are slightly misaligned along the vehicle’s £,,%, , and %, axes. Each
accelerometer produces a 16-bit binary value (A_.COUNTER). represented
as the magnitude portion of a sign magnitude number which is a linear
function of the acceleration along its axis. The sign of the counter will al-
ways be positive, but the offset given in A _BIAS will be negative or zero,
so if the magnitude in A.COUNTER is smaller than that of A_BIAS, the
acceleration is negative. The Acceleration Sensor Processing (ASP) module
provides measures of the vehicle accelerations through the conversion and
digital filtering of this raw accelerometer data.

A_ACCELERATION | A_BIAS
A_.COUNTER A_GAINLO
INPUT | ASCALE A_STATUS
ALPHA MATRIX ATMOSPHERIC_.TEMP
Gl G2

OUTPUT [A ACCELERATION | A_STATUS]

PROCESS The processing of the accelerometer data (A_COUNTER)
into vehicle accelerations (A_ACCELERATION) requires three steps:

¢ READ ACCELEROMETER -
Upon return from the call to GCS SIM_RENDEZVQUS prior to this
subframe, an updated value will have been put into AL.COUNTER.
This value should be used for the present iteration of ASP.

¢ REMOVE CHARACTERISTIC BIAS - Each accelerometer has a
characteristic DC bias (A_BIAS) which must be removed from the
signal prior to conversion. The acceleration is a linear function of its
A_COUNTER value where the gain specifies the slope and the offset
(ABIAS) specifies the intercept.

The standard gain (A_GAIN_0) must be adjusted for the effects of
temperature prior to the conversion of the raw accelerometer values.
The adjusted gain is a quadratic function of the ambient temperature
(ATMOSPHERIC_TEMP) and the standard gain.

41

PRECEDING PAGE BLANK NOT FILMED W__’{_Q__mrmnomu BLANX

That is.

AGAIN(i) := AGAINO() + (G1- ATMOSPHERIC TEMP)
+(G2- ATMOSPHERIC TEMP?)

where i ranges from 1 to 3 and represents the three directions x, y,
and z.

Where A_GAIN_0 is the standard gain. A_GAIN_0, A BIAS, G1, and
G2 are set during initialization mode. The equation for measured
acceleration then becomes:

A_ACCELERATION M(i) = A_BBIAS(i)+A_GAIN(i)*A.COUNTER(i)

where i ranges from 1 to 3 and represents the three directions x, y,
and z.

CORRECT FOR MISALIGNMENT - Each accelerometer is slightly
misaligned from the true vehicle axes. The following multiplier ma-
trix, which is based on small angle approximations, corrects for this
misalignment. The matrix is used for transforming the measured ac-
celeration data into the true vehicle accelerations.

1 —Qr; a:y
ALPHAMATRIX = ay, 1 —Qyr
—Q;y O,z 1

and

A_ACCELERATION = ALPHAMATRIXxAACCELERATION M

The input variable, ALPHA_MATRIX, defines the values of the a’s
in this multiplier matrix. For example, ALPHA_MATRIX(1,3), azy
defines the angle of rotation about the vehicle’s §, axis between the
7, axis and the misaligned 7, axis. The other misalignment angles
are defined similarly, based upon a right-handed coordinate system.
These misalignment angles are set during GCS initialization mode.

DETERMINE ACCELERATIONS AND ACCELEROMETER STA-
TUS - The variable A_STATUS is a four-element array in each of the
three physical dimensions, and contains the present and previous three

42

values of status for each accelerometer. The variable A_ ACCELERATION
is a five-element array in each of the three dimensions (x, y, and z.)
A_ACCELERATION contains the present and previous four values of
acceleration. They are to be rotated similar to those in 2.2 ARSP.

— If one or more of the previous three values of status is unhealthy,
use the present value of AL ACCELERATION and set the current
value of A_STATUS to healthy.

— If the previous values of status are healthy, check for extreme val-
ues and set A STATUS and A_ACCELERATION according to
the equations below. The accelerometer processing includes fil-
tering of the calculated accelerations along each axis (i.e filtering
of (Zy, ¥y, 2v),), ignoring or eliminating calculated accelerations
which are out of range. To effect this filtering, the means and
standard deviations of each component of these accelerations are
to be computed using the calculated accelerations from the pre-
vious three time steps. That is, for the current time step t and
the measurement of acceleration along the r axis let

be the current sample mean and

t-1

. (=) .,

SR
t=t—3

be the current sample standard deviation. If

li - £,(t)] > ASCALE -

then set

Z,(t) =

where 2,(t) is the acceleration along the z axis for the current
time step. Similar equations hold for eliminating outliers in the
measures of acceleration along the y and z axes.

43

* If the calculation for the current time step for any compo-
nent differs from the mean by more than A _SCALE times
the standard deviation, then that component should be re-
placed by its current mean and A STATUS should be set to
unhealthy.

+ If the calculated value of acceleration is within the specified
range of the mean, use the calculated value and place it into
A_ACCELERATION. Then set the status to healthy.

44

2.4 CP - Communications Processing

PURPOSE Data from the vehicle sensors and guidance processor is re-
layed back to the orbiting platform for later analysis. The CP module con-
verts the sensed data into a data packet appropriate for radio transmission.

AE.CMD CSTATUS

INPUT COMM SYNC_PATTERN | FRAME_COUNTER
GUIDANCE_STATE RE_CMD
SENSOR_OUTPUT

OUTPUT | CSTATUS [PACKET |

PROCESS The data packet, PACKET, prepared for transmission is orga-
nized to sequentially contain a synchronization pattern, a sequence number,
checksum information, new sample mask, and the data itself.

The construction of the packet requires five steps:

¢ CONSTRUCT PACKET:

— GET SYNCHRONIZATION PATTERN - The synchronization
pattern is provided in the variable COMM_SYNC_PATTERN. It
Is a 16-bit pattern dictated by the design of the receiving com-
munications equipment.

— DETERMINE SEQUENCE NUMBER - The sequence number
identifies the packet of data that is being sent. It is a byte
value in the range 0..255.The sequence number will be 0 dur-
ing the first subframe of frame number 1. Sequence numbers
repeat after the 255th packet and can be calculated based on the
FRAME_COUNTER and the subframe where the present call to
CP was made.

— PREPARE SAMPLE MASK - The sample mask is a boolean vec-
tor where “ones” represent variables that have been sampled since
the previous transmission. Any variables listed in Table 5.5 that
may have changed during the present sub-frame should be marked
in the mask and transmitted. Values that have been rotated into
subsequent elements of an array are not considered “new” and
thus do not have to be transmitted. This eliminates the need to

45

maintain previous values on all variables and also eliminates mak-
ing comparisons to determine which variables should be sent. A
position should represent each variable contained in either GUID-
ANCE.STATE or SENSOR_.QUTPUT in addition to AE.CMD
and RE_CMD. These variables should be arranged as shown in
Table 5.5.

— PREPARE DATA SECTION - The data section of the packet
contains the sixteen bit values for the elements of the variables
in Table 5.5 that may have new samples available. Values that
have been rotated into subsequent elements of an array are not
considered “new” and thus do not have to be transmitted. The
data are concatenated in the order given by the sample mask,
starting with the most significant bit (i.e. left most bit). Vari-
ables should be packed to the nearest byte boundary; thus, a
single element of PACKET could contain a logical*1 and the first
byte of the variable that follows it. Arrays should be sent with
the first index changing most rapidly. It should be noted that
some arrays have terms that are constant (e.g. the off-diagonal
terms of K_.MATRIX and the diagonal terms of G_ROTATION)
and since these terms can never have “new” values, they should
not be transmitted.

— CALCULATE CHECKSUM - The data checksum is calculated
on the entire packet (excluding the checksum) using the stan-
dard CRC-16 polynomial as defined in [11]. The calculation of
the checksum should begin with the COMM _SYNC_PATTERN
portion of PACKET, and conclude with the last variable to be
sent during the current subframe. Any unused parts of PACKET
should be ignored for the calculation of the checksum.

e SEND PACKET - The data packet created, PACKET, will automat-
ically be transmitted during the next call to RENDEZVOUS.

¢ SET COMMUNICATOR STATUS TO HEALTHY

46

Table 5.5: PACKET VARIABLES

AE.CMD

AR ALTITUDE
A_ACCELERATION
CONTOUR.CROSSED
GPATTITUDE
GP_VELOCITY

K- ALT

RE_.CMD
TDLRSTATUS
TD.SENSED
VELOCITY_ERROR

AE.STATUS
AR_STATUS
A_STATUS
C.STATUS
GP_PHASE
G_ROTATION
K_MATRIX
RE_STATUS
TDLR_.VELOCITY
TE_INTEGRAL
YE_INTEGRAL

AE_TEMP
ATMOSPHERIC_.TEMP
CHUTE.RELEASED
GP_ALTITUDE
GP_ROTATION
GSTATUS
PEINTEGRAL
TDLR.STATE
TDSSTATUS
TS_STATUS

When read by rows, this table represents the alphabetical listing of variables

that are to appear in the data section of the packet.

Table 5.6: SAMPLE MASK

INFORMATION SENT

A

B

Cl... |12

Note: this table gives information only on the order of the packet. The
packet should be packed to a byte-boundary limit into integer*2 elements.

EXAMPLE MASK

1

1

p—

0

47

Table 5.7: EXAMPLE OF PACKET

COMM SYNC_PATTERN

SEQUENCE NUMBER
SAMPLE MASK

DATA SECTION
containing the
variables that

may have changed

since last packet

CHECKSUM

Note: this table is one byte wide, but any section containing three vertical
dots represents one that may be more than one byte long (e.g. DATA
SECTION). Also note that the variables inserted into PACKET are inserted

in the VAX standard byte order.

48

2.5 CRCP - Chute Release Control Processing

PURPOSE The CRCP module implements the release of the parachute
which is attached at the beginning of the terminal descent phase.

INPUT [AETEMP [CHUTE.RELEASED |

OUTPUT | CHUTERELEASED |

PROCESS If the chute has been released, leave CHUTE_RELEASED at
the same value and this signal will be automatically transmitted to the chute
release mechanism during the next call to the rendezvous routine provided to
the user (See Appendix B. Implementation Notes). If the chute has not been
released, the engine temperature will determine whether or not to release
the chute. If the engines are hot (i.e. AE.TEMP is HOT), then release the
chute by setting CHUTE_RELEASED to 1.

49

50

2.6 GSP - Gyroscope Sensor Processing

PURPOSE Three fiber-optic ring gyroscopes are located on the lander,
one for each of the z. y, and z axes as shown. The Gyroscope Sensor
Processing (GSP) module provides a measure of the vehicle’s rotation rates
through the conversion and filtering of the raw gyroscope data.

ATMOSPHERIC_TEMP
G4

INPUT | - GaIN

G_ROTATION

G3
G_.COUNTER
G_.OFFSET
G STATUS

OUTPUT [GROTATION | GSTATUS |

PROCESS The output from each of the gyroscope (G.COUNTER) is a
16-bit quantity divided into 2 parts: the lower 14 bits represent the vehi-
cle’s rate of rotation about that axis and the high-order bit represents the
direction of this rotation. This is a sign-magnitude representation of the
counter value that only uses the lower 14 bits of the magnitude portion of
the number. Following is a map of G_.COUNTER:

16[15]14[13]12]...]1

DX MAGNITUDE

where D = direction, and X = unused. The high bit set to 1 indicates a

negative rotation consistent with a right-handed coordinate system.

¢ Rotate the values of G_LROTATION so the present values are in the
“zeroth” position of the time dimension and the previous values are
rotated to the (i+1st) position in the array, where i is the index of
the current position for that value. The value whose index is out of

bounds is dropped.

* ADJUST GAIN - The standard gain (G.GAIN.0) must be adjusted
for the effects of temperature prior to the conversion of the raw gyro-
scope values. The adjusted gain is a quadratic function of the ambient

temperature (ATMOSPHERIC_TEMP) and the standard gain.

51

PRECEDING PAGE BLANK NOT FILMED

PNCE S0

INTENTIONALLN BLANS

That is,

G.GAIN(i) = G.GAINOG) + (G3- ATMOSPHERIC TEMP)
+ (G4-ATMOSPH ERIC TEMP?)

where i ranges from 1 to 3 and represents the three directions x, ¥,
and z.

where G_GAIN.0, G3, and G4 are set during GCS initialization mode.

e CONVERT G_COUNTER - The rotation rate is linear with respect to
the unprocessed gyroscope values, i.e. the lower 14 bits must be con-
verted. G.GAIN is the multiplier for this conversion and G.OFFSET
is the constant offset. The equation for converting counter to rotation
then becomes:

G_ROTATION(i) = G_OFFSET(i)+G GAIN(i)+(G.COUNTER(i))

where i ranges from 1 to 3 and represents the three directions x, Y,
and z.

e SET GYROSCOPE STATUS TO HEALTHY.

52

2.7 GP - Guidance Processing

PURPOSE GP uscs the information available from ASP, ARSP, CRCP,
GSP, TDLRSP, and TDSP and the results of its previous computations to
control the vehicle’s state during terminal descent.

A_ACCELERATION AESWITCH
AE_.TEMP AR_ALTITUDE
CHUTE_RELEASED CONTOUR.ALTITUDE
CONTOUR.CROSSED CONTOUR_VELOCITY
DELTA_T DROP_HEIGHT
INPUT ENGINES_.ONALTITUDE | FRAME_COUNTER
GP_ALTITUDE GP_ATTITUDE
GP_PHASE GP_VELOCITY
GRAVITY G_ROTATION
K_ALT K_MATRIX
RE_SWITCH TD_SENSED
TDLR_VELOCITY TDSSTATUS
AESWITCH CONTOUR.CROSSED
FRAME _ENGINES_IGNITED | GP_ALTITUDE
OUTPUT | GPATTITUDE GP_PHASE
GP_ROTATION GP_VELOCITY
RE_SWITCH VELOCITY_ERROR

ARRAYS The variables GP_ATTITUDE, GP_ALTITUDE, and
GP_VELOCITY are five element arrays in each of their spatial dimensions
and contain enough previous values to provide the required history for inte-
gration in updating the vehicle and guidance states. The most recent values
are in the array locations indexed by the lower numbers. Thus the “zero” po-
sition represents the present values. This implies that before calculating the
values for the present time step, all values in such arrays should be rotated
by placing the “three” value into the “four” position, then the “two” value
into the “three” position, etc. This will leave the “zero” position ready for
the soon-to-be-calculated value and will discard the “four” position value.

PROCESS The Guidance Processor computes the velocity, altitude, and
attitude to be used in controlling the engines.

53

e SET UP THE GP.ROTATION MATRIX - G_ROTATION contains
three values: p, q, and r. These values must be placed intoa 3 x 3
matrix in the correct positions for later calculations. This matrix is
GP_ROTATION and is organized as follows:

0 r -—g
GP_ROTATION=]| -7 0 p
g -p 0

Note that GP_ROTATION does not include any time histories, thus
it may be convenient to use a temporary variable during calculation
to hold the time histories of GP_ROTATION or to use elements di-
rectly from G_ROTATION. However, GP_ROTATION does describe
the correct matrix orientation for operations and upon exiting from
GP should contain the correct values for the present time step.

« CALCULATE NEW VALUES OF VELOCITY, ALTITUDE, AND
ATTITUDE -

The velocity, altitude, and attitude are each calculated by:

1. finding a rate of change from known values then
2. integrating this rate of change through one time step by some
method of integration providing the accuracy specified.

For instance: .

X=X + X dt
t-1

where X represents the rates of change of velocity, altitude, or attitude.
These are calculated according to the following formula: %(variable)

— ax Variable + 8 + correction term. Table 5.8 shows the values of
the variables, a, 3, and the correction terms.

Note:

1. Gravity is given as a scalar although it is actually a vector quan-
tity. To obtain the correct quantity, the scalar given should be
multiplied by the last column of the GPATTITUDE matrix to
produce a column vector appropriate to the equation.

2. The equation for rate of change of altitude uses GP.ATTITUDE
and GP_VELOCITY. The third column of GP_ATTITUDE should

54

be treated as a row for this calculation. Thus element (1,3) of
GP_ATTITUDE becomes the first element in a vector of one row
and three columns. The element (2,3) becomes the second ele-
ment, and (3,3) is the third element in this vector. This row-
vector is then multiplied by the column-vector GP_VELOCITY
to produce a scalar.

3. All matrices are referenced with the row being the first index, the

column being the second index, and time being the last if there
is a time dimension.

The correction terms represent a difference between the guidance pro-
cessors value and the radar’s value. The correction term is turned on
or off by the “K” terms which are determined in the respective radar
processors.

DETERMINE IF ENGINES SHOULD BE ON OR OFF -

Axial engines should:

1. remain unchanged if GP_ALTITUDE > ENGINES_ON_ALTITUDE
2. be set to “on” if GP_ALTITUDE < ENGINES_ON_ALTITUDE

3. be set to “off” if GP_ALTITUDE is < DROP_HEIGHT

4. be set to “off” if TD SENSED is 1.

Higher numbered conditions override lower numbered conditions; thus
if the engines have been turned off by 3 or 4, condition 2 can never
turn them on again.

If the axial engines are turned on during this frame,
FRAME_ENGINES_IGNITED should be set with the current value
of FRAME_COUNTER for the later use of AECLP in determining
engine temperature. FRAME_ENGINES_IGNITED will be initialized
to zero, and should only be changed during the frame when the axial
engines are turned on.

Roll engines should be on unless the axial engines have been turned
off due to conditions 3 or 4 above. Note that roll engines may only be
turned off; they can never be turned on again even if neither condition
3 nor 4 remains valid.

Engines are turned on or off by setting the SWITCH variables to the
appropriate values.

35

Table 5.8: DIFFERENTIAL EQUATIONS

[Variable [a [8 [CorrectionTerms]

GP.ATTITUDE | GF_ROTATION | ¢ 0
ZP VELOCITY | GP.ROTATION | GRAVITY s GPATTITUDE(v. 3)+ | K- MATRIXx

A_ACCELERATION (TDLR.VELOCITY —

i goes from 1to 3 GP_VELOCITY)
GP_ALTITUDE |0 —GPATTITUDEX R_ALT (ARALTITUDE-

GP.VELOCITY GP.ALTITUDE)

e DETERMINE VELOCITY ERROR - Calculate the difference be-
tween the velocity of the craft and the optimal velocity of the craft at
the vehicle altitude (Shown in Figure 5.1.) This distance is actually a
difference between two velocities and is called VELOCITY_ERROR.
This error term should be calculated by finding the present altitude
in CONTOUR_ALTITUDE and using interpolation, if necessary, then
locating the corresponding velocity in CONTQUR_VELOCITY also
using interpolation, if necessary. VELOCITY_.ERROR is used in AE-
CLP, and it is also used to set the CONTOUR.CROSSED switch. The
equation for VELOCITY_ERROR is given below:

VELOCITY ERROR = |GP.VELOCITY|-CONTOUR.VELOCITY

e DETERMINE IF CONTOUR HAS BEEN CROSSED -
If CONTOUR_CROSSED has not been set and the contour has been
encountered, set CONTOUR_CROSSED to 1; otherwise leave it alone.

56

Figure 5.1: VELOCITY ALTITUDE CONTOUR

Shown are two possible trajectories, with the point along each where the
contour is first sensed and also an example of VELOCITY_ERROR. Note:
the altitude where the engines are turned on should be the earljest point
to check crossing the contour, even though the trajectory may have crossed
the contour at some greater altitude. Note that the velocity altitude con-
tour is contained in two variables: CONTOUR_ALTITUDE and CON-
TOUR_VELOCITY. These are both arrays with 100 elements that contain
known points along the contour. It should be noted that the point in the
first element is the lowest altitude given and as the index number increases,
altitude increases. Since not all of these array elements may be needed, all
unused elements beyond the highest given altitude will be filled with zeroes,
and that the value of zero is never given for altitude except as this filler.The
value of velocity at any other point may be found by linear interpolation (or
extrapolation if the value is outside the range of the supplied contour) at
the given vehicle altitude.

h

Tmsector\j O /

bt BTLY
v3

Veloc by
Error

Ercor

Contour Crossed

57 \/(h)

e DETERMINE GUIDANCE PHASE - The guidance phase (GP_PHASE)
is determined according to the events in Table 5.9. These phases are
based upon information that may be provided by processes other than
the guidance processor.

Table 5.9: GUIDANCE PHASES

[[PHASE [STATE [EVENT [REXT PHASE | NEXT STATE
1 Chute attached Altitude for turning 2 Chute attached
Engines off engines on is sensed Engines on
Touch down not sensed Touch down not sensed
2 Chute attached Axial engines become hot 3 Chute Released
Engines on and the chute is released Axial Engines Hot
Touch down not sensed Touch down not sensed
2 Chute attached Touch down 1s sensed End GCS Chute attached
Engines on Engines off
Touch down not sensed Touch down sensed
3 “Chute released Altitude < 4 Chute Releazed
Axial Engines Hot DROP_HEIGHT and Engines off
Touch down not sensed TDSSTATUS = healthy Touch down not sensed
touch down not sensed
3 Chute released Altitude < End GCS Chute Released
Axial Engines Hot DROP_HEIGHT and Engines off
Touch down not sensed TDS.STATUS = failed Touch down not sensed
3 Chute released Touch down 14 seneed End GC3 Chute Released
Axial Engines Hot Engines off
Touch down not sensed Touch down sensed
4 Chute released Touch down is sensed End GCS Chute Released
Engines off Engines off
Touch down not sensed Touch down sensed
4 Chute released TDHSSTATUS = Tfailed End GCS Chute Released
Engines off Engines off
Touch down not sensed Touch down not sensed

— PHASE 1 : If the altitude provided by the guidance processor is
less than or equal to the engines-on altitude, begin Phase 2.

— PHASE 2: If the axial engines have become hot and the parachute
has been released, begin Phase 3. If touch down is sensed, end

GCS.

— PHASE 3: If touch down has not been sensed and DROP_HEIGHT
has not been reached, then control the axial and roll engines
to cause the lander to follow a gravity-turn steering descent. If
DROP _HEIGHT is reached and TDS_STATUS is healthy, begin
Phase 4. If DROP_HEIGHT is reached and TDS.STATUS is
failed, send final packet, and end GCS. If touch down is sensed,
send final packet, and end GCS.

58

— PHASE 4 : If touch down has not been sensed and TDS_STATUS
is healthy, free-fall to surface. If touch down has not been sensed
and TDS_STATUS is failed, send final packet and end GCS. If
touch down has been sensed, send final packet and end GCS.

It should be noted that under certain conditions, the next phase is
“End GCS™. This means that the implementation should stop itself at
the end of the present sub-frame. Thus, in all cases, a clean shutdown
of GCS implementations should end just after Communications Pro-
cessing during the Guidance sub-frame, but before calling rendezvous.

59

60

2.8 RECLP - Roll Engine Control Law Processing

PURPOSE RECLP generates the roll engine command which controls

the firing pulse and direction of the roll engines.

DEITA T | G ROTATION

P P2

P3 Py
INPUT | B STATUS | RE.SWITCH

THETA THETA1

THETA2

RE_.CMD | RESTATUS
ourpur | TE-CM

PROCESS Control of the lander is achieved by generating commands as
functions of the error between a given state variable and its ideal value.
These errors are limited and amplified to yield control values. The transfor-
mations to accomplish this are as follows:

* DETERMINE IF ENGINES ARE ON - If RESWITCH is off, then
RE_CMD = 0; and proceed directly to commanding engines.

e DETERMINE PULSE INTENSITY AND DIRECTION - The pulse
intensity and direction is derived from the graph shown in Figure 5.2
using (p,),. Note that the r axis represents the integral of the roll
rate. This is really the present angle of roll. This integral should be
calculated by Euler’s method. As an example, THETA = THETA +
(integral of roll for this step). Also note that when the vehicle status
is located on a boundary between two or more roll command regions,
the lowest intensity signal should be used to avoid over-commanding
the engines.

¢ DETERMINE ROLL ENGINE COMMAND - The pulse intensity and
direction is packed in the lowest three lower-order bits of the actual

roll engine command, RE_.CMD as shown.

X

X

X

16

—
o >

14

4

61

PRECEDING PAGE BLANK NOT FILMED

where X = unused, I = intensity, and D = direction. [and D range in
values as shown in the data dictionary.

e COMMAND ENGINES -
Once RE.CMD has been set with the correct value, it will automati-
cally be sent to the engines during the next call to GCSSIM_RENDEZVOUS.

e SET ROLL ENGINE STATUS TO HEALTHY.

62

Figure 5.2: GRAPH FOR DERIVING ROLL ENGINE COMMANDS

Mo x o P
B i ™Mo CwW
Y
Mar cow fs
Tatermediate o
[
Misr s
cw
) g off
- @,
Mivime -
Cew ffdt ‘e
-
Ta termediate o
LY Mar cw
Mat Clw
NN
-"~
Moy (w
- t
Cw Clw

63

ORIGINAL PAGE IS
OF POOR QUALITY

64

2.9 TDLRSP - Touch Down Landing Radar Sensor
Processing

PURPOSE A single touch down landing radar (TDLR) gauges the ve-
locity of the vehicle during terminal descent. This radar is a doppler radar
with four radar beams, each which emanates from the vehicle’s center of
gravity with a slight offset from the vehicle’s 27 axis. The radar beams form
the edges of the pyramid as shown in Figure 5.3 .

The Touch Down Landing Radar Sensor Processing (TDLRSP) module
converts measurements of the frequency shift of each beams reflection into
vehicle velocities. The receivers associated with each beam may not find
a usable reflection, though. If no usable reflection is found. the receiver
returns a status of beam in search mode.

DELTA_T FRAME_BEAM_UNLOCKED
FRAME_COUNTER | K_.MATRIX
TDLR_ANGLES TDLR.COUNTER

INPUT TDLR.GAIN TDLR.LOCK_TIME
TDLR_OFFSET TDLR_STATE
TDLR_STATUS TDLR_.VELOCITY

FRAME BEAM_UNLOCKED | K_MATRIX
OUTPUT | TDLR.STATE TDLR.STATUS
TDLR_VELOCITY

PROCESS The value returned by each beam (TDLR.COUNTER) is
proportional to the beam frequency shift down that beam, which is, in
turn, proportional to the velocity down that beam. The processing of the
TDLR_.COUNTER data into the component velocities along the vehicle’s
Z, §, and Z axes requires five steps.

* ROTATE VALUES - Rearrange the values located in TD LR_.VELOCITY
and K_MATRIX so that each value is moved to the variable with the
next larger index. Thus the values are rotated to the (i+1st) position
in the array, where i is the index of the current position for that value.
The value whose index is out of bounds is dropped. For example, the
“zeroth” position is left empty for new values and the value that was
in the “zeroth” position is now in the first position, etc. and the value
that was in the fourth position is lost.

65

PRECEDING PAGE RIANK MOT FUMED

sl _L Y INIENTIONARLN peAN

Figure 5.3: DOPPLER RADAR BEAM LOCATIONS

66

¢ DETERMINE RADAR BEAM STATES - The processing of the four
radar beams depends on the state of the radar, i.e. whether or not
each of the four beams is searching or in lock. If TDLR_.STATE is
LOCKED, and the receiver for a beam does not sense an echo (i.e.
the beam is in search mode), the corresponding TDLR_COUNTER
value will be zero; TDLR STATE should be set to UNLOCKED and
FRAME BEAM_UNLOCKED should be set to the current frame count.
If the previous state of TDLR_STATE is UNLOCKED, FRAME _BEAM_UNLOCKED
should be used to ignore the beam for TDLR_LOCK_TIME seconds
of real time, thus determining the current value of TDLR_STATE. At
the beginning of a trajectory, FRAME BEAM_UNLOCKED will be
set to zero, thus meaning that the beam has never been unlocked. If
TDLR_STATE is not UNLOCKED due to the above conditions, it
should be set to LOCKED.

¢ DETERMINE BEAM VELOCITIES - A beam velocity is a linear
function of its TDLR_.COUNTER value where the gain (TDLR_GAIN)
specifies the slope and the offset (TDLR_OFFSET) specifies the inter-
cept. TDLR_.GAIN and TDLR_OFFSET are set during GCS initial-
ization mode. The equation for velocity is given below.

BEAM VELOCITY (1) = TDLR-OFFSET+TDLR_GA1N*(TDLR.COUNTER(:'))
where i ranges from 1 to 4 and represents the four radar beams.

¢ AVERAGE BEAM VELOCITIES AND CONVERT TO BODY
VELOCITIES - The beam velocities are resolved as specified in Table
5.10. The resolved beam velocities are then converted to vehicle body
velocities using the offset angles @ , 8 , and 7 as shown in Figure
3.4. Note that the conversion from resolved beam velocities to body
velocities is done with the following equations:

B, = B.
7 cosa
B,
B, = cos 3
B, = B.
cosy

B:, By, B, are actually the values of the clements of TDLR_VELOCITY.
Since the Guidance Processor needs to know which velocities it can use,

67

Table 5.10: AVERAGING DOPPLER RADAR BEAMS IN LOCK

BEAMS B K; By Ky B: Ke
IN LOCK
none [} 0 [} 0 [} 1)
By 0 o 0 [0 0
By 0 0 0 0 0 0
B3 0 0 0 0 o 0
By 0) 0 o 0 0
By, Bz 0 0 (B; - B2)/? 1 0)
By, B3 (B; + B3)/2 1 0 0 ° 0
By. By 0 0 0 0 (By ~ Bg)/2 1
By, B3 0 0 0 o (By — B3)/[2 1
B, By (B + By)/2 1 0 0 0 0
Bj, By 0 o (B4 - B3)/2 1 0 0
"By, Bz, Ba (B + B3)/2 1 (B - B2)l2 1 (B - B3)/2 1
By, Bz, By (B2 + By)/? 1 (B - Bp)/2 1 (B1 — Bs)/2 1
By, B3, By (By + B3)/2 1 (By — B3)/2 i (B1 - B4)/2 1
By, By, By (B2 + By)/2 1 (Bg — B3)/2) 1 (By — B3)/2 1
M B, B3 B3, By | (Bi+t B2+ B3+ B/e | 1 By — B, — B3+ By)/e | 1 By + B2 — B3 - Bgils | 1

the K.MATRIX must be defined according to the usable velocities.
The following equation shows the K _MATRIX in which the variables
should be replaced with a 1 if there is a usable velocity available, or a
0 if not as shown in Table 5.10.

K. 0 0
K MATRIX = 0 kK, O
0 0 K

z

o SET TDLR.STATUS - Set TDLR_STATUS to healthy.

68

Figure 5.4: DOPPLER RADAR BEAM ANGLES

Be(}m LOCQEEON A Ng\es

[y
o 1]

Ll By

69

Eal!

70

2.10 TDSP - Touch Down Sensor Processing

PURPOSE The touch down sensor is attached to the end of a rod which
is attached to the bottom of the vehicle. Its purpose is to trigger engine
shutdown when the vehicle is at the correct distance from the surface. This
shutdown is necessary to:

1. avoid the stirring up of dust and debris and

2. avoid scorching immediate area of the experiment site,

INPUT [TD.COUNTER | TDSSTATUS |

OUTPUT [TD.SENSED [TDSSTATUS |

PROCESS The touch down sensor is a simple switch at the end of a pole
on the underside of the lander. It should normally return one of only two
16-bit values, all “ones” or all “zeroes”. Note that this value includes setting
the sign bit as well as the 15 magnitude bits.

o DETERMINE IF TOUCH DOWN HAS BEEN SENSED:

— If all ones are returned, set TD_SENSED to 1.
— If all zeroes are returned, set TD_SENSED to 0.

— If any combination of “ones” and “zeroes” is returned other than
all on or all off, assume that the sensor has failed due to electrical
noise and set TDS_STATUS to failed. Once TDS_STATUS is set
to failed, it should remain set to failed for all following frames.
The normal state of the switch is all zeroes (‘off”). If all of the
readings for the last time step are all ones (‘on’) then the current
processed value for the sensor is ‘on’, signifying touch down has
been sensed. At all other times, the processed value is ‘off’; thus,
if the status is set to failed, the value should be set to ‘not sensed’,
and the guidance processor should decide when the vehicle has
touched down.

71

PAGE BLANK NOT FILMED %m«m“, -
PRECEDING PAGE BLA MALLY Beany

72

2.11 TSP - Temperature Sensor Processing

PURPOSE A temperature gauge on the vehicle is used to adjust the
response of the accelerometers and gyroscope. The gauge contains two tem-
perature sensing devices: a solid-state sensor and a matched pair of thermo-
couples. The Temperature Sensor Processing (TSP) module determines the
ambient temperature, using either the solid-state sensor or the thermocouple
pair in a manner maximizing the accuracy of the measurement.

M1 M2
M3 M4
SS_.TEMP T1
INPUT T2 T3
T4 THERMO_TEMP
TS STATUS

OouUTPUT LATMOSPHERIC_TEMP] TS_STATUSW

PROCESS The processing of raw temperature data from the solid-state
sensor and thermocouple pair, SS_.TEMP and THERMO_TEMP, is based
on the solid-state sensor being less accurate than the thermocouple pair, but
having a greater usable operating range. The temperature values from the
solid-state sensor are highly quantized and are used to adjust the values of
the other sensors when they indicate temperatures outside the range of the
thermocouple pair.

The processing of SS_.TEMP and THERMO_TEMP into an accurate
measure of temperature (ATMOSPHERIC_TEMP) requires several steps.
The steps are described below, but are not given in any particular order be-
cause the steps to be taken may vary depending upon the values of SS_ TEMP
and THERMO_TEMP.

e CONVERSION OF SOLID STATE TEMPERATURE (SS-TEMP) -
The response of the solid-state temperature sensor is linear with re-
spect to the ambient temperature and is computed using the two cal-
ibration points (M1,T1) and (M2,T2) which characterize the line and
are set during GCS initialization.

e CONVERSION OF THERMOCOUPLE PAIR TEMPERATURE
(THERMO_TEMP) - The response of the thermocouple pair is cali-

73

s dad -t P :
PIECTEDING PAGE PLANY NOT FiLmMED < '

brated differently depending on the region (linear or parabolic) where
the measurement lies. See Figure 5.5.

_ THERMO_TEMP lies within the linear region - The linear region
is bounded by the calibration points used by the thermocouple
sensor (i.e [M3,T3] and [M4,T4] inclusive). Temperatures mea-
sured within this region are calibrated accordingly.

— THERMO_TEMP lies within one of the parabolic regions — The
upper and lower parabolic regions extend plus or minus 13 per-
cent of the difference between the measured calibration points,
M4 and M3, respectively. These parabolic regions each intersect
the line at the calibration points. The rate of change in tempera-
ture, with respect to the thermocouple measurements, is contin-
uous at these intersections. The upper (and lower) parabolas are
defined so that the temperature goes up (or down) as the square
of the measurement value. The parabolas are offset along both
the temperature and measurement axes. By using the values of
T3, T4, M3, and M4 and the fact that the function is continuous
at the endpoints, the offsets for the parabolas may be determined;
and the equations for the parabolas may be generated.

e SELECT MOST ACCURATE ESTIMATE - If the temperature de-
rived from SS_TEMP falls within the accurate temperature response
zone of the thermocouple pair, (the linear as well as parabolic regions),
then the value returned by the thermocouple pair should be used; oth-
erwise, the value returned by the solid-state sensor should be used.

e SET STATUS TO HEALTHY - Set the values of both elements of
TS STATUS to HEALTHY.

74

Figure 5.5 CALIBRATION OF THERMOCOUPLE, PAIR

UPPer Parabol.c Re:.;1ou

L\ Neéar Reg‘on

______H___
Lower ParQLa’LL I(
RQSLON I |
- L —
051~ ~ b-ous L
b Il
I |
1l 11
T A
. M,

75

76

6. SYSTEM TIMING AND MEMORY SPACE
REQUIREMENTS

PRECEDING PAGE BLANK NOT FILMED

encs_]L _ INTENTIONACLE BUANK

78

TIMING REQUIREMENTS

The GCS must operate within certain timing constraints to be able to pro-
vide signals to the vehicle rapidly enough to properly control the system.
To allow the GCS to control the vehicle at the proper rate, each module
must execute within a specified time, so that all modules to be executed
can complete before the end of the subframe. These execution times must
be determined by the minimum time available, which is also the time that
the most processes are to execute. Some processes execute at a lower fre-
quency than others; thus for some frames, there may be processes that are
not executed, leaving extra time remaining in the frame after the last pro-
cess finishes and before the next subframe begins. However, there will also
be frames during which all processes execute, and thus the time allocated
for each module is strictly limited.

Model Time

The GCS is part of a larger simulation that consists of GCS.SIM and one
or more versions of the GCS. When these two parts (GCS and GCS_SIM)
are combined, they approximate the behavior of the environment around a
planetary lander (wind, gravity, etc.); the physical behavior of the lander
(acceleration, engine thrust, etc.); and the on-board control algorithms
(GP, AECLP, etc.). Since the experiment being conducted is interested
in detection of software errors, the part of the simulation under study is
only the GCS. Thus GCS becomes the “model” upon which tests will be
conducted. For realism, constraints in timing and memory are being placed
on GCS to simulate the restricted environment of typical embedded systems
aboard air/spacecraft. Thus, the constraints and requirements listed that
refer to the “model” are only those limitations being placed on a single
version of the GCS, and the programmers should treat them as restrictions
on their code without concern for the simulator within which their code will
run. .

The model operates with three subframes making up each frame, and
each frame executes within a period of DELTA_T. Therefore, each subframe
has a duration of < QE%M. Note that returning from a call to rendezvous
is a signal to increment the subframe. At the end of the control law process-
ing subframe, FRAME_COUNTER will be updated by rendezvous, and the
correct value will be returned. Figure 6.1 shows an abbreviated timeline for
the system.

79

BLANK
PRECEDING PAGE BLANK NOT FILMED mjj..."“‘“m"m

Response Times

Software throughput timing shall not exceed the total time allotted for each
frame. Synchronization points demarcate the end of each frame.

Execution timing and memory space requirements are levied against the
following three sub-frames per time step which occur sequentially:

Sub-Frame I SENSOR DATA PROCESSING
Sub-Frame 11 GUIDANCE PROCESSING
Sub-Frame III ENGINE CONTROL PROCESSING

Figure 6.1: TYPICAL TIME LINE

Frame 1 Frame 2 Frame 3
SP GP CLP SP GP CLP SP GP CLP
Sub.{frame Sub-frame Sub-frame{Sub-frame Sub-frame Sub-frame|Sub-frame Sub-frame Sub-frame

INIT.GCS RUN_GCS

80

Table 6.1 depicts the timing requirements per frame.

Table 6.1: TIMING REQUIREMENTS

SUBFRAME TIME
REQUIREMENTS

I tbd

I tbd

111 tbd

These requirements will be determined after testing of the GCS proto-
type version is completed.

81

MEMORY SPACE REQUIREMENTS

The memory allowed for each version will include the global space needed
for the required data stores, as well as some space for internal variables. It
should be remembered that the applications cannot carry any global values
from frame to frame except those explicitly contained within the data stores.
The values of memory sizes listed in Table 6.2 include both the global space
and all allowable internal space for use by the applications.

Table 6.2: MEMORY SPACE REQUIREMENTS

SUBFRAME SPACE
REQUIREMENTS

I tbd

11 tbd

111 tbd

82

7. DATA REQUIREMENTS DICTIONARY

84

PART I. DATA ELEMENT DESCRIPTIONS

The following template has been constructed for defining the data elements
referenced in this specification:

NAME:

DESCRIPTION:

USED IN:

UNITS:

RANGE:

DATA TYPE:
ATTRIBUTE:

DATA STORE LOCATION:
ACCURACY:

NAME This field gives the name of the variable used in the specification.
The variable name used during coding must be the same as specified.

DESCRIPTION This field gives a brief description of the variable.
USED IN This field provides a reference to the modules using this variable.

UNITS This field indicates the unit of measure for the data contained in
the variable being defined.

RANGE This field specifies the permissible range of data values for the
variable.

DATA TYPE The data type field specifies the data type to be used when
declaring the variable during coding.

ATTRIBUTE This field indicates whether or not the variable contains
data, control information, or a data condition.

DATA STORE LOCATION This field references the common region
where the variable must be stored.

ACCURACY This field dictates the degree of accuracy required for out-
put comparisons to be made during voting.!

'In the data dictionary, accuracy is listed as N/A where accuracy is not applicable,
or TBD where accuracy is (T)o (B)e (D)etermined later. A formal modification will be
released when the values of the accuracy requirements have been approved.

85

i PRGE BLARK ROT FLAED %ﬂﬂ“ﬂm«“'a
PRECEDNG PAGE DLANK W ‘

86

F

R

N

E

C

<
=

NAME: A_LACCELERATION
DESCRIPTION: vehicle accelerations
USED IN: 2.1 AECLP, 2.3 ASP, 2.7 GP

UNITS: Etf:l:{-i

RANGE: [-20, 20]

DATA TYPE: array (1.3, 0. 4) of real*8
ATTRIBUTE: data

DATA STORE LOCATION: SENSOR.OQUTPUT
ACCURACY: TBD

NAME: A _BIAS
DESCRIPTION: characteristic bias in the
accelerometer measurements
USED IN: 2.3 ASP
UNITS: meters
sec?
RANGE: [-30, 0}
DATA TYPE: array (1..3) of real*s
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A.COUNTER

DESCRIPTION: accelerations along the #, ¢, and 7

USED IN: 2.3 ASP

UNITS: none

RANGE:[0, 21% ~)

DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: NfA

NAME: A_GAINLO
DESCRIPTION: standard gain in the accelerations
USED IN: 2.3 ASP

l%
UNITS: ?0147{
RANGE: [0, 1
DATA TYPE: array (1..3) of real*s
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY: N/A

NAME: A SCALE
DESCRIPTION: multiplicative constant
used to determine limit on deviation
accelerometer values.

USED IN: 2.3 ASP

UNITS: none

RANGE: [0, 21% ~)

DATA TYPE: Integer®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A STATUS

DESCRIPTION: Flag indicating

whether or not the accelerometers are
working properly.

USED IN: 2.3 ASP, 2.4 CP

UNITS: none

RANGE: [0 := healthy, l:=unhealthy]
DATA TYPE: array (1.3, 0..3) of logical®}
ATTRIBUTE: data

DATA STORE LOCATION:GUIDANCE_STATE
ACCURACY: N/A

DING PAGE BLANK NOT FILMED

NAME: AECLF.DONE
DESCRIPTION Flag indicating
completion of AECLP 1ask
USED IN: 2. RUN.GC3

UNITS: none

RANGE: {0: running of task 2.1 AECLP incomplete,

1: running of task 2.1 AECLP complete]
DATA TYPE: logical*t

ATTRIBUTE: coatrol

DATA STORE LOCATION none
ACCURACY: N/A

NAME: AE.CMD

DESCRIPTION: Valve settings for the
axial engines,

USED IN: 2.1 AECLP, 2.4 CP

UNITS: none

RANGE: [0, 127]

DATA TYPE: array (1..3) of Integer®2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: AESTATUS
DESCRIPTION Flag indicating
whether or not axial engines are
working properly.

USED IN: 2.1 AECLP, 2 ¢ CP
UNITS: none

RANGE: [0: Healthy,

1: Failed]

DATA TYPE: logical®1l
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AESWITCH
DESCRIPTION: Flag indicating
whether or not axial engines are
turned on.

USED IN: 2.1 AECLP, 2.7 GP
UNITS: none

RANGE: [0: axial engines are off,
1: axial engines are on)

DATA TYPE: logical®1
ATTRIBUTE: data condition
DATA STORE LOCATION GUIDANCE
ACCURACY: N/A

NAME: AE_TEMP

DESCRIPTION: Temperature of

axial engines when they

are turned on.

USED IN: 2.1 AECLP, 24 CP, 2.5 CRCP, 2.7 GP
UNITS: none

RANGE: [0: Cold, 1:Warming-Up,

2:Hot)

DATA TYPE: logical™

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

eaa_ [INSENTIONAZEE BEANE

NAME - ALPHA_MATRIX

DESCRIPTION: Matrix of misalignment angles
USED IN 2.3 ASP

UUNITS. none

RANGE: {-m, 7]

DATA TYPE: array (1.3, 1..3) of real®8
ATTRIBUTE: daiwa

DATA STORE LOCATION: RUN PARAMETERS
ACCURACY: N/A

NAME. ARALTITUDE

DESCRIPTION: altimetes radar height

above terrain

USED IN- 2.2 ARSP, 2.4 CP, 2.7 GP

UNITS: meters

RANGE: [0, 2000}

DATA TYPE: array (0..4) of real™s
ATTRIBUTE: data

DATA STORE LOCATION: SENSOR.QUTPUT
ACCURACY: TBD

NAME: AR.COUNTER

DESCRIPTION counter containing elapsed time
since transmission of radar pulse

USED IN 2.2 ARSP

UNITS: Cycles

RANGE. [-1, 219 = 1)

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY NJA

NAME: AR FREQUENCY
DESCRIPTION: increment frequency of
AR_COUNTER

USED IN: 2.2 ARSP

. cycles
UNITS: ch?q

RANGE: [1, 107]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: ARSTATUS

DESCRIPTION: status of the altimeter radars
USED IN: 2.2 ARSP, 2.4 CP

UNITS: none

RANGE: [0 := healthy, .={ailed]

DATA TYPE. array (0..4) of logical®1
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE.STATE
ACCURACY: NfA

NAME: ARSP_.DONE
DESCRIPTION: Flag indicating
completion of ARSP task.

USED IN: 2. RUN_.GCS

UNITS: none

RANGE: [0: running of task 2.2 ARSP incomplete,
1: running of task 2.2 ARSP complete]
DATA TYPE: logical®l

ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

88

NAME: ASP_DONE
DESCRIPTION: Flag indicating
completion of GCS.

USED IN: 2. RUN_.GCS

UNITS: none

RANGE: [0: running of task 2.3 ASP incomplete,
1: running of task 2.3 ASP complete]
DATA TYPE: logical®]
ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

NAME: ATMOSPHERIC.TEMP
DESCRIPTION: atmospheric temperature
USED IN: 2.3 ASP, 2.4 CP, 2.6 GSP, 2.11 TSP
UNITS: degrees centigrade

RANGE: [-250, 250}

DATA TYPE: real®8

ATTRIBUTE: data

DATA STORE LOCATION: SENSOR_OUTPUT,
ACCURACY: TBD

NAME: CSTATUS

DESCRIPTION: Flag indicating

whether or not the communications processor is
working properly.

USED IN: 2.4 CP

UNITS: none

RANGE: [0 := healthy, 1:=failed]

DATA TYPE: logical®1

ATTRIBUTE: data

DATA STORE LOCATION:GUIDANCE_STATE
ACCURACY: N/A

NAME: CHUTE_RELEASED

DESCRIPTION: signal indicating parachute

has been released

USED IN: 21 AECLP, 2.4 CP, 2.8 CRCP, 2.7 GP
UNITS: none

RANGE: [0: Chute Attached,

1: Chute Released]

DATA TYPE: logical®1

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: COMM_SYNC_PATTERN

DESCRIPTION: sixteen bit synchronization pattern
USED IN: 24 CP

UNITS: none

RANGE: [1101100110110010)

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CONTOUR_ALTITUDE

DESCRIPTION: Altitude in Velocity-altitude contour.
(the hin ‘V(h)')

USED IN: 2.7 GP

UNITS: kilometers

RANGE: [0, 2)

DATA TYPE: array (1..100) of real™s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CONTOUR_CROSSED
DESCRIPTION: Indicates if the velocity
altitude contour has been sensed.

USED IN: 2.1 AECLP, 2.4 CP, 2.7 GP
UNITS3: none

RANGE: [0:= contour not sensed, 1.= contour sensed]

DATA TYPE: logical®]

ATTRIBUTE: data condition

DATA STORE LOCATION GUIDANCE_STATE
ACCURACY: N/fA

NAME: CONTOUR_VELOCITY

DESCRIPTION: Velocity in Velocity-altitude contour

{ the Vin ‘V(h))

USED IN: 2.7 GP

UNITS: e L

RANGE: [0, 0.5)

DATA TYPE: array (1..100) of real®8
ATTRIBUTE: data

DATA STORE LOCATION. RUN_PARAMETERS
ACCURACY: N/A

NAME: CP DONE
DESCRIPTION: Flag indicating
completion of 2.4 CP task.

USED IN: 2. RUN.GCS

UNITS: none

RANGE: [0: running of task 2.4 CP incomplete,
1: running of task 2.4 CP complete]
DATA TYPE: logical®l
ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: NfA

NAME: CRCP.DONE
DESCRIPTION: Flag indicating
completion of 2.5 CRCP task.
USED IN: 2. RUN_GCS
UNITS: none

RANGE: [0: running of 1ask 2.5 CRCP incomplete,

1: running of task 2.5 CRCP complete)
DATA TYPE: logical®)

ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: NfA

NAME: DELTA.T
DESCRIPTION: Time step duration

NAME: ENGINES.ON _ALTITUDE
DESCRIPTION: Altitude at

which the axial engines are

turned on.

USED IN: 2.1 AECLP, 2.7 GP
UNITS: meters

RANGE: [0, 2000)

DATA TYPE: real*s
ATTRIBUTE: data condition
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: FRAME BEAM_UNLOCKED
DESCRIPTION: Variable containing the number
of the frame during which the radar beam
unlocked

USED IN: 2.9 TDLRSP

UNITS: none

RANGE: [0, 23! - 1)

DATA TYPE: array (1..4) of Integer™4
ATTRIBUTE: data

DATA STORE LOCATION. GUIDANCE
ACCURACY: TBD

NAME: FRAME COUNTER
DESCRIPTION: Counter containing the number
of the present frame

USED IN: 2.1 AECLP, 2.4 CP,

2.7 GP, 2.9 TDLRSP

UNITS: none

RANGE: 1, 231 —y)

DATA TYPE: Integer®4

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: FRAME ENGINES_IGNITED
DESCRIPTION: Variable containing the number
of the frame during which the engines
were ignited

USED IN: 2.1 AECLP, 2.7 GP

UNITS: none

RANGE: [0, 23! -)

DATA TYPE: Integer®¢

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE
ACCURACY: TBD

USED IN. 2.1 AECLP, 2.7 GP, 2.8 RECLP, 2.8 TDLRSPNAME: FULL_UP_TIME

UNITS: seconds

RANGE: [0, 0.20]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: DROP HEIGHT

DESCRIPTION: Height from which vehicle should
free-fall to surface

USED IN: 2.7 GP

UNITS: meters

RANGE: [0, 100]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

DESCRIPTION: Time for axial engines lo reach
optimum operational condition

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: [0, 80]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

89

NAME: G1
DESCRIPTION: coeflicient used to adjust A_GAIN
USED IN 2.3 ASP

are

U.l.il..[t
UNITS: ﬁ?ﬁ%
RANGE: [-5, 5]
DATA TYPE: real*g
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G2
DESCRIPTION: coefficient used to adjust A_GAIN
USED IN: 2.3 ASP

metsry
UNITS: j;%

RANGE: [-5, 5]

DATA TYPE: real”8

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: NJA

NAME: G2
DESCRIPTION: coefficient used to adjust G_GAIN
USED IN: 2.8 GSP

UNITS:
egree
RANGE: [-5, 3]
DATA TYPE: real*s
ATTRIBUTE: data
DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: NJA

NAME: G4
DESCRIPTION: coefficient used to adjust G.GAIN
USED IN: 2.6 GSP

UNITS:
degreeC
RANGE. (-5, 5)
DATA TYPE. real”8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_.PARAMETERS
ACCURACY: N/A

NAME: G.COUNTER

DESCRIPTION: gyroscope measurement of vehicle
rotation rates

USED IN: 2.6 GSP

UNITS: none

RANGE: [-(214 - 1), 21 - 1)

DATA TYPE: array (1..3) of Integer®2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

90

NAME G.GAINLO
DESCRIPTION standard gain in vehicle rotation
rates as reasured by the gyroscopes
USED IN 26 G3P
1
UNITs: -tgcond
RANGE: [-1.1
DATA TYPE. array (1..3) of real®8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: NJA

NAME: G.OFFSET

DESCRIPTION: standard offset of the
ROTATION RAW values

USED IN: 2.6 GSP

UNITS. T3

RANGE: {-0.5, 0.5]

DATA TYPE: array (1..3) of real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS
ACCURACY: NfA

NAME: G.EROTATION

DESCRIPTION- vehicle rotation rates

USED IN: 2.4 CP, 2.6 GSP, 2.7 GP, 2.8 RECLP
UNITS: fadians

RANGE: [-5.0, 5.0

DATA TYPE: array (1..3, 0..4)of real®s
ATTRIBUTE: data

DATA STORE LOCATION: SENSOR_QUTPUT
ACCURACY: TBD

NAME: G.STATUS

DESCRIPTION: status of the gyroscopes

USED IN: 2.4 CP, 2.6 GSP

UNITS: none

RANGE: [0 := healthy, 1:=failed)

DATA TYPE: logical®1

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: GA

DESCRIPTION. gain

USED IN: 2.1 AECLP

UNITS: 285971

RANGE: [0, 50

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN _PARAMETERS
ACCURACY: NJA

NAME: GAX

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: none

RANGE: [0, 15000]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME. GP1

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS3 none

RANGE: [.5, 5]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP2

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: none

RANGE: [.5, 5]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP ALTITUDE

DESCRIPTION: altitude as seen by

guidance processor

USED IN: 2.1 AECLP, 2.4 CP, 2.7 GP

UNITS: meters

RANGE: [0, 2500}

DATA TYPE: array (0..4) of real®s
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE _STATE
ACCURACY: TBD

NAME: GP ATTITUDE

DESCRIPTION: attitude as seen by

guidance processor

USED IN: 2.4 CP, 2.7 GP

UNITS: none

RANGE: [-1, 1]

DATA TYPE: array (1.3, 1..3, 0..4) real®s
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE _STATE
ACCURACY: TBD

NAME: GP_DONE

DESCRIPTION: Flag indicating
completion of 2.7 GP task.

USED IN: 2. RUN.GCS

UNITS: noae

RANGE: [0: running of task 2.7 GP incomplete.
1: running of task 2.7 GP complete)
DATA TYPE: logical®1l
ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

NAME: GP._PHASE

DESCRIPTION: phase of operation as seen by
guidance processor

USED IN: 2.4 CP, 2.7 GP

UNITS: none

RANGE: (1, 4)

DATA TYPE: integer®s

ATTRIBUTE: data

DATA STORE LOCATION. GUIDANCE_STATE
ACCURACY: TBD

91

NAME: GP_ROTATION

DESCRIPTION: rotation rates as determined by
the guidance processing module

USED IN: 2.1 AECLP, 2.4 CP, 2.7 GP

UNITs: raduang

RANGE: [-5, 5]

DATA TYPE: array (1..3, 1.3) real*s
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE .STATE.
ACCURACY: TBD

NAME: GP_.VELOCITY

DESCRIPTION: Velocity as corrected by

the guidance algorithm.

USED IN: 2.1 AECLP, 24 CP, 2.7 GP

UNITS; melers

RANGE: [-100, 100]

DATA TYPE: array (1.3, 0..4) of real*s
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: TBD

NAME: GPY

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: none

RANGE: [.5, 5]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

NAME: GQ

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: {-s, 3]

DATA TYPE: real"s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

NAME: GR

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: seconds

RANGE: [-5, 5]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GRAVITY
DESCRIPTION: gravity of planet
USED IN: 2.7 GP
UNITS:
second
RANGE: [0, 100]
DATA TYPE: real®s
ATTRIBUTE: data
DATA STORE LOCATION: RUN_.PARAMETERS
ACCURACY: N/A

NAME. GSP_.DONE
DESCRIPTION: Flag indicating
completion of 2.6 GSP task.

USED IN 2. RUN.GCS

UNITS Binary

RANGE: [0: running of task 2.6 GSP incomplete,
1. running of task 2.6 GSP complete]
DATA TYPE: logical®l
ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: NfA

NAME: GUIDANCE_STATE

DESCRIPTION: Data store containing all

the status, state, and sensed variables

in alphabetical order.

USED IN: 2.1 AECLP, 2.2 ARSP, 2.3 ASP, 24 CP,
2.5 CRCP, 2.6 GSP, 2.7 GP, 2.8 RECLP, 2.9 TDLRSP,
2.10 TDSP, 2.11 TSP UNITS: NfA

RANGE. N/A

DATA TYPE: common

ATTRIBUTE: data store

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: GV

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: i3

RANGE: [-5, 5

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVE

DESCRIPTION: gain

USED IN. 2.1 AECLP

UNITS: /second

RANGE: [-10%, 104}

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN PARAMETERS
ACCURACY: N/A

NAME: GVEI

DESCRIPTION: gaisn

USED IN: 2.1 AECLP

UNITS: [second?

RANGE: [-8, 5}

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN PARAMETERS
ACCURACY: NJA

NAME: GVI

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: [meter

RANGE: [-5, 5]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

92

NAME: GW
DESCRIPTION gain
USED IN: 2.1 AECLP
UNITS. feswnds

meter
RANGE: [.5, 5]
DATA TYPE: real*8
ATTRIBUTE data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/fA

NAME: GWI]

DESCRIPTION: gain

USED IN: 2.1 AECLP

UNITS: {meter

RANGE: [-5, 5]

DATA TYPE: real®8

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

NAME: INIT_DONE
DESCRIPTION: Flag indicating
completion of GCS initialization.
USED IN: 0. GCS

UNITS: none

RANGE: [0: initialization incomplete,
1: initialization complete)

DATA TYPE: logical*1
ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: NJA

NAME: INTERNAL.CMD
DESCRIPTION: Real vector containing
the command to be sent to the axial
engines

USED IN: 2.1 AECLP

UNITS: none

RANGE: -5, 5}

DATA TYPE: array (1..3) of real®8
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE
ACCURACY: TBD

NAME: KALT

DESCRIPTION: Determines use of altimeter radar
by guidance processor

USED IN: 2.2 ARSP, 2.4 CP, 2.7 GP

UNITS: none

RANGE: [0, 1)

DATA TYPE: array (0..4) of Integer®4
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: K MATRIX

DESCRIPTION: Determines use of doppler radar
by guidance processor.

USED IN. 2.4 CP, 2.7 GP, 2.9 TDLRSP

UNITS. none

RANGE: [0, 1]

DATA TYPE array (1.3, 1.3, 0..4) Integer®4
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: M1

DESCRIPTION: jowe: measured temperature
calibration point for :olid state

temperature sensor

USED IN 211 TSP

UNITS: none

RANGE: o 2!% -1

DATA TYPE: Integer*2

ATTRIBUTE data

DATA STORE LOCATION: RUN.PARAMETERS
ACCURACY. N/A

NAME: M2

DESCRIPTION: upper measured temperature
calibration point for solid state

temperature sensor

USED IN. 2.11 TSP

UNITS: none

RANGE: [0, 2!® — 1}

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M3

DESCRIPTION: lower measured temperature
calibration point for thermocouple pair
temperature sensor

USED IN: 2.11 TSP

UNITS: none

RANGE: [0, 215 —)

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME:- M¢

DESCRIPTION: upper measured temperature
calibration point for thermocouple pair
temperature sensor

USED IN 2.11 TSP

UNITS: noae

RANGE: [0, 2!% -]

DATA TYPE: Integer*2

ATTRIBUTE: data

DATA STORE LOCATION: RUN_.PARAMETERS
ACCURACY: N/A

NAME OMEGA

DESCRIPTION: gan of

angular velocity

USED IN- 2.1 AECLP

UNITS: /second

RANGE: [-50, 50]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P1

DESCRIPTION: pulse rate boundary

USED IN: 28 RECLP

UNITS: radians/sec

RANGE: [0, 0 05]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P2

DESCRIPTION: pulse rate boundary

USED IN: 2.8 RECLP

UNITS: radians/sec.

RANGE: [0, 0.05]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P3

DESCRIPTION: pulse rate boundary

USED IN: 2.8 RECLP

UNITS: radiansfsec.

RANGE: {0, 0.05)

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P4

DESCRIPTION: pulse rate boundary

USED IN: 2.8 RECLP

UNITS: radiana/sec.

RANGE: [0, 0.05]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: PACKET

DESCRIPTION: Packet of telemetry data
USED IN: 24 CP

UNITS: N/A

RANGE: N/A

DATA TYPE: array (1..256) of Integer®2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: PEINTEGRAL

DESCRIPTION: Integral portion of Pitch

error equation

USED IN: 2.1 AECLP, 2.4 CP

UNITS: meters

RANGE: [-1000, 1000}

DATA TYPE: real™s

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

93

NAME: PE MAX

DESCRIPTION: Maximum pitch error tolerable
USED IN: 21 AECLP

UNITS: none

RANGE: [0, 1)

DATA TYPE: real®8

ATTRIBUTE: data

DATA STORE LOCATION RUN_PARAMETERS
ACCURACY: NfA

NAME: PEMIN

DESCRIPTION: Minimum pitch error tolerable.
USED IN: 21 AECLP

UNITS: none

RANGE: {-1, 0}

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/fA

NAME: RE.CMD

DESCRIPTION: roll engine command

USED IN: 2.4 CP, 2.8 RECLP

UNITS: none

RANGE: D (direction)[0=positive, 1=negative]
I (intensity) [0=off, 1=minimum, 2=intermediate,
3=maximum}

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: RESTATUS

DESCRIPTION: status of the roll engines

USED IN:. 2.4 CP, 2.8 RECLP

UNITS: none

RANGE: [0 := healthy, 1:=failed]

DATA TYPE: logical®}

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: N/A

NAME: RESWITCH
DESCRIPTION: Flag indicating
whether or not the roll engines are
turned on.

USED IN: INIT.GCS, 2.7 GP
UNITS: none

RANGE: [0: roll engines are off,
1. roll engines are on]

DATA TYPE: logical®1l
ATTRIBUTE: data coadition
DATA STORE LOCATION: GUIDANCE
ACCURACY: N/A

NAME: RECLP_.DONE
DESCRIPTION: Flag indicating
completion of 2.8 RECLP task
USED IN: 2. RUN_GCS
UNITS: none

RANGE: [0: running of task 2.8 RECLP incomplete,

1: running of task 2.8 RECLP complete]
DATA TYPE: logical®}

ATTRIBUTE: control

DATA STORE LOCATION. none
ACCURACY: N/A

NAME: RUN_DONE
DESCRIPTION Flag indicating
completion of GCS.

USED IN: 0. GCS3

UNITS: none

RANGE: [0: running of GCS incomplete,
1: running of GC3S complete]
DATA TYPE: logical*1
ATTRIBUTE: control

DATA STORE LOCATION. none
ACCURACY: N/A

NAME: RUN PARAMETERS
DESCRIPTION: Data store containing all
the run parameters in alphabetical order.
USED IN: 2.2 ARSP, 2.3 ASP, 2.6 GSP,
2.9 TDLRSP, 2.10 TDSP, 2.11 TSP
UNITS: N/A

RANGE: N/A

DATA TYPE: common

ATTRIBUTE: data store

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: SENSOR_OUTPUT
DESCRIPTION: Data store contsining all
the sensor output in alphabetical order.
USED IN: 2.2 ARSP, 2.3 ASP, 24 CP

2.6 GSP, 2.9 TDLRSP, 2.10 TDSP, 2.11 TSP
UNITS: N/A

RANGE: N/A

DATA TYPE: common

ATTRIBUTE: data store

DATA STORE LOCATION: SENSOR_.QUTPUT
ACCURACY: N/A

NAME: SS_.TEMP

DESCRIPTION: Solid state temperature data
USED IN: 2.11 TSP

UNITS: none

RANGE: [0, 2% — 1]

DATA TYPE Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: T2

DESCRIPTION: lower ambient temperature
calibration point for solid state

temperature sensor

USED IN: 2.11 TSP

UNITS: degrees Centigrade

RANGE: [-250, 250}

DATA TYPE: real®8

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

NAME: T2

DESCRIPTION: upper ambient temperature
calibration point for solid state

temperature sensor

USED IN: 2.1t TSP

UNITS: degrees Centigrade

RANGE: [-250, 250

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: NfA

NAME: T3
DESCRIPTION: lower ambient temperature
calibration point for thermocouple pair
temperaiure sensor

USED IN: 2.11 TSP

UNITS: degrees Centigrade

RANGE: {-50, 50)

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T4¢

DESCRIPTION: upper ambient temperature
calibration point for thermocouple pair
temperature sensor

USED IN: 2.11 TSP

UNITS: degrees Centigrade

RANGE: [-50, 50]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TD.COUNTER

DESCRIPTION: value returned by Touch Down Sensor
USED IN: 2.10 TDSP

UNITS: none

RANGE: [-21% 215 _)

DATA TYPE: Integer®2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: TD SENSED
DESCRIPTION: Flag indicating
whether or not touch down has

been sensed.

USED IN: 2.4 CP, 2.7 GP, 2.10 TDSP
UNITS: none

RANGE: [0: touch down not sensed,
1: touch down sensed}

DATA TYPE: logical®)
ATTRIBUTE: data condition

DATA STORE LOCATION: SENSOR.OUTPUT
ACCURACY: N/A

95

NAME: TDLR_ANGLES

DESCRIPTION: vector of doppler radar beam
offset angles (ie, a , 8, ~)

USED IN: 29 TDLRSP

UNITS: radians

RANGE: {0, g]

DATA TYPE: array (1 3) real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR.COUNTER

DESCRIPTION: value returned by Doppier radar
USED IN: 2.9 TDLRSP

UNITS: none

RANGE [0, 21% ~ 1)

DATA TYPE: array (1..4) Integer™2
ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: NJA

NAME: TDLR._.GAIN
DESCRIPTION: gain in doppler radar beam
USED IN: 2.9 TDLRSP

UNITS: -T‘-ﬂmﬁlﬁ

oun
RANGE: (1 3]
DATA TYPE: real*s
ATTRIBUTE: data
DATA STORE LOCATION: RUN PARAMETERS
ACCURACY: N/A

NAME: TDLRLOCK.TIME

DESCRIPTION: locking time of doppler radar beam
USED IN: 2.9 TDLRSP

UNITS: seconds

RANGE: [0, 80}

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_ PARAMETERS
ACCURACY: N/A

NAME: TDLR_OFFSET

DESCRIPTION offset in doppler radar beam
USED IN: 2.9 TDLRSP

UNITS: Secon

RANGE: {-100, 0]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY N/fA

NAME: TDLRSTATE

DESCRIPTION: state of the touch down landing
radar beams.

USED IN: 2.4 CP, 2.9 TDLRSP

UNITS: none

RANGE: [0: Beam out of Lock,

1: Beam in lock]

DATA TYPE: array (1..4) logical®l
ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE _STATE
ACCURACY: N/A

NAME: TDLRSTATUS

DESCRIPTION: status of the doppler radar
USED IN: 2.4 CP, 2.9 TDLRSP

UNITS: none

RANGE: [0 := healthy, 1:=failed]

DATA TYPE: array (1..4) of logical®1
ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE.STATE
ACCURACY: N/A

NAME: TDLR.VELOCITY

DESCRIPTION: Velocity as computed by

the touch down landing radar.

USED IN: 2.4 CP, 2.7 GP, 2.9 TDLRSP

UNITS: secon

RANGE: (-100, 100]

DATA TYPE:array (1.3, 0..4) of real”8
ATTRIBUTE: data

DATA STORE LOCATION: SENSOR.OUTPUT
ACCURACY: TBD

NAME: TDLRSP_DONE
DESCRIPTION: Flag indicating
completion of 2.9 TDLRSP task

USED IN: 2. RUN.GCS

UNITS: none

RANGE: [0: running of task 2.11 TDLRSP incomplete,
1: running of task 2.10 TDSP complete]}
DATA TYPE: logical®1l

ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

NAME: TDLRSP SWITCH
DESCRIPTION: Flag indicating
whether or not the touch down landing
radar sensor processor is turned on.
USED IN: 1. INIT.GCS

UNITS: none

RANGE: [0: processor is off,

1. processor is on.]

DATA TYPE: logical®l

ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE
ACCURACY: N/A

NAME: TDSP DONE

DESCRIPTION: Flag indicating
completion of 2.10 TDSP task.

USED IN: 2. RUN_GCS

UNITS: none

RANGE: [0: running of task 2.10 TDSP incomplete,
1: running of task 2.10 TDSP complete]
DATA TYPE: logical®™}

ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

96

NAME: TDSP 3WITCH
DESCRIPTION. Flag indicating
whether or not the touch down sensor
is turned on

USED IN: 0 GC3

UNITS: none

RANGE: [0: touch dowan sensor is off,
1: touch down sensor is on]

DATA TYPE: logical®1
ATTRIBUTE: data condition

DATA STORE LOCATION: GUIDANCE
ACCURACY: N/A

NAME: TDS.STATUS

DESCRIPTION: status of the touch down sensor
USED IN: 2.4 CP, 2.7 GP, 2.10 TDSP

UNITS: none

RANGE: [0 := healthy. 1:=(failed]

DATA TYPE: logical®}

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCESTATE
ACCURACY N/A

NAME: TE.DROP

DESCRIPTION: The axial thrust error whea
axial engines are warm and the velocity .
altitude contour has not been intersected
USED IN: 2.1 AECLP

UNITS: none

RANGE: [-2, 2]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN PARAMETERS
ACCURACY: NfA

NAME: TEINIT

DESCRIPTION: The axial thrusi error

when the axial engines are cold

USED IN: 2.1 AECLP

UNITS: none

RANGE: [-2, 3]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: NfA

NAME: TEINTEGRAL

DESCRIPTION: Integral portion of Thrust

error equation

USED IN: 2.1 AECLP, 2.4 CP

UNITS: meters

RANGE: [-1000, 1000)

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCESTATE
ACCURACY: TBD

NAME: TELIMIT

DESCRIPTION: Limiting thrust error

USED IN: 2.1 AECLP

UNITS: none

RANGE: {-10000, 10000)

DATA TYPE: real®8

ATTRIBUTE: Data

DATA STORE LOCATION: GUIDANCE STATE
ACCURACY: TBD

NAME: TEMAX

DESCRIPTION: Maximum thrust error permissible
USED IN: 2.1 AECLP

UNITS3: none

RANGE. [-2, 2]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TEMIN

DESCRIPTION: Minimum thrust error tolerable,
USED IN. 2.1 AECLP

UNITS: none

RANGE: [-2, 2]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: NfA

NAME: THERMO_TEMP

DESCRIPTION: thermocouple pair temperature
USED IN: 2.11 TSP

UNITS: none

RANGE: {o, 215 ~]

DATA TYPE: Integer*2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL
ACCURACY: NJ/A

NAME: THETA

DESCRIPTION: initial pulse angle
USED IN: 2.8 RECLP

UNITS: radians

RANGE: [—w, n]

DATA TYPE: real™s

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE
ACCURACY: TBD

NAME: THETA1

DESCRIPTION" pulse angle boundary

USED IN: 2.8 RECLP

UNITS: radians

RANGE: [0, 0.05}

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: THETA2

DESCRIPTION: pulse angle boundary

USED IN: 2.8 RECLP

UNITS: radians

RANGE: [0, 0.05]

DATA TYPE: real*s

ATTRIBUTE: data

DATA STORE LOCATION: RUN _PARAMETERS
ACCURACY: N/A

97

NAME: TSSTATUS

DESCRIPTION: status of the temperature sensors
in solid state, then thermocouple pair order

USED IN. 24 CP, 211 TSP

UNITS none

RANGE: [0 .= healthy, 1 =failed]

DATA TYPE: array (1..2) of logical*1
ATTRIBUTE. data

DATA STORE LOCATION: GUIDANCE _STATE
ACCURACY: N/A

NAME: TSP.DONE

DESCRIPTION: Flag indicating
completion of 2.11 TSP task

USED IN: 2. RUN_GCS

UNITS: none

RANGE: [0: running of task 2.11 TSP incomplete,
1: running of task 2.11 TSP complete]
DATA TYPE: logical®}

ATTRIBUTE: control

DATA STORE LOCATION: none
ACCURACY: N/A

NAME: VELOCITY.ERROR

DESCRIPTION: Distance from velocity-altitude
contour. (Difference in velocities from actual

to desired on contour.

USED IN: 2.1 AECLP, 2.4 CP, 2.7 GP

UNITS: Y=

RANGE: {71556, 1500]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE _STATE
ACCURACY: TBD

NAME: YEINTEGRAL

DESCRIPTION: Integral portion of Yaw

error equation

USED IN: 2.1 AECLP, 2.4 CP

UNITS: meters

RANGE: [-1000, 1600}

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: GUIDANCE .STATE
ACCURACY: TBD

NAME: YE.MAX

DESCRIPTION: Maximum yaw error permissible
USED IN: 2.1 AECLP

UNITS: none

RANGE: [-1, 1]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN.PARAMETERS
ACCURACY: N/A

NAME: YEMIN

DESCRIPTION: Minimum yaw error tolerable
USED IN: 2.1 AECLP

UNITS: none

RANGE: [-1, 1]

DATA TYPE: real®s

ATTRIBUTE: data

DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

98

PART II. CONTENTS OF DATA STORES

Table 7.1: DATA STORE: GUIDANCE_STATE

VARIABLE NAME USED BY:

A STATUS 2.3 ASP,24CP

AESTATUS 2.1 AECLP, 24 CP

AESWITCH 2.1 AECLP, 2.7 GP

AE_TEMP 2.1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP
AR_STATUS 2.2 ARSP, 2.4 CP

C.STATUS 24 CP

CHUTE.RELEASED
CONTOUR.CROSSED
FRAME_BEAM_UNLOCKED
FRAME_ENGINES_IGNITED
GSTATUS
GP_ALTITUDE
GP_ATTITUDE
GP_PHASE
GP_ROTATION
GP_VELOCITY
INTERNAL.CMD

K ALT

K_MATRIX
PE_INTEGRAL
RE_STATUS
RE_SWITCH

TDLR STATE

TDLR STATUS
TDLRSP SWITCH
TDS STATUS
TDSP_SWITCH
TEINTEGRAL
TE_LIMIT

THETA

TSSTATUS
VELOCITY.ERROR
YEINTEGRAL

2.1 AECLP, 24 CP, 2.5 CRCP, 2.7 GP
2.1 AECLP, 24 CP, 2.7 GP
2.9 TDLRSP

2.1 AECLP, 2.7 GP

2.4 CP, 2.6 GSP

24 CP, 2.7 GP, 2.1 AECLP
24CP, 2.7 GP

24 CP,2.7GP

2.1 AECLP, 24 CP, 2.7GP
2.1 AECLP, 24 CP, 2.7 GP
2.1 AECLP

2.2 ARSP, 24 CP,2.7GP
2.4CP, 2.7 GP, 2.9 TDLRSP
2.1 AECLP, 24 CP

2.4 CP, 2.8 RECLP
INIT.GCS, 2.7 GP, 2.8 RECLP
2.4 CP, 2.7 GP, 29 TDLRSP
2.4 CP, 2.9 TDLRSP
INIT.GCS

2.4 CP, 2.7 GP, 2.10 TDSP
0. GCS

2.1 AECLP, 24 CP

2.1 AECLP

2.8 RECLP

2.4 CP, 2.11 TSP

2.1 AECLP, 24 CP, 2.7 GP
2.1 AECLP, 24 CP

PRECEDING PAGE BLANK NOT FILMED

99

each 17 NTENTIONALLY BLANK

Table 7.2:

DATA STORE: EXTERNAL

VARIABLE NAME | USED BY
A_COUNTER 2.3 ASP

AE.CMD 2.1 AECLP,24 CP
AR_.COUNTER 2.2 ARSP
FRAME_COUNTER | 2.1 AECLP, 2.4 CP, 2.7 GP, 2.9 TDLRSP
G_.COUNTER 2.6 GSP

PACKET 24 CP

RE_.CMD 2.8 RECLP, 24 CP
SS_.TEMP 2.11 TSP
TD.COUNTER 2.10 TDSP
TDLR_COUNTER 2.9 TDLRSP
THERMO_TEMP 2.11 TSP

Table 7.3: DATA STORE: SENSOR.OUTPUT

VARIABLE NAME

USED BY:

A_ACCELERATION
ARALTITUDE

ATMOSPHERIC_.TEMP

G_ROTATION
TD.SENSED
TDLR_-VELOCITY

2.1 AECLP, 2.3 ASP, 24 CP, 2.7 GP
2.2 ARSP, 2.4 CP. 2.7 GP

2.3 ASP, 2.4 CP, 2.6 GSP, 2.11 TSP
2.4 CP, 2.6 GSP, 2.7 GP, 2.8 RECLP
2.4 CP, 2.7 GP, 2.10 TDSP

2.4 CP, 2.7 GP, 2.9 TDLRSP

100

Table 7.4: DATA STORE: RUN_PARAMETERS

VARIABLE NAME USED BY
A_BIAS 2.3 ASP
A_GAIND 2.3 ASP
ASCALE 2.3 ASP
ALPHA_MATRIX 2.3 ASP
AR FREQUENCY 2.2 ARSP
COMM_SYNC_PATTERN | 2.4 CP
CONTOUR-ALTITUDE 2.7GP
CONTOUR_VELOCITY 2.7 GP
DELTA.T 2.7 GP, 2.8 RECLP, 2.9 TDLRSP
DROP HEIGHT 2.7 GP
ENGINES_.ON_ALTITUDE | 2.1 AECLP, 2.7 GP
FULL_UP_.TIME 2.1 AECLP
Gl 2.3 ASP
G2 2.3 ASP
G3 2.6 GSP
G4 2.6 GSP
G_.GAINLO 2.6 GSP
G_OFFSET 2.6 GSP
GA 2.1 AECLP
GAX 2.1 AECLP
GP1 2.1 AECLP
GP2 2.1 AECLP
GPY 2.1 AECLP
GQ 2.1 AECLP
GR 2.1 AECLP
GRAVITY 2.7GP

GV 2.1 AECLP
GVE 2.1 AECLP
GVEI 2.1 AECLP
GVl 2.1 AECLP
GwW 2.1 AECLP
GWI 2.1 AECLP
M1 2.11 TSP
M2 2.11 TSP
M3 2,11 TSP
M4 2.11 TSP
OMEGA 2.1 AECLP

101

Table 7.5:

DATA STORE: RUN_PARAMETERS (cont.)
VARIABLE NAME | USED BY
Pi 2.8 RECLP
P2 2.8 RECLP
P3 2.8 RECLP
P4 2.8 RECLP
PE_MAX 2.1 AECLP
PE_MIN 2.1 AECLP
T1 2.11 TSP

T2 2.11 TSP

T3 2.11 TSP

T4 2.11 TSP
TDLR-ANGLES 2.9 TDLRSP
TDLR.-GAIN 2.9 TDLRSP
TDLR_LOCK_TIME | 2.9 TDLRSP
TDLR.OFFSET 2.9 TDLRSP
TE_DROP 2.1 AECLP
TE_INIT 2.1 AECLP
TE_.MAX 2.1 AECLP
TE_MIN 2.1 AECLP
THETA1 2.8 RECLP
THETA2 2.8 RECLP
YE_MAX 2.1 AECLP
YE_MIN 2.1 AECLP

102

PART III. LIST OF CONTROL VARIABLES
AND DATA CONDITIONS

Table 7.6 CONTROL VARIABLES (OPTIONAL USAGE)

CONTROL VARIABLE NAME
AECLP_.DONE

ARSP_DONE

ASP_DONE

CRCP_.DONE

GP_DONE

GSP_DONE

TDLRSP_DONE

TDSP_DONE

TSP_DONE

Table 7.7 DATA CONDITIONS (REQUIRED USAGE)

DATA CONDITION VARIABLE NAME
AE_TEMP

CHUTE.RELEASED

TDSENSED

TDLR.STATE

103

Table 7.8: INITIALIZATION DATA

VARIABLE NAME USED BY

A_ACCELERATION 2.1 AECLP, 2.3 ASP, 24 CP, 2.7 GP
A_BIAS 2.3 ASP

A_COUNTER 2.3 ASP

A_GAINDO 2.3 ASP

A SCALE 2.3 ASP

A _STATUS 2.3 ASP, 24 CP

AESTATUS 2.1 AECLP, 24 CP

AESWITCH 2.1 AECLP, 2.7 GP

AE_TEMP 2.1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP
ALPHA _MATRIX 2.3 ASP

ARALTITUDE 2.2 ARSP, 2.4 CP, 2.7 GP
AR_COUNTER 2.2 ARSP

AR_FREQUENCY 2.2 ARSP

ARSTATUS 2.2 ARSP, 24 CP
ATMOSPHERIC_TEMP 2.3 ASP, 2.4 CP, 2.6 GSP, 2.11 TSP
CSTATUS 24 CP

CHUTE_.RELEASED 2.1 AECLP, 2.4 CP, 2.5 CRCP, 2.7 GP
COMM_SYNC_PATTERN 24 CP

CONTOUR-ALTITUDE 2.7GP

CONTOUR-CROSSED 2.1 AECLP, 2.4 CP, 2.7 GP
CONTOUR.VELOCITY 27GP

DELTA_T 2.7 GP

DROP HEIGHT 2.71GP

ENGINES_.ON_ALTITUDE 2.1 AECLP, 2.7 GP
FRAME_BEAM_UNLOCKED | 2.9 TDLRSP

FRAME_COUNTER
FRAME_ENGINES_ IGNITED
FULL_.UP_TIME

2.1 AECLP, 2.4 CP, 2.7 GP, 29 TDLRSP
2.1 AECLP, 2.7 GP
2.1 AECLP

104

Table 7.9: INITIALIZATION DATA (cont.)

VARIABLE NAME | USED BY
Gl 2.3 ASP
G2 2.3 ASP
G3 2.6 GSP
G4 2.6 GSP
G_COUNTER 2.6 GSP
G_.GAINO 2.6 GSP
G.OFFSET 2.6 GSP
G_ROTATION 24 CP, 2.6 GSP, 2.7 GP, 2.8 RECLP
G_STATUS 2.4 CP, 2.6 GSP
GA 2.1 AECLP
GAX 2.1 AECLP
GP1 2.1 AECLP
GP2 2.1 AECLP
GP_ALTITUDE 2.7GP, 2.1 AECLP
GPATTITUDE 2.7GP
GP_PHASE 24 CP, 2.7 GP
GP_ROTATION 2.7 GP, 2.8 RECLP
GP_VELOCITY 2.7GP
GPY 2.1 AECLP
GQ 2.1 AECLP
GR 2.1 AECLP
GRAVITY 2.7GP
GV 2.1 AECLP
GVE 2.1 AECLP
GVEI 2.1 AECLP
GVI 2.1 AECLP
GW 2.1 AECLP
GWI 2.1 AECLP

105

Table 7.10: INITIALIZATION DATA (cont.)

VARIABLE NAME

USED BY

K-ALT
K_MATRIX

M1

M2

M3

M4

OMEGA

P1

P2

P3

P4
PE.INTEGRAL
PE_MAX

PE_MIN
RE_STATUS

RE SWITCH
SS-TEMP

Tl

T2

T3

T4

TD_SENSED
TDLR-ANGLES
TDLR-COUNTER
TDLR-GAIN
TDLR.LOCK.TIME
TDLR_OFFSET
TDLR.STATE
TDLRSTATUS
TDLR-VELOCITY

2.2 ARSP, 2.4 CP, 2.7 GP
2.4 CP, 2.7 GP, 2.9 TDLRSP
2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

2.1 AECLP

2.8 RECLP

2.8 RECLP

2.8 RECLP

2.8 RECLP

2.1 AECLP, 2.4 CP

2.1 AECLP

2.1 AECLP

2.4 CP, 2.8 RECLP
INIT_GCS, 2.7 GP, 2.8 RECLP
2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

2.11 TSP

2.4 CP, 2.7 GP, 2.10 TDSP
2.9 TDLRSP

2.10 TDSP

2.9 TDLRSP

2.9 TDLRSP

2.9 TDLRSP

2.4 CP, 2.7 GP, 2.9 TDLRSP
2.4 CP, 2.9 TDLRSP

2.4 CP, 2.7 GP, 2.9 TDLRSP

106

Table 7.11: INITIALIZATION DATA (cont.)

VARIABLE NAME USED BY
TDLRSP SWITCH INIT_.GCS
TDSSTATUS 2.4 CP, 2.7 GP, 2.10 TDSP
TDSP.SWITCH 0. GCS

TE.DROP 2.1 AECLP
TE_NIT 2.1 AECLP
TE_INTEGRAL 2.1 AECLP, 24 CP
TE_LIMIT 2.1 AECLP
TE_MAX 2.1 AECLP
TE_MIN 2.1 AECLP
THERMO_.TEMP 2.11 TSP

THETA 2.8 RECLP
THETA1 2.8 RECLP
THETA2 2.8 RECLP
TSSTATUS 24 CP, 2.11 TSP

VELOCITY_ERROR
YE_INTEGRAL
YE_.MAX

YE_MIN

2.1 AECLP, 24 CP, 2.7 GP
2.1 AECLP, 24 CP

2.1 AECLP

2.1 AECLP

107

108

A. FORMAT OF THIS SPECIFICATION

PRECIDING PAGE 181 NOT FILIUID ; @R/ 05 INTENTIONALLY BLANG

110

INTRODUCTION TO FORMAT

This specification uses the extended structured analysis method advocated
by Hatley [12, 13]. This method is based on a hierarchical approach to
defining functional modules and the associated data and control flows.

The documents constructed as a part of this specification include data
context and flow diagrams; control context and flow diagrams; process, con-
trol, and timing descriptions; and a requirements dictionary. Figure A.1
defines the graphical symbols used in the data flow and control flow dia-
grams respectively.

The data flow diagrams describe the processes, data flows, data stores,
and data conditions. The data context diagram is the highest-level data flow
diagram and represents the data flow for the entire system. Data conditions
are represented by directed arcs with broken lines.

The control flow diagrams describe processes, control signal flows, and
stores. The control signal flows are depicted using directed arcs with broken
lines. The control signals listed in the data dictionary may be implemented
by the programmer in any form desired, or they may be completely ignored
and the control of the program conducted through other means. They simply
show the logic involved in the system. Signal flows between the control
flow diagram and the control specification have a short bar at the end of
the directed arc. The control flow diagrams contain duplicate descriptions
of the processes represented on the data flow diagram. This duplication
of processes is consistent with the approach of slaving the control flow to
the data flow. The control context diagram representing the most abstract
control flow is similar to the data context diagram.

The control specifications describe the control requirements of a system.
These specifications contain the conditions when the processes detailed in
the data and control flow diagrams are activated and de-activated.

The requirements dictionary contains definitions for both data and con-
trol signals.

111

PRECEDING PAGE BLANX NOT FILMED RAGE_// 0 INTENTIONALLY BLANK

Figure A.1: GRAPHICAL SYMBOLS USED IN FLOW DIAGRAMS .

112

PROCESS MODULE

SOURCE OR SINK

DATA STORE

DATA CONDITION

OR CONTROL FLOW

CONTROL SPECIFICATION

DATA FLOW

B. IMPLEMENTATION NOTES

114

INTERFACE

Background

For the purposes of this research experiment, each GCS software implemen-
tation must function as if it were actually controlling a planetary lander. In
reality, each GCS implementation will be interacting with a software simula-
tor (GCS_SIM) that models the behavior of a physical lander when exposed
to the environmental forces of a planet.

Due to the fact that each GCS implementation must interact with GCS_SIM
as if it were connected to the lander hardware, there are some additional
requirements that are placed on a GCS implementation that help define a
software interface. The software interface to the simulator replaces the phys-
ical connection to planetary lander hardware through the use of a simulator
support utility and an additional requirement involving the organization of
the global data stores.

Simulator Support Utility

A single simulator support utility (GCS_SIM_RENDEZVOUS) is provided
to form a uniform interface between the GCS applications software and the
simulation environment (GCS_SIM). This utility is a routine which simpli-
fies the interface between the GCS implementations and the simulation of
the vehicle sensing and control mechanisms. This utility also includes a syn-
chronization mechanism for the configurations using more than one version
of the GCS. This routine provides the following support functions:

o Initialization for the Beginning of Terminal Descent
¢ Simulator Rendezvous Synchronization

o GCS Interface for Simulated Reads and Writes

Global Data Store Organization

Part III of the data dictionary of this specification contains descriptions of
four required data stores. Each of these data stores is to be located in a
separate, globally accessible data region. By dividing the global data stores
into four separate regions, they can be compared to components that would
be found on a hardware interface (See Figure B.1).

115

PRECEDIN 3 ; -
G PAGE BLANK NOT FILMED m‘-/_/i__.lmmmum BLANK

GCS IR _

Implementation £ Guidance._.
" State
Sensor_
Output
Rendezvous External
Rom Ram 1/0 Device
Simulated Hardware Interface
GCS_SIM
Simulated Hardware
and
Environment
| Hardware Component | Global Data Store (Software Interface) |
Input/Output Device EXTERNAL
Read-Only Memory RUN_PARAMETERS

On-board Random Access Memory || GUIDANCESTATE
On-board Random Access Memory [| SENSOR.OUTPUT

Figure B.1: DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMEN-
TATIONS

116

In FORTRAN, this would mean four common blocks with the labels as
given in the header for each data store listing. There are ways of accomplish-
ing this same type of data region in other languages. but they are outside
the scope of this experiment.

Input/Output

The GCS SIM_RENDEZVOUS routine simulates all of the input/output op-
erations for each GCS implementation. When using the rendezvous routine
with a GCS implementation, all data needed by rendezvous is passed via
the four global data stores and there are no additional parameters required.
All information read from or written to each GCS application will be trans-
ferred through the four global data stores defined in the data dictionary.
The programmer should note that although normally somé type of range
checking/limiting would be included in control programs, there are some
restrictions being placed by this experiment. The programmer is allowed
to check values of variables to see if they are within the ranges specified
in the data dictionary, but if values are outside the specified range, NO
CHANGES should be made to them. For purposes of this experiment,
the calculated values need to be passed to the simulator. Values returned
from the simulator will always be within the specified range, so if the ap-
plication sends out-of-range values to the simulator, these values will be
put into range before being passed from the simulator to the next subframe
processes. This means that all inputs to subframes may be assumed to be
within the specified ranges.

Process

The GCS reads the sensor input values and processes them into control com-
mands which are averaged by GCS_SIM and written to the control surfaces.
Since GCS_SIM handles the orbit to terminal descent portion of each tra-
Jectory, a rendezvous must be issued at the start of each trajectory to load
initial sensor values into each GCS application. Following the first call to
rendezvous (time step equal to zero), all GCS applications will synchronize
themselves by calling rendezvous at the end of each sub-frame. This ren-
dezvous, in effect, suspends the GCS implementations until the other GCS
implementations have processed this time step or have run out of time.

The calling convention for this GCS_SIM provided support utility is as
follows:

117

o GCSSIM_RENDEZVOUS (requires no parameters)

GCS Initialization

During the initialization phase of each GCS trajectory - the first call to
rendezvous - the frame counter value will be updated with the starting
frame for the particular trajectory. Under normal circumstances, the value
of the frame counter will be “1,” but do not rely on that. As errors occur
in the GCS, they will be fixed; the trajectory may start at the beginning of
the last complete frame that was processed without error.

Local Variables

In an attempt to accommodate everyone, most of the variables needed to
manipulate functions within the GCS have been included in the data stores,
which can be found in the data dictionary. Since a GCS can be started at
the beginning of any frame, the programmer is responsible for establishing
acceptable initialization values for any local variables (any variable not listed
in the data dictionary) which may have been declared. Assume that some
of the GCS_SIM may initialize the GCS with a list of variables from some
saveset of previous global data store values.

By using the interface described above, the simulator can be transparent
to the implementation.

118

C. NUMERICAL INTEGRATION
INSTRUCTIONS

120

Three locations exist within the GCS specification requiring the use of a
highly accurate numerical integration method!. These locations are the
calculations of GP_VELOCITY, GP_ALTITUDE, and GP_ATTITUDE in
the Guidance Processor. To maintain the necessary degree of accuracy in
certain output variables, three methods of numerical integration have been
designated as acceptable for coding: Adams-Moulton method, Hamming’s
method, and the Runge-Kutta fourth-order method.

Fach method is briefly described in the following paragraphs and refer-
ences to numerical analysis texts describing the method are provided. Algo-
rithms specified in either a text listed or another suitable numerical analysis
text should be used during coding.

Adams-Moulton Method requires values from the previous four time
steps to calculate the value at the next time step. The Adams-Moulton
method is a predictor/corrector method. Both [14] (pp. 346-7) and [16]
(pp. 478-81) explain the Adams-Moulton method.

Hamming’s Method uses a predictor/corrector method similar to that
of Adams-Moulton. Hamming’s method uses the same predictor as
Milne’s, but uses a much simpler corrector formula. Milne's method
of integration was deemed to unstable for use, but Hamming’s method
with the simpler corrector is sufficiently stable. A description of both
Hamming’s method and Milne’s method can be found in [14] (pp. 347-
8).

Runge-Kutta Fourth-Order Method The well-known Runge-Kutta fourth-
order method requires only the previous two values to calculate the
next value. References can be found in many texts including; [14]
(pp. 352-8), [15] (pp. 273-80), [16] (pp. 481-6), and (17]) (pp. 152-4).

'Note: not all integration required by the GCS specification requires the use of one
of the methods listed in this appendix. More specifically, in computing TEINTEGRAL,
PE_INTEGRAL, and YEINTEGRAL, Euler’s method provides sufficient accuracy and
simplicity and should be used. Information on Euler’s method may be found in: [14]
(pp. 318-22), {15] (pg. 223), and [16) (pp. 462-3).

121

PRECEDING PAGE BLANK NOT FILMED h | {20 INTENTIONALEY BEANK

During the first time step, using a numerical integration method neces-
sitates some specification of previous values. These values will be provided
during initialization for the data elements provided in Table C.1.

Table C.1: INITIAL VALUES PROVIDED FOR USE IN INTEGRATION

A_ACCELERATION (1..3,0..4)
AR_ALTITUDE (0..4)
GP_ALTITUDE (0.4)
GP_ATTITUDE (1.3, 1.3, 0.4)
GP_VELOCITY (1..3, 0..4)
GROTATION (1..3,0.4)
KALT (0.4) ;

K MATRIX (1.3, 1.3, 0..4)
TDLR_VELOCITY (1.3, 0..4)

To insure that the numerical integration scheme coded provides sufficient
accuracy in the output variable, an Accuracy Validation Utility Program
(AVUP) will be used during acceptance testing.

122

(1]

(2]

[3]

(4]

[5]

[6]

[7)

8]

[9]

[10]

[11]

(12]

Bibliography

Federal Aviation Administration. One McPherson Square, 1425 K
Street N.W., Suite 500, Washington, DC 20005. Radio Technical Com-
mission for Aeronautics Document RTCA/DO-178A, August 1986.

George B. Finelli. Results of software error-data experiments. In
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Confer-
ence, Atlanta, GA, September 1988.

Harm Buning and D. T. Greenwood. Flight mechanics of space and
re-entry vehicles. Technical report, The University of Michigan Engi-
neering Summer Conferences, Summer 1964.

Herbert Goldstein. Classical Mechanics. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, USA, 1959.

Irving H. Shames. FEngineering Mechanics - Statics and Dynamics.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.

Dan Edwin Christie. Vector Mechanics. McGraw-Hill Inc., New York,
1964.

David Hestenes. New Foundations for Classical Mechanics. D. Reidel
Publishing Company, Boston, 1986.

D. N. Burghes and A. M. Downs. Classical Mechanics and Control.
Ellis Horwood Limited, Coll House, Westergate, England, 1975.

G. S. Light and J. B. Higham. Theoretical Mechanics. Longman Inc.,
New York, 1975.

Don C. Rich and J. R. Dunham. Guidance and control software simula-
tor (ges.sim) software specification. Technical Report NASA Contract
NAS1-17964; Task Assignment No. 8, Research Triangle Institute, Re-
search Triangle Park, NC, 1987.

Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey, 1981.

Derek J. Hatley. The use of structured methods in the develop-
ment of large, software-based avionics systems. In Proceedings of the
AIAA/IEEFE 6th Digital Avionics Systems Conference, New York, De-
cember 1984.

[13] Derek J. Hatley and Iimtiaz A. Pirbhai. Strategies for Real-Time System
Specification. Dorset House Publishing Company, New York, New York,
1987.

(14] W. Allen Smith. Elementary Numerical Analysis. Harper & Row, New
York, 1979.

[15] J. B. Scarborough. Numerical Mathematical Analysis. The Johns Hop-
kins Press, Baltimore, 1930.

[16] Stephen M. Pizer. Numerical Computing and Mathematical Analysis.
Science Research Associates, Inc., Chicago, 1975.

[17] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integra-
tion. Academic Press, New York, 1975.

124

NNASA

Nahonal Aeronautics and
Space Admuastration

Report Documentation Page

—_

. Report No.
NASA CR-182058

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

Software Requirements: Guidance and Control Software

Development Specification

7. Author(s) h

B. E. Withers, D. C, Rich, D. S. Lowman, and R. C.
Buckland

5. Report Date

June 1990

6. Pertorniing Organization Code

174 Pertonining Organization Report No.

10. Work Unit No.

9. Purforming Organization Name and Address 505-66-21-01
Research Triangle Instictute (17 Contract or Geant No.
P.0. Box 12194
Research Triangle Park, NC 27709-2194 NAS1-17964

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration

Langley Research Center

Contractor Report

14. Sponsoiing Agency Code
Hampton, VA 23665-5225

156. Supplementary Notes

Technical Monitor:

George B. Finelli, Langley Research Center
Task 8 Report

16. Abstract

This document specifies the software requirements for an implementation of
Guidance and Control Software (GCS). The purpose of the GCS is to provide
guidance and engine control to a planetary landing vehicle during its terminal
descent onto a planetary surface and to communicate sensory information
about that vehicle and its descent to some receiving device. The specification
was developed using the structured analysis for real-time system specification
methodology by Hatley and Pirbhai and was based on a simulation program
used to study the probability of success of the 1976 Viking Lander missions to
Mars. Three versions of GCS are being generated for use in software error

studies research conducted by the Research Triangle Institute and the NASA
Langley Research Center.

17. Key Words (Suggested by Authoris))

Software Requirements
Specification

Guidance and Control Software (GCS)
Planetary Landing Vehicle

18. Distribution Statement
Unclassified-Unlimited
Subject Category 61

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

137

22. Price

Unclassified AO7

Unclassified

NASA FORM 1626 0Lt oo

