
. (

PARALLEL PROCESSORS AND

NO_ STRUCTURAL DYNANICS _RITHHS AND SOFI"WARE

Principal Investigator" Ted Belytschko

Department of Civil Engineering

Northwestern University
Evanston, Illinois 60208-3109

Final Technical Report

March I, 1986 though May 31, 1990

NASA Research Grant NAG-I-650

(NAgA-_._._-'_,:i.6ir,;,) P,_R_,LLIL °m_C_S:_i_,Rj ANj

fieNt-i_zA& bT_<IJLTUOAI. __YNA_IC3 ALG!31_,TfHMS A_r':

bnFT'.A_._ rindl Tuchnic_l R_nort,] Udr. 19i_._

- 3] ':_-:_V !.#?0 (NortiIwest_rn U_liv.) I>2 D

C<CL O# _' G_/OI

N _ O - g z) .3 ::..,

https://ntrs.nasa.gov/search.jsp?R=19900017220 2020-03-19T22:23:18+00:00Z

PREFACE

This research was conducted under the direction of Professor Ted

Belytschko. Participating research assistants were Bruce E. Engelmann,

Noreen D. Gilbertsen, Mark O. Neal, and Edward J. Plaskacz. The help of

Argonne National Laboratory, particularly Dr. James M. Kennedy who provided

access to several parallel computing machines, is also appreciated.

The following presentations supported by NASA-Langley were made in 1989:

Martin R. Ramirez and Ted Belytschko, "Expert System and Error Estimates

for Time Steps in Structural Dynamics", Texas Institute for Computa-
tional Mechanics Workshop on Reliability in Computational Mechanics,

Austin, TX, October 27, 1989.

Ted Belytschko and Edward J. Plaskacz, "Observations Regarding
CONNECTION Machine Performance for Nonlinear Dynamic Finite Element

Analysis", Fourth SIAM Conference on Parallel Processing for

Scientific Computing, Chicago, IL, December Ii, 1989.

The following papers supported by NASA-Langley were submitted for

publication:

Edward J. Plaskacz and Ted Belytschko, "Measurement and Exploitation of

Mesh Structure on the CONNECTION Machine", Proc. of the ASME/Computers

in Englne_riDg _Dternatlonal Exposition and Conference (Boston, August

1990), ASME, New York, NY, to appear, 1990.

Ted Belytschko, Edward J. Plaskacz, and James M. Kennedy, "Finite

Element Computations on SIMD Machines with Hybrid Communication

Schemes", P_eorints of the Se9ond World Congress on Computational

Mechanics (Stuttgart, August 1990), to appear, 1990.

Noreen D. Gilbertsen and Ted Belytschko, "Explicit Time Integration of

Finite Element Models on a Vectorized, Concurrent Computer with Shared

Memory", Finite _ements %D Analysis and Design, to appear, 1990.

Ted Belytschko, Edward J. Plaskacz, James M. Kennedy, and Donald L.

Greenwell, "Finite Element Analysis on the CONNECTION Machine",

Compute_ Methods in Applied Mechanics and Engineering, in press, 1990.

Martin R. Ramirez and Ted Belytschko, "An Expert System for Setting Time

Steps in Dynamic Finite Element Programs", Engineering with Computers,

5(3/4), 205-219, 1989.

Mark O. Neal and Ted Belytschko, "Explicit-Explicit Subcycling with Non-

Integer Time Step Ratios for Structural Dynamic Systems", Computers

and Structures, 3_(6), 871-880, 1989.

P. Smolinski, T. Belytschko, and M. Neal, "Multi-Time-Step Integration

Using Nodal Partitioning", International Journal for Numerical Methods

in Engineering, 26(2), 349-359, 1988.

Ted Belytschko, "On Computational Methods for Crashworthiness",

Computers and Structures, submitted.

ABSTRACT

This report discuses techniques for the implementation and improvement

of vectorization and concurrency in nonlinear explicit structural finite element codes.

In explicit integration methods, the computation of the element internal force vector

consumes the bulk of the computer time. The program can be efficiently vectorized

by subdividing the elements into blocks and executing all computations in vector

mode. The structuring of elements into blocks also provides a convenient way to im-

plement concurrency by creating tasks which can be assigned to available processors

for evaluation. The techniques were implemented in a t.hxee dimensional nonlinear

program with one-point quadrature shell elements.

Concurrency and vectorization were first implemented in a single time step version

of the program. An effirAeat imp[ements_ioaof suhcycting, a, mixed time integration

method using different time steps for different parts of the mesh, was particularly

difficult because of problems in scheduling processors and setting the optimal vector

size. Techniques were developed to minimize processor idle time and to select the

optimal vector length.

A comparison of run times between the program executed in scalar, serial mode

J_J.

and the fully vectorized code executed concurrently using eight processors shows

speed-ups of over 25. Using subcycling, the speed-up is three or more, depending on

the problem and the number of processors used. Efficiency of concurrent execution

decreases as the number of processors increase due to processor idleness, memory

contention and the effect of nonparallelizable code.

Conjugate gradient methods for solving nonlinear algebraic equations are also

readily adapted to a parallel environment. A new technique for improving conver-

gence properties of conjugate gradients in nonlinear problems is developed in con-

junction with other techniques such as diagonal scaling. It consists of an analytic

continuation which forces a slow transition between plastic and elastic response. A

significant reduction in the number of iterations required for convergence is shown

for a statically loaded rigid bar suspended by three equally spaced springs. In larger

problems, the improvement is not as dramatic, indicating additional refinement of

the method.

iii

Contents

ABSTRACT ii

LIST OF TABLES

LIST OF FIGURES

vii

ix

1 Introduction 1

Fundamentals 4

2.1 ParallelComputer Architectures........ 4

2.2 SIMD: PipelineProcessorsand Array Processors............ .5

2.3 MIMD: Multiprocessors 8

2.3.1 Compiler Optimization 9

2.3.2 Monitors i0

3 Vectorized, Concurrent Finite Element Program 20

3.1 Introduction 20

iv

4

3.2 Explicit Finite Element Formulation 21

3.2.1 Finite Element Equations 21

3.2.2 Time Integration 23

3.2.3 Evaluation of Critical Time Step 25

3.3 Vectorization 29

3.3.1 Compiler Vectorization 29

3.3.2 Vectorization of Internal Nodal Force Array 33

3.4 Concurrency 40

3.5 Numerical Studies 44

3.6 Conclusions 53

Subcycling 63

4.1 Subcycling Formulation 63

4.1.1 Finite Element Equations 64

4.1.2 Implementation of Subcycling 67

4.1.3 Graphical Representation of Subcycling 74

4.1.4 Stability 76

4.i.5 Speed-up Due to Subcyciing 78

4.2 Vectorization Considerations 79

4.3 Timing Studies 82

4.4 An Efficient Allocation Algorithm for Concurrency and Subcycling.. 85

5 Conjugate Gradient Method I01

v

5.1 Introduction I01

5.2 Nonlinear Conjugate Gradient Algorithm 103

5.3 Convergence Enhancements 109

5.3.1 Diagonal Scaling 109

5.3.2 Zeta-Parameter Method 114

5.4 Numerical Studies 117

5.5 Conclusions 122

8 Summary and Conclusions 135

v£

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Material Properties and Parameters for Spherical Cap 55

Solution Times for Spherical Cap Problem 55

Material Properties and Parameters for Containment Vessel 55

Run Times (Efficiency) for Containment Vessel Problem 56

Parameters for Cylindrical Panel Problem 56

Sizes and Time Steps for Mesh Discretizations for Cyl. Panel Problem 56

Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 1 . . . 57

Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 2 . . . 57

Run Times (Efficiency) for Cylindrical Panel Problem- Mesh 3 . . . 57

3.10 Material Properties and Paxameters for Auto Impact Problem 58

3.1I Run Times (Efficiency) for Automobile Impact Problem 58

3.12 Comparison of Computation Times For a Single Time Step 58

4.1 Flow Chart for Subcycling Algorithm 72

4.2 Material Properties and Loading for Axially Loaded Beam 91

4.3 Number of Subcycles per Element Group for Three Group Sizes 91

4.4 Run Times (Efficiency) for Containment Vessel with Subcycling 91

vii

4.5 Run Times (Et_ciency) for Automobile Impact with Subcycling . . . 92

4.6 Allocation of Processors for Modified Cylindrical Panel Problem . . . 92

4.7 Allocation of Processors using New Allocation Algorithm 9:3

4.8 Timings for Modified Cylindrical Panel Problem in sec CPU 9;3

5.1 Number of Iterations per Load Step for Cantilever Beam 124

viii

List of Figures

2.1 Stages of a Scalar Multiplication 19

2.2 Stages of a Vector Multiplication 19

3.1 Sample Problem i: Spherical Cap 59

3.2 Sample Problem 2: Containment Vessel with Nozzle Penetration . . 60

3.3 Sample Problem 3: Impulsively Loaded Panel 61

3.4 Sample Problem 3: Automobile Impact Problem 62

4.1 Graphical Representation of Subcycling 94

4.2 Axially Loaded Beam for Subcycling StabilityStudy 95

4.3 Displacement vs. Time : Elastic Rod at x = 0.0 in......... 96

4.4 Stress vs. Time : Elastic Rod at × = 15 in................ 97

4.5 Displacement vs. Time : Elastic-PlasticRod at x = 0.0 in....... 98

4.6 Stress vs. Time : Elastic-PlasticRod at × = 15 in........... 99

4.7 Graphical Representation of Processor Allocation Algorithm 100

5.1 Configuration of Spring-Supported Bar Problem 125

5.2 3D Contours of Residual in Stage 2 of Spring Problem 126

5.3 2D Contours for Stage 2 Using Basic Conjugate Gradient 127

ix

5.4 2D Contours for Stage 2 Using Diagonal Scaling 128

5.5 2D Contours for Stage 2 Using Zeta-Parameter Method 129

5.6 3D Contours of Residual in Stage 4 of Spring Problem 130

5.7 2D Contours for Stage 4 Using Basic Conjugate Gradient 131

5.8 2D Contours for Stage 4 Using Diagonal Scaling 132

5.9 2D Contours for Stage 4 Using Zeta-Parameter Method 133

5.10 Configuration of Confined Cantilever Beam 134

5.11 Load-Time Curve for Cantilever Beam Problem 134

X

Chapter 1

Introduction

'°

Explicit finite element programs axe very suitable to a parallel environment. In

explicit methods, the internal force vector of an element is computed by the inte-

gration of the product of the stress matrix and the discrete gradient matrix. This

calculation and preceding strain-displacement and constitutive evaluations can be

efficiently vectorized by subdividing elements into blocks and performing all calcu-

lations on a block of elements instead of one element at a time. This structuring of

the elements into blocks also provides a convenient way to create tasks which can be

assigned to available processors for evaluation.

Significant speed-ups can also be achieved by vector-concurrent execution because

blocks of elements can be assigned to different processors to execute simultaneously.

Additional speed-ups can be realized by the implementation of subcycling, a mixed

time integration method using different time steps for different parts of the mesh.

Finally, explicit iterative methods, such as conjugate gradient methods, are also more

attractive when viewed from the perspective of parallel processing. In these methods_

2

the stiffness matrix need not be stored or triangularized, while the calculation of the

internal force vector is repeated many times. Because the internal force vector can be

computed efficiently in vector-concurrent mode, iterative methods yield a substantial

speed-up.

This report

vectorization and concurrency in nonlinear structural codes. Concurrency isimple-

mented using both compiler optimization and programming constructs called mon-

itors.Vectorization is implemented by extensive recoding followed by compiler op-

timization. Because vectorization and concurrency tend to be competing processes

in terms of solution speed-up, theirrelationship isexamined and discussed. Finally,

improvements of the convergence properties of explicitconjugate gradient methods

are analyzed.

Chapter 2 reviews some fundamentals of parallelprocessing, including the classi-

ficationsof computer architecture,the mechanics of vectorization and the techniques

of parallelization.The coordination of processes using monitors isdiscussed in detail.

Chapter 3 describes the implementation of vectorization and concurrency in a

nonlinear structural dynamics finiteelement program. Techniques required for the

efficientvectorization of the internal force vector are discussed in detail.A descrip-

tion of the monitors required for the parallelizationof the internal force vector is

also given. Three versions of the program are used to study the benefits and disad-

vantages of vector-concurrent execution. The firstversion isthe originalscalar code

run using one processor. The second version isthe originalcode compiled using full

discusses techniques for the implementation and improvement of

3

compiler optimization for concurrency and vectorization. This version uses 8 proces-

sors_ however, no modifications were made to improve the coding. The third version

is the vectorized, parallelized code using full compiler optimization and monitors to

control concurrency. Four problems were used to study the effects of varying the

number of processors, the number of elements per block and the problem size on the

speed-up and e_ciency of the execution.

Chapter 4 describes the implementation of subcycling into the vectorized, par-

allelized code described above. Additional vectorization techniques required for an

efficient implementation are discussed as well as a new algorithm which minimizes

processor idleness.

Finally, Chapter 5 discusses methods for improving convergence properties of

conjugate gradient solution methods. A one-dimensional spring problem and a two-

dimensional cantilever beam problem are used to compare the convergence properties

of diagonal scaling and a new method called the zeta-parameter method.

The work presented in this report was performed on an Alliant FX/8 at

Argonne National Laboratories. The Alliant is a shared-memory machine with 8

processors and a Fortran compiler capable of optimizing for concurrency, vector-

ization and scalar operations. All software required for the use of monitors was

developed by Argonne National Laboratories.

Chapter 2

Fundamentals

2.1 Parallel Computer Architectures

Computers can be classified according to a number of architectural properties

[19, 26]. A widely accepted classification was presented by Michael J. Flynn in 1966

who organized digital computers into four categories based on the multiplicity of

instruction and data streams. An instruction stream is a sequence of instructions

which are to be executed by a single processor, while a data stream is the sequence

of data requested by the instruction stream. The four categories are listed below.

1. SISD: A single processor interprets one set of instructions and executes them on

a single data set. Computers based on the classical yon Neumann architecture,

such as the VAX-11/780, fall in this category.

2. SIMD: Multiple processors interpret the same instructions and execute them on

different data streams. Both array processors, such as the Burroughs ILLIAC

IV, and pipeline processors, such as the CRAY-1 and the IBM 360, belong

4

5

to this category. From the viewpoint of a programmer, vectorization can be

considered a SIMD process.

3. MISD: Multiple processors interpret different instructions and operate on a sin-

gle data stream. This category is usually considered empty since it implies that

a series of instructions operate on a single data item which is a characteristic

of the SISD category.

4. MIMD: Multiple processors interpret different instructions and operate on dif-

ferent data streams. Multiprocessors such as the Alliant FX/8 and CRAY-2

are MIMD machines.

The three parallel computer structures mentioned above, i.e. array processors,

pipeline processors and multiprocessors, achieve different types of parallelism. Note,

however, that a parallel computer can have more than one of these architectural

features. For example, the CRAY-2 and the Alliant FX/8 are multiprocessors with

pipeline processing capability. These three computer structures are discussed in more

detail below.

2.2 SIMD: Pipeline Processors and Array Processors

The vectorized execution of a do loop can be viewed as a SIMD process. Each op-

eration in the loop is performed for a series of data pairs in parallel. Vectorized code

can be executed on a pipeline processor or an array processor. From a programmer's

6

standpoint,the coding forboth types of SIMD computers isthe same. Architec-

turaUy,a pipelineprocessordiffersfrom an array processorin the way the loop is

executed. A pipelineprocessordivideseach instructionintoa number of stagesand

then executesthe instructionfora sequence of data pairsin an overlappingfashion.

This type of parallelism is referred to as temporal parallelism. An array processor

has a control unit which distributes the data pairs to a number of processing units.

Each processing unit executes the same instruction on the data pair, thus exploit-

ing spatial parallelism. Because all processors in an array processor must execute

the same instructions, it is ditiicult to achieve maximum performance on an array

processor in a general computing environment. Therefore, most array processors are

designed for a specific problem type or purpose.

A typical instruction involves retrieving data from memory, storing it in the

vector or scalar registers, performing the specified operation and returning the result

to memory. In a pipeline processor, each instruction is divided into a number of

stages, such that the time required to complete each stage is a clock period (CP). A

clock period is a unit of time which is specific to the computer. For example, a clock

period for the CRAY-1 is 8.5 nanoseconds.

The following do loop will be used to illustrate how a pipeline processor can per-

form these functions in a more efficient manner. The multiplication of two numbers

requires seven clock periods (CP).

DO 10 J _" 1,64

C(J) --A(J) * B(J)

1o CONTINUE

Figure 2.1 shows a schematic of the multiplication instruction performed in scalar

mode. A nonpipeline computer will process the entire instruction for the first data

pair before beginning the second pair. The first pair of data, A(1) and B(1), are

retrieved from memory and stored in scalar registers. They then enter the multiply

functional unit. Once the seven stages have been completed, the result is stored in

a third scalar register. The second data pair A(2) and B(2) are then retrieved from

memory and the procedure continues until all data pairs have been processed. The

total execution time required to execute the do loop in scalar mode is:

Tnp = No. CP * vector length

= 7 • 64 - 448 clock-sec

Figure 2.2 [27] shows the schematic for the multiply in vector mode. All 64 pairs

of data are retrieved from memory and stored in the vector registers. (Note: this

example is based on the CRAY-1 computer which has vector registers of length 64.

If the length of the vector registers is smaller than 64, the loop will be executed in

groups of n pairs of elements, where n is the register length.) An additional stage,

called a steering module, must be added before and after the multiply functional unit

for a vector operation. The steering module requires one clock period. During the

first clock period, the first data pair, A(1) and B(1) enter the steering module. In

the second clock period, A(1) and B(1) enter the first stage of the multiply unit, and

A(2) and B(2) enter the steering module. During each additional clock period, the

data pairs continue to move ahead to successive stages. This progression continues

until all vector pairs have completed the instruction. The time required to execute

the loop in vector mode is:

--- startup + vector length

- 9 + 64 - 73 clock-sec

The staxtup time is the number of clock periods required to fillup all stages of the

multiply instructionand the two steeringmodules. The speed-up attributed to vector

processing is computed by dividing the execution time required in scalar mode by

the time required in vector mode. A speed-up of 6.1 was achieved for this example.

2.3 MIMD: Multiprocessors

A multiprocessor is a computer containing two or more processors which can

operate a.synchronously. Each processor isallowed to perform differentinstructions

on differentsetsof data and can communicate with one another by sharing common

memory or by sending messages. Multiprocessors are said to achieve asynchronous

parallelism.

Multiprocessors can be categorized into three groups based on the manner in

which the processors communicate with one another. The first is a tightly coupled

multiprocessor where processors communicate via a shared main memory. In a loosely

coupled multiprocessor, each processor possesses a small local memory or cache and

communicates by sending messages though a message-transfer system. The third

group is comprised of loosely coupled clusters of processors. Within each cluster,

the processors communicate though a shared memory. The clusters can then com-

municate with each other by sending messages. This third group uses a combination

of tightly coupled and loosely coupled communication mechanisms. Work presented

in this report was performed on the Alliant FX/8 which is a tightly coupled

multiprocessor.

Different programming methods are required for each type of multiprocessor.

Concurrency was implemented using both compiler optimization and programming

constructs called monitors which were developed at Argonne National Laboratory.

2.3.1 Compiler Optimization

Parallelism can be implemented on a multiprocessor by simply invoking the con-

currency option when compiling a program. The compiler will attempt to execute

every do loop in either scalar-concurrent or vector-concurrent mode, depending on

whether the vectorization option has also been selected. Compiler optimization al-

lows the user to receive some benefit from multiple processors with little or no mod-

ifications to a program designed for a single processor.

The two modes of concurrent execution, scalar-concurrent and vector-concurrent,

can be illustrated using the following loop.

DO 10 I = 1,512

C(I) - A(I) + B(I)

I0 CONTINUE

10

In scalar-concurrent mode, each processor wilt perform the scalar addition for one

data pair at a time, i.e. the first processor will add A(1) and B(1), the second

processor will add A(2) and B(2), etc. In vector-concurrent mode, each processor

performs a vector addition on n data pairs simultaneously, where n is the length

of the vector registers. The Alliant FX/8 has vector registers of length 32 and 8

processors. Therefore, on the Alliant, the first processor will execute the addition

for the first 32 pairs of data. The second processor will add the next 32 pairs of

data. The theoretical speed-up of scalar-concurrent mode and vector-concurrent

mode achieved over scalar execution is 8 and 32, respectively [29]. Vectorization

alone has a nominal speed-up of four. Theoretical speed-up for concurrency can

only be achieved for highly optimized test problems such as the example presented

above. In standard coding, the actual speed-up fallsfar short of the theoretical

speed-up. For example, compiler optimizationwas used for the nodal calculations

in the finiteelement program presentedin Chapter 3. The speed-up attributedto

concurrencyusing8 processorswas approximately4.75.Factorswhich limitspeed-up

are discussedin detailin Chapters 3 and 4.

2.3.2 Monitors

Greater benefit can be achieved from a multiprocessor by taking advantage of

tools which have been developed to coordinate communication between processes.

11

The general procedure is to determine which sections of the program can be per-

formed in parallel and which sections must be done sequentially. The parallel sec-

tions are divided into tasks and an algorithm is developed to determine the order

in which the tasks are to be performed. Each task is then assigned to an available

process for execution.

One approach developed to coordinate the communication between processes in

shared-memory multiprocessors involves the use of a programming construct called

a monitor. Monitors were originally developed in the early 1970's for the research in

the area of operating systems. They have recently been applied to the assignment

of tasks in a parallel environment. The monitors developed at Argonne National

Laboratory were used for this researchand are described in detail in [10, 21, 22].

Before discussing the characteristics of a monitor, it is useful to emphasize the

differences between the definitions of certain terms which will be used in this section.

A processor is the piece of hardware on a computer which executes instructions. The

development of a parallel algorithm is independent of the number of processors.

A process is the mechanism which performs a specified task and a program is the

description of that task. The definition of a process is rather abstract; however, the

concept should become clear within the context of the description of a monitor. The

important distinction between these three terms is that processes can communicate

with one another. Programs and processors can not.

A monitor is a programming construct which coordinates the communication

between processea The monitor must also ensure that each process has access to

12

globally-shared memory without interference from other processes. A monitor is

formally defined as an abstract data type consisting of three components.

1. data shared by competing processes,

2. initialization of the shared data,

3. operations to be performed on the data.

To illustrate these three components, consider the following do loop to be performed

in parallel using monitors.

DO 10 J " 1,100

C(a) - A(J)*B(J)

I0 CONTINUE

The shared data are the loop indices which range from 1 to 100. The initialization

code sets an integer SUB equal to 0. SUB indicates which task is ready to be per-

formed. For this example, SUB is set equal to the loop index which will be assigned

to a particular process. The operations on the shared data include incrementing the

value of SUB and ensuring that SUB does not exceed 100. An important character-

istic of a monitor is that the operations on the shared data can only be performed by

one process at a time, thereby preventing the same index from being given to more

than one process.

The monitor operations are implemented by using four basic macros. In order

for a process to execute a monitor operation, the process must first take exclusive

control of the monitor by issuing a reenter command. If the process successfully

13

performs the monitor operation, a mezit command is issued which releases exclusive

control, thus allowing another process to access the monitor. If the process enters the

monitor and cannot successfully perform the monitor operation, or in other words,

finds no task to perform, it issues a delay command. The delay command indicates

the location where the delay was issued and releases control of the monitor. The

process will remain "delayed" until another process enters the monitor and either

adds new tasks or completes a task which allows the delayed process to continue.

The new process executes a continue operation, giving the location where the old

process was delayed, and exits the monitor. The first process can then reenter the

monitor at the named location and continue the monitor operation.

An informal description of monitors given in [10, 21] is helpful in understanding

the concept. The monitor can be thought of as a room with a number of attached

closets. The room contains the shared data, the initialization code and all operations

to be performed on the data. The room has a single door from which a process can

enter or leave the room, however, only one process is allowed in the room at a time.

Once a process has entered the room (reenter), it can perform the monitor operation

on the shared data and then leave the room (mezit), thus allowing another process to

enter. However, if for some reason the process cannot carry out the operation (such

as in the do loop example, if the value of SUB is greater than 100), a delay is issued

and the process will exit the room by entering one of the closets. This allows a new

process to enter the room. If the new process adds a task, it will issue a continue

and leave the room. The old process can then exit the closet, operate on the new

14

task and exit the room.

Monitors have been developed for a number of common synchronization patterns,

such as the 8elf-schedtdingloop monitor which can be used for the simple do loop

described above. The task associated with the incremented subscript in the self-

scheduling do loop can be quite complex. In fact,itismore ef[icientto write parallel

codes with a relativelylarge task sizeor large granula_ty. For small task size,the

contention for sequential access to the monitor can severely limit or eliminate the

benefits of parallelism.The self-schedulingloop monitor does not allow the flexibil-

ity to add new tasks or to modify the algorithm which assigns tasks to processes.

A monitor called the ask/or monitor appears to be the most powerful monitor for

implementing parallelism on a multiprocessor. This monitor and the lock monitor

were used for thisresearch and willbe discussed in detail.

The askfor monitor uses the concept of a _pool of tasks" from which a process

can _ask for" the next availabletask to perform. Each task can be subdivided into

one or more subtasks. A major task can be solved either by completing all of its

subtasks, referred to solution b!lexha_tio_ or ifthe solution of a subtask gives the

solution of the major task. The self-schedulingdo loop is an example of solution

by exhaustion. The major task (the entire loop) issolved when allof the subscripts

have been assigned and the corresponding subtasks has been performed. An example

of the second type of solution consistsof several processes searching for the solution

to the major task. As soon as one process finds the solution, the major task is

considered solved and the remaining processes are terminated.

r.

15

The askfor monitor isparticularlyflexiblebecause itallows processes to add and

subtract tasks from the pool. It also allows the user to define the algorithm which

determines how the tasks willbe assigned to the processes. The askfor monitor is

invoked by the following expression:

askfor (<name>, <rc>, <nprocs>, <getprob>, <reset>)

where,

<name>

<rc>

<nprocs>

<getprob>

<reset>

: monitor name,

: return code which equals -

0 for successfttl acquisition of a

task from the pool,

1 if no tasks remain in the pool,

-1 if the program is completed,

n > i if the task is completed (used when multiple

processors work on the same task),

: number of competing processes,

: user-defined macro describing logic required

to claim a task and set the return code,

: user-defined macro that resets the pool

of tasks.

A do loop can be executed using the askfor monitor by defining the following user-

defined macros:

16

asEf or (MO, RC, NPROCS, getprob (I, N, RC), reset)

define (ge_prob,

[IF (SUB .GT. 0) THEN
[IF (SUB .LE. $2) THEN

$1 - sub
SUB = SUB + 1

$3ffi0

ENDIF]

ENDIF])

define (reset,

Csus = o])

def ine (probst ar_,

[ment er (MO)

SUB= 1

mcont inue (MO, 1)

,.exit(MO)])

The integers preceded by the $ refer to the arguments in the getprob macro invo-

cation. The variable SUB represents the shared data and indicates which task or

subscript isto be assigned next. SUB isassigned a value of i by the macro probstart

which isissued prior to the paralleloperation. The second argument in the getprob

macro is the number of loop indices. For values of SUB less than the number of

loop indices,the monitor willassign the task number to the process, increment SUB

and set the return code to zero denoting a successful task acquisition. After all of

the subscripts have been assigned, the reset macro sets SUB equal to zero which

indicates to the monitor that allprocesses entering the monitor should be delayed

until new tasks have been added to the pool.

17

It is frequently necessary to protect data stored in shared memory which can be

accessed by more than one process simultaneously. Simultaneous access can result

in one or more of the processes receiving erroneous data. It is also necessary to

synchronize the update of a variable stored in shared memory so that one process

does not void the update of another process. This protection is provided by a lock

monitor which simply places the access instructions between a reenter command

and a mezit command. The macros invoking the lock monitor are nlock(name)

and nunlock(aame). The following example illustrates how locks can be used in

computing the dot product of two vectors A and B. The integer I refers to the

subscript assigned to a particular process. Each process will have a different value

for I but will access the same shared memory location to update D.

C(I) - A(I)*B(I)

nlock(L1)

D = D + C(I)

nunlock(L1)

Different locks should be defined for different words and arrays in shared memory so

that unrelated processes do not get delayed unnecessarily.

Monitors are implemented using low-level and high-level macros which define the

behavior of the monitor and perform initialization functions required for execution.

The low-level macros include those macros which are machine dependent, such as the

four basic macros used to define the monitors: reenter, mexit, mcontinue and mdelay.

These relatively few macros are then used as the building blocks to create high-level

macros such as the askfor macro. The use of macros allow the programmer to develop

18

codes which are machine independent and therefore can be easily transported to other

shared-memory multiprocessors. Only the low-level macros are machine dependent

and must be modified in order to run the program on a different computer.

19

S1

A
$3

C

Figure 2.1: Stages of a Scalar Multiplication

V1

V2

V3

'S.M.

1 CP

Multiply Functional Unit

7 CP 1 CP

Figure 2.2: Stages of a Vector Multiplication

Chapter 3

Vectorized, Concurrent Finite Element Program

3.1 Introduction

A nonlinear structuraldynamics finiteelement program has been developed to run

on a shared-memory multiprocessor with pipeline processors. The program WHAMS

[7] was used as a framework for this work. The program employs explicit time

integration and has the capability to handle both the nonlinear material behavior

and large displacement response of three dimensional structures. The elasto-plastic

material model, described in [30],uses an isotropicstrain hardening law which is

input as a piecewise linear function. Geometric nonlinearitiesare handled by a

corotational formulation in which a coordinate system isembedded at the integration

point of each element. Currently, the program has an element library consisting of

a beam element based on Euler_Bernoulli theory and triangular and quadrilateral

plate elements based on Mindlin theory.

20

3.2 Explicit Finite Element Formulation

3.2.1 Finite Element Equations

The equations of motion for a structural system are given by:

21

Ma+_.,= f=, (3.1)

where,

M

a

f_

= global mass matrix,

= nodal accelerations,

= assembled internal nodal forces,

= assembled external nodal forces.

The mass matrix is assumed to be diagonal and lumped so that the system

equations are uncoupled. The internal nodal force is computed on the element level

by

= [B T o'd_ (3.2)f,'.,
Jll G

and then assembled by

f,_, = _ (L,)r f,, (3.3)
¢

22

where,

f_t = element internal nodal force,

_" - domain of the element,

B = gradient matrix,

o" - Cauchy stress matrix,

L" - Boolean connectivity matrix.

Equation 3.3 gives the assembly of the element internal nodal forces into the global

array. The array L" is never computed; instead the operation indicated by Eqn. 3.3

is implemented by simply adding the entries of the element array into the appropriate

locations in the global array as described in Section 3.3.2.

The element stresses axe computed from the corotational components of the ve-

locity strain d given by

(3.4)

where the superposed 'hat' signifies components expressed in terms of the base vec-

tors of the corotational coordinate system. The velocity at any point in the plate is

given by Mindlin theory as

= V m -- ze 3 X _ (3.5)

23

where,

v "_ = velocity of plate midsufface,

= distance from midsurface,

e 3 = base vector perpendicular

to the plane of the plate,

8 = angular velocity.

Once the corotational components of the velocity strain have be computed, the

appropriate constitutive law can be applied to calculate the element stresses.

3.2.2 Time Integration

The following central difference equations are used to update the nodal velocities

and displacements in time. Note that an average time step is used to update the

velocities. This allows for the capability of changing the time step during the problem

solution.

vn+i = v--i+At _a -

u-+, = u -+At-+½v_+i

,',t" = ½

(3.6)

24

where_

A t '_

= nodal displacement, velocity and

acceleration, respectively,

= time increment for step n.

The superscripts in the above equations designate time steps. The fractional

superscripts indicate a midstep value. An outline of the explicit time integration

scheme is given below.

Flow Chart for Explicit Integration

1. Initial conditions : v- _, u °

2. Compute external force

3. Compute internalforce vector f_+_

Loop over element blocks

(a) compute velocity strains

d"+_ = B v"+_ (3.7)

(b) compute frame invariant stress rates

O" "--

25

(c) convert frame invariant rate to time derivative of Cauchy stress

• _+_ _,_+_
r = a" + W+_. ,n _ _r_. W_+_ (3.9)

(d) update stress

• ,_+_
a ''+' = a-_ + At o" (3.10)

(e) compute element internal nodal force : Eqn. 3.2

(f) assemble into global array

4. Compute accelerations by equation of motion : Eqn. 3.1

5. Update velocities and displacements using central difference equations: Eqn.

3.6

6. Go to 2.

REMARK: In Eqn. 3.8, _r is a frame invariant rate such as the Jaumann rate and

W is the spin tensor.

3.2.3 Evaluation of Critical Time Step

For explicit problems, the time step is calculated based on a numerical stability

criterion. The critical time step for a undamped linear system of equations updated

- 26

using central difference equations is given by [2]:

2

Wm_

where _,_= isthe maximum frequency of the system

Ku = AMu (3.12)

and,

A _ (3.13)

The element eigenvalue inequality theorem statesthat the maximum absolute system

eigenvalue isbounded by the maximum element eigenvalue,i.e.,

IA[__ [A_,_=J (3.14)

where,

and,

maximum system eigenvalue,

maximum A_ for all elements.

The maximum frequency for a one dimensional rod element with linear displacements

and diagonal mass can be easily calculated as 2c/l where c is the dilatational wave

.... 27

speedand I is the length of the element. The critical time step for the element is l/c.

Physically, this time step corresponds to the amount of time required for a stress

wave to traverse the smallest dimension of the element. Therefore, the critical time

step for explicit time integration is calculated based on the dimensions and material

properties of the element with the largest frequency. The critical time step decreases

as the size of the element decreases.

Maximum element frequencies for the bending, shear and membrane response of

the 4-node Mindlin plate element are presented in [12, 3] and summarized below.

The critical time step of the element corresponds to the largest of the computed

frequencies.

Bending:

Membrane:

Shear:

-- (3.15)
ta,,_ p A h c_

1{ E [RI+(R_-4 (1-v 2) /_)_]}_= _ (1- _2)p

I

--_ au + c A] _"

= j

(3.18)

(3.17)

28

where,

&lid,

P

A

h

= density of the material,

= cross-sectional area,

= thickness of the element,

= rotationa/inertia scaling factor,

D = Eh_

1
a,_ = _(R,+R3),

R2 = Y32z24 - Y24z31

R3 = (R -4P4)½,

YzJ = Yt -- YJ.

The lumped mass matrix used in the frequency calculations is given by

F

M=--p A h _ I4×4 0

4 [0 alsxs

(3.18)

The rotational inertia scaling factor, a is given in [17] as

I h2

A 12
(3.19)

29

for a plate element with uniform material properties. I is the moment of inertia of

the element.

The stability analysis performed to estimate the critical time step is based on a

linear system of equations. However, experience has shown that a linearized analysis

provides good estimates of the stable time step. For nonlinear problems, the critical

time step is reduced 5% to 10% to compensate for potential destabilizing effects due

to nonlinearities. In addition, an energy balance is performed for every time step in

order to monitor the stability of the system.

3.3 Vectorization

3.3.1 Compiler Vectorization

When compiling a program on a computer with vector processors, options are

available for automatic vectorization. The compiler will attempt to vectorize each

do loop in the program. Compilers differ in their ability to vectorize programming

constructs such as IF statements in loops. However, current compilers will not vec-

torize loops which contain any of the following statements:

1. Data dependencies

2. Ambiguous subscripts

3. Certain IF statements such as

(a) block IF, ELSE, ENIDIF with nesting at a level greater than 3

30

(b) ELSE IF statements

(c) IF, GOTO label outside of loop

4. READ or WRITE statements

5. Subroutine calls

The compiler will usually issue an explanation if it is unable to vectorize the loop.

Additional details about vectorization can be found in [27].

In order to maximize the benefits of vectorization, modifications to the program

are frequently required. In many cases, minor changes are sufficient to enable a loop

to vectorize or to improve the efficiency of the loop. The following examples illustrate

two typical situations in which an existing do loop can be easily modified for efficient

vectorization.

In nested do loops, only the innermost loop will vectorize. Therefore, the inner

loop should have the largest range of indices. If this is not the case, the inner and

outer loops can sometimes be interchanged without affecting the calculations. If

the range of the inner loop is sufficiently small, the inner loop can be "unrolled,"

thus allowing the outer loop to vectorize. In the following do loop, the compiler

will attempt to vectorize the inner loop, leaving the remaining calculations to be

performed in scalar mode.

DO 10 I = 1,1000

(other calculations)

A(I) = I*I

DO 10 K = 1,3

A(I) = A(I) + B(K)

10 CONTINUE

Unrolling the inner loop allows all calculations to vectorize.

DO 10 I = 1,1000

(o_her calculations)

A(1) - I*I

A(1) - B(1)
10 CONTINUE

+ B(2) + B(3)

Programming techniques are frequently different for vectorized codes than for

scalar codes. For scalar programs, efficient coding consists of minimizing the number

of calculations performed. In a vectorized code, it is more important to retain the

vector structure of the computations. For example, in the following scalar loop, it

is worthwhile to use an IF statement to check whether the component of A is equal

to zero and if it is, omit the computation. A GO TO statement avoids unnecessary

calculations.

DO I0 1 = 1,1000

IF (A(1) .EQ. 0.0) GO TO 10

D(I) = D(I) ÷ A(I)*C(I)/(I*I)

i0 CONTINUE

32

In a vectorized version of this loop, the IF statement can be eliminated to preserve

vectorization.

Suppose that the IF statement in the above example read

IF (A(I) .GE. 3.2,,,B(I)) GO TO 10

It is no longer possible to simply remove the IF statement. Some compilers will

vectorize this type of do loop by doing a gather/scatter operation on the vector A. In

gather/scatter, the compiler creates a temporary array which contains all values of

A(I) less than 3.2 times B(I) and computes the update on D(I) only for this subset of

A. If the compiler does not have a gather/scatter capability, it is possible to maintain

vectorization by defining a temporary vector for the calculation.

DO 10 I = 1,1000

TEMP(I) = A(1)

10 CONTINUE

DO 20 I =1,1000

IF (A(I) .GE. 3.2.B(I)) TEMP(I) = 0.0

20 CONTINUE

DO 30 I = I,I000

D(I) = D(I) + TEMP (1) *C (1)

30 CONTINUE

In the preceding loops, only the first and third loops will vectorize for compilers

without gather/scatter capabilities. The first loop is overhead required to retain vec-

torization in the third loop. The second loop is performed in scalar mode. Although

this example is rather trivial, the technique can be quite useful for vectorizing many

i 33

types of loops. As will be discussed in the section on concurrency, creating temporary

arrays also helps minimize memory contention problems inherent in shared-memory

multiprocessors.

Minor modifications, such as those presented above, will yield moderate improve-

ments in speed-up due to vectorization. However, in order to best exploit the vec-

torization capabilities of the computer, it is frequently necessary to restructure the

flow of the program by replacing calculations for a single element or node by loops

which perform the calculations for a group of elements or nodes. This restructuring

is discussed in the following section.

3.3.2 Vectorization of Internal Nodal Force Array

One way to approach the vectorization of a large program is to determine which

portions of the code require the most computational time. The longer the computa-

tional time, the more effort should be devoted to vectorization. For an explicit finite

element program, a large part of the time is consumed by the computation of the

internal nodal force vector, fi,_t. In the scalar code, the element internal force vector

is calculated and assembled into the global array for one element at a time. Since

the internal force vectors of all elements are independent at a given time step, the

internal force calculations are very conducive to vectorization. Instead of performing

the calculations for individual elements, the internal force computation can easily be

vectorized by placing the operations within a loop and performing the calculations

for a block of elements.

34

The procedure is as follows: The elements are divided into blocks of identical

element type and material model. It does not matter if material properties for each

element axe identical as long as the model (i.e., elastic or yon Mises elastic-plastic)

is the same. The number of elements placed in each block depends on the length of

the vector registers and certain characteristics such as problem size. The criteria for

selecting block size are discussed later.

Once the elements have been divided into blocks, the scalar calculations can

be transformed to vector calculations by converting scalar variables to arrays and

placing operations in do loops. For example, trial stresses for an elastic-plastic

material model axe computed in scalar mode for one element by:

BOX 1 : Trial Stress Computation in Scalar Mode

SNEW1 - SOLD1 + SDEL1

SNEW2 = SOLD2 + SDEL2

SNEW3 = SOLD3 + SDEL3

In vectorized form, the calculations are modified as:

BOX 2 : Trial Stress Computation in Vector Mode

DO 10 J - 1,NEPB

SNEWl(J) = SOLDI(J) + SDELI(J)

SI_'_2(J) _ SOLD2(J) + SDEL2(J)

SNE_3(J) _ SOLD3(J) + SDEL3(J)

10 CONTINUE

..... 35

where NEPB is the number of elements in the block. The computed arrays are

stored in common blocks so that they can be accessed by any subroutine. Note

that vectorization substantially increases the amount of memory required because

of the large number of arrays that are created. In older computers, the small core

capacity would have significantly limited the size of problems which could run using

a vectorized code. However, recent technological advances have made large memory

cores available and practical, thus eliminating size limitations except for extremely

large problems.

Vectorization is fairly straightforward for many computations, however certain

modifications must be made to exploit vectorization in some algorithms. The cal-

culation of the plastic constitutive equation is an illustration of this situation. In

a scalar code, a trial stress state is computed for the element and compared to the

yield stress. If the element is elastic, the stresses are updated and the subroutine

is exited. However if the element is plastic, additional calculations are required. In

a vectorized code, the same calculations must be performed for all elements in the

block. When a block contains a mixture of elastic and plastic elements, the elastic

elements must perform the plastic calculations without modifying the elastic stresses.

This was accomplished by creating two arrays, KE(NEPB) and KP(NEPB) which

indicate whether the element is elastic or plastic (KE = 1 and KP = 0 if the element

is elastic and visa versa if the element is plastic). If all elements in the block are

elastic, the stresses are updated and the plastic calculations are omitted. Otherwise,

all elements perform the plastic stress calculations and the appropriate stress is

36

stored. The following coding illustratesthe flow of the vectorized calculationsof the

updated stresses.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

10

C

C

C

20

40

C

C

C

VECTORIZED SINGLE PROCESSOR VERSION

OF STRESS COMPUTATION

YIELD FUNCTION:

SIGEF2(XX,YY,XY) = XX*XX + YY*(YY - XX) + 3.*XY*XY

COMPUTE TRIAL STRESS STATE

DO 10 J = 1,NEPB

SNENI(J) = SOLDI(J) + SDELI(J)

SNEN2(J) = SOLD2(J) + SDEL2(J)

SNEN3(J) = SOLD3(J) + SDEL3(J)

APPLY YIELD CRITERION

IF ELASTIC : KP = O, KE = 1

IF PLASTIC : KP = I, KE = 0

Sl(J) = SQRT(SIGEF2(SNENI(J) ,SNEN2(J) ,SNEW3(J)))

KP(J) = O.S + SIGN(O.5,SI(J) - YIELD(J))

KE(J) = 1. - KP(J)

CONTINUE

IF ALL ELEMENTS ARE ELASTIC, RETURN

DO 20 J = 1,NEPB

IF (KE(J) .EQ. O) GQ TO 40

CONTINUE

RETURN

CONTINUE

COMPUTE PLASTIC STRESS

37

C

C

C

C

SPLI(J) -

SPL2(J) -

SPL3(J) s

UPDATE PLASTIC STRESS FOR PLASTIC ELEMENTS AND

ELASTIC STRESS FOR ELASTIC ELEMENTS

DO 60 J - I,NEPB

SNEWI(J) " KP(J)*SPLI(J)

SNEW2(J) " KP(J)*SPL2(J)

SNEW3(J) " KP(J)*SPL3(J)

60 CONTINUE

+ KE(J)*SNEWI(J)

+ KE(J) *SNEW2(J)

+ KE(J) *SNEW3 (J)

REMARK I: The DO 20 loop will not vectorize because it contains a GO TO

statement to a label outside of the loop.

REMARK 2: Radial return is a particulariy simple plasticityalgorithm that is

easilyvectorized. However, radialreturn isnot readily adapted to plane stress

[16].

Some calculations,such as those containing data dependencies, should not be vec-

torized. Most compilers willcheck for data dependencies and automatically supress

vectorization. However, a compiler directivewhich prevents vectorization can also

be placed immediately preceding the location where vectorization should be stopped.

Options axe available to enforce the directivefor a single loop, for the rest of the

subroutine or for the restof the program. Data dependencies occur frequently when

nodal arrays stored in global memory are updated.

For example, after the internal nodal forces for an element are computed, they

38

must be assembled intothe globalarray. The assembly procedure forthe x-component

of the element internal force is:

DO J_O J - 1,NEPB

FINT(NI(J)

FINT(N2(J)

FINT(N3(J)

FINT(N4(J)

I0 CONTINUE

+ i) ,, FINT(NI(J) + I) + FIX(J)

+ I) ,, FINT(N2(J) + 1) + F2X(J)

+ 1) = FINT(N3(J) + 1) + F3X(J)

+ 1) ,,FINT(N4(J) + 1) + F4X(J)

where,

NI,N2,N3,N4

FINT

FIX,F2X,F3X,F4X

= Shared memory location indices

for localnodes 1,2,3and 4,

= Global internal nodal force vector,

= Internal nodal force increment for

local nodes 1,2,3 and 4 of element J.

If this loop were to vectorized, the pipeline processor would first retrieve from

memory the values of the internal nodal force vector for local node 1 of all elements in

the block. These values are then stored in a vector register. The temporary element

array FIX is added to the internal nodal force vector. The result is then replaced in

global memory. An error would arise when two elements in a block have the same

global node for local node 1. For example, suppose elements 1 and 3 have global node

35 as their local node 1. The internal force increment for both element 1 and 3 will be

added to the same value of the internal force of node 35. However, when the updated

" 39

value for node 35 is returned to memory, only the contribution from element 3 is

saved. The update from element 1 is stored first and then overwritten by the update

from element 3. Vectorization must be prevented in all loops containing updates

to nodal variables in the element internal force calculations. It is not necessary

to inhibit vectorization in arrays which pertain to element variables such as stress,

strain and thickness because there will be no data dependencies among elements in

a block.

Techniques have been developed to avoid data dependencies when updating arrays

stored in global memory such as the internal force vector discussed above. In [18],

an algorithm is presented which divides elements into blocks based on the criterion

that no two elements in a block share a common node. This algorithm eliminates the

data dependencies in the update of the nodal array and allows the loop to vectorize.

Note, that a gather-scatter operation is still required to update the array because

of the nonconstant stride between entries stored in global memory. Therefore, for a

simple update of a globally stored array, an algorithm eliminating data dependencies

will not yield significant speed-up. However, if the elements of the nodal array are

used for additional computations, such as the matrix multiplication presented in [18],

substantial benefit can be achieved. However, the sorting of arrays prior to assembly

can be quite awkward, particularly if rearrangements are needed for other purposes,

such as blocking elements by type or material [13].

40

3.4 Concurrency

Concurrency can be implemented using compiler options, as described in Section

2.3.1, for all calculations except for the assembly of the internal force vector. In com-

piler implementations of vectorization and concurrency, loops whose indices exceed

the length of the vector registers will be executed in vector-concurrent mode. How-

ever, an effective implementation of vectorization-concurrency requires reprogram-

ming with monitors which allow the scheduling of calculations among processors.

Two monitors were used for the parallelization of the code. The ask/or monitor

controls the assignment of tasks to the available processes. There are two types of

processes. The master process is created by the operating system and performs all of

the scalar operations as well as part of the parallel operations. The slave processes

are created by the master process for parallel computations only. The task assigned

to each process is to compute the internal force vector for one block of elements.

Note that processes involve blocks of elements because of vectorization. Prior to

entering the parallel operations, two macros are called by the master process. The

first, probstart, initializes the task number. The task number refers to the block of

elements to be assigned to a process. The macro is defined in Section 2.3.2.

The second macro, create_and_work(NPROCS) creates NPROCS-1 slave pro-

cesses, where NPROCS is the number of competing processes. NPt_OCS also corre-

sponds to the number of available processors and is an input variable. Each of the

slave processes calls SUBROUTINE WORK, which is the subroutine which invokes

l- 41

the asldor monitor. The master process then calls SUBROUTINE WORK. There-

fore, NPROCS processes execute the operations in WORK simultaneously. The

create.and_work macros is defined by:

30

define (creat e_and_work,

[DO 30 I I I,NPROCS-1

create (SLAVE)

CONTINUE

CALL WORK])

In SUBROUTINE WORK, the askfor monitor is invoked using the following

expression, discussed in detail in Section 2.3.2:

askfor (MO,RC,NPROCS,getsub(I,NBLOCKS,RC),reset)

The master process enters the askfor monitor with SUB = 1, the current task

number. SUB is the shared data and is initialized to 1 by the macro probstart. The

macro getprob assigns the task number to the process in the monitor. The subcript

SUB is then incremented and the return code RC is set to 0 indicating a successful

acquisition of the task. The process exits the monitor allowing the next process to

enter. This procedure continues until the incremented subscript exceeds NBLOCKS,

in which case the processes are delayed. When all slave processes are delayed, the

master process exits the monitor operations and returns to the nonparallelized code.

The second monitor used is the lock monitor which protects access to shared

memory. When variables from shared memory are required for parallel calculations,

they are first stored in temporary arrays using a "gather" operation discussed in

\

42

Section 3.3.1. This minimizes memory contention problems encountered in shared-

memory mnltiprocessors and also benefits vectorization. However, if two or more

processes attempt to access the same memory location simultaneously, an error will

occur. Therefore, the gather operation is placed within a lock monitor and only one

process is allowed to access a particular subset of memory at a time. In other words,

the instruction to access global memory becomes the monitor operation.

A lock is invoked by a nlock macro immediately preceding the operation. The

locks are named so that different subsets of memory can be associated with different

lock monitors. Control of the monitor is released after the.operation by the nunlock

macro. The following example shows the "gathering" of the x-coordinates of the

nodes in a quadrilateral plate element into temporary arrays labeled X1, X2, X3

and X4. The coordinates of the nodes are stored in shared array AUX and the

nodal locators are stored in local arrays N1, N2, N3 and N4 for nodes 1, 2, 3 and 4,

respectively. L 1 is the name of the lock which is associated with the memory locations

containing the x-coordinates of all nodes. LL2(NID) is the number of elements in

the block assigned to process NID.

10

n3.oc_k (L1)

DO 10 J ,, 1

Xl (J,NID)

X2(J,NID)

X3(J ,NID)

X4(J ,NID)

CONTINUE

nunlock(L1)

,LL2(NID)

= AUX(NI(J,NID) + 1)

-AUX(N2(J,NID) ÷ 1)

- AUX(N3(J,NID) + 1)

= AUX(N4(J,NID) + 1)

43

Several named locks are used; each corresponding to a different component of the

nodal arrays used in the internal force calculations. By applying a lock to each com-

ponent, the number of operations within a given lock monitor can be reduced, thus

minimizing slowdown due to the locks. Note that the components of the nodal arrays

are retrieved from global memory only once during the element block calculations.

After they have been stored in temporary arrays, memory contention problems are

eliminated.

Note also that in this example, the one dimensional arrays created for vector-

ization have been converted to two dimensional arrays. The added dimension is

required to create a local memory for each process. Although some compilers may

do this automatically in the future, these two dimensional arrays cannot be avoided

in the Alliant FX/8 if direct control of the processors is needed. Thus in a vectorized,

concurrent program, the coding in Box 2 of Section 3.3.2 becomes

BOX 3 : Trial Stress Compu%a%ion in Vector-Concurrent Mode

DO 10 J _ 1,LL2(NID)

SNEWI(J,NID) - SOLDI(J,NID) + SDELI(J,NID)

SNEW2(J,NID) = SOLD2(J,NID) + SDEL2(J,NID)

SNEW3(J,NID) - SOLD3(J,NID) + SDEL3(J,NID)

10 CONTINUE

44

The askfor monitor assigns an identificationnumber NID to the process which indi-

cates which process is performing the operations. The identificationnumbers range

from I through the number of competing processes used in the problem solution.

The askfor monitor then assigns a block of elements to each availableprocess. Each

process willperform the same calculations for differentdata. By dimensioning the

temporary arrays as TEMP(NEPB,NPROCS) where NEPB is the number of ele-

ments per block and NPROCS isthe number of processes,unique memory iscreated

for each process.

3.5 Numerical Studies

Numerical studies were made to determine the speed-up on a multiprocessor

due to both vectorization and concurrency. For comparisons, three versions of the

program were used:

1. the original version of WHAMS run in scalar,serialmode : WHAM0,

2. the original version of WHAMS compiled using full optimization for concur-

rency and vectorization : WHAM_OPT

3. the vectorized, parallelizedversion of WHAMS using both fullcompiler op-

timization and monitors to control concurrency in the element calculations :

WHAMSoVECPAR.

Four problems were considered:

45

1. a spherical cap loaded by a uniform pressure;

2. a pressurized containment vessel with a nozzle penetration;

3. an impulsively loaded cylindrical panel;

4. an automobile impact problem.

Results are presented in terms of the total run time for the problem and analyzed

by the speed-up and e._ciency of the program. Speed-up is defined as the ratio of

the computing time of the program on a serial machine to the computing time on a

parallel machine. The efficiency of the program is defined as the speed-up divided

by the number of processors. Speed-up and efficiency are strongly influenced by the

degree of parallelism and vectorization achieved in the program.

The first problem is the spherical cap shown in Figure 3.1. The material properties

and parameters are listed in Table 3.1. The problem has 91 nodes and 75 elements

and was run primarily to ensure that the vectorized version of the code gave the same

results as the nonvectorized code. Because the problem is small, the elements were

divided into 8 blocks in order to maximize the benefits of parallelization. However,

with only 10 elements per block, the benefits due to vectorization were diminished.

Table 3.2 compares the execution times of the three versions of WHAMS run on the

Alliant FX/8 as well as execution times of WHAM0 on the VAX 11/780 and IBM

3033. A speed-up of 11 was achieved by the VECPAR version of WHAMS when

compared with the scalar version WHAM0 on the Alliant.

46

The second problem studied was a pressurized containment vessel with a nozzle

penetration shown in Figure 3.2. The problem has a wide range of element sizes and

will presented again in Chapter 4 when subcycling is discussed. The problem has

344 elements and 407 nodes, and is subjected to a uniform pressure. The material

properties and mesh dimensions are presented in Table 3.3 and timings are shown in

Table 3.4.

Comparison of the run times of WHAM0 and WHAM_OPT shows that using

compiler optimization for concurrency and vectorization provides a speed-up of al-

most three. This is only 3/8 of the speed-up which should be achieved by concurrency

alone. However, by vectorizing the code and using monitors to control paraUelism of

the internal force vector, a total speed-up of 18.7 was achieved.

Three element block sizes were used for the WHAM_VECPAR version of the

code using 1, 4 and 8 processors. Effciencies due to parallelization were calculated

by comparing run times using multiple processors with those using a single processor.

Using four processors, th_ effciencies for 12, 24 and 32 elements per block were 81%,

78% and 77%, respectively. With eight processors, the effciencies decreased to 66%,

60% and 51%, respectively. The trend indicates that effciencies decrease as the

number of processors increase and as the number of elements per block increase.

Note, however, that the efficiency due to vectorization increases as the number of

elements per block increases. This illustrates the trade off between optimizing a code

for vectorization and concurrency. These trends will be discussed in further detail in

the next section.

47

The third problem is a 120 degree cylindrical panel shown in Figure 3.3 which is

hinged at both ends and fixed along the sides. The panel is loaded impulsively with an

initial velocity of 5650 in/sec over a portion of the shell. An elastic-perfectly plastic

constitutive model was used with four integration points through the thickness. The

material properties are shown in Table 3.5. Further details can be found in [15]. Due

to symmetry only half of the cylinder was modeled. Three different uniform mesh

discretizations were used so that the effects of problem size and element block size

could be studied. Table 3.6 shows the number of elements and nodes for each mesh

as well as time step used and total number of time steps.

All mesh discretizations were run using the three versions of WHAMS described

previously. The results are presented in Tables 3.7 through 3.9. The VECPAR

version of the program was run using 1,4 and 8 processors and various element block

sizes.

A comparison of run times between the original version of the code, WHAM0,

and the code using compiler optimization, WHAM_OPT, shows a speed-up of ap-

proximately 2.5 for all mesh discretizations. Comparing the original version of the

code with the VECPAI:t version using eight processors gives speed-ups of 17.4, 24.2

and 26.4 for mesh 1, 2 and 3, respectively. Total speed-ups increase as the problem

size increases.

Full advantage of vectorization on the Alliant FX/8 can be taken by using vectors

of at least 24 elements in length. The optimum vector length is 32 which is the size

of the vector registers. As the number of elements per block increases, the run times

48

decreasedue to vectorization. However, the efficiency attributed to concurrency also

decreases and the temporary storage which is required increases. In going from 1

processor to 4, the average speed-up is 3.53 with an efficiency of 88%, while with 8

processors, the average speed-up is 5.70 with an efficiency of 71%.

Assigning one element to a block eliminates the benefits of vectorization in the

internal force calculations. The average speed-up achieved for this case using 4 and 8

processors was 3.92 and 7.55, yielding efficiencies of 98% and 94%, respectively. Run

times for one element per block were quite high illustrating the fact that the execution

of vectorized do loops with only a few loop iterations is slower than performing the

operations in scalar mode.

The final problem is the simulation of a front end collision of an automobile.

The mesh shown in Figure 3.4 models one-half of the front end of the vehicle. The

nodes at the front of the model are subjected to an initial velocity consistent with

an impact at approximately 60 miles per hour.

The mesh contains 1429 nodes and 1500 elements. The elements include 879

quadrilateral plate elements, 587 triangular plate elements and 34 beam elements.

Plate thicknesses range from 0.7 to 2.0 ram. The material properties for the elastic-

perfectly plastic constitutive model are given in Table 3.10.

The impact simulation was run for 20 msec. real time, requiring 40,000 time steps

of 5.0E-7 sec. The computational times required for the three versions of the code are

presented in Table 3.11. Note that the computational times are expressed in terms

of CPU hours. This example illustrates the advantages of exploiting vectorization

49

and concurrency in real engineering design problems. The scalar version of the code

requires 103 hours to complete the solution, while the vectorized-concurrent version

using 8 processors requires only 4.4 hours.

The speed-up and efficiency calculated for the vectorized-concurrent version of

the code were consistent with those found in the previous problems. For a block size

of 32 elements, the speed-up for 4 processors was 3.66 giving an efficiency of 92 %

and the speed-up for 8 processors was 5.66, yielding an efficiency of 71%. A block

size of 64 elements was also used, however, the results did not change significantly.

The decrease in efficiency as the number of processors increases is caused by

factors inherent in the design of parallel algorithms. One factor is that processors

remain idle when the number of tasks is smaller than the number of available pro-

cessors. For example, the internal force calculations for 8 blocks of elements will

take the same amount of time as 1 block of elements if eight processors are avail-

able. In the latter case, seven of the processors will be idle while the eighth performs

the computations. The problem of processor idleness also illustrates an advantage

to using relatively small element blocks (24 to 32 elements/block) as opposed to a

few very large blocks. The more blocks that are available for computation, the less

likely a processor will remain idle. Also, the larger the problem, the less significant

processor idleness becomes. In terms of storage requirements, smaller block size is

also preferable because as can be seen in Section 3.4, each single-dimensional array

must be augmented to a two-dimensional array with the second dimension equal to

the number of processes.

5O

An algorithm was developed to select the optimal block size based on the criterion

of minimizing processor idleness. The following flowchart illustrates the algorithm

for a problem with several types of elements.

Flow Chart for Determining Optimal Block Size

1. Assume an optimal block size equal to the length of the vector registers. The

Alliant FX/8 has vector registers of length 32.

2. Determine the number of blocks required for each element type.

No. of blocks = (No. of elements- 1)/32 + 1

3. Determine the average block size for each element type.

Block size = (No. of elements - 1)/(No. of blocks) + 1

4. Sum the number of blocks for all element types and determine the number of

extra blocks required to fully utilize all processors. For example, if there are

8 processors and 30 element blocks, two extra blocks are required to utilize all

processors.

5. In order to maximize block size for all elements, assign the extra blocks to

element types which have the largest block size and recompute block size.

51

This algorithm was used to determine optimal block size for the problems con-

sidered in this section. For the three mesh discretizations of the cylindrical panel

problem, the computed optimal block sizes for 8 processors were 12, 24 and 32 el-

ements per block, respectively. Tables 3.7 through 3.9 show that the fastest run

times for each discretization were those corresponding to the optimal block size. The

optimal block size for the containment vessel problem was determined to be 22 el-

ements per block. The run time corresponding to the optimal block size was 3 %

smaller than the run time using 24 elements per block as shown in Table 4. Finally,

the initial block sizes for the automobile impact problem, as computed using the

formula in step 3 of the flow chart for the quadrilateral plate, triangular plate and

beam elements, were 32, 31 and 17 elements per block, respectively. After optimizing

the number of blocks, the block sizes for the three element types were modified to

28, 27 and 17 elements per block. However, run times did not change significantly.

This is due to the fact that the number of calculations associated with the beam

element is much smaller than those required by the plate elements. Therefore, using

32 elements per block for the plate elements yields 47 element blocks which is nearly

optimal for the problem. Also as the problem size increases, the relative time that

processors remain idle is minimized. This procedure can also be used for computers

with longer optimal vector lengths such as the CRAY-1 which has a vector length of

64.

Another factor which decreases efficiency is memory contention. If more than

one processor attempts to access a shared memory location simultaneously, an error

52

will occur. This happens in internal force calculations when two elements in different

blocks share a node. A "lock" monitor must be used to ensure that only one processor

will access the memory location at a time. However, the locks cause a slowdown if

substantiaJ interference exists.

Probably the most significant factor for the decreasing e_ciency with the number

of processors is the effect of nonparallelizable computations. Once the most time con-

suming computations have been effectively recoded for parallel computations, other

portions of the program require an increasingly larger fraction of the computation

time. These sections of the code may not be conducive to parallel execution and will

prevent further speed-up.

To illustrate this effect, the program was divided into three parts: the calculations

performed before, during and after the element internal force computation. The first

part included the cMculation of the external force array as well as the update of the

nodal coordinates. The second part was comprised of all calculations listed in step

3 of the flow chart in Section 2.2. The final section included the computation of the

accelerations and the update of the velocity and displacement vectors. The times

required for each section was monitored for the cylindrical panel problem with 24

elements per block and are presented in Table 12 for 1, 4 and 8 processors. The speed-

up (efficiency) calculated for the internal force calculations was 6.1 (76%), whereas

the speed-up (efficiency) of the computations before and after these calculations was

2.5 (31%) and 4.7 (60%), respectively. The average speed-up and efficiency for the

time step was 5.8 and 73%, respectively. Furthermore, as the number of processors

53

increase, the percentage of time spent in the internal force calculations decreases.

Therefore, the less efficient coding takes up an increasingly greater percentage of the

total execution time.

3.6 Conclusions

Vectorization and concurrency significantly speed up the execution of explicit fi-

nite element programs. However, these techniques tend to be competing processes.

To optimize a code for concurrency, element block size should remain small in order

to minimize processor idleness. On the other hand, to optimize a code for vector-

ization, the block size should be at least one to two times the size of the computer's

vector registers. As the number of elements per block increases, the efficiency of the

concurrent execution decreases. The element block size for a vectorized-concurrent

execution depends primarily on the number of elements in the mesh. For small prob-

lems (less than 200 elements) the block size can be reduced to approximately 15

elements without eliminating the benefits of vectorization. Element blocks with only

a few elements will require more computation time in vectorized execution than in

scalar execution. For larger problems, the block size should be chosen to correspond

to the size of the vector register. Note that as the number of elements in the problem

increases, the effect of element block size diminishes.

Efficiency of concurrent execution also decreases as the number of processors

increase due to processor idleness, memory contention problems and the effect of

54

nonparallelizable code. Processor idlenesscan be reduced by using smaller block size

as mentioned previously,or by employing fewer processors for the problem solution.

An algorithm described here optimizes block sizeand has been shown to give the best

running times. In parallelcomputers, memory contention isalso an issue. Memory

contention problems within an element block can be eliminated by a sorting algorithm

used in dividing elements into blocks. However, for memory contention problems

between processes, a lock mechanism which prevents simultaneous access to global

memory locations isprobably unavoidable since it isalmost impossible to schedule

processes so that no common data is updated.

55

Table 3.1: Material Properties and Parameters for Spherical Cap

Radius r -- 22.27 in

Thickness t = 0.41 in

Angle a = 26.67deg
Density p = 2.45 × 10-41b-sec2/in4

Young's modulus E = 1.05× 107 psi
Poisson'sratio v = 0.3

Yield stress ay = 2.4 × i04 psi

Plasticmodulus Ep = 2.1 × 10s psi

Pressureload P = 600 psi

Time Steps N = 1000

Table 3.2:SolutionTimes for SphericalCap Problem

AUiant - WHAM0 310.9 sec

AUiant- WHAM_OPT (8 Procs.) 116.5 sec

AUiant - WHAM_VECPAR (8 Procs.) 28 sec

VAX 11/780- WHAM0 901.8 sec
IBM 3033 - WHAM0 75 sec

Table 3.3: Material Properties and Parameters for Containment Vessel

Vessel diameter

Vessel height
Penetration diameter

Penetration length

Thickness

Density

Young's modulus:

Nozzle

Pressure vessel

Collar

Poisson's ratio
Yield stress

Plastic modulus

d_ - 264.0 in
h 399.0 in

dp 40.0 in29.3 in

t 0.25 in

p 7.5 x 10-41b-sec2/in 4

E -- 40.0 × 107 psi

E = 3.0×107 psi

E = 9.0×107 psi

v = 0.3

cry = 6.01×104 psi

E v -- 4.4×104 psi

56

Table 3.4:Run Times (Efficiency)forContainment VesselProblem

(in CPU Sec.)

Program Number of 12 elements 24 elements 32 elements

Version Processors per block per block per block
WHAM0 1 3768

WHAM_OPT 8 1291

WHAM_VECPAR 1 1167 959 907

4 356(81%) 309(78%) 295(77%)

8 222(66%) 201(60%) 223(51%)

Table 3.5: Parameters for Cylindrical Panel Problem

Density

Young's modulus
Poisson's ratio

Yield stress

Plastic modulus

p = 2.5 x 10-41b-sec2/in 4
E = 1.05 x 10r psi
v = 0.33

ay = 4.4 x 104 psi

Ep = 0.0 psi

Table 3.6: Sizes and Time Steps for Mesh Discretizations for Cyl. Panel Problem

Mesh No. Eleraents No. Nodes Time Step No. Steps
1 96 119 2.0E-6 sec 500

2 384 429 1.0E-6 sec 1000

3 1536 1625 0.5E-6 sec 2000

" 57

Table 3.7: Run Times (Efficiency) for Cylindrical Panel Problem- Mesh 1

96 Elements ; 500 Steps (in CPU Sec.)

Program

Version

WHAM0

WHAM_OPT

WHAM_VECPAR

Number of 1 element 12 elements

Processors per block per block
1 347

8 141

I 529

4 137(97%)

8 74(89%)

103

31(83%)

20(64%)

Table 3.8: Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 2

384 Elements ; 1000 Steps (in CPU Sec.)

Program Number of 1 element 12 element_ 24 dements

Version Procetmors per block per block per block

WHAM0 1 26`58

WHAM_OPT 8 1072

WHAM0.VECPAR 1 4189 785 631

4 1071 (98%) 213(92%) 1 T6(90%)

8 `55`52(95%) 126(78%) 110(72%)

32 elements

per block

594

1_(88%)
12,5(,59%)

Table 3.9: Run Times (Efficiency) for Cylindrical Panel Problem - Mesh 3

1625 Elements; 2000 Steps (in CPU Sec.)

Program Number of 1 element 12 elements 24 elements

Version ProcemorJ per block per block per block

WHAM0 1 20860

WHAM.OPT 8 8484

WHAM0.VECPAR 1 3449`5 6030 4807

4 8470(100%) 1671(90%) 1391 (86%)

8 4364(99%) 939(80%) 812(7"4%)

32 elements

per block

4496

12v,5(ss%)
789(71%)

58

Table 3.10: Material Properties and Para_'netersfor Auto Impact Problem

Density p = 7.835 × 10-SN-sec2/cm 4

Young's modulus E 2.0 × 10ZN/cm 2

Poisson's ratio v - 0.28

Yield stress cry - 2.0 x 104N/cm 2

Plastic modulus Ep -- 0.0N/cm 2

Pressure load P = 600N/cm 2

No. of Time Steps N - 40000

Time Step At = 5.0x10 -Tsec.

Table 3.11: Run Times (Efficiency)for Automobile Impact Problem

(in CPU hrs)

Program Number of 32 element 64 elements

VersiQr_ Processol_ per block per block

WHAM0 1 103.1

WHAM_OPT 8 41.3

WHAM_VECPAR 1 24.9 24.4

4 6.8(92%) 7.2(85%)

8 4.4(71%) 4.4(69%)

Table 3.12: Comparison of Computation Times For a Single Time Step

(in CPU Sec.)

Section 1 Proc. 4 Procs. 8 PrQcs. Speed-up

Before f_,,t .0032 .0017 .0013 2.46

During f_,,t .5364 .1483 .0883 6.07

After lint .0714 .0224 .0150 4.76

Total .6110 .1724 .1046 5.84

59

Z

Y

O O
_X

Figure 3.1: Sample Problem i: Spherical Cap

60

\
\
\
\
\

Figure3.2:Sample Problem2: ContainmentVesselwithNozzlePenetration

61

:2.937_

Figure 3.3: Sample Problem 3: Impulsively Loaded Panel

62

Figure 3.4: Sample Problem 3: Automobile Impact Problem

Chapter 4

Subcycling

4.1 SubcycUng Formulation

Subcycling is a mixed time integration method which uses the same integrator

but different time steps for different parts of the mesh. When an explicit integrator

is used with different time steps, it is sometimes called explicit-explicit partitioning,

since the mesh is partitioned into subdomains with different time steps. Mathe-

maticians sometimes call these methods subdomain techniques. The explicit-explicit

partitioning procedure used here was first presented in [1, 5, 8]. Substantial improve-

ment in computational efficiency can be achieved when using mixed time integration

methods on problems which contain elements of varying sizes and material proper-

ties. Subcycling techniques allow each element or group of elements to be integrated

using a time step close to its critical time step. Without subcycling, all elements in

the mesh must be integrated using the smallest critical element time step.

63

64

4.1.1 Finite Element Equations

We assume that the domain of the structure, f_, is subdivided into elements. The

element domains are designated by f_,, where the subscript e indicates an element-

related variable. The structure of the finite element equations is as follows:

Strain-displacement equations (in rate-form):

d= By, (4.1)

Constitutive equations (in rate form):

s(d) (4.2)

Momentum equations:

a = M-' (f,_ -- f,n,)

(4.3)

(4.4)

..... 65

where,

B

d

fi.,

M

V

0"_ O"

= strain-rate velocity matrix,

= velocity strains (strain rates),

= internal nodal forces,

= external nodal forces,

= mass matrix (assumed diagonal and lumped),

.

= Cauchy stress matrix and its frame invariant rate,

- nodal displacement, velocity and

acceleration vectors, respectively,

- the constitutive equation (or algorithm)

and frame invariance correction.

The central difference method uses the following equations to update the nodal

displacements and velocities in time:

v-+_ = v_-_+At '_a -

u_+, = v - +At"+½v"+_ (4.5)

The superscripts in the above equations designate time steps. The fractional

subscripts indicate a midstep value. Note that an average time step is used to

update the velocities. This provides the capability of changing the time step during

the solution.

66

An outline of the explicit time integration algorithm with a single time step

for all elements in the mesh is given below. As can be seenfrom the flow chart,

the major opportunity for parallelization appears in the loop over the elements.

The number of multiplications per element can vary from 50 to the order of 103.

Since the internal force vector for each element is independent during a given time

step in an explicit code, these calculations form tasks which yield a coarse-grained

parallelism which is ideal for concurrent processors. However, if the parallelism is

exploited on an element level, then the opportunities for any significant vectorization

are lost. To exploit vectorization in conjunction with parallelism, it is necessary to

arrange the elements in groups. The number of groups should exceed the number

of processors, but the group size is limited by the auxiliary arrays which are needed

for vectorization. Furthermore, in an ettlcient implementation of vectorization, all

elements in a group must be of the same type.

Flow Chart for Explicit Integration

1. Initial conditions : v-_,z °

2. Compute external force

3. Compute internal force vector fi "+'

Loop over element groups

(a) compute velocity strains by Eqn. (4.1)

(b) evaluate constitutive law, Eqn. (4.2)

67

(c) evaluate B T a" and add to integrand of Eqn. (4.3)

(d) add fi,_t,_ to total f_,_ array

4. Compute accelerations by equation of motion : Eqn. (4.4)

5. Update velocities and displacements using central difference equations: Eqn.

(4.5)

6. Go to 2.

4.1.2 Implementation of SubcycUng

The explicit-explicit partitioning procedure is implemented by dividing the ele-

ments into groups according to their critical time steps. Each element group can

then be integrated with a different time step subject to the following restrictions:

1. The largest group time step must be an integer multiple of all time steps.

2. If any node is shared by elements in two different integration groups, the time

steps of the groups must be integer multiples of one another.

In this work, the first restriction has been modified by requiring that all group time

steps be integer multiples of each other. This additional constraint eliminates the

need to keep track of interface nodes and allows elements be assigned to groups

according to their critical time steps and not physical proximity. In adapting this

method to a parallel computer, it was decided to make the alignment between the

68

element groupings for vectorization and the time step partitioning coincident. The

element grouping is performed by a preprocessor.

For the purpose of describing the explicit-explicit partitioning procedure, the fol-

lowing variables are defined:

NBLOCK:

AtG :

ArM :

At:

A t,najt :

time :

tmax_ :

tN :

tG :

number of groups into which the finite element mesh

is subdivided,

the time increment for element group G,

the time increment for node N,

the time increment corresponding

to the minimum A tG,

the master time increment, which corresponds

to the maximum A tu,

the current time,

the master time,

the nodal clock,

the element group clock.

Time steps A fly and A tu are assigned to nodes and element groups, respectively,

at the beginning of the solution and may be modified during the first subcycle of any

master time step. The master time step is set to the largest element group time step

4

69

and is used to determine when a cycle has been completed. The critical time steps

may change as the element deforms or if the material properties change with time.

However, in this procedure, the time steps are not allowed to change during a cycle.

In order to assign nodal and element group time steps, the critical time step

for each element is calculated. These time steps are then converted to an integer

multiple of the smallest element time step and stored in the array NLIM(I:NELE)

where NELE is the number of elements in the mesh. The integer multiples in NLIM

axe adjusted to satisfy the restriction that all time steps must be integer multiples

of one another.

The critical time steps axe calculated by the following procedure. For each node

N, a preliminary time step is computed by

for all elements e connected to node N. After all A t_¢ are computed, the element

time step is determined by

At, =rain(At.) (4.6)
n

for all nodes n of element e. The nodal time steps are then computed by

A tN = rain (A t.). (4.7)
e

7O

The elements are sorted in terms of increasing time step. An efficient sort algo-

rithm involves creating a two-dimensional table NTEMP(I:NELE,I:NMAX) where

NMAX is the largest entry in the NLIM array, i.e., the number of subcycles required

to complete a master time step. The element numbers are placed in the column cor-

responding to their calculated time step ratio (NLIM). The array INBLK(I:NMAX)

keeps track of how many elements are in each column. After the table has been com-

pleted, the element numbers are reassigned to array NSORT(I:NELE) in a column-

wise progression, resulting in an array of sorted elements with time steps in ascending

order.

The elements are divided into groups of NEPB, where NEPB is the number of el-

ements per group which is selected by the user. For large problems, NEPB is usually

chosen to equal the length of the vector registers in order to achieve maximum ben-

efit from vectorization. However, when using subcycling techniques, smaller groups

may be more efficient. In a paralleUzed code, it is important to minimize processor

idleness. Since the internal force vector is computed for a subset of the element

groups during a subcycle, the likelihood of idle processors increases. Smaller group

size increases the total number of groups during each subcycle, thus improving the

efficiency due to concurrency. Minimizing processor idle time will be discussed in

detail later.

In addition to time steps, a clock is assigned to each node and element group.

These clocks, when compared to the current time, indicate when a node or group

of elements is ready to be updated. At the beginning of each subcycle, the nodal

and element group clocks are advanced for those nodes and element groups which

were updated in the previous subcycle. By design, all nodes and element groups are

updated in the first subcycle (although only the nodes must be updated as discussed

in Section 4.4).

Once the nodal and element group clocks have been updated, the integration

procedure continues as described in the flow chart in Table 4.1. For each element

group whose clock is behind the current time, i.e,

ta < time (4.8)

I, -_ .

new velocity strains, stresses and internal forces are computed. The element internal

forces are then added into the global internal force array.

After all element groups which satisfy Eqn. 4.8 have been updated, the nodal

loop is executed. For each node whose clock is behind the current time, i.e,

tlv <_ time (4.9)

accelerations, velocities and displacements are computed and nodal constraints are

applied.

The algorithm assumes that a velocity strain formulation is used for all element

calculations. When an element needs to be updated, the latest available velocity is

used to compute the velocity strain. This means that if an element is connected to a

72

node with a larger time step, it uses the same nodal velocity for all intermediate time

steps. This corresponds to a constant velocity interpolation or a linear displacement

interpolation. If displacements at a node are needed by an element at a time when the

node is not being updated, linear interpolation based on the last cycle displacement

with the current velocity as a slope is used. Note that a node which has a larger

time step than the element will never be behind the element (i.e., its clock will never

be behind) because the larger time step nodes are integrated first.

The subcycling procedure continues until all nodes and element groups have been

updated to the master time. After the final subcycle, all nodal variables have been

updated to the same point in time and results can be output. Critical time steps of

the elements and nodes axe then recalculated and the elements are resorted before

the next time step. An outline for the subcycling procedure is given in Table 4.1.

Table 4.1: Flow Chart for Subcycling Algorithm

1. Initial conditions : v-x,, z °

2. Initialize nodal and element group clocks

(a) ta = 0 for all element groups

(b) tN = 0 for all nodes

(c) time = 0

3. Update time and clocks; if necessary resort elements and reassign element

groups

_- 73

(a) Subcycle 1

i. if required, resort elements (See Section 4.1.2)

ii. update all nodal and element group docks

iii. update time

(b) Subcycle n, n > 1

i. update nodal clocks if tN < time

ii. update element group clocks if tG < time

iii. update time

4. Impose external force

5. If tG < time, compute .fi,,t for element group G

(a) compute velocity strains

d"+_ = B v_+_ (4.1o)

(b) compute frame invariant stress rates

tr = S(tr, d) (4.11)

74

(c) obtain time derivative of Cauchy stress

, ,_+_ v,_+_
r = o" + W+_ • o-= - o ._ • W_+_ (4.12)

where W is the spin tensor.

(d) update stress

o "n+l -- o 'n ÷/kt o" (4.13)

(e) compute element internal nodal force : Eqn. 4.2

(f) assemble into global array

6. If tN < time, compute acceleration, velocity, displacements and apply nodal

constraints

7. If time < t,_ot, go to 3b

8. If time < tlinat, output, go to 3a.

4.1.3 Graphical Representation of Subcycling

Figure 4.1 illustrates the subcycling procedure for three element groups of one

element each with critical time steps of A t, 4 A t and 4 A t, respectively. The nodes

are represented by solid circles. Time is represented by the vertical axis. Note that

the time step of node 2 is A t because that is the minimum critical time step of

any element connected to it. During the first subcycle, all nodal and element group

- 75

clocks are set to t while the current time is updated to t + A t. Therefore, all nodal

and element clocks are behind the current time, so all nodes and element groups

are updated in subcycle 1. In Figure 4.1, a vector signifies a nodal update and a a

signifies an element update. The number associated with the symbol indicates the

subcycle in which the node or element was updated. In subcycle 2, the nodal clocks

for nodes 1 and 2 are updated to t + A t while the nodal clocks for nodes 3 and 4 are

updated to t + 4 A t. The element group clocks for groups 1, 2 and 3 are updated to

t + A t, t + A t and t + 4 A t, respectively. The time is then updated to t + 2 A t.

During the second subcycle, the clocks for element groups 1 and 2 and nodes 1 and

2 are behind the current time, so only these updates will be performed. In subcycles

3 and 4, element groups 1 and 2 and nodes 1 and 2 are again updated so by the end

of subcycle 4 all nodes and element groups have been updated to t + 4 A t and the

cycle is complete.

As discussed previously, a velocity strain formulation which corresponds to a

constant velocity interpolation is used to compute the element internal force vector.

When an element is updated, the latest available velocity is used to compute the

velocity strain. When node 2 is updated to t + A t, the velocity is assumed constant

from time = t to time = t + At. In the same manner the velocity of node 3 is

constant from time = t to time = t + 4 A t. If element 2 is updated using a time

step of 4 A t, the velocity strain would be calculated using the velocity from node 2

at time = t + ½ A t and from node 3 at time = t + 2 A t. However the velocity at

node 2 changes in each subcycle so the computed internal force for element 2 would

76

be incorrect. If element 2 is updated using a time step of A t, the most current

velocity wiU always be used in the internal force calculations.

4.1.4 Stability

Stability of mixed method integration techniques is proven for first order ordinary

differential equations emanating from FEM semidiscretizations of linear systems in

[6, 28]. Since no general proofs of stability are available for second order systems

such as structural dynamics, numerical studies were made. In this study of the

stability of explicit-explicit partitioning, four discretizations of an axially loaded rod

were analyzed. All discretizations consisted of thirty 4-node Mindlin plate elements

which were divided into three groups of ten elements each. The first discretization

contained elements of uniform size, while the others had varying element size. The

following table shows the time step used to compute the internal force vector for each

element group in the four meshes. The time step A t_ corresponds to the critical

time step of the smallest element in the mesh as computed by Eqn. 3.11. The critical

time step is reduced by 20% to compensate for potential destabilizing effects due to

nonlinearities. The size of the remaining elements was selected to yield time steps

which are integer multiples of the smallest time step A t.

- 77

Mesh A t_ A t Group 1 Group 2 Group 3

I 0.464 0.370 A t A t A t

2 0.0507 0.0440 16 A t 4 A t A t

3 0.0346 0.0270 25 A t 5 A t A t

4 0.0098 0.0078 100At 10At At

The mesh dimensions are shown in Figure 4.2. The total length of the rod is

fifteen inches in all meshes so that the displacements and stresses at a given point

can be compared. Note that there are eleven elements of the largest size and only

nine elements of the smallest size in the meshes containing varying element sizes.

Element 11 is updated using the time step of element 12 and element 21 is updated

using the time step of element 22. This results in the formation of three element

groups where all elements in a group have the same time step. Both elastic and

elastic-plastic materials were considered. The applied loads and material properties

are listed in Table 4.2.

Figures 4.3 through 4.6 show the plots of displacement and stress for the elastic

and plastic analyses. The displacement at node 1 (at free end of beam) and the

stress at element 30 (at fixed end of beam) were plotted verses time for the four mesh

discretizations. Also plotted are the analytical solutions. In all cases, the numerical

results agree well with the analytical results. In the elastic analysis (Figures 4.3 and

4.4), the curves for both displacement and stress were nearly identical for all cases

78

considered.

Figures 4.5 and 4.6 show the plots of displacement and stress, respectively, for the

elastic-plastic rod. The curves for the stresses are very consistent for the four mesh

discretizations. However, the displacements obtained with subcycling are approxi-

mately two percent less than the non-subcycling analysis. The large variation in size

for elements in the mesh used for subcycling seems to be a factor in this discrepancy.

The mesh for case 2 (16 A t -- 4 A t -- 1 A t) was run using a uniform time step for

all elements. The resulting displacement at Node 1 was 2 percent higher than the

displacement for the uniform mesh. Other discretizations showed similar differences.

These studies indicate that subcycling is stable for a reasonable range of time

steps. In the code presented in this dissertation, the maximum time step allowed for

the subcycling analysis is 64 times the minimum time step.

4.1.5 Speed-up Due to Subcycling

The maximum theoretical speed-up which can be achieved by subcycling can be

calculated for a problem based on the normalized time required to update all nodes

and element groups. Let the time required to solve a problem without subcycling be

given by:

T "° = #time steps x 1.0 (4.14)

The minimum computer time required for subcycling can be calculated in terms

of the number of subcycles, NSUB, and the percentage of elements being updated at

- 79

each subcycle, PCTS_.

NSUB-I

T" #time steps
= NSUB x[1.0+ _ PCTS,] (4.15)

i=1

For example, if 10 subcycles are required to integrate 25% of the elements, the

minimum computer time is:

T" #time steps= -× [1.0 + 9 × 0.25] (4.16)
10

The optimal speed-up due to subcycling is simply the ratio between the two times

Speed-up = T---7- (4.17)

which for this example is 3.08.

4.2 Vectorization Considerations

Initial timings for problems using subcycling on a vectorized, concurrent computer

yielded relatively poor speed-ups compared to the maximum theoretical speed-up.

In the early version of the code, only the internal force calculations were vectorized

because they required the majority of the computational time. The nodal calculations

were not modified, so any improvement in speed for the nodal updates was due only to

the vectorization of existing loops. The vectorization of the internal force calculations

80

is not affected by subcycling because they are performed only for the element groups

requiring update.

However, the nodes are not divided into groups, so each node must be checked

in every calculation to determine whether it should be updated. For example, the

update of the nodal velocities and displacements was computed by the following loop

where NEQ is the number of degrees of freedom:

C

C

C

UPDATE VELOCITIES AND DISPLACEMENTS

DO 150 I - 1,NEQ

IF (CLKNOD(I) .LE. TIME) THEN

V(I) ,,V(I) + AI(I)*DELT

Xl(I) - XO(I) ÷ V(I)*DELT

KNDIF

150 CSNTINUE

The process of checking the status of the each node as well as the nonvectorized

coding significantly reduced the speed-up due to subcycling.

The nodal calculations were reorganized in order to optimize the benefits of vec-

torization. In the above nodal loop, an IF statement is executed to determine whether

the node should be updated. In order to vectorize the loop, the compiler must per-

form a gather operation to separate the nodes which require update from those which

do not. This gather operation slows down the execution of the loop.

Efficiency was achieved in the nodal calculations by performing the gather op-

eration explicitly outside of the loops. An array NUPD, with length NNUPD, was

created to store all nodes which require updating in the current subcycle. This array

81

was formed at the beginning of each subcycle.

formation of the NUPD array.

The following code illustrates the

C

C

C

STORE NODES REQUIRING UPDATES IN ARRAY NUPD

NNUPD =0

DO 100 J = I,NNODE

IF (CLKNOD(J) .LE. TIME)

NNUPD = NNUPD + I

NUPD(NNUPD) :, J

ENDIF

I00 CONTINUE

THEN

Subsequent calculations on nodal variables are then performed only on the nodes

requiring an update and all IF statements are removed from the do loops. The nodal

calculations take the form of:

C

C

C

UPDATE VELOCITIES AND DISPLACEMENTS

D0 150 J - 1,NNUPD

NUP = NUPD(J)

V(I) - V(I) + AI(I)*DELT

Xl(I) = XO(I) + V(I)*DELT

150 CONTINUE

These modifications to the nodal calculations increased the speed-up due to subcy-

cling by 50%.

82

4.3 Timing Studies

Two problems presented in Chapter 3 were used to study the behavior of subcy-

cling in a parallel environment:

1. pressurized containment vessel

2. automobile impact problem.

The pressurized containment vesselwith a nozzle penetration isshown in Figure

3.2 and the material properties and mesh dimensions are listedin Table 3.3. This

problem contains elements of various sizesand material properties,so the computed

element time steps willdiffersignificantlyfrom element to element. In the solution

presented in Chapter 3, allelements were integrated using the time step correspond-

ing to the smallest element.

The computed time steps for the elements in the containment vesselranged from

3.8E-6 sec to 5.6E-5 sec. The largest integer ratio of element time steps is 14. In

order to satisfythe restrictionthat the largesttime step be an integer multiple of all

time steps,the maximum integer ratio was reduced to 8.

The elements were divided into groups using 12, 24 and 32 elements per group.

The time step assigned to the group corresponds to the smallest of the element time

steps. Table 4.3 liststhe number of subcycles required for each group of elements

and the corresponding time step for each group.

Table 4.4 shows the run times and ei_icienciesfor the containment vesselproblem

run with and without subcycling. Ei_ciency due to parallelizationdecreases as the

F 83

/"

\

number of processors increases and as the size of the element groups increases. This

trend was also seen in the problems discussed in Chapter 3. However, speed-up

due to subcycling, computed as the ratio between the run time using mixed time

integration and the run time using a single time step, no longer follows this trend.

Using four processors, the speed-up due to subcycling increases as the group size

increases. However, with eight processors, the speed-up decreases as the group size

increases. This decrease in speed-up results from the fact that with a large number of

processors and relatively few groups of elements, processors will be idle while groups

with smaller time steps are subcycling.

To illustrate this, Table 4.3 shows the number of groups integrated using the

smallest time step A t. For 12, 24 and 32 elements per group, the number of groups

is 8, 4 and 3, respectively. These groups are updated every subcycle and for half

of the subcycles, these are the only groups which axe updated. Using 12 elements

per group and 8 processors, eight groups are updated resulting in no idle processors.

However, using 32 elements per group, only 3 groups axe being updated in one cycle,

so 5 processors remain idle. When a smaller group size is used, the number of groups

increases, thus decreasing the number of idle processors. Note, that the containment

vessel problem is not a large problem. As the size of the problem increases, the

number of element groups increase and the effect of processor idleness diminishes.

An algorithm for minimizing processor idleness is presented in Section 4.4.

Another disadvantage of large groups when subcycling is that the time step as-

signed to each group is smaller since the group time step must be below the critical

84

time step of all elements in the group. With larger groups, the number of elements

integrated using an unnecessarily small time step increases. Therefore, the benefits

of subcycling axe reduced.

The mesh for the automobile impact problem is shown in Figure 3.4 with material

properties given in Table 3.10. Adjusted element time steps ranged from 4.9E-7 to

7.84E-8 sec., giving an maximum integer time step ratio of 18. For this problem,

however, most of the element blocks required 2 or 4 subcycles per master time step.

The run times and effciencies due to paraUelization for the automobile frontal

crash problem axe shown in Table 4.5 for block sizes of 32 and 64 elements. Trends

described in the discussion of the containment vesselresultsaxe consistent with the

resultsof this problem. The firsttrend is that the efficiencydue to parallelization

decreases as the number of processors and the dement block size increases. This

conclusion has been supported by the resultsof allproblems studied in thisreport.

The second trend isthat the speed-up due to subcycling also decreases with the

number of processors. For the auto problem, the speed-up due to subcycling is2.43

and 2.15 for I processor and 4 processors, respectively. Unlike, the containment

vessel problem, the block size has littleeffecton the speed-up due to subcycling

when 4 or lessprocessors were used. This isdue to the fact that as the problem size

increases, the problem of processor idleness diminishes. However, for 8 processors,

the speed-up due to subcycling is 2.04 for an element block size of 32 and 1.76 for

an element block size of 64. The reduction in speed-up due to the increase in block

size is primarily due to processor idleness.

By comparing therun timesofthe originalversionofthe code with the vectorized-

concurrent versionof the code, a totalspeed-up of 47.7 is realized.A speed-up

of almost 20 is achieved by the improvements due to vectorizationmodifications,

.

monitors and subcyclingover the compileroptimized version.

4.4 An EfficientAllocation Algorithm for Concurrency and

SubcycUng

Consider a discretizationof the 120 degree cylindricalpanel shown in Figure 3.3

in which 1000 elements have a criticaltime step of 1.0x 10-4 sec and 20 elements

have a criticaltime step of 1.0x 10-5 sec. Elements with the small time step will

requireI0 subcyclesforevery cycleofthe largerdements. Assume the elements are

dividedintogroups oftwenty,givingi group ofelements with a time step of _ t and

50 groups ofelements with a time stepof 10A t.Table 4.6shows how the processors

are allocatedduring each subcycle.Groups are indicatedin the tableby theirtime

step. During the frrstsubcycle,all51 groups are updated. However, during the

remaining nine subcycles,only one group isupdated, leavingseven processorsidle.

This inefilcientuse ofmultipleprocessorsreducesthe benefitachievedby subcycling.

In order to minimize the effectsof processoridleness,the algorithmwas modified

by determining which element groups could be updated early ifa processor was

expected to remain idleduring a subcycle. The modificationisas follows.Within

each subcycle,the nodal docks are compared with the currenttime. Ifthe nodal clock

86

is behind the current time, a new acceleration is computed and displacements and

velocitiesare updated. Before accelerationscan be computed for a node, the internal

force vectors for allelements containing that node must be updated. However, itis

not necessary for the internal force vector to be updated during the same cycle that

the node is updated. It is only necessary that the elements be updated within the

nodal time step. For example, suppose a node has a nodal time step of 4 A t,where

A t corresponds to the smallest element group time step, and an dement containing

the node also has a time step equal to 4 A t.The internalforce vector for the element

can be updated in any of the four subcycles occurring before the nodal update.

Figure 4.7 gives a graphical representation of the algorithm for a problem consist-

ing of four elements with criticaltime steps of A t,2 A t,4 A t and 8 A t,respectively.

Due to the enforcement of the stabilitycondition, Eqn. 4.7, the time steps of the

elements are modified to A t,A t,2 A t and 4 A t, respectively. A vector signifiesa

nodal update and a _ signifiesan element update. The subcycle number in which the

node or element can be updated isprinted next to the symbol. During a given subcy-

cle,certain elements must be updated in order to correctlyupdate the nodes whose

nodal clock fallbehind the time. The other elements can be updated, however their

contribution is not needed for nodal updates in the current subcycle. For example,

elements I and 2 must be updated during each subcycle. However, because element

3 has a time step of 2 A t,itcan be updated during subcycle I or 2. Element 3 can be

updated in subcycle I but ifitisnot updated early,it must be updated in subcycle

2 in order to update node 3 at time = t + 2 A t.Element 4 can be updated during

/ 87

any of the first four subcycles as long as the update has been completed before node

4 is updated at time - t + 4 A t. The following table illustrates the element groups

which must be updated and those which can be updated for the example in Figure 4.7.

..

Subc_'cle Groups Which Must Go Groups Which Can GO

1 1,2 3,4

2 1,2,3 4

3 1,2 3,4

4 1,2,3,4 -

5 1,2 3,4

6 1,2,3 4

7 1,2 3,4

8 1,2,3,4 -

In order to incorporate this algorithm in the parallel code, a flag is assigned to

each element group at the beginning of each subcycle. The flag indicates whether

the group must be updated during that subcycle or if not, whether the group can

be updated early. The flag also indicates whether the group was updated during

an earlier subcycle so that multiple updates do not occur. Once the number of

element groups which must be updated during the subcycle is known, the number of

C:2

88

processors which willremain idleduring the element calculationscan be determined.

Element groups which have been flagged for early update are then assigned to the

idle processors. The possible values for the flag,NFLAG, are listedbelow.

NFLA(_

1

2

0

-2

Group must be updated: This flagisreserved for groups

using a time step A t.These groups must be

updated every time step.

Group must be updated or isbeing updated early due to

an availableprocessor.

Group was updated early and cannot be updated until

afterthe appropriate nodes have been updated.

Group can be updated early ifthere is an available

processor.

The flags axe assigned to the element groups immediately after the group clocks

have been updated. The number of element groups which must be updated during the

subcycle, NMGO, and the number of idle processors, NCANGO, are then computed.

The following code determines which groups will be updated early based on the

number of processors (NPROCS).

- 89

C

IF (MOD(NMGO,NPROCS) .EQ. 0) GO TO

NCANG0 - NPROCS - MOD(NMGO,NPROCS)

DO 90 J _ 1,NBL0CKS

IF (NFLAG(J) .GE. 0) GO TO 90

IF (NFLAG(J) .EO. -2) NFLAG(J)

NCANG0 - NCANGO - 1

IF (NCANG0 .EQ. 0) GO TO I00

90 CONTINUE

100 CONTINUE

100

,,2

When processors are available to update element groups early, it is most efficient

to choose the group with the smallest relative time step. Because the elements were

initially sorted in terms of increasing time step before being subdivided into groups,

the element groups are naturally ordered in terms of increasing time step. Therefore

in the above loop, the elements groups with the smallest time step are given priority.

Table 4.7 shows the allocation of processors for the modified cylindrical panel

problem using the new algorithm. The amount of time lost due to idle processors

has been reduced by 70% when eight processors are used. Note that the algorithm

has no effect on the nodal calculations. Table 4.8 compares the execution times and

speed-up due to subcycling for the problem without subcycling, with subcycling and

with subcycling using the new allocation algorithm. The theoretical speed-up due

to subcycling for this problem, as calculated by Equation 4.2 is 8.47.

The increase in speed-up attributed to the allocation algorithm for 4 and 8 pro-

cessors is 24% and 30%, respectively. As can been seen, the effectiveness of this

algorithm improves as the number of processors increases. Note, however, that the

90

speed-up due to subcycling isgreater using four processors than using eight proces-

sors. For problems of thistype, where only a few element groups are subcycling, using

fewer processors willalso minimize processor idleness,thus improving speed-up.

91

Table 4.2: Material Properties and Loading for Axially Loaded Beam

Thickness t - 0.1 in

Young's Modulus E = 1.0 x 106 psi

Poisson's ratio v = 0.1

Yield stress _y 1.0 psi

Plastic modulus Ep 1.0 x 104 psi

Load for Elastic Pe = 0.005 Ibs

Load for Plastic Pp = 0.05 Ibs

Table 4.3:" Number of Subcycles per Element Group for Three Group Sizes

Number of Group Time 12 elements 24 elements 32 elements

Subcycles Req'd Ste_ per Group_ per Group per Group

8 0.3800E-5 8 4 3

4 0.7600F-,-5 8 4 3

2 1.5200E-5 4 2 2

1 3.0400F-,-5 9 5 3
29 Total 15 Total 11 Total

Table 4.4: Run Times (Efficiency) for Containment Vessel with Subcycling

SINGLE A t

ProlDram Nx_xb_ of 24 dements

Version Processors per _Foup
WHAM0 1 3768

WHAM.OPT 8 1291

WHAM0.VECPAR 1 959

s 2o_(6o%)

MIXED TIME INTEGRATION

12 elements 24 elements 32 elements

per Stoup per _oup per group

394 322 308

122(81%) 111(73%) 105(73%)
81(61_) 85(4"(_) 91(42_)

92

Table 4.5: Run Times (Efficiency) for Automobile Impact with Subcycting

(in CPU hrs)

SINGLE A t MIXED TIME

Program Number of 32 elements 32 elements 64 elements

Version Processors per group per group per group
WHAM0 1 103.1

WHAM_OPT 8 41.3

WHAM0_VECPAR 1 24.9 10.2 10.1

4 6.8(92%) 3.13(81%) 3.36(75%)

8 4.4(71%) 2.16(59%) 2.50(51%)

Table 4.6: Allocation of Processors for Modified Cylindrical Panel Problem

Subcycle P1 P2 P3 .2_.4_ P5 P6 ..P_Z_ P8

1 At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At 10At 10At 10At 10At 10At

10At 10At 10At idle idle idle idle idle

2 A t idle idle idle idle idle idle idle

3 A t idle idle idle idle idle idle idle

4 A t idle idle idle idle idle idle idle

5 A t idle idle idle idle idle idle idle

6 A t idle idle idle idle idle idle idle

7 A t idle idle idle idle idle idle idle

8 A t idle idle idle idle idle idle idle

9 A t idle idle idle idle idle idle idle

10 A t idle idle idle idle idle idle idle

,-- 93

Table 4.7: Allocation of Processors using New Allocation Algorithm

Subcycle P....L.IP2 P3 P....A.4P5 P6 P7 P8

I At 10At 10At 10At 10At 10At 10At 10At

2 At 10At 10At 10At 10At 10At 10At 10At

3 At 10At 10At 10At 10At 10At 10At 10At

4 At 10At 10At 10At 10At 10At 10At 10At

5 'At 10At 10At 10At 10At 10At 10At 10At

6 At 10At 10At 10At 10At 10At 10At 10At

7 At 10At 10At 10At 10At 10At 10At 10At

8 A t I0 A t idle idle idle idle idle idle

9 A t idle idle idle idle idle idle idle

10 A t idle idle idle idle idle idle idle

Table 4.8: Timings for Modified Cylindrical Panel Problem in sec CPU

Number of No Subcycling

Processors Subcycling (Speed-up)

4 192 37.4 (5.1)

8 122 30.4 (4.0)

Subcycling with

Processor Allocation

Algorithm (Speed-up)

30.5 (6.3)

23.6 (5.2)

94

Subc_cle Time

4 t+4A t

3 t+3At

2 t+2A t

1 t+At

'3

At_ -- At

a'4

0 t =

Node (time step) l(At)

Element (time step)

0"2

o"1

Ate, = 4At

a'4

'3

O"3

0"2

0"1

2(At)

Ate. = 4At

o"1

_L

3(4At)

l(At) 2(At) 3(4At)

4(4At)

Figure 4.1: Graphical Representation of Subcycling

-- 95

P

P
"[1'. ,2 '

Node 1

Is

3 4

I I

Equally Spaced Elements

I ! I I

I I I I

I I I I

I I I I
,27,28,29,30
I I I I

I I I I

I I I I

30 Elements at 0.5 in.

/
/
/
/
/
/

.I

P

P

IL

I'1
a I

Node 1

I*

Discretization using Three Element Spacings

"!" i3oI I I I I
I i I I

o • • '21 o•." ° , Ii 12 ,

' ' 'liI I I I

I I ' '

/

/

hls ,ds *I

11 Elements 10 Elements 9 Elements
at l in. at m in. at n in.

_..Case / rn

1 1.075 0.269 0.054

2 1.100 0.257 0.037

3 1.242 0.124 0.010

Figure 4.2: Axially Loaded Beam for Subcycling Stability Study

96

5. x 10.4

D
i
S
p
l
&
C
e
m
e
n
t

i
n
C

h

4. x 10 -e

3. x 10''s

2. x 10-6

1. x i0-6

0.0

w

Oo

Time, sec.

Figure 4.3: Displacement vs. Time : Elastic Rod at x = 0.0 in.

97

0.1

P
S

i

0.0

-0.1

-0.2

-0.3

.

•analytic

I i i I i

30. 60. 90. 120. 150. 180.

Time, sec.

Figure 4.4: Stress vs. Time : Elastic Rod at x = 15 in.

98

D .

i
$

P
l
&
C
e
m
e
iI
t

i
n
C

h

1.2x 10-4

1.0x 10-4

0.8 x 10-4

0.6 x 10-4

0.4x 10.4

0.2 x 10-4

0.0

analytic

I I I I I

O. 50. i00. 150. 200. 250. 300.

Time, sec.

Figure 4.5: Displacement vs. Time : Elastic-Plastic Rod at x = 0.0 in.

99

o0 u

S
t
r
e
S
S

p
S

i

-0.2 -

-0.4 -

-0.6 -

-0.8 -

-I.0 =

-1.2 =

-1.4 =

I T T 1' T
0. 50. 100. 150. 200. 250. 300.

Time, sec.

Figure 4.6: Stress vs. Time : Elastic-Plastic Rod at x = 15 in.

Subcycle Time

8 t%8A t

7 t+7A t

6 t+6At

5 t+SA t

4 t+4At

3 t+3A t

2 t+2A t

1 t+At

Ate, = At

7

0"7

'3

_2

'I

0 t =

Node (time step) l(At)

Element (time step)

6

O"6

5

0"5

O'4

O'3

0.2

0.1

At_=2At /ktc,=4At

8

0.8

'3

_2

0"7

0.5

7

0"7,8

0"5,6

3

0.4

O'3

1

0.2

0.1

LL _ L_

0"3,4

O"1,2

Ate. = 8At

0"5_ 8

0.1-4

2(At) 3(2At) 4(4At) 5(8At)

1(At) 2(At) 3(2At) 4(4At)

100

1

Figure 4.7: Graphical Representation of Processor Allocation Algorithm

Chapter 5

Conjugate Gradient Method

5.1 Introduction

Conjugate gradient methods for solving nonlinear algebraic equations can be

readily adapted to a parallelenvironment. Because these methods are iterativein

nature, their effectivenessfor nonlinear finiteelement analysis reliesheavily on the

abilityto calculatethe internalforce vector in a highly e_cient manner. As shown in

Table 3.12, the parallelcomputation of the internal force vector is performed at an

e_ciency (speed-up/no. processors) of approximately 90 and 76% for four and eight

processors, respectively. (Note that the ef_ciency of the parallel operations varies

for each problem, however, in general, the e_ciency improves as the problem size

increases.) Therefore, conjugate gradient methods should achieve a high degree of

success for analyses performed on multiple processors.

In addition to being easilyparallelized,explicit-iterativemethods have other ad-

vantages over solution methods such as the modified or unmodified Newton-Raphson

101

102

method. Explicit methods do not require the expensive computation and assembly

of the global stiffness matrix. This advantage is especially important in nonlinear

analysis because the tangential stiffness matrix changes with the evolution of the

response. In Newton methods, the stiffness must be frequently recomputed and tri-

angularized. Finally, because no stiffness matrix need be stored in iterative methods,

less memory is required.

The conjugate gradient method is often applied iteratively to a series of linear

problems

= (5.1)

where K_ _g is the linear tangent matrix in step v [18]. In elastic-plastic problems,

K, may be based on the current state of the element (or quadrature points). When

convergence of the conjugate gradient algorithm is achieved, this only provides a

solution to the linearized equations, so the procedure must be repeated with a new

tangent stiffness until the residual r meets the error tolerance. An advantage of

this approach is that the convergence of the conjugate gradient method for problem

(5.1) is guaranteed. Therefore, it can be viewed as a full Newton method with an

iterative solution of the Newton equations. In this chapter, a direct approach to

the nonlinear equations will be considered where, in effect, K t_'_g varies during the

iterative procedure.

A disadvantage of nonlinear solution methods is the potentially slow convergence

.- 103

for some types of nonlinear behavior. Using conjugate gradient methods, slow con-

vergence can occur when the structure unloads. For example, assume a member of

a structure has yielded and then unloads. A new displaced shape for the structure

is assumed and an elastic stress is computed for the member. If the assumed solu-

tion overshoots the equilibrium position, the updated displacements may force the

member into the plastic region. As the iterations continue, the state of the member

may oscillate between elastic and plastic behavior. This oscillation can significantly

slow convergence or prevent convergence entirely. Research involving iterative so-

lution methods includes developing techniques to improve convergence in nonlinear

problems. Techniques currently used for accelerating convergence will be discussed

and compared to a new method developed to improve the convergence for nonlinear

problems.

5.2 Nonlinear Conjugate Gradient Algorithm

Conjugate gradient methods provide an iterative solution for the minimization of

a function f(_) which can be approximated as a quadratic function:

f(z)=c-b-z+l .A.z (5.2)

and whose gradient is easily calculated as

g(=) = A.= - b (5.3)

104

The matrix ,4 is the Hessian matrix of the function, i.e., its components are the

second partial derivatives of f(=). As the gradient approaches zero, z approaches

the solution which minimizes f(z).

In structural mechanics, the Hessian matrix corresponds to the structural stiff-

ness matrix, z refers to the nodal disp|acements and b is the external force vector.

Therefore, Eqn. 5.3 expresses the error or residual in the equilibrium equations for

the displaced shape = and can be written as

g(=) = K d- f'_ (5.4)

or

g(=) = .f_,,'_ .f=" (5.5)

The solution technique systematically minimizes the function f(=) along a number

of _non-inteffering" directions called conjugate directions [25]. Two directions u and

are conjugate if they satisfy the following relationship:

,. ,4. = 0 (5.6)

Physically, this relationship can be described as follows. If the function is mini-

mized along some direction u, the computed gradient of the function at the minimum

will be perpendicular to u because the component of g(z) along u must equal zero at

the minimum. The function can then be minimized along a new direction v without

105

altering the previous minimization by requiring that the gradient remains perpen-

dicular to u during the minimization along v. In other words, the change in the

gradient must remain perpendicular to u. The change in the gradient is given by

6g = A. 6_ (5.7)

or

6a = A.. (5.s)

as f(z) is minimized along v. Therefore, Eqn. 5.8 expresses the condition for conju-

gate directions. Because each new direction must satisfy this condition, the result is

a set of linearly independent, mutually conjugate directions.

Conjugate gradient methods are based on the following theorem presented in [25]:

Let A be a symmetric, positive-definite, n x n matrix. Let go be an arbitrary vector

and po = go. For i = 0, 1, 2, ..., define two sequences of vectors

gi+, =gi-a_A'pi (5.9)

and,

pi+, = gi+, + _8ip_ (5.10)

where al and/31 are chosen such that at successive iterations the gradients g remain

orthogonal and the directions p remain conjugate, i.e.,

106

gi+_ "gl = 0

and

p_+_ • A . p_ - O.

Then, for all {_ j,

gi "g_ = 0
(5.11)

p_. A.pj = 0

Therefore, the conjugate gradient methods produce a sequence of mutually orthog-

onal gradients as well as a set of mutually conjugate directions.

Note that the update equation for the gradient in Eqn. 5.9 contains the Hessian

matrix. Instead of computing the Hessian to calculate the new gradient, the local

minimum of f(z) along the direction Pi can be found using a line search technique.

Therefore, the local minimum is computed as zi+, and Eqn. 5.9 can be replaced by:

g,+, = g(=,+,)= p"'(=,+,)- (5.12)

Line search techniques will be discussed later.

The following flow chart illustrates the implementation of the basic conjugate

gradient algorithm.

:.--. 107

Flow Chart for Conjugate Gradient Algorithm

1. Assuming an initial z_, compute the gradient g_ and assign the gradient direc-

tion: p_ = --g_

2. Loop over conjugate directions

(a) Perform line search for local minimum along direction Pi

i. Compute the step size alpha

ii. Update displacement vector: z_+, = zi +ai pi

iii. Compute internal force vector fi,,

iv. Compute new gradient: gi+_ = fi,,t _ f_-.t

v. Test for convergence. If yes, go to 3

(b) Compute 3_

(c) Compute new gradient direction: p_+_ = g_+_ +3i pi

(d) Go to 2

3. Output.

The equilibrium convergence criterion used in Step 2.a.v is given by:

(5.13)

where II " I[is the L 2 norm of the vector and f_t is the vector of applied forces.

108

The differencesbetween versionsof the conjugate gradient method lieprimarily in

the computation of the coefficientsa and/3. The parameter a ischosen to ensure that

each computation of the gradient g_+_ is orthogonal to its immediate predecessor,

and/3 ensures that the directionp_+_ isconjugate to itsimmediate predecessor. The

most common expressions for 13are:

/_i= gi+, "g_+,, Fletcher-Reeves [14] (5.14)
g_ • gl

and,

13_-- g_+'" (gi+, - g'), Polak-Ribi_re [24] (5.15)
gi • gi

Note that these expressions for _ are identical for an exact quadratic function. How-

ever, f(=) is rarely an exact quadratic so the second term in the numerator of the

Polak-Ribi_re expression acts as an accelerator for convergence [9].

As mentioned previously, the computation of a is performed using a line search

technique to find the local minimum of f(z) along some direction Pi. The classical

approach for the line search consists of first bracketing the solution along the search

direction and then iterating to the optimum a. Possible iterative schemes include a

golden section search, a quadratic or cubic curve fitting technique, and the method

of false position. Another line search technique used by Klessig and Polak [20] in the

implementation of the Polak-Ribi_re conjugate gradient algorithm uses a stability

test which insures convergence instead of a minimization routine to determine c_.

Papadrakakis concludes [23] that the classical approach with the method of false

109

position-bisection technique is the most effective of the methods discussed above.

Therefore, this technique was used for the work presented in the chapter.

5.3 Convergence Enhancements

Two methods were used to study the convergence properties of the conjugate

gradient method. Diagonal scaling is frequently used in practice and significantly

improves convergence properties for elastic-plastic solutions. A new method called

the zeta-parameter method is also presented as an alternative to diagonal scaling.

5.3.1 Diagonal Scaling

The condition number of the matrix A is an important factor in determining the

effectiveness of iterative solutions. The condition number is a numerical measure of

the ill-conditioning which exists in the matrix A and is defined by:

(5.16)
C(A) = A,,_,,_

where A,,,_ and A_i,, are the maximum and minimum eigenvalues of A [11]. A

frequent cause of ill-conditioning, and thus a large condition number, in a struc-

tural stiffness matrix is a large disparity in element stiffness properties. By scaling

the equations, the condition number of A can be minimized and the convergence

properties of the solution can be improved.

110

Diagonal scaling is a commonly used technique which has been proven effective

in improving the convergence of conjugate gradient methods. The elements of the

diagonal scaling matrix W are equal to the diagonal elements of the global stiffness

matrix A. The scaling matrix is computed once prior to the first iteration. The

computation of the matrix is performed efficiently by calculating the diagonal terms

of the element stiffness matrices and assembling them in vector form. The element

stiffness matrix h is given by

k= /vBTCBdV (5.17)

where B is the gradient matrix and C is the matrix of material constants. For a

four-node plane isoparametric element, the stiffness is an 8 × 8 matrix computed by

k = BTCBtJd_drt
1 1

(5.18)

where t is the element thickness, J is the determinant of the Jacobian matrix and

and 7/are the natural coordinates. Because only the diagonal terms of the element

stiffness matrix contribute to the diagonal of the global stiffness matrix, these terms

can be computed explicitly.

The gradient matrix B for a 4-node constant strain quadrilateral element with

-- 111

two degrees of freedom per node is given by

0 _ 0
s¢ s_

0 _ 0
6_ 6_

6_ 6_ 6_ 6_

0 _ 0
s_ s_

0 _ 0
6_ 6_

L_ L_ 6N, 6N,
6n 6_ 6n 6_

(5.19)

corresponding to the unknowns

uT = [Ul Vl B2 U2 U3 ?J3 B4 1J4]"

Nt is the shape function of node I and J is the determinant of the Jacobian given by

J "- det J = x,_ Y,n -x,,_ y,e (5.20)

For one-point quadrature, the gradient matrix and the Jacobian are evaluated at the

point (_, 77) = (0, 0), giving

A
det J - -- (5.21)

4

and,

1
S_-o

2A

Y24 0 Y31

0 z42 0

X42 Y24 _13

0 Y42 0 Y13 0

Z13 0 2_24 0 Z31

Y31 X24 Y42 X31 Y13

(5.22)

"4

112

where,

XlJ -- XI_ _J

and,

YlJ = _I--YJ

A is the area of the element and zt and Yt are the coordinates of node I. Using a

plane stress material matrix

E

1 - v 2
i u 0

v i 0 (5.23)

and assuming a unit thickness, the diagonal terms of the element stiffness matrix

can be computed by Eqn. 5.18 as

]$11 -"]g55 =

k22 = _ =

k_ = krT =

k44 = k88 =

_ E 2 E x22]A 2(I+v)

g _ E x123]"A1 [1.i.._u Y31 "q"
(5.24)

Assembly is performed by adding the stiffness contributions due to each element

-- 113

to a global vector according to its nodal degree of freedom. This method was used

for the assembly of all nodal arrays. Storage is also minimized using this algorithm.

Usually the elastic material constants are used in computing the scaling matrix. The

gradient vector is then scaled by multiplying by the inverse of the scaling matrix.

The flow chart from the previous section is then modified as follows:

Flow Chart for Conjugate Gradient Algorithm with Scaling

1. Compute the diagonal scaling matrix W

2. Assuming an initial z_, compute the gradient g_

3. Scale the gradient vector: z_ = W -_ gl

4. Assign the gradient direction: pl = - z_.

5. Loop over conjugate directions

(a) Perform line search for local minimum along direction Pi

i. Compute the step size alpha

ii. Update displacement vector: zi+_ = z_ +c_ p_

iii. Compute internal force vector f_t

iv. Compute new gradient: gi+, = fi_t _ f,,_

v. Test for convergence. If yes, go to 3

(b) Compute/3i

i. Scale the new gradient vector: zi+_ = W -_ gi+_

\

ii.Compute

z_+, Wzi+, zi+,gi+, Fletcher-Reeves
z_ Wzl zigi

or,

/3 = z_+_g_+, - z_gi Polak-Ribi_re
zigl

(c) Compute new gradient direction: Pi+, = zi+, +_i pi

(d) Go to 2

6. Output.

114

5.3.2 Zeta-Parameter Method

A new method developed to improve the convergence properties of the conjugate

gradient method is called the zeta-parameter method. When an element changes

state, i.e., goes from elastic behavior to plastic behavior or visa versa, an iterative

method will frequently cause the stiffness of the element to oscillate from elastic

to plastic as the solution is approached. This oscillation in the element stiffness

can significantly slow down the convergence of the solution. The zeta-parameter

method attempts to decrease the amount of oscillation in the element stiffness, thus

converging to a solution in a more direct manner.

-- • 115

Zeta is a scalar of the form:

(gTg, (5.25)

where ,¢ is a constant between 0.5 and 0.9 and m is a constant between 0.0 and

1.0. Typical values for _ and rn are 0.8 and 0.5, respectively. The subscript on the

gradient vector g refers to the iteration number. Zeta is used to compute a fictitious

element stress state which is a linear combination of the elastic and nonlinear stresses

given by

o" = (1 - _) * o'_u,_i, + ¢"* o'p_,,_tic (5.26)

Zeta is only applied to elements which change state during the load step. When

an element changes from elastic behavior to plastic behavior, both the elastic and

plastic stresses are calculated. During the first iteration, ¢" is small, i.e., using the

typical value for _, (= 0.2. Therefore, the computed stress is close to the calculated

elastic stress. As the number of iterations or directions increases, the value of the

gradient at the current iteration decreases with respect to the gradient of the first

iteration and zeta increases. The computed stress slowly approaches the calculated

plastic stress. As convergence is achieved, the value of (goes to 1.0 and the computed

stress tends to the calculated plastic stress. If the element unloads, the expression

for the stress state is given by:

o"= (• ,r_l_.tic+ (1 - () • o'plo..c (5.27)

116

and the internal force of the element is computed from a stress state which slowly

changes from plastic to elastic.

The modified flow chart for the zeta-parameter method is given below.

Flow Chart for Conjugate Gradient Algorithm with Zeta-Parameter

1. Assuming an initial z_, compute the gradient g, and assign the gradient direc-

tion: p_ - --9_

2. Loop over conjugate directions

(a) Perform line search for local minimum along direction pi - Note: the line

search is based on the gradient calculated using the actual stresses, not

the stresses modified by ¢"

i. Compute the step size alpha

ii. Update displacement vector: zi+, = zi +al pi

iii. Compute elastic and plastic element stresses

iv. Apply _"parameter to elements which change state

v. Compute internal force vector based on actual stresses for convergence

criteria

vi. Compute internal force vector using stresses modified by ¢"via Eqns.

5.26 and 5.27 for elements which change state

vii. Compute new gradients using internal forces in (v) and (vi): gi+, =

lint. fext

..--.. 117

viii. Test for convergence using (v). If yes, go to 3

(b) Compute _

(c) Compute ¢'i

(d) Compute new gradient direction: p_+, = gi+, +_3i p/

(e) Go to 2

3. Output.

5.4 Numerical Studies

Two problems are used to study the behavior of diagonal scaling and the zeta-

parameter technique.

1. A statically loaded rigid bar supported by three springs,

2. A dynamically loaded cantilever beam.

The first problem is a rigid bar suspended by three equally spaced springs as

shown in Figure 5.1. The bar is loaded statically by an applied force located halfway

between springs 2 and 3. The yield stress for spring 2 is twice as large as the yield

stresses for the other two springs. Using a load increment of 0.1, the behavior of the

structure is as follows:

1. Stage 1 : 0.0 < P < 0.8

All springs load in tension

f" 118

2. Stage 2 : 0.8 < P < 0.9

Spring 3 yields in tension; spring 1 unloads; spring 2 loads in tension

3. Stage 3 : 0.9 < P < 1.3

Spring 1 loads in compression; springs 2 and 3 load in tension

4. Stage 4 : 1.3 < P < 1.4

Spring 2 yields in tension; spring 1 unloads; spring 3 loads in tension

The conjugate gradient method without convergence enhancements requires 19

direction iterations for stage 2 and 53 direction iterations for stage 4. These stages

correspond to the unloading of spring 1 caused by the yielding of the other springs. In

order to visualize the path traversed during each iteration, contours of the residual

or gradient were plotted as a function of the change in displacement at the point

of load application and the change in rotation of the rigid bar. Figures 5.2 and

5.6 show the three-dimensional plots of these contours for the load steps in Stages

2 and 4, respectively. The contour plot for Stage 2 forms a shallow valley, while

the contours for Stage 4 form a very steep valley with plateaus on each edge. The

plateaus correspond to configuration states in which all three springs have yielded.

The plateau to the left of the valley corresponds to springs 2 and 3 yielding in

tension and spring 1 yielding in compression while the plateau to the right of the

valley corresponds to all springs yielding in tension. The left slope of the valley

wall corresponds to spring 1 loading in compression and the right slope of the valley

wall corresponds to spring 1 loading in tension. Figures 5.3 and 5.7 show the path

,P-. 119

\,

formed by plotting the intermediate solution for each direction iteration for the basic

conjugate gradient method superimposed on a two-dimensional plot of the contours

for Stages 2 and 4. The resulting paths show a slow zigzag traverse across the valley

until the solution is achieved. Note that the stress in spring 1 oscillates from elastic to

plastic as the path traverses the valley. The purpose of the convergence enhancement

techniques is to modify the directions to arrive at the solution while minimizing the

zigzag motion.

The diagonal scaling and zeta-parameter techniques were implemented into the

conjugate gradient program and the number of iterations were monitored. The ex-

pressions for _ developed by Fletcher-Reeves and Polak-Ribi_re were used to deter-

mine the effect on convergence properties.

The diagonal scaling technique required 8 iterations for the Stage 2 load step

and 30 iterations for the Stage 4 load step. For this problem, the expression used

for _ made no difference in the number of iterations required. The stiffness term

used for the scaling factor was also modified to determine the effect on the number

of iterations. The following parameters were combined to determine the effect of

modifying the scaling factor:

I. Diagonal scaling matrix equal to the diagonal terms of the stiffness matrix,

2. Diagonal scaling matrix equal to the square root of the diagonal terms of the

stiffness matrix,

3. Scaling factor using elastic constants for all springs,

120

4. Scaling factor using elastic and plastic constants corresponding to the current

state of the element.

Again, no change in the number of iterations required for convergence was found due

to these modifications. Figures 5.4 and 5.8 show the solution paths for the conjugate

gradient method with diagonal scaling for the load step corresponding to Stage 2 and

4, respectively. As can been seen, the amount of zigzag motion has been decreased.

The zeta-parameter method with constants _ - 0.8 and m = 0.5 required 9

iterations for the Stage 2 load step and 7 iterations for the Stage 4 load step using

the Fletcher-Reeves/3 expression. The number of iterations varied slightly when the

Polak-Ribi_re expression was used. Variations in the constants used in the expression

for zeta (Eqn. 5.25) also affected the number of iterations required for convergence.

For example, by changing s to 0.7, the method required 13 iterations for Stage 2 and

14 iterations for Stage 4. Using _ -- 0.5, the method required 9 iterations for Stage

2 and 41 iterations for Stage 4.

Figures 5.5 and 5.9 show the solution paths for Stage 2 and 4, respectively. The

zeta-parameter method traverses the valley in a more direct manner and converges to

the solution quickly. Therefore, by selecting the correct constants in the expression

for zeta, the zeta-parameter method significantly improves the convergence properties

of the conjugate gradient method.

If the proper constants are not selected, the zeta-parameter method tends to

overshoot the solution and must reverse directions for convergence. This frequently

_- 121

requires many iterations and thus makes the method less effective. Another dis-

advantage is that the method tends to iterate about the wrong solution. In some

cases, a large number of iterations are made before the method finds the correct

direction along which to minimize. This problem is reduced by restarting the so-

lution method when the difference in displacements between successive iterations is

negligible. Restarting is performed by simply setting ;3 to zero, thus assigning the

next direction equal to the negative of gradient.

The second problem studied is the two-dimensional cantilever beam showed in

Figure 5.10. An oscillating concentrated load is applied at the fr_ end of the beam.

The load versus time curve for the concentrated load is shown in Figure 5.11. The

x-component of the displacement of all nodes along the bottom of the beam is con-

strained. The purpose of constraining the bottom nodes is to increase the amount

of yielding in the beam.

The problem was first run with the three versions of the conjugate gradient pro-

gram using the Fletcher-Reeves ;3 expression. None of the codes converged during

the load step corresponding to the reversal of the applied load, i.e., convergence was

not achieved within 350 iterations. Using the Polak-Ribi_re expression for ;3, all

versions of the code converged within the allowable number of iterations.

Table 5.1 lists the number of iterations required for convergence for each time

step using the Polak-Ribi_re ;3 expression. Diagonal scaling significantly improved

the convergence properties of the solution. The number of iterations required for con-

vergence was reduced by as much as 2. The larger reductions in iterations occurred

122

in the load steps in which the conjugate gradient method had particular difficultyin

converging due to element yielding and unloading. Diagonal scaling had littleeffect

during load steps in which the elements remain elastic.

The zeta-parameter method showed littleimprovement over the basic conjugate

gradient method in the number of iterationsrequired for convergence. Slight im-

provement isseen in some load steps;however, thisimprovement was balanced by a

slightincrease in the number of iterationsrequired forother load steps. The constants

used in the expression for (were modified with no significanteffecton the number of

iterations.By including diagonal scaling with the zeta-parameter method, the num-

ber of iterationsrequired for convergence was significantlyreduced. The amount of

improvement was similar to the improvement found by using diagonal scaling alone.

It appears that the effectivenessof the zeta-parameter method is diminished

in more complex problems. In the cantilever beam problem, several elements are

yielding or unloading during a given load step. In addition, the change of state in an

element may occur at differenttimes during the iterationprocess. However, (will

only be effectivein modifying the stressstate of elements which change state at the

beginning of the iterations.

5.5 Conclusions

The zeta-parameter method has shown some success in improving the convergence

properties of the conjugate gradient method. In the spring problem, a significant

.... 123

reduction in the number of iterations is seen. However, this success is not consistently

achieved for large problems. The method has difficultly in selecting minimization

directions which consistently approach the correct solution. At times the method

overshoots the solution and requires a number of iterations to reverse direction. At

other times, the method selects an unsuitable direction and the minimization routine

fails to advance the solution. Further improvements are needed in the zeta-paraxneter

method to achieve a technique which will consistently accelerate the convergence of

the conjugate gradient method.

°_

124

Load

Table 5.1: Number of Iterations per Load Step for Cantilever Beam

C.G. with C.G. with C.G. with

Time Basic Diag. Zeta- Scaling

(sec.) C.G. Scalin_ Param. _ Zeta

1 0.036 26 30 26 30

2 0.072 28 28 28 28

3 0.108 31 25 31 25

4 0.144 31 23 31 23

5 0.180 33 23 33 23

6 0.216 34 23 33 26

7 0.252 34 27 34 27

8 0.288 44 25 44 26

9 0.324 45 31 45 31

10 0.360 45 36 47 36

11 0.396 50 34 49 34

12 0.432 54 37 52 39

13 0.468 59 40 56 40

14 0.504 67 46 68 46

15 0.540 74 54 72 54

16 0.576 100 60 104 60

17 0.612 103 61 105 60

18 0.648 153 70 163 70

19 0.684 137 75 136 72

20 0.720 232 113 237 113

21 0.756 230 150 224 149

22 0.792 183 132 181 130

23 0.828 173 125 188 123

24 0.864 146 109 146 111

25 0.900 156 107 146 106

- 125

5.0

P

5.0 2.5 2.5

Figure 5.1: Configuration of Spring-Supported Bar Problem

126

Figure 5.2: 3D Contours of Residual in Stage 2 of Spring Problem

127

o=
l===D

I,-=

I,.=.

Z

(.3

o.00 0.o2 o.o,I 0.06 0.08 o.lo
CHANI_E IN 01SPLACEMENT

Figure 5.3: 2D Contours for Stage 2 Using Basic Conjugate Gradient

128

z
o

C

CD
e_

Z

L_

0.00 0.02 0.0,I 0.08 0.08
CHANGE IN OISPLAC[M[NT

0. I0

Figure 5.4: 2D Contours for Stage 2 Using Diagonal Scaling

129

0,00 0.02 0.0'1 0,06 0.1_

CHANGE IN DISPLACEMENT

0.10

Figure 5.5: 2D Contours for Stage 2 Using Zeta-Parameter Method

130

Figure 5.6: 3D Contours of Residual in Stage 4 of Spring Problem

_- 131

0.0 0.3 0.6 0.9 1.2 i .5

CHRNGF IN DISPLACEMENT

Figure 5.7: 2D Contours for Stage 4 Using Basic Conjugate Gradient

132

0.3 0.6 O.S ! .2
CHANGE IN OISPLACEMENT

Figure 5.8: 2D Contours for Stage 4 Using Diagonal Scaling

133

©

0.0 0.3 0'.6 O.g 1.2
CHANGE IN DISPILACEMENT

Figure 5.9: 2D Contours for Stage 4 Using Zeta-Parameter Method

134

0.5

0.5

0.5

0.

/
/
/
/
/
/
/
/
/

F

A A, ,4, A, _d_, Ak A,

I0 @ 1.0 .

11 15, ...,4

q

P

Figure 5.10: Configuration of Confined Cantilever Beam

L
O
A
D

i0.0

5.0

0.0

-5.0

-I0.0

0.5 0

I

time, sec.

Figure 5.11" Load-Time Curve for Cantilever Beam Problem

Chapter 6

Summary and Conclusions

Vectorization and concurrency significantlyspeed up the execution of explicit

finiteelement programs. A comparison of run times between the originalversion of

the code using explicittime integrationand the fullyvectorized,concurrent version

of the code shows speed-ups of over 25. The implementation of subcycling increases

the speed-up by an average factor of 2. Note the speed-up due to subcycling is

problem dependent and willvary according to the sizeof the problem and the range

and distribution of element sizesand types.

One of the most significantfactors in reducing the effectivenessof parallel pro-

cessing isthe problem of processor idleness.Because vectorization and concurrency

tend to be competing processes, an algorithm was developed to optimized the block

sizebased on the size of the problem, the number of processors and the number of

differentelement types in the mesh. This minimizes the amount of time in which

a processor may remain idle and also reduces the possibilityof an element block

containing a small number of elements.

135

136

Another algorithm was developed to minimize processor idleness caused by a

small number of blocks subcycling in a mixed integration solution. The algorithm

determined the element blocks which could be updated early if a processor was

expected to remain idle during a subcycle. The increase in speed-up due to the

implementation of this algorithm was 30 % for eight processors.

An additional factor which decreases the efliciencyof parallelexecution ismem-

ory contention. Memory contention problems occur when more than one processor

attempts to access a shared memory location simultaneously. Locks which prevent

simultaneous access may create a slowdown ifsubstantial interferenceexists.

FinaLly,the zeta-paxmmeter method was effectivein improving convergence prop-

ertiesof the conjugate gradient method for the one-dimensional spring problem.

However, the technique does not consistently produce directions which accelerate

convergence for a wide range of problem types.

Bibliography

[1] Belytschko, T., "Partitioned and Adaptive Algorithms for Explicit Time Inte-

gration," Nonlinear Finite Element Analysis in Structural Mechanics, ed. by

W. Wunderlich, E. Stein, and K.-J. Bathe, Springer-Verlag, Berlin, 1980, pp.

572-584.

[2] Belytschko, T., "Explicit Time Integration of Structural-Mechanical Systems,"

Advanced Structural Dynamics, Donea, J., ed., Applied Science Publishers, Es-

sex, England, 1980, pp. 97-122.

[3] Belytschko, Ted, and Lin, Jerry, I., "Eigenvalues and Stable Time Steps for the

Bilinear Mindlin Plate Element," International Journal for Numerical Methods

in Engineering, Vol. 21, 1985, pp. 1729-1745.

[4] Belytschko, Ted, Lin, Jerry I., and Tsay, Chen-Shyh, "Explicit Algorithms for

the Nonlinear Dynamics of Shells," Computer Methods in Applied Mechanics and

Engineering, Vol. 42, 1984, pp. 225-251.

[5]Belytschko, T. and Liu, W. K., _Time Integration with Explicit/Explicit Parti-

tions in EPIC-2", Report to Ballistics Research Laboratory, July 1982.

137

138

[6] Belytschko, Ted, Smolinski, Patrick and Liu, Wing Kam, "Stability of Multi-

Time Step Partitioned Integrators for First-Order Finite Element Systems,"

Computer Methods in Applied Mechanics and Engineering, Vol. 49, 1985, pp.

281-297.

[7] Belytschko, T. and Tsay, C. S., "WHAMSE: A Program for Three-Dimensional

Nonlinear Structural Dynanaics," EPRI Report NP-2250, Polo Alto, CA, Febru-

ary 1982.

[8] Belytschko, T., Yen, H. J.,and MuUen, R., "Mixed Methods for Time Integra-

tion," Computer Methods in Applied Mechanics and Engineering, Vol. 97, 1986,

pp. 1-24.

[9] Biffle, J.H., "JAC - A Two-Dimensional Finite Element Computer Program for

the Non-Linear Quasistatic Response of Solids with the Conjugate Gradient

Method," Sandia Report SANDS1-0998, Sandia National Laboratories, Albu-

querque, NM, April 1984.

[10] Boyle, James, Ralph Butler, Terrence Disz, Barnett Glicldeld, Ewing Lusk,

Ross Overbeek, James Patterson, Rick Stevens, Portable Programs for Parallel

Processors, Holt, Rinehart and Winston, Inc., 1987.

[11] Cook, Robert D., Concepts and Applications of Finite Element Analysis, John

Wiley & Sons, Inc., 1974.

139

[12] Flanagan, D. P., and Belytschko, T., "Eigenvalues and Stable Time Steps for the

Uniform Strain Hexahedron and Quadrilateral," Journal of Applied Mechanics,

Vol. 51, March 1984, pp. 35-40.

[13] Flanagan, Dennis. P., and Taylor, Lee. M., "Structuring Data for Concurrent

Vectorized Processing in a Transient Dynamics Finite Element Program," Par-

allel Computations and Their Impact on Mechanics, ed. Ahmed K. Noor, The

American Society of Mechanical Engineers, New York, NY, 1987, pp. 291-299.

[14] Fletcher, R., and Reeves, C.M., "Function Minimization by Conjugate Gradi-

ents," Computer Journal, Vol. 7, 1964, pp. 149-154.

[15] Kennedy, J. M., Belytschko, T., and Lin, J. I., "Recent Developments in Ex-

plicit Finite Element Techniques and Their Application to Reactor Structures,"

Nuclear Engineering and Design, Vol. 97, 1986, pp. 1-24.

[16] Hughes, Thomas J.R., "Numerical Implementation of Constitutive Models:

Rate-Independent Deviatoric Plasticity," Proceedings of the Workshop on the

Theoretical Foundation for Large-Scale Computations of Nonlinear Behavior,

Siavouche Nemat-Nasser (ed.), Martinus Nijhoff Publishers, 1984, pp. 29-63.

[17] Hughes, T. J. R., Cohen, M., and Haroun, M., "Reduced and Selective Integra-

tion Techniques in Finite Element Analysis of Plates," Nuclear Engineering and

Design, Vol. 46, 1978, pp. 203-222.

140

[18] Hughes, Thomas J. R., Ferencz, Robert M., and Hallquist, John O., "Large-

Scale Vectorized ImplicitCalculations in Solid Mechanics on a CRAY X-MP/48

UtilizingEBE Preconditioned Conjugate Gradients," Computer Methods in Ap-

plied Mechanics and Engineering, Vol. 61, 1987, pp. 215-248.

[19] Hwang, Kai and Briggs, Fay6 A., Computer Architecture and Parallel Process-

ing, Mc-Graw-HiU, Inc., 1984.

[20] Klessig, R., and Polak, E., Efficient Implementations of the Polak-Ribi_re Con-

jugate Gradient Algorithm, SIAM J. Control, Vol. 10, 1972, pp. 524-549.

[21] Lusk, Ewing L., and Overbeek, Ross A.,"Implementation of Monitors with

Macros: A Programming Aid for the HEP and Other Parallel Processors,"

Technical Report ANL-83-97, Argonne National Laboratory, Argonne, Illinois,

December 1983.

[22] Lusk, E.L. and Overbeek, R.A., "Use of Monitors in FORTRAN: a Tutorial on

the Barrier, Serf-Scheduling Do-Loop, and Askfor Monitors," Parallel MIMD

Computation: The HEP Supercomputer and its Applications, ed. J. S. Kowalik,

The MIT Press, 1985.

[23] Papadrakakis, Manolis, and Ghionis, Paaaaghiotis, "Conjugate Gradient Algo-

rithms in Nonlinear Structural Analysis Problems," Computer Methods in Ap-

plied Mechanics and Engineering, Vol. 59, 1986, pp. 11-27.

141

[24] Polak, E., and RibiSre, "Note sur la convergence de methodes de directions

conjugSes," Revue Franqaise Inf. Rech. Oper., 16 RI 1969, pp. 35-43.

[25] Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling,

William T., Numerical Recipes, Cambridge University Press, 1986.

[26] Schendel, U., Introduction to Numerical Methods/or Parallel Computers, Ellis

Horwood Limited, 1984.

[27] NCSA Summer Institute, Training Information on Vectorization, University of

Illinois, Urbana, IL, January 1987.

[28] Smolinski, Patrick, Belytschko, Ted, and Liu, Wing Kam, "Stability of Multi-

Time Step Partitioned Transient Analysis for First-Order Systems of Equa-

tions," Computer Methods in Applied Mechanics and Engineering, Vol. 65, 1987,

pp. 115-125.

[29] Using the Alliant FX/8, Mathematics and Computer Science Division, Technical

Memorandum No. 69, ANL/MCS-TM-69,Rev. 1, Argonne National Laboratory,

September 1986.

[30] Yamada, Y., Yoshimura, N., and Sakurai, T., "Plastic Stress-Strain Matrix

and its Applications for the Solution of Elastic-Plastic Problems by the Finite

Element Method," International Journal of Mechanical Sciences, Vol. 10, 1968,

pp. 561-578.

