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ABSTRACT

A class of numerical dissipation models for central-difference schemes constructed with

second- and fourth-difference terms is considered. The notion of matrix dissipation asso-

ciated with upwind schemes is used to establish improved shock capturing capability for

these models. In addition, conditions are given that guarantee that such dissipation models

produce a TVD scheme. Appropriate switches for this type of model to ensure satisfaction

of the TVD property are presented. Significant improvements in the accuracy of a central-

difference scheme are demonstrated by computing both inviscid and viscous transonic airfoil

flows.
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I. Introduction

Central difference type schemes are currently being applied on a regular basis in

the solution of the Euler and Navier-Stokes equations. A numerical dissipation model is

included in these schemes, and it plays a crucial role in the determination of their success.

The form of the dissipation model is quite often a blending of second-difference and fourth-

difference dissipation terms. The second-difference terms are used to prevent oscillations at

shock waves, while the fourth-difference terms are important for stability and convergence

to a steady state. There is a constant to be specified for each contribution. However,

using the model in conjunction with appropriate numerical procedures, these constants

can usually be selected and maintained for a fairly wide class of fluid dynamics problems.

This dissipation model allows shock waves to be captured with smearing over three to four

mesh cells.

Even though these central-difference schemes have proven to be reasonably effective

in many cases, there are still strong motivations for reducing the numerical dissipation

being produced. For example, by appropriate reduction of the artificial dissipation, shock

wave representation and boundary-layer definition (especially the wall shear stresses) can

be improved on coarse meshes. Such improvements in accuracy are especially beneficial

for complex three-dimensional flows, which can demand extensive computational effort.

In addition, better estimates of the limit of infinitely fine mesh values of aerodynamic

coefficients for flows with shocks can be obtained. Also, the standard model has difficulties

in hypersonic flow. Finally, for some problems, the influence of numerical dissipation needs

to be severely limited in certain smooth regions of a flow field (i.e., near the trailing edge

of an airfoil), while still maintaining stability near discontinuities. This difficulty cannot

generally be resolved by simply reducing the global constants in the dissipation model.

One can appeal to ideas from upwind schemes to improve the dissipation model,

especially in the vicinity of shock waves. Upwind algorithms utilize concepts from charac-

teristic theory in order to determine the direction of spatial differencing. They have been

extended to systems of conservation laws using such approaches as the flux-vector splitting

of van Leer [1] and the approximate Riemann solver of Roe [2]. A fundamental feature

of these schemes is the use of a matrix evaluation of the dissipation either in the implied

or direct sense. In so doing, the dissipative terms of each discrete equation are scaled by

the appropriate eigenvalues of the flux Jacobian matrices of the Euler equations, rather

than the same eigenvalue as in the dissipation model employed with central-difference



schemes. Also, upwind schemes can be designed to have the total variation diminishing

(TVD) property, which prevents the occurrence of spurious oscillations. The disadvantage

of these schemes is that, in general, they increase the operational count for processing

mesh points by about a factor of two over that required by central-difference schemes.

One would certainly like to more closely imitate the highly desirable behavior of the up-

wind algorithms near flow discontinuities, and at the same time, retain the more efficient

central-difference scheme over significant portions of a flow field. In addition, one would

like to have the high degree of numerical efficiency that has been achieved by combining

a central-difference scheme with a Runge-Kutta time marching algorithm, which includes

residual smoothing and multigrid acceleration techniques.

The primary purpose of this paper is to construct a numerical dissipation model

for a central-difference scheme that has both the properties of matrix dissipation and of

TVD. As a starting point, we consider the elements of a widely used scalar dissipation

model. Modifications of this model that facilitate accurate viscous flow computations

are also examined. In the next section of the paper, the intimate connection between

the formulation for an upwind scheme and a centered-difference scheme is presented, so

as to establish a foundation for a matrix dissipation model. Then a theorem is proved

that provides a simple sufficient condition to determine when a central-difference scheme

with dissipation terms comprised of second and fourth differences is TVD. In the following

section, appropriate flux limiter functions consistent with the central-difference dissipation

model are discussed. A multistage time-stepping scheme used in applications is next briefly

described. Finally, numerical results are shown to demonstrate the benefits of using the

matrix dissipation model. Both inviscid and viscous transonic airfoil flows are computed.

II. Scalar Dissipation Model

The basic elements of the scalar dissipation model considered in this paper were first

introduced by Jameson, Schmidt, and Turkel [3] in conjunction with Runge-Kutta explicit

schemes. This dissipation model has been used by many investigators [4-6] to numerically

solve the Euler equations for a wide range of fluid dynamic applications. The same type of

dissipation model has been applied to alternating direction implicit (ADI) schemes [7] and

LU factored implicit schemes [8]. Several modifications of the model have been investigated

in [9] and [10] in order to improve it and make it suitable for obtaining accurate and efficient

solutions of the Navier-Stokes equations. In this section, the basic model and important



modifications are briefly reviewed.

Consider the Euler equations in the form

Wt + f_ + g_ =0, (2.1)

where W is the four-component vector of conserved variables, and f, g are the flux vec-

tors. The independent variables are time t and Cartesian coordinates (x, y). If (2.1) is

transformed to arbitrary curvilinear coordinates _ = _(x,y) and rl = rl(x,y), then we

obtain

(J-zW)t + F{ -)- G n =- O, (2.2)

where j-z is the inverse transformation Jacobian, and

F = fy_ - gx_, G = gx{ - fy{.

In a cell-centered, finite-volume method, (2.2) is integrated over an elemental volume in

the discretized computational domain, and j-z is identified as the volume of the cell.

Equation (2.2) can also be written as

j-1Wt + AW e + BW n = O,

where A and B are the flux Jacobian matrices defined by A = OF/OW and B = OG/OW.

To advance the scheme in time we use a multistage scheme. A typical step of a

Runge-Kutta approximation to (2.2) is

W (_) = W (°) - ak-j-:y D_F (k-l) + DnG (k-l) - AD , (2.3)

where D_ and D, are spatial differencing operators, and AD represents the artificial

dissipation terms. The dissipation terms are a blending of second and fourth differences.

That is,

AD= (D_+D_- D_- z);)w, (2.4)

where

D_W=V_[::, , .(2)

• ,_ _*+ _,3 ]

(2.5)

(2.6)



and A_, _7_are the standard forward and backward difference operators respectively as-

sociated with the _ direction. The variable scaling factor _ was originally chosen as

1 [($'_)i6 + (X{)i+Ij + (A")i,y + (A¢)i+ld] ' (2.7)

where _¢ and A n are proportional to the largest eigenvalues of the matrices A and B. The

scaled spectral radii A_ and >,n are given by

: - vx.I+ +

= - + +

where u and v are the Cartesian velocity components, and c is the speed of sound. The

coefficients E(2) and e(4) are adapted to the flow and are defined as follows:

C_2_I..) ,j .: K(2) m_(_/_ 1,j)lid)j, Vi+ 1,j)vi+2,j)) (2.8)

Pi_-l,_ -- 2Pi,_ Jr Pi--l,j [

z/_,j = P_+Ij _- 2p_j -t- P_-I,j I '
(2.9)

,_C4)= max [o,(_(4) .¢2)_+_,i - "_+_,il] ' (2no)

where p is the pressure, and the quantities _(2) and _(4) are constants to be specified. The

operators in (2.4) for the t7 direction are defined in a similar manner.

The second-difference dissipation term is nonlinear. Its purpose is to introduce an

entropy-like condition and to suppress oscillations in the neighborhood of shocks. This

term is small in the smooth portion of the flow field. The fourth-difference dissipation term

is basically linear and is included to damp high-frequency modes and allow the scheme to

approach a steady state. Only this term affects the linear stability of the scheme. Near

shocks it is reduced to zero.

The isotropic scaling factor of the original dissipation model as given in (2.7) is gen-

erally satisfactory for inviscid flow problems when typical inviscid flow meshes (i.e., cell

aspect ratio O(1)) are used. The factor can produce too much numercial dissipation in the

cases of meshes with high aspect ratio cells. This is also an important consideration for

high Reynolds number viscous flows, where a mesh providing appropriate spatial resolution



can have cell aspect ratios O(103). In [9] and [10] this difficulty is remedied by replacing

the factor of (2.7) with the anisotropic one

where

= ¢,,iCr)

¢i,j(r) =l+r ¢. • 0<_'<1,
t_3

and r = A_/A_. In the normal direction, one defines

Alternatives to the switching function presented in (2.9) have been investigated. Cau-

tion must be exercised in the selection of a switching variable. If a quantity with the same

functional dependence as entropy (i.e., p/p'Y) is used, sharper shocks can be captured in

viscous transonic flows. However, such a choice can result in a loss of accuracy for the

surface shear stress, due to the significant variation in the entropy-type variable across the

boundary layer. This difficulty can be removed by simply multiplying the scaling factor

by a function of the local Mach number of the flow. An acceptable modifying function has

proven to be (ML/Moo) B, for some _ _> 1, where ML is the local Mach number, and Mre f

is a reference Mach number (i.e., free-stream value for external flows). It is important

to note that the entropy-type function is generally not satisfactory for inviscid flows. In

addition, one can consider the sum of two switches, one depending on pressure and the

other on temperature so that all thermodynamic changes are taken into account. When

introducing the matrix-valued dissipation it will be possible to use separate switches for

different characteristic variables.

The treatment of the artificial dissipation must be modified at the boundaries of the

physical domain. In the case of the fourth-difference dissipation the standard five point

difference stencil must be replaced at the first two interior mesh cells. This means that

one-sided or one-sided biased stencils are used at these cells. The dissipative character

of the artificial terms is important because it influences both stability and accuracy. For

example, if the dissipation is too large at a solid boundary, an artificial boundary layer is

created in an inviscid flow, and the effective Reynolds number for a viscous flow is altered.

To improve accuracy at the wall boundaries of viscous flows, where gradients are steep



due to physical boundary layers, the usual fourth-difference stencils are changed in this

dissipation model.

Let the total dissipation for a mesh cell, in the direction represented by the index 3",

be denoted by dj. For simplicity assume that ,_c (4) = 1. Then,

dj =dfi+ ½-dfj__

where the dissipative flux

d/j+_ = (_W)j+g - 2(_W)j+_ + (aW)i_ ½

and thus

dj = (AW)j+_ -- 3(AW)j+_ + 3(AW)j__ - (AW)j__ (2.11)

with the index i for AW suppressed for convenience. Consider the first two interior cells

adjacent to a solid boundary, as depicted in Figure 1. If

(_w)_ = (_w)] = (_w)_ (2.12)

then (2.11) gives

d2 = W4 - 2W3+ W2, (2.13)

d3 = W6 - 4W4 -4- 5Wz - 2W2. (2.14)

These boundary stencils are fairly standard ones, and they result in a nonpositive definite

dissipation matrix for the system of difference equations [7]. An alternative form, which has

reduced the sensitivity to solid surface normal mesh spacing for turbulent flow calculations

without compromising stability or convergence, is given by

(_w)_ = 2(_w)_ - (_w)_ (2.15)

and

d2 = W4 - 3Wz + 3W2 - W1, (2.16)

d3 = W5 - 4W4 + 6W3 - 4W2 A- W1. (2.17)

This boundary condition is advantageous if the mesh is fine enough to adequately represent

the laminar sublayer region of the boundary layer (i.e., at least two mesh points are inside

the sublayer). For coarse meshes this treatment can be less accurate than the zeroth-order

extrapolation of (2.12).
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III. The Upwind Connection

Upwind schemes for solving hyperbolic systems of conservation laws (i.e., Euler equa-

tions of gas dynamics) rely upon characteristic theory to determine the direction of prop-

agation of information, and thus, the direction required for one-sided differencing approxi-

mations of the spatial derivatives. With such schemes shock waves can be captured without

oscillations. Thus, a successful artificial dissipation model for a central-difference scheme

should imitate an upwind scheme in the neighborhood of shocks. We now review the

connection between these two types of schemes.

Consider the one-dimensional scalar wave equation

ut -J- aUz -_ 0

with a constant. The first-order upwind scheme can be written as

At fui+l--uY' a<0
_-J-I (3.1)

ui- : u i - a_ I uj - Uj_l, a > 0,

where all discrete quantities are evaluated at time level nAt unless otherwise denoted. The

scheme of (3.1) can be rewritten as

At At

+1 = uj - a2-h-;(%+, - uj_l) + lalTh-;(u,+, - + uj_,), (3.2)

which now contains a central-difference term and a second-difference dissipation term. Now

consider the system

ut -t- Auz : O, (3.3)

where u is a N-component vector. The system case can be converted to a scalar one by

diagonalizing the N × N matrix A with a similarity transformation

A = T-1AT,

where the columns of T are the right eigenvectors of A.

applying the scheme of (3.2), the first-order upwind scheme is given by

A At "u IAI2-_--xx(UJ+l 2u i Ui_l) ,U_ +1 -- U 3" -- 2--"_ ( _'+1 -- Uj--1) -}- -- "_

where

IAI = TIA]T -1, A = Diag [IAll ... IANI].

After diagonalizing (3.3) and

(3.4)
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The generalizationto a system of conservation laws isstraightforward;namely,

ut +.t'= = 0

with f being a N-component flux vector, and

At At

where the Jacobian matrix A = Of/Ou, and }A] is defined as for (3.4). The matrix

IAi+ ½ [ can as an average or a average.

!

be computed arithmetic Roe For transonic steady

flows the differences are negligible; therefore, we use the simpler arithmetic average. For

hypersonic flows Yee [11] found that the Roe average yields better results. For time-

dependent problems the Roe average also seems to give slightly better results.

IV. Matrix Dissipation Model

We now extend the scheme given in (3.5) to the two-dimensional equations of fluid

dynamics. In particular, consider the transformed Euler equations of (2.2) with the Runge-

Kutta scheme of (2.3). The necessary modification to the contributions for the _ direction

of the artificial dissipation term defined by (2.4) is to substitute IAI for the eigenvalue

scaling factor, A, in (2.5) and (2.6). For the rl direction, _ and IAI are replaced by rl and

IBI, respectively. We next define explicitly the form for the matrix IAI. Let

A = Diag [At A2 A3 A3]

with

AS ----q,

al = _=, a2 = _u, q = aiu + a2v.

Then,

where

E1 -- [_: -u -t)

-u 2 -_?,)

-uy _?)2

t H_k -uH -vH

1

%$

I)

H
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E2 =

E3 =

E4 -=

0

-alq

-a2q

__q2

I°a1¢

a2¢

q¢

0 0

_ ala2

_2al a_

qal qa2

_1 a2

ua 1 u_ 2

_al ua2

Hal tta2

0 0

-alu --air

--a2u --a2v

-qu -qv

i]
i]
0

al

a2

q

H is the total enthalpy, and ¢ -" (u 2 + v2)/2. Because of the special form of }A I (i.e., each

row of Ej is a scalar times the first row) for any AI, A2, and As, an arbitrary vector x can

be multiplied by IAI very quickly. That is, we calculate lAy+½ (ui+l - uy) directly (see

I

rather than calculate IAj+_I and multiply a matrix times a vector. The matrix IBI

!

[12])
m m

is computed in the same way as IAI by simply replacing _ with r/.

In practice one cannot choose At, A2, As as given above. Near stagnation points A3

approaches zero while near sonic lines ),1 or A2 approach zero. A zero artificial viscosity

would create numerical difficulties. Hence, we limit these values as

- maxCIAll,V,.,,pCA)),

: maxCIA l,V,.pCA)),

p(A) = Iql ÷ ev/_ + _,

=maxCIA [,Vlp(A)),

wl_ere the linear eigenvalue A3 can be limited differently than the nonlinear eigenvalues.

The parameters V,_ and Ve have been determined numerically. Various values have been

evaluated by comparing their corresponding computed solutions on the basis of the follow-

ing: 1) Sharpness of shock waves captured (without producing oscillations), 2) Convergence

rate of numerical scheme. A good choice for V,z and Vl is between 0.2 and 0.3.

We have thus far replaced Ai+½, / in (2.5) and (2.6) by a matrix while leaving the

limiters e (2) and e (4) as scalars. One can also introduce e(2) and e (4) into the diagonal

matrix A. This allows different limiters to be chosen for different characteristic variables.

For example, the limiter may be based on pressure for the nonlinear waves. However, the

pressure is smooth through a contact discontinuity. Hence, a switch based on temperature

may be more appropriate for the linear wave. One could also use different mesh scalings,

¢(r), for the linear and nonlinear waves. Also, a smoother cutoff [13] can be introduced.
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V. The TVD Property

Consider the one-dimensional scalar conservation law

where

--oo<x<oo, t>O.

(5.1)

Let v(t) = {vj(t)} be the approximate solution of (5.1) and consider the semidiscrete

equation

d 1 1

Ax (5.2)

with

a,j+_ = (a,)j+_ = ,_+l(t) - ,_(t);

A3 is a third-difference operator defined as

A%j+_ = (_%)i+_ = ,i+2(t) - 3,j+l(t) + 3,i(t)- ,___(t).

The terms on the right hand side of (5.2) represent second- and fourth-difference numerical

dissipation terms, with t¢ (4) a constant. Define

si+ _ : sgn (_vi+½),

where sgn represents the signum function. Then, a modification of the theorem of Tadmor

[14] is given by the following.

Theorem: The semidiscrete scheme of (5.2) is TVD if

(a)

and

[2-s¢+_(s¢__ +ss+_) ]

(b) Ri+ ½ = 0 when

Qi+_ > si+_(si+g - si-_) Av¢+ _

si+g - 2si+_+s¢_ _ #0.

10



Proof: Shiftingthe indicesby one in (5.2)and subtracting (5.2)from the resultingequation,

we obtain

_ %+

iz -- -

Multiply (5.3) by si+ ½ and sum over all j. Note that sj+_ = =El, so s 2 = 1, andJ+½

sj+_ Avj+_ = ]Avi+_l.

(5.3)

We then obtain

d

J

1

j Avi+½ IAvi+_l

1

J

_¢(4)

J

(5.4)

We stress that the last term in (5.4) will not help for TVD. Its purpose is to eliminate high

frequencies and accelerate convergence to a steady state. Hence, we want this contribution

to be zero. This can be accomplished if we demand either

s j+ _ - 2s j+ _r + s j_ _ = 0 (5.5)

or

Rj+½ = 0,

i.e., condition (b). We are left with

d (TV)- 1 [_/ 2A_: y_ L-SJ+'(sJ+_ - s___):'f_+½
• Avi+ _

J

where TV denotes the total variation as given by

(5.6)

(5.7)

TV = Z IAvj+_l •
i

11



Thus, a sufficient but not necessary condition that the total variation not increase is that

the term of (5.7) in brackets must be positive. This means that

-si+_" (si+_"- 2sY+½ +8i-½)Qi+½ >sS+½ (81+_.- sS__.) Afs+½ (5,8)
- Avi+_"

Since s 2 = 1, (5.8) is equivalent to condition (a) of the theorem. Defining

xj=l-sy-_s--_

(5.8) can be written in the form given by Tadmor; namely,

,Afi+ 
(×J + > (×i - ×J+,J

Several remarks concerning this theorem are in order.

Remarks

(i) When no extrema are present locally (sj_½ : sj+_.

the theorem are trivially satisfied for all Qi+ ½ and Ri+ ½. For such regions we want

Qj+_ : O(Ax) for second-order accuracy and Rj+½ to be chosen so that high fre-

quencies axe damped.

(ii) If sj__ = sy+_ = -sj+_ (a local oscillation at xj+½), we require

Qs+_ -> 0, Rj+½ = 0.

(iii) If sl_ __----sj+__ = -sj+_ (a local extremum at xj+l),

QJ+_ >- Avj+_ ' Rj+_ :0.

(iv) If sj_½ : -%.+_ : -sj+_ (a local extremum at xi) ,

QJ+_ >- Avj.+_' Ri+_ = o.

It follows from these inequalities that Qi+ _ can be negative. As far as total variation is

concerned, central differences are not nondissipative. That is, they can either increase or

12

= si+]), both conditions of



decrease the total variation. In cases where central differences decrease the total varia-

tion, Oj+_ can be negative. For systems of equations, especially in multidimensions, this

behavior can sometimes lead to difficulties. Hence, we demand the stronger condition that

For systems this condition is replaced by

Qj+½ > IAj+½1,

I is constructed by the technique of Roe [2].where A = Of/Ou, and the average at j +

VI. Flux Limiters

In this section switching functions are introduced that force the scheme to automat-

ically satisfy the inequalities presented in Section V. These switches are required to be

smooth so that limit cycles are not experienced when marching in time to obtain a steady-

state solution. The discrete switching functions are defined as

O< __< 1,
(6.1)

The van Leer flux limiter is given by

2r

r + lr I 1-¥-_' r>0

_i(r) = _ ¥ _ - 0, r < 0.

From Sweby [14] it is straightforward to see that for any flux limiter

Cj(_) = 1- _(r).

13

v i - v j_ 1 A vy_ ½
r --

Vj+l -- vj Avj+_:

where _b = 1 near extrema, so that the inequalities are satisfied, and ¢ = O(Ax) in smooth

regions of the flow field. Conversely, F = 0 at extrema, and F = 1 in the smooth regions.

The functions ¢ and I' of (6.1) can be defined in terms of a limiter function. Let



Since we want _bi(r ) to be positive, this relation is redefined as

Then, for the van Leer limiter,

¢_i(r)---l: - ?i(01.

so 0 __ ¢i -_ 1 and define

[1 - r 1+,,¢i(r)
I

1, r <: 0,

_bi+ __= max(_b i, _bi+l).

We now show that the inequality (5.8) is satisfied with this ¢. By the first remark of

Section V, the inequality is satisfied when s 1__ = si+ ½ = si+}, and so in this case we

only need Q = O(Ax). Since r > 0 in this case,

¢_(_) _ ll - rl
l+r

In addition, for smooth regions of the flow field,

r = 1 + O(Az),

and thus

¢i+½= o(ax), Qi+_ = o(a_).

Next, consider the case s i_ _ = -si+}. This implies r i < O, and so, ¢i = 1. Moreover,

si-½ = -si+_ =¢_¢1 = 1 =_ ¢i+_ = 1.

Similarly, if si+ ] = -si+ _,

si+½ = -si+} ::_ ¢i+1 = 1 =_ ¢1+½ = 1.

It also follows, using (6.1), that the inequalities in (ii) and (iii) of the remarks of Section V

are satisfied. Also, for these two cases, setting Fi+½ = 1-¢i+½ guarantees that I'i+ _ = 0.

So

ri+ _ = 1 - max(¢j, ¢_j+,).

14



The flux limiters ¢ and F can be connectedto thoseused in upwind schemes.Sweby [15]

considersan upwind Lax-Wendroff scheme. In particular, for the one-dimensional wave

equation

ut + auz = O,

the numerical solution is obtained with

un+_ _v(u._u. 1)_A_ [v(l_ -v)j : U 0' _,j(u_.+,- uj)] (6.2)

where

v : axe, 0 < _(r) < 2, r -- _ '

and the backward difference operator A_ is defined by

A_uj : uj - uj-1.

If (6.2) is rewritten as a central-difference scheme, then

V V

_'bl ._. 153. __ _(U3.+l __ U3. 1 ) _{_ _[(1 -- _Oj) (Uj+ 1 -- U3" ) -- (1 -- (P3'--l) (tIj -- Uj'_I) ]

lJ2

+ _- [_j(_j+,-_j)- _j_,(uj- uJ-,)l-
(6.3)

By dropping the v 2 term in (6.3) and changing to a semidiscrete formulation, we get

If

d V

2Zi(_j+,- ,,j-,)
//

+ _ [(1- _A(_+, - us) - (1- _j_,)(_j - _i-,] •

_j = 1 - Cj+½,

then the second-difference dissipation term has the same form as the one presented in

Section V.

To complete the connection between the limiters for the central-difference and upwind

schemes, we compare their behavior. For the central-difference case,

o_<¢<1, o_<__<1,

whereas for the upwind case, 0 < W < 2. Furthermore, for the central-difference limiter,

15



means that it does not matter if Auy+½ > Auy_½ or Auy+½ < Auy__ (i.e., the sign of a

does not affect the scheme), as opposed to the upwind limiter where

In Figure 2 the Sweby diagram for the upwind van Leer flux limiter and the central-

difference van Leer flux limiter is shown. For r < 1, the limiters are the same. For r > 1,

the upwind version continues until _ = 2, while the central-difference version returns to

zero. In Sweby's paper the flux limiters are not allowed to decrease when r > 1. However,

there is no difficulty from such behavior. In both cases _(r) = 0 when r < 0 so that the

limiter is turned off for extrema. We note that other limiters besides that of van Leer can

be used to get switches for central-difference schemes.

For systems of equations we use a scalar limiter. Using the matrix form of the dissi-

pation it is easy to implement different limiters for different characteristic variables.

In terms of the pressure the switch becomes

¢. 1 - r Apy_,_= r-- --, a>O

1+ frl' apj+½

or

with

_j : IP.,i.-}-I -- Pjl -- (Pj -- Pj--1) sgn (Pj.-F1 -- Pj) a > 0

Ipj+l - pjl + IpJ- pi-,I + _ '

Cj+_ = max(¢y, ¢y+1),

and e = O(Ax 2) to prevent a zero denominator for constant pressure regions.

also the wave speed a < 0. Then,

Consider

_by =
Py+I -- 2py -+- Pj-1

IP3"4-I-- PYl + IPY -- Pj--1] + (" sgn(py+l - py), a > 0
sgn(pj_l - py), a < O.

We use a conservative approach and take

IPj+I - 2Pi + py-l[

CJ = Ipj+l - p:l + Ip: - pJ-,l + _" (6.4)

Notice that this switch is very similar to (2.9) for the original dissipation model of the

Runge-Kutta scheme. There is only a minor change in the denominator. However, with

this change and the factor 1/2 in front of the second-difference dissipation term, the scalar
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equation becomes first-order upwind near shocks. In the case of the original Cj we find

that Cj -_ .05 near shock waves in transonic flows. One may require different parameters

for the Runge-Kutta scheme to ensure stability.

We now no longer have a free parameter for the second-difference dissipation. We also

usually use r = 1 - 2¢ so that the fourth-difference dissipation is cut off for ¢ > 1/2. The

only free parameter is the coefficient _;(4) of the fourth-difference term.

VH. Numerical Algorithm

The majority of the numerical results presented in this paper were obtained with a

Navier-Stokes code developed by the authors, which is based on the explicit multistage

time-stepping schemes of [3] and [16]. This class of schemes is currently in widespread

use for solving the Euler equations. In references [17-20], these schemes were extended

to allow solution of the compressible Navier-Stokes equations. Significant improvements

in numerical efficiency were introduced in [9], [10], and [21]. In the code of Swanson and

Turkel a cell-centered, finite-volume method is employed to obtain centered type difference

approximations for the flow equations. Such a method provides flexibility in treating

arbitrary geometries and different grid topologies, since no special treatment is required in

the vicinity of singular points or lines. The scheme is second-order accurate in space for

sufficiently smooth meshes (see [21-22] for definition of sufficiently smooth). A modified

five stage Runge-Kutta scheme is used for the time integration to obtain a steady-state

solution. There is a weighted evaluation of the artificial dissipation terms on the first,

third, and fifth stages, which provides a large parabolic stability limit. The physical

viscous terms are computed on the first stage only and frozen for the remaining ones; this

does not compromise the stability characteristics of the scheme. The spatial and temporal

differencing are decoupled. Thus, the numerical algorithm is independent of time step

and amenable to steady-state convergence acceleration techniques. These methods include

local time stepping (a preconditioning for the system of difference equations), variable

coefficient implicit residual smoothing, and multigrid. Implicit residual smoothing is just

a mathematical step, applied at each stage of the explicit scheme, to extend the local

stability range. The multigrid method involves cycling through a sequence of successively

coarser grids and relying upon effective high frequency damping for rapid removal of the

errors in the fine grid solution.
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VIII. Applications

Two airfoil flow problems are consideredhere to demonstrate the benefits of using a

central-difference scheme with a matrix numerical dissipation model. The first problem

concerns inviscid flow over an NACA 0012 airfoil. At a free-stream Mach number (Moo) of

0.8 and angle of attack (a) of 1.25 degrees, a fairly strong transonic shock wave occurs on

the upper surface, while a much weaker one appears on the lower surface. On representative

inviscid meshes, schemes based on central differencing capture the upper surface shock

reasonably well, but they smear significantly the lower surface shock. The second problem

involves transonic turbulent flow over a RAE 2822 airfoil. In this case the free-stream

Mach number is 0.73, the angle of attack is 2.79 degrees, and the Reynolds number based

on chord (Reoo) is 6.5 × 108. For such transonic viscous flows small differences in the shock

strength can result in noticeable changes in the lift and drag of the airfoil. Thus, both

of these problems can provide a reasonable measure of the performance of the artificial

dissipation model, especially near shock waves.

A C-type mesh consisting of 224 cells around the airfoil (160 cells on the airfoil)

and 32 cells normal to the airfoil was used for the first problem. The outer boundary

of the finite domain was placed 20 chords away from the airfoil, so as to not produce

significant effects on the solutions (see [23]). The normal mesh spacing at the surface was

approximately 0.01 chords. The mesh was clustered at the leading and trailing edges of the

airfoil in order to improve resolution of the steep gradients occurring in these regions. In

Figure 3 the surface pressure distributions computed with the scalar and matrix dissipation

models are shown. There is a discernible improvement in the sharpness of the shock

waves using the matrix model, especially for the one on the lower airfoil surface. The

lift and drag coefficients obtained using the two models, along with the values from a

high density mesh calculation, are compared in Table I. The values associated with the

matrix model nearly match those corresponding to the fine mesh solution. The convergence

histories in terms of number of multigrid cycles are also displayed in Figure 3. Convergence

is measured by the logarithm of the root mean square of the residual of the continuity

equation. The convergence rates obtained with the scalar and matrix models are 0.819

and 0.888, respectively. The matrix model result required about 55 cpu sec on a Cray II

computer for 125 multigrid cycles with the solution grid This processing time represents

a 15 percent increase in the time needed compared with the scalar dissipation model. It

may be possible to improve the convergence rate with the matrix model by altering the
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coefficients of the time-stepping scheme and/or the type of implicit residual smoot}fing

operator employed.

The following set of C-type meshes were used in solving the second problem with

the two dissipation models: I} 160 × 32 with 128 cells on the airfoil, 2) 320 × 64 with

256 ceils on the airfoil, 3) 640 × 128 with 512 cells on the airfoil. Each successively coarser

mesh was generated by eliminating every other mesh line in both coordinate directions of

the finer mesh. Again the outer boundary of the domain was located 20 chords from the

airfoil. The normal spacing at the surface for the finest mesh was 7.5 × 10 -s chords. In

Figure 4 a comparison is made between the experimental data of [24] and the predicted

distributions of pressure, upper surface skin friction, and upper surface boundary-layer

displacement thickness obtained on the 160 × 32 mesh. The skin-friction coefficient is the

wall shear stress nondimensionalized by the dynamic pressure at the edge of the viscous

layer. Velocity profiles (scaled by the boundary-layer edge velocity us} at two stations on

the upper airfoil surface are also presented in Figure 4. There is marked improvement in

the results obtained with the matrix model, as verified by their reasonable agreement with

the data. The convergence histories given in Figure 4 indicate that the final residual level

is somewhat higher with the matrix model. However, the terminal rate of convergence is

nearly the same with both dissipation models. Finally, Figures 5 and 6 show the pressure

and skin-friction distributions computed on the coarse mesh with second-order upwind and

"third-order" upwind biased forms of Roe's scheme I2), which has been shown to have low

levels of dissipation. The pressures obtained with the "third-order" form are very close to

those calculated with the matrix model. The upwind skin-friction solutions exhibit slightly

better agreement with the experimental data upstream of the shock.

Numerical results for the two finer meshes are presented in Figures 7 and 8. For the

320 × 64 mesh, a slightly stronger shock is predicted using the matrix dissipation model.

Otherwise, the solutions determined with the different dissipation models are nearly the

same. The character of the convergence behavior with the two models is about the same

as for the coarse mesh. On the finest mesh, the application of the models gives essentially

the same results. In Figure 9 the variation of the computed lift and total drag coefficients

with the reciprocal of the number of mesh cells is plotted for each dissipation model.

The curves corresponding to the matrix model are nearly linear. A linear curve indicates

second-order accuracy for the fullrange of meshes being considered. The numerical values

for the components of the drag coefficient(form and frictioncontributions) along with the
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lift coefficient are given for all the viscous computations in Table II. Notice that the values

obtained with the matrix model on the 320 × 64 grid are very close to those calculated

with the scalar model on the 640 × 128 grid. Such a reduction in the mesh required for

acceptable accuracy is highly desirable, especially for three-dimensional flow problems.

Some applications to three-dimensional viscous flows are presented in Turkel and Vatsa

[25]. It should be emphasized that accurate prediction of lift and drag is very important

in the design of aircraft, and thus, a good estimate of these quantities for an infinitely fine

mesh is needed.

In [26] it is shown that the TVD switch (6.4) allows converged solutions for hypersonic

flow where the standard switch (2.9) does not.

IX. Concluding Remarks

We have thus shown that the second-difference artificial dissipation is equivalent to

using a flux limiter, and hence, central-difference schemes are not any more "artificial"

than upwind schemes. The central-difference scheme is slightly more dissipative for two

reasons. First, ¢1+½ = max(¢ 1, ¢j+1) while for an upwind scheme ¢j+1 is equal to either

¢i or ¢j+1, depending on the direction of the wind. Second, we insist that Cj be positive

(i.e., _y __ 1) while upwind limiters allow _j > 1 (i.e., in some cases we can have negative

viscosity but still be TVD). However, to compensate for this slight increase in dissipation

central-difference schemes are simpler to program and require less computer time per time

step, and work well with multigrid acceleration techniques.

In addition the central-difference schemes have a free parameter in conjunction with

the fourth-difference dissipation. This dissipation is needed to approach a steady state

and has nothing to do with TVD properties. In fact the fourth-difference contribution is

set equal to zero near local extrema. For time-dependent flows one can set this dissipation

identically to zero. On the other hand TVD properties do not necessarily imply a rapid

convergence to the steady state.

In summary, a formulation for a numerical dissipation model that makes a central-

difference scheme closely resemble an upwind scheme near flow discontinuities has been

described. A theorem has been proven that gives sufficient requirements for this type of

dissipation model to satisfy the TVD property for a scalar equation. Flux limiter functions

have been presented for this form of dissipation model. For a system of equations a matrix-

valued dissipation is introduced. Solutions of the Euler and Navier-Stokes equations for
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airfoil flows have been obtained using the matrix dissipation model. These results have

demonstrated noticeable improvements in accuracy in smooth regions of the flow field

as well as near shock waves. There is a 15 percent increase in computational time for

explicit multistage schemes when this model is used. However, the improved accuracy has

permitted a significant reduction in the number of mesh points required. Such behavior of

a scheme can have a dramatic effect on the necessary mesh size for three-dimensional flow

calculations.

Finally, it is important to emphasize the different principal objectives associated with

matrix-valued dissipation and the TVD switch. The purpose of the matrix form of the

numerical dissipation model is to apply the appropriate scaling of the dissipation in each

flow equation, yielding a reduction in the amount of dissipation being introduced and

improved accuracy. The TVD switch plays a somewhat opposite role in that it causes

more dissipation to be added in order to prevent overshoots, and thus, allows convergence

and provides robustness in solving high speed flow problems. The combination of the two

should give more dissipation near shocks and less dissipation in smooth regions, hence

giving better accuracy in all regions.
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Table I

Lift and drag coefficients for NACA 0012 airfoil,

Moo = 0.8, c_ -- 1.25 °

Case Cl Cd

Scalar dissipation model
(224 × 32 mesh)

Matrix dissipation model
(224 x 32 mesh)

Scalar dissipation model
(640 x 64 mesh)

0.3628 0.0231

0.3591 0.0227

0.3577 0.0228

ci - lift coefficient

Cd - drag coefficient
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Table II

Lift and drag coefficients for RAE 2822 airfoil,

Moo : 0.73, ex -" 2.79 °, Reoo : 6.5 × 10 e

Scalar dissipation model

Mesh cl Cdp Cdf Cdto t

160 x 32 0.8081 0.0128 0.0045 0.0173

320 x 64 0.8395 0.0120 0.0054 0.0174

640 x 128 0.8544 0.0123 0.0055 0.0178

Matrix dissipation model

160 x 32 0.8296 0.0124 0.0050 0.0174

320 x 64 0.8514 0.0123 0.0055 0.0178

640 x 128 0.8588 0.0124 0.0055 0.0179

Second-order upwind

160 × 32 0.8176 0.0119 0.0054 0.0173

"Third-order" upwind biased

160 × 32 0.8220 0.0124 0.0054 0.0178

cl - lift coefficient

Cdp -- pressure drag coefficient

Cdf - friction drag coefficient

Cd_o_ - total drag coefficient
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Figure 3 Central-difference scheme results for inviscid flow over NACA 0012 airfoil
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(a) Surface pressure coefficient, (b) Convergence history
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Figure 4 Central-difference scheme results for turbulent flow over RAE 2822 airfoil

(160 x 32 mesh, Moo = 0.73, a = 2.79 degrees, Reoo = 6.5 x 106):

(a) Surface pressure coefficient, (b) Convergence history
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Figure 5 Second-order Roe scheme results for turbulent flow over RAE 2822 airfoil
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(a) Surface pressure coefficient, (b) Upper surface skin-friction coefficient
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(a) Surface pressure coefficient, (b) Upper surface skin-friction coefficient
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Figure 7 Central-difference scheme results for turbulent flow over RAE 2822 airfoil
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(a) Surface pressure coefficient, (b) Convergence history
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Figure 8 Central-difference scheme results for turbulent flow over RAE 2822 airfoil

(640 × 128 mesh, Moo = 0.73, a - 2.79 degrees, Reoo = 6.5 x 106):

(a) Surface pressure coefficient, (b) Convergence history

37



Cf

7x 10 -3
13 EXPERIMENT, COOK

DISSIPATION
SCALAR
MATRIX

I I I I
.2 .4 .6 .8 1.0

x/c

Figure 8c Upper surface skin-friction coefficient (640 x 128 mesh)

38



m

O

0.88

0.86

0.84

0.82

0.80

-rl.

El .... ra

Dissipation

Scalar

Matrix

0.78 L I i I I I

0.0 1.0 2.0 3.0

1/N x 10 -4

Figure 9a Variation of lift coefficient with reciprocal of number of mesh points

(RAE 2822 airfoil, Moo --- 0.73, a = 2.79 degrees, Reoo = 6.5 × 106)

39



0.0190 -

0.0185

0.0180 rq.

0

-u_0.0175
o

Dissipation

Scalar

Matrix

0.0170

0.0165

0.0160 r J i J i
o.o _.o 2.0 3.0

1/N x 10 .4

Figure 9b Variation of total drag coefficient with reciprocal of number of mesh points

(RAE 2822 airfoil, Moo = 0.73, _z = 2.79 degrees, Reoo = 6.5 x 106)

4O



Report Documentation Page
_tOn_ll A_onauhCs _qC

1. Report No.
NASA CR- 182061

ICASE Report No. 90-44

4. Title and Subtitle

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

June 1990

ON CENTRAL-DIFFERENCE AND UPWIND SCHEMES

7. Author(s)

R. C. Swanson

Eli Turkel

6, Performing Organization Code

8. Performing Organization Repo_ No.

90-44

10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency NameandAddress

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofReportandPeriodCovered

Contractor Report

14. Sponsoring ,_gency Code

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

To be submitted to Journal

of Computational Physics

Final Report

16. Abstract

A class of numerical dissipation models for central-difference schemes con-

structed with second- and fourth-difference terms is considered. The notion of

matrix dissipation associated with upwind schemes is used to establish improved

shock capturing capability for these models. In addition, conditions are given that

guarantee that such dissipation models produce a TVD scheme. Appropriate switches

for this type of model to ensure satisfaction of the TVD property are presented.

Significant improvements in the accuracy of a central-difference scheme are demon-

strated by computing both inviscid and viscous transonic airfoil flows.

17. Key Words (Suggested by Author(s))

central difference, upwind

19. SecuriW Cla_if. {of this report)
Unclassified

NASA FORM 1626 OCT 86

18. Distribution Statement

64 - Numerical Analysis

Unclassified - Unlimited

20. SecuriW Cla_if. (of this pa_)

Unclassified

21. No. of pa_s _. Price

42 A03

NASA-Langley, 1990




