
NASA Technical Memorandum 103229

ICOMP-90-18

Parallel/Distributed Direct Method

for Solving Linear Systems

Avi Lin

Temple University

Philadelphia, Pennsylvania

and Institute for Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio

July 1990

12A

_x,9 )-,.¢, j] q.

IcoMP

https://ntrs.nasa.gov/search.jsp?R=19900017298 2020-03-19T22:23:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42822656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Parallel / Distributed Direct Method for

Solving Linear Systems

Avi Lin

Department of Mathematics

Temple University

Philadelphia, Pennsylvania 19122

and Institute for Computational Mechanics in Propulsion*
Lewis Research Center

Cleveland, Ohio 44135

Abstract

In this paper, a new family of parallel schemes for directly solving linear

systems will be presented and analyzed. It is shown that these schemes

exhibit a near optimal performance and enjoy several important features:

1. For large enough linear systems, the design of the appropriate parallel

algorithm is insensitive to the number of processors as its performance

grows monotonically with them.

2. It is especially good for large matrices, with dimensions large relative

to the number of processors in the system. In this case, it achieves

• an optimal speed up.

• an optimal efficiency.

• a very low communication time complexity.

3. It can be used in both distributed parallel computing environments

and tightly coupled parallel computing systems.

4. This set of algorithms can be mapped onto any parallel architecture

without any major programming difficulties or algorithmical changes.

*Work funded by NASA Space Act Agreement C-99066-G.



1 Introduction

Solving a linear system Ax = b for x E R ", where A E R n x R n is an n × n

square matrix and b E R" is a known vector, is a very basic computing

operation in many scientific fields. It is known that the sequential time

complexity of a direct procedure for computing x is O(nS). This time is

intolerable when n is large. Therefore a practical parallel algorithm to speed

up the computation is almost a must. Dongarra, Gustavson and Karp [1]

have analyzed various ways for implementing Gaussian elimination (GE)

with implications for several architectures. They have pertubed the three

sequential nested loops into six different loop variations. George, Heath

and Liu [2] the later formed these six methods for self-scheduling a pool of

tasks (for the Cholesky algorithm in particular). The "submatrix" version

is the closest method to the algorithms that will be presented in this paper,

as they have a "wave-front" like structure. Recently, Lin and Zhang [3]

and Zhang and Lin [4] have presented a class of efficient parallel algorithms

for solving a linear triangular system and parallel algorithms for the LU

decomposition of a matrix, which can be applied easily on any parallel

machine or distributed environment. Fortunately, it turns out that these

algorithms are part of a more general family of algorithms to solve a linear

system of equations. Using somewhat similar concepts, an efficient and

practical parallel algorithm for solving such a system will be developed in

the present paper. It is obvious that by combining these two algorithms, it

is possible to get a parallel algorithm for solving the linear system Ax = b.

However, although this method can be programmed and handled fairly

easy, this algorithm turns to be not the best one in this family of parallel

algorithms, as there exist algorithms that mix these two steps, resulting in

a larger speed-up. There are two important factors needed to be considered

when trying to design a useful parallel algorithm: one is communication and

the other is the processor waiting time. The communication time is defined

to be the time spent on transferring information between the processors or

a processor and a memory. The waiting time is defined to be the processor

idle time while waiting for the necessary information elements from the

other processors. The main goal in designing the parallel algorithm is two-

fold:



• to minimize the above two parts of the computing time while using a

small amount of processors

• the number of processors should not depend on the input size n.

In the rest of the paper, it will be assumed that the number of available

processing elements (PE) in the parallel system is P+ 1, which are indicated

by PEo, PE1, • .., PEp. The topology of the parallel model consists of P

PEs connected in a ring like shape, i.e. PE_ is connected to the PEi-1

and PEi+I for all 1 < i < P, where PEo serves as a master processor as it

may have a direct connection to each of the processors in the system. The

later connection is not a must for the present analysis but it is convenient

for understanding the algorithm. The computational model of the parallel

machine is of the loosely coupled system where all the information is passed

via the interconnection network and a shared memory is used very seldom.

Thus, for the shared memory, one can assumes whatever reasonable model

(coomon bus or a special private connection). Each PE can be:

• a regular scalar processor.

• a vector processor.

• another (smaller) parallel computer.

2 The Parallel Algorithm Setup.

Generally speaking, this algorithm consists of two global steps where each

of them is executed in a parallel manner. For the first step we will use the
lrl_p KgLp

following two positive sets of integers K = {k,}_= 2 and N = {n_}_= 2 which

are related to each another by

?_i : r/,i-1 -- ki

and where rnp will be defined later as the number of phases that the first step

of this algorithm undergoes till its final termination. Also it is convenient

to append to the matrix A by adding to it an n + 1 column which is equal

to the right hand side vector b.



In the begining of the algorithm, as a preparation for the first step, the

elements of the matrix A are distributed among the processors in the row-

wise direction: PE0 gets the first kl + k2 rows of the matrix, while each of

the other processors i gets _ rows of the matrix A, from row number
p

k, + k, + -_(i- 1) + 1 to k, + k2 + _ i. For convenience, let us define by

SET(8, t) the set of equations from equation number s to equation number

t. Also let us define the set of rows that PE_ has in the ra th phase of the

first step of the algorithm as follows:

SET_ = SET(k,,, + k,,_+l + n"_(i- 1) + 1, k,,_ + k,_,+, + n'_i) (1)
P P

As it was mentioned before, the suggested parallel algorithm consists of

two basic steps: the forward step and the backward step, where both are

similar to the forward and backward steps of the scalar GE procedure.

The parallel algorithm for the forward step is described in table 1 which

sometimes called the parallel activity table for this step. Here r < kl is

a positive integer selected by the user, and usually depends also on the

characteristics of the parallel machine. Intuitively, if the parallel machine

is homogeneous, then we will try to keep r to a minimum (r _- 1). However,

in a hetrogeneous environment, r will probably relate to the relative powers

of the processors.

The resultant matrix of this step has the structure of a "staired like"

upper triangular matrix. The parallel algorithm for the backward step is

based on the parallel algorithm for triangular system devised by Lin and

Zhang [3]. The sequential algorithm for triangular systems may be written

as follows:

i=k-Ibl b_ ak_
zl ;xk _ k 2,3, ,n. (2)_ -- --Zi; _ ...

all akk _=1 akk

As in the first step, the idea is to let each PE perform the same amount

of computations between two successive communication operations, and to

make the redundant computations as small as possible. Those redundant

computations results from the fact that the algorithm is parallelized, and

some of the operations are needed to be executed not only by one pro-

cessor (as in the scalar case) but by several of them (whichever needs the



Phase

number

rn:>2

Processor 0

1. Executes the GE

Processor i, 1 < i < p

algo- 1. Receives the values of the

.

.

°

rithm for the first r vari-

ables.

Transmits the results of

the r variables to the rest

of the processors.

Executes the GE algo-

rithm for the next kl - r

equations.

Substitutes the values of

the last k,__l variables.

2. Executes the GE algo-

rithm for the next k,,,

equations.

3. Transmits the results of

those k,_ variables to the

rest of the processors.

first r variables.

2. Substitutes the values of

the first r variables into its

set of SET_I equations.

• Substitutes the values of

k,__l- _,,,2r variables into

its S ET_ m equations.

Transfers to the i - 1 processor _ (p - i + 1) of its first

equations, and receives _(p - i) rows from the i + 1 processor

locating them at the end of its set of rows.

Table 1: Parallel Activity Table for the Forward Step



appropriate results). This step is executed in rp -t- 1 phases. Similar to step
rp1, let us denote by Q = _q_)_=l a sequence of positive integers, such that

rp_i--1 qi < n. Then a possible parallel backward step is summarized in the

parallel activity table 2.

3 The Main Properties of the Algorithm.

One of the more important features of this parallel algorithm is that all the

processors are working all the time towards the solution of the problem.

More than that. It is possible to minimize the waiting time for needed

information or data for each of the processors. This means, that the exe-

cution time of all of the processors between two successive communication

operations (independent on the task that they ought to perform), will be

the same (for all of them). In order to set up the equations for this time-

balance requirement, let us define first the following quantities:

GE(a, fl) - is the time that it takes for one processor to execute the

Gaussian elimination algorithm for c_ variables with _ right hand

sides.

• TR(a, _) - is the time that it takes to transfer a vectors each of length

of _ to the neighbor processor.

• REC(c_, 8) - is the time that it takes to receive c_ vectors each of the

length of _ by the neighbor processor.

• MULT(rl,r2, r3) - is the time that it takes to multiply two matrices,

one of the sixe of rl × r2 and the other of the size r2 × r3.

• SUBT(rl,r2) - is the time that it takes to subtract two matrices one

from the other where their size is rl x r2.

In terms of the above definitions, if it is desired that the execution time of

PEo will be equal to the execution time of any of the other PEs in each of

the phases of the forward step. This means that for the first phase of this



Phase

num-

ber

m>2

m

rp+ 1

Processor 0

1. Executes the scalar algorithm

for the first r variables.

2. Transmits the results of the r

variables to the rest of the pro-

cessors.

3. Executes the scalar algorithm

for the next ql - r equations.

.

.

Calculates the values of the

next q,_ variables, using the

latest values of the bs.

Transmits the results of those

q,_ variables to the rest of the

processors.

finishes to solve in a sequential mode

the rest of the equations.

Processor i, 1 < i < p

.

*

*

Receives the values of the first

r variables.

Substitutes the values of the

first r variables: bj _-- bj -

Eover r eltments aijxj where ql +

1+ [(i-2)_ -qJ-] < j < qt +

1 + [(i - 1)-_-t].

Transmits back the new values

of bi's to PEo.

• Substitutes the values

of qm-1 - _,_,_r variables into

its set of equations.

• Reports back to PEo the new

values for the bs.

Table 2: Parallel Activity Table for the Backward Step



step we have the following balance:

GE(r,n- r) + TR(r,n- r)+
MULT(kl - r,r,n- r)+

SUBT(kl - r, nt) + aE(kl - r,m)

REC(r,n - r)+

MULT(-_,r,n - r)+

SUBT(-_,n - r)

(3)

Similarly for the mth phase of this step and any processor i, the following

time balace holds:

MULT(k,,_, k,__ 1, nra- 1) -[-

SUBT(k,,,, n,,,__)+

GE(k._,n._)+

TR(k,,,,n,,,) + RSV{k,,_+,,n,,,)

MULT(_,k,,__I -6._,2, n.__1)+

SUBT(-_,n,__I)+

TR(_(p- i + 1), n.,,+,)+

REC( _(p - i), n,,,+l)

(4)
Once we are given the appropriate execution time for any of the above

operations, those equations determine the sets of integers K and N. These

operations depend very much on the basic features of each processor in

the parallel engine. In what follows we will assume that the processors

are regular and standard scalar processors, while in the extended version

of this paper we will present also results for vector processors and parallel

processors (means that the engine is of the degenerate parallel system type

like a paralleld-vectored machine).

For a scalar processor, let us define the CPU times needed to execute an

addition, a multiplication and to find the inverse of a scalar number by A, M

and I respectively. Also we will assume the following time complexities:

• if the LU decomposition approach is used than

GE(r,s)
r

M_[(s + 1)r z + (3s + 1)r- s]

+A612(s + 1)r 2 + 3(8 - 1)r + (1 - 5s)] + Isr. (5)

If the regular elimination is used, than

r 2 3rs

GE(r,s) : (M + A)r(-_ + _ + s 2) + Mr(r + 2s) (6)



• MULT(r,t,s) = (A + M)rts.

• SUBT(r,s) = Ars.

where the contributions of the broadcasting time complexities will be dis-

cussed in the extended version of the paper.

Lets define also by a and j3 the following quantities:

a= A/M ; _= I/M (7)

It is obvious that a < 1 and/_ > 1 where for most of the machines/_

is upper bounded roughly by 10. Then the above balance of the execution

time between the master processor, PEo and the rest of the processors can

be expressed as:

aok4m + alk3m + a2k 2 -{- a3km + a, = 0 (8)

where the LU decomposition version for the GE operation eq.(15) was used.

The coefficients of this equation for k,,, are given as follows:

ao = 1 +a

al ----- -n,__1+3(1+3)

a 5

a2 = -3(1 + _)n__, + (1 + _a+ 3Z)

sas ---- -nm_l[3 km-l+a)- (1+-a-3/3)]
2

a4 -- 3 p +l(km-l+a)n__ 1
P

Based on this model for the GE procesure of PEo we have the following

results for the forward step:

(9)

(10)

(11)

(12)

(13)

Lemma 1: For large values of n,,_, k,_ - n..__ + O(1).
l+a

Proof: Assume a solution of the singular pertubation type km= _ + e

where e is a weaker function then the leading term in this expression, then

it is possible to show that

3a(1 + 0.5a) + [(1 + 2.5a)(2 + a) + 3a/_ - 3V+la(1 + a)(k.__, + a)]( 1+. )
p xnm_l I

E=

1 + 3(1 - 2a)(1 + 0.5a) 1+4
nm--I



[]

In addition, it is possible to find lower bounds for the values of the

elements of the sequence K as is given by the following lemma:

Lemma 2: The smallest value of n,,,_l for which a real solution exists

for k_, is approximately 3a(1 + a) 4. For this case, the value of k,, may be

approximated by (1 + a)[3a(1 + a)k_,_l]}.

This lemma, which can be proven easily, leads to the following upper

bound on the number of phases that the the forward step requires till its

termination.

Lemma 3: The maximum number of phases is upper bounded by O(C log n)

where C ,,_ log(1 + a)

Finally, based on the above lemmas, we can prove the following upper

bound for the speed-up of the forward step only:

Theorem 1: The maximum speed-up of the forward step cannot exceed

O(log P).

We should realize that this result is for the version of GE(r,s) given

by eq. (5) and is modeled in eq. (8). The origin for this poor theoretical

speed-up is probably in the bad algorithm for the scalar GE procedure.

When using eq.(6) for this procedure, the following recursive equation for

the integer set K is obtained:

aok_ + alk_ + a2kn,+ a3 = 0 (14)

where the coefficients ai are given as follows:

ao = 2(1+c_) (15)

10



2
3 (1 ÷ a)(n,,,,_, + _)al -- 2

1
a2 = -n__,[k,__, + 1 + -_(k,_-i +

1

0, 3 = -_(k_pt_ 1 + l_3¢)rl.Im._X

,,)]

(16)

(17)

(is)

In the following lemma we try to isolate the proper root for eq.(14).

Lemma 3: Eq.(14) has two positive roots for k,, one which is larger than

n,n-1, k_) > n,,-1 and one which is smaller than n,__a, k_) < n,_-l.

The proof for this lemma is simple, and one of the outcomes of this

proof is that asymptotically we can approximate the first root as is given

in the following lemma:

Lemma 4: The largest root of eq.(14) is given by

i) + (19)k_)- 1.5(P+ P

where e can be approximated by O(n__l) where "7 << 0.5.

Using this result, it is possible to isolate the second positive root, as it

is given in the following lemma:

Lemma 5: k(m2)_l _. (1.5_km._ lrtra_l)3 it.

Although the proof for this lemma involves lengthy algebra, it is quite

straight forward. The following table gives some numerical results for the

set K for n - 1000000, kl = 4 and r = 1, for various number of processors.

ll



P and phase number i=l

2 1

10

100

i=2

36042

i:1 i=2

1 24102

i=1 i=2

1 13554

i=8 i=9

60904 38170

i=15 i=16

2207 1371

i=3 i=4 i=5 i=6

483121 480835

i=3 i=4 i=5 i=6

294872 421064 259909

i-3

144757

i=4

232322

i=5

205233

i=6

146224

i--10 i=11 i=12 i=13

23979 14804 9202 5718

i=17 i=18 i=19 i----20

328851 528 203

i=7

i=7

i=7

95921

i=14

3553

i:21

126

The first phenomena that can be observed from this table is that the

number of phases till termination of the forward step is an increasing func-

tion of P. In fact we have

Lemma 6: The number of phases is the forward step is upper bounded

by O(3 log P) plus a very weak function of log _.

It should be noted that the forward step is terminated for rn = rnp

where k,_, > nmp. From this condition we may have also some intuition to

what would be an upper bound for the speed-up of this step. Since the the

last phase is a scalar phase, as it is executed only by PEo, then we have:

Lemma 7: The speed-up of the forward step is upper bounded by P -

In the forthcoming paper we will give some more results which are not

as important as the above, for example, approximations for the elements

of K as function of n, kl and P. Those results gain some importance when

this method is implemented on an actual parallel machine.

12



For the backward step, the following equations presents the relations
betweenthe successiveelementsin the sequenceQ. For the first phase, the

balance of the CPU time is:

ql(ql + 1)

2

and the balance for the phase m is:

q,,_(q,,_ + 1)
q,,_q,T,-1 + 2

(n - ql) (20)
P

ra-I

q,_-I (n - _ q,) (21)
P " 1

(1))_

Also the rows of A matrix that correspond to those bi _ are transferred

to the PE1. The above equations for the backward step was solved nu-

merically for the case of P -- 2, and the results are given in the following

table:

n

104

n

lOs

i 1 2 3 4 5 6

139 1400 2814 2337 1434 820

i 7 8 9 10 11

462 260 146 82 46

i 1 2 3 4 5 6

43 213 279 197 116 66

i 7 8 9

37 21 12

In the following section we will prove that the running time of this

procedure for determining the integer sequence Q is also small since the

number of phases of this step till termination is: rp = O[ Plog(n) ]. To

obtain the order of of the number of phases rp) let's study a slightly different

recursive system for u, which is defined by the following equations:

ul rt- u, (22)
2 P-1

2
Ui_l (_t -- Ui)

z_.,¢=, (fori > 2) (23)Ui-lUi "_- U_.i_ _
2 P-1 -

i--I

"-Ei='W then we have N_+I = ui+x(1 + _ + "'-_ andDefine: Ni = p-1 , 2v,/,

13



u 2 u 2.
using Ni+l = N_ - u,- we get finally u_+l(1 + _-_-l) + _ = u_ +

P-I _ 2u/ 2ui_l "

Define: t_ = _ then the following equation which is equivalent to eq.
u i

(14) is obtained:

7 + t,(1 + - (1+ ) = 0 (24)

Solving the equation (24) for t,, we get t, = _/(1 + _-i_1) 2 + 2 + t,-1 - (1 +
1

pl--Li_x). Define: /_ = t/+ 1 + _:'i, we have/_ = _/(__1)(1 + V_-i-1)+ 2 +/_i-1.

Now the following lemma is obvious.

1
Lemma 7: L_ = lim.--.oo/_, = i + _/_ + _-i-1 (1 + _-1)

2 I

Now let's define /z : _/1 + (6- _-:i)Z-_p, _/t_-_i-l( 1 + _-1) + 2]Z_B + 1, and

R = log(L_ + _). The following lemma gives an estimate of the speed of

the convergence of the sequence {_i}.

Lemma 8: Given e > 0, let N, = log(log(_2))-log(R), then/J, < i_+e

for/> N,.

Proof: Simply by realizing first that log(L_ + e)- 21og(_) > 0, and secondly,

since_ > L_,then_ < p_.

[]

From the definition of B_, we easily see now that t_ < L_ - (1 + _-T-_) + e

for/> N[.

Lemma 9: u, < Ul when i > O( Plog(n) ).

Proof: We choose _ such that L_ - (1 + _-1) + ¢ < 1 - if, where _ is a fixed

number, and0 < -/ < 1. Consider the equationL_-(l+_+¢* -- 1,

then _* = 1.5+ v-1 +___(1+_-_-i__) = O( ). If we let _ = T

and e = % then we have t_ _< 1-_ when i > N,. That is U_+l < (1 -'-/)u_

when i > N_. From log(R) -- O(log(P) ) and u '+_ _< (1 - -7)_u, for i > N_,

we can easily see the lemma is true.

[]

Theorem 2: rr < O(P log n).

Proof: By induction it can be shown that q" < 1 - n-¼. Using this result,

a lemma for ki which is similar to lemma 3 for u_ can be formulated, and

the result follows.

14



[]

4 Analysis of The Algorithm

Here we give a simple analysis of the parallel algorithm subject to certain

models for the communication complexity, see [5] for more information. In

the final version of the paper, we will consider a broader range of models

for communication. Let us define the time needed to broadcast a pw:ket

of information of size N as tN = a + rpN, where a is start up time, and

Fp is a function of P. Fp = 1 if the information is sent to the immediate

neighbors, and Fp = P if the information is sent to all other P PEs. We

define Tcin) as the communication time of the parallel algorithm.

In the parallel algorithm, PEo has to send its result to all other P processors

at each phase of the forward step and all the other processors send only

the result in the worst case to the immediate neighbors. We can easily get

an upper bound for T_in ).

Theorem 3: for the forward and the backward steps T_in ) < 01 Pn +
n 2

Let's define by Tlin) the computational sequential time and by Tpin )

the computational parallel time using P PEs. Let SPin ) _ denote= TeCn}

denote efficiency.the speed up and _p = p
Definition: It is said that the speed up is optimal when lim,,-.oo Sp(n) : P,

and the efficiency is optimal when lim,-_oo 17p (n) = 1.

Theorem 3: The present parallel algorithm has optimal speed up and

optimal efficiency.
n 2

Proof: From the result of theorem 2 and 7"1in) = T, we can easily reduce

to the results.

[]

5 References

[1] Dongarra, J. J., Guatavson, F. G. and garp, A., (1984), "Implement-

ing Linear Algebra Algorithms for Dense Matrices on a Vector Pipeline

15



Machine", SIAM Rev., 26, pp.91-112.

[2] George, A., Heath, M. T. and Liu, J., (1986), "Parallel Cholesky Fac-

torization on a Shared Memory Multiprocessor _, Linear Algebra and its

Applications, 77, pp. 165-187.

{3] Zhang, H. and Lin, A., (1988), _A Parallel Algorithm for LU Decompo-

sition _ , to appear in the Proceeding of the Second International Conference

on Vector and Parallel Computing _, Bergen, 1988.

[4] Lin, A. and Zhang, H., (1987), "A New Parallel Algorithm for Linear

Triangular Systems _ , to appear in the Proceeding of the Third SIAM Con-

ference on Parallel Processing for Scientific Computing, Dec. 1987.

[5] Saad, Y, (1986)," Communication Complexity of the Gaussian Elimina-

tion Algorithm on Multiprocesors", Linear Algebra and its Applications,77

, pp.315-340.

16



Report Documentation PageNational Aeronautics and
Space Adrnmlslrahon

1. Report No. NASA TM-103229 2. Government Accession No. 3. Recipient's Catalog No.

ICOMP-90-18

4. Title and Subtitle

Parallel/Distributed Direct Method for Solving Linear Systems

7. Author(s)

Avi Lin

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. Report Date

July 1990

6. Performing Organization Code

8. Performing Organization Report No,

E-5645

10. Work Unit No,

505-62-21

11. Contract or Grant No,

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Avi Lin, Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 and Institute for

Computational Mechanics in Propulsion, Lewis Research Center (work funded by NASA Space Act Agreement

C-99066-G). Space Act Monitor: Louis A. Povinelli.

t6. Abstract

In this paper, a new family of parallel schemes for directly solving linear systems will be presented and analyzed.

It is shown that these schemes exhibit a near optimal performance and enjoy several important features:

1. For large enough linear systems, the design of the appropriate parallel algorithm is insensitive to the

number of processors as its performance grows monotonically with them.

2. It is especially good for large matrices, with dimensions large relative to the number of processors in the

system. In this case, it achieves

• an optimal speed up.

• an optimal efficiency.

• a very low communication time complexity.

3. It can be used in both distributed parallel computing environments and tightly coupled parallel computing
systems.

4. This set of algorithms can be mapped onto any parallel architecture without any major programming

difficulties or algorithmical changes.

17. Key Words (Suggested by Author(s))

Parallel computations

Numerical solution of linear systems

18. Distribution Statement

Unclassified - Unlimited

Subject Category 64

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclassified Unclassified 18

NASA FOnM _S26 OCT 86 *For sale by the National Technical Information Service, Springfield, Virgfnia 22161

22. Price"

A03




