
Communications and Tracking

Expert Systems Study

https://ntrs.nasa.gov/search.jsp?R=19900017688 2020-03-19T21:17:19+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42822594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by T.F. Leibfried, Associate Professor of
Computer Science, Terry Feagin, Professor of Computer Science, and David
Overland, Research Associate, all at the University of Houston-Clear Lake.

Funding has been provided by the Tracking and Communications Division,

within the Engineering Directorate, NASA/JSC through Cooperative Agreement

NCC 9-16 between NASA Johnson Space Center and the University of
Houston-Clear Lake. The NASA Technical Monitor for this activity is Oron

Schmidt, Systems Techniques Section, Communications Performance and
Integration Branch, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

INTERIM REPORT

UNIVERSITY OF HOUSTON-CLEAR LAKE

RESEARCH INSTITUTE FOR THE COMPUTING

AND

INFORMATION SCIENCES

RESEARCH ACTIVITY AI-I

COMMUNICATIONS AND TRACKING EXPERT SYSTEMS STUDY

F(B 1] _JJ?

_1Ct8

Prepared by:

T. F. Leibfried, Jr., Ph.D. -- Principal Investigator

T. Feagin, Ph.D. -- Research Area Director

D. Overland, B.S.M.E. -- Research Associate

In cooperatlon wlth:

O. Schmidt -- Technical Monltor/NASA-JSC

30 January 1987

University of Houston-Clear Lake ResearchActivity AI-I
Communicationsand Tracking Expert Systems Study

Interim Report for Semester Period Ending 31 Dec 1986

EXECUTIVE SUMMARY

The original objectives of the study consisted of five broad areas of

investigation:

I. Criteria and issues for explanation of C & T system anomaly detection,

isolation, and recovery;

2. Data storage simplification issues for fault detection expert systems;

a Data selection procedures for decision tree pruning and optimization

to enhance the abstraction of pertinent information for clear

explanations;

4. Criteria for establishing levels of explanation suited to needs;

5. Analysis of expert system interaction and modularization.

Progress was made in areas I, 2, 3 and 5, but to a lesser extent in area 4

during Phase I.

Among the types of expert systems studied were those related to anomaly or

fault detection, isolation and recovery. Specifically, the interim results

Harris and TRW T&C expert system studies were examined and work supplement-

ing them with explanation facilities was initiated.

An expert system which is rule based may be thought of as a sequence of

if-(condition)-then-(action and fact(s)) statements in an endless repeating

loop. A given statement or rule, when its condition has been satisfied and

it executes, is said to have "fired". The rule usually asserts "facts"

which may satisfy the condition(s) of other if-statements or rules which in

turn can assert actions and/or other facts and so on. The beauty of these

systems is that they are flexible, easily expanded or modified, succinct,

and readily understood by humans. Their problems are a general lack of

structure, modularity for groups of related rules, and therefore poor

maintainability. Also, in complex rule-based systems there are problems

controlling the order in which the rules are applied. That is, a

"resolution strategy" must be provided. Most expert systems of this type

are each essentially one big program where object-oriented design and

information hiding are relatively absent. These latter concepts are

essential for data integrity of software systems. This is a major issue for

any project as big as the Space Station, where the _otal software system

size may be measured in millions of lines of code. The potential benefits

of expert systems are too great to reject them out of hand, especially since

the modularity issue is probably tractable. Modularity in such systems is

being investigated as part of area number 5 above.

Results to date indicate that modularity is possible especially in the case

of predictable expert systems (i.e., systems where rules cannot make new

rules). In fact, virtually any predictable expert system is capable of

being rewritten in a procedural language. In some case that may be even

desirable for part, if not all, of a given system. This was done in this

study for a simple subsystem based upon a system simulator written by TRW.

The simulator, written in C, was rewritten in Ada. Then, fault diagnosis

and explanation facilities were implemented to investigate area number I

(explanation facility) and area number 5 (interaction and modularization)

described above. The source code for this system is in Appendix 8 as

MAIN SIM MOD3.ADA. Results of this portion of the the study are shown in

item--D oF the body of this report. Briefly, the results indicate that, an

explanation facility is best structured as an integral part of the system

rather than as an appendage. Object-oriented modularization promotes data

integrity, and that the capability of retrieving and using old data is

probably best achieved through a procedural language. Object-oriented

design was first suggested by Parnas and implies that each object

(e.g., variable) should be controlled by one module and the resources

necessary to modify or change any of its characteristics should reside only

within that module.

The areas number 1 (expert explanation), number 2 (storage simplification)

and number 3 (decision tree issues) were investigated by the implementation

of a simple engine diagnosis program. The source code and concomitant

comments for DIAG4.ART are in Appendix A. The results are shown in item B

of the body of the report. Briefly, the results show that rules have a

taxonomy (e.g., explanation rules, bookkeeping rules, action rules), and

that the time stamping of facts is necessary for explanations of any past

expert system actions. The need for functional or domain partitioning was

one of the discoveries of this investigation.

Not much implementation of techniques for pruning decision trees of

irrelevant decision nodes (area number 3) was accomplished; however, these

and other data compression concepts were discussed extensively and some

paths of investigation and experimentation are indicated. So-called spine

optimization of the decision tree may provide a capability for explaining in

retrospect how and why a decision has been reached or even perhaps why a

particular decision was not reached. (A spine is defined as the conjunction

of decisions for which the retrieval is a single conclusion.)

In the relatively short time this study has been in progress, what were

originally nebulous issues have become more clear. This is not to say that

they have become more tractable, but at least some of the issues are better

defined than they were four months ago. We expect that this trend will

continue.

_ 3

BODY OF THE REPORT

A. Introduction

The original statement of activity objectives consisted of several items
summarized as follows:

I. Examination of existing C&T systems ccnfiguration and monitoring

problems--

The activity started with an examination of fault detection expert

systems and historical database storage, which is one facet of the

subject area of C&T system anomolous behaviour. An anomolous event

may be defined as the situation when normal sytems software has

been unable to operate according to plan. Some tentative

conclusions for structuring these activities have been determined.

This activity continues.

. Audit trail simplification policies--

Some experimental work has been accomplished for this activity. In

particular, audit trails for fault detection expert systems have

been analyzed. An hypothesis has been formulated, based on

preliminary results which indicates that shallow explanations may

be able to use a limited audit database but deeper explanation

facilities may require a parallel expert system, otherwise the

audit trail database might become too cumbersome. The question of

the effect of utilizing distributed expert systems on practical

explanation facilities has not yet been considered, but that is a

subject which will need to be addressed once the resources needed

by such facilities have been identified.

. Data selection procedures--

This activity is closely related to item 2 but has been modified to

focus upon decision tree pruning and storage depth of unchosen

paths. For explanation purposes one hypothesis to be explored is

to store chosen path nodes and one node level below each chosen

path node for all unchosen paths. This would, at a minimum, double

the storage required for a chosen decision tree but it would

obviate the necessity for reexercising a duplicate of parts of the

original expert system for shallow explanations. No general rule

with specifics has yet been established but some simple subsystem

simulations, namely, DIAG4.ART and MAIN SIM MOD3.ADA, have given

some insight into this problem. This activity continues.

. Criteria development for user-expert system interfaces--

This activity has been modified to focus upon identifying levels of

explanation suited to various user's requirements. It will be

assumed that user requirements will have already been identified.

It will be assumed that short explanations will be supplied

initially and that levels of depth may be requested at any point in

the process. This activity has not seen much progress to date but

will continue in the revised direction.

-- 4

. Expert system interaction--

Intercommunication and hierarchical decision priorities have been

discussed but no definitive assertions have yet been determined.

At first sight this issue seems related to partitioning and

modularizlng expert systems. This latter issue is one which is to

be explored in the next phase of this study.

B. Explanation Facilities and Decision Trees

An explanation facility will be an important part of any system

that is used to provide diagnostics for problems that may develop

in the tracking and communication systems on the space station.

Also, once the most probable source of a problem has been

identified and corrective measures are begun, an explanation of why

and how such actions have been taken will be necessary. It would

appear that there are several levels of explanation that can be

provided. At one extreme, a complete explanation with all the

intricacies and details of all of the inferences used could be

provided, such that the explanation would be effectively equivalent

to providing a complete decision tree (in which only one path has

been followed). At the other extreme, a brief, superficial

explanation could be provided that would only indicate the most

immediate reason why a particular path was selected. This might be

of use in the case when a systems human monitor might have selected

a different alternative than did the expert system and he seeks the

reasons for the selection made by said expert system. In this

latter case, it would be practical to store the path and the

collection of decisions made along the path. However, simply

quoting the path to the given conclusion will not, in general,

provide a satisfactory explanation because there may be irrelevant

decisions on the path and there may be a need for deeper

explanations. It appears that the need for deeper explanations can

only be satisfied if the complete reasoning process for reaching a

given conclusion is available (i.e., either we provide access to

all the rules that were used or we prcvide the complete decision

tree). Such might be needed when a large scale manual intervention

is planned for direct control of C&T systems and in that case

irrelevant decisions would effectively be "noise" in the system. A

procedure is available that would permit the removal of irrelevant

decisions. It is called spine optimization, which consists of

pruning the decision tree to obtain a "prime spine", and which

prime spine is formed by delaying or removing irrelevant decision

nodes in the tree. Most of the work so far on spines has been

theoretical, so it is not clear that the benefits of such removal

would justify the costs.

It may be, in some cases, that the option of providing the complete

decision tree would not be practical in light of the large amount

of storage that this would require for each of many points in the

past. It is possible, however, that a few of the most recent

decision processes could be stored in their entirety and that a

number of older decision processes could be saved in an abbreviated

form (perhaps with Just a simple rundown on the decision path

actually taken with only immediate explanations for taking a

particular path provided).

-- 5

C.

If more elaborate explanations were required for older decisions,

then it would still be possible, albeit time-consuming, to reload

another knowledge base with the facts that were true at the time of

interest and then begin to execute some of the explanation rules

over again, only this time with the user interrupting that expert

system and asking questions about the decisions which were made.

One of the dilemmas encountered with after-the-fact explanation

facilities is that the explanation facility itself must provide

some constructive filtering. Indeed, in order to remove irrelevant

decision information the explanation program must prune and perhaps

redo, albeit with a different perspective, some of what the

diagnostic facility did in the first place. The simplest thing to

do would be to supply the complete decision tree, but this would be

barely one cut above the Automate Reasoning Tool (ART) dribble file

as far as user utility is concerned.

An hypothesis or question which probably is worth considering is,

"Should the explanation facility 'anticipate' queries so that it

would effectively run in parallel to the diagnostic expert facility

but without encumbering it?" Another possibility is to initiate

the building of a more extensive event data base whenever an

anomolous condition occurs.

At this point, without making a definite statement, let us offer a

conjecture. We are of the opinion that storing the entire decision

tree may be a viable solution, after all. It's not really as bad

as storing the entire state at several points in time -- which

might be needed since some problems will be building up over time

-- in order to be able to provide explanations. The decision tree

information would be kept active for a minimal time, presumably

until time had passed when an explanation might be required, and

then archived. We think that the decision tree also has just those

rules used/needed to provide the explanation. If the other

approach is used, we would have to ferret out those rules that were

relevant or reload the entire expert system.

The ART Environment and the Attempt to Implement an Elementary

Simulation, Diagnostic and Explanation System

The ART Environment

There are many advantages and some deficiencies to the Automated

Reasoning Tool (ART) environment. The flexibility allows both

forward and backward chaining with schema (which provides memory

slots similar to frame-based languages), and viewpoints. The

viewpoints may provide a way of recalling how a particular expert

system operated at a given time in the past. This is something

which would be useful for providing an explanation of a past event.

Unfortunately, the first diagnostic and explanation example program

did not use viewpoints and the lack of the availability of file

input-output limited the scope of the program. Useful knowledge

was obtained, nevertheless, and that should help the development of

future explanation experiments.

_ 6

Recommendations on Expert Systems Languages

A few observations have resulted from the first diagnostic-

explanation system. The ART language coupled with the Symbolics

system is a very versatile, albeit sometimes clumsy, approach to

expert system development. The feasibility of developing an

in-house (Ada-based) rule-based language should be investigated.

This would allow data structures and I/0 requirements to be

tailored for the application.

This could also allow the development of subprocedure calls for

both subprocedures written in sequential languages and those

written in the development language (in other words, calling other

expert system programs).

The DIAG4.ART Diagnostic-Explanation Program

Objectives

The goal of this program was to demonstrate at least a rudimentary

explanation facility on a limited domain, mainly as a means of

exploring the concepts involved, and also as a means of learning

the ART language and Symbolics system.

Description

The program, written in ART, simulates the operation of a

four-stroke, two-valve, single-piston internal-combustion engine.

It also diagnoses failures in the ignition phase of the engine

operation, and implements corrective action. It is then capable of

explaining the diagnosis and the corrective action taken.

The program was also written so as to reflect some logical

organization: The explanation rules are at the beginning of the

program, followed by the bookkeeping rules (those responsible for

updating the current parental and subgoals), followed by the

initializing "split" rules, followed by the rules for action at

each stroke of the cycle. The "split" rules were made necessary

because the condition portion of a rule in ART does not have a

provision to match on two OR'ed schema slots.

Program Outline

The engine state is modeled by a schema named CURRENT which is

modified by the action of the stroke and ignition rules to reflect

the operation of the engine. Each relevant component of the engine
state is stored in a slot of the schema. At the same time, each

slot in CURRENT is compared to a similar slot of the IDEAL engine

state. Discrepancies, such as the spark plug not firing, cause

error flags to be set which allow the diagnostic rules to fire. In

this case, each flag triggers one diagnosis, but combinations of

flags could also do this.

Diagnostic rules printout specific error messages and take

corrective action (replacing the spark plug). They also query if an

explanatlon is required. If one is, another flag is set.

The combination of the error and explanation flags allow the firing

of explanation rules, of which there are two in this program.

7

Conclusions

The program served as a learning process, but ended up with serious

deficiencies:

The fault tree was never more than two levels deep (both spark

plugs fail) and did not demonstrate any combinatorial failures nor

did it ever have to "guess". There couldn't be a wrong diagnosis.

All explanations were developed as the program "sequenced" through

the simulation. No explanations could be given after the cycle

continued: the program has no memory of what has already happened;

it can only respond to the current state. This could be remedied

by time-stamping all facts (saving the telemetry stream), but this

would also require a new set of rules to react with past data in

addition to those already existing which react with current data,

effectively doubling the size of the program (at least).

All explanations either exist from the beginning or they could not

be given. The drawback with programming in this style is that all

possible faults and fault combinations must be figured in advance

and coded into the program. This is trivial for a program this

size, but is not practical for a large program. This increases the

size of the program exponentially with the number of components.

It also requires being able to simulate the "correct" functioning

of the system at all times in order to detect discrepancies.

The source code for this program is shown in Appendix A.

Proposed Further Avenues of Exploration

The concept employed with this program would only allow

explanations to be given "on the fly", that is, only after each

diagnosis and/or fault correction. Explanation cannot be generated

past that point in time; there is no memory of the transaction.

To avoid this fault then in order to generate explanations of

past events either:

i. Save all explanations for possible future recall, or;

2. It must be possible to generate explanations from saved

data.

There are a number of unexplored avenues here, such as the

optimum way of generating explanations, the best way of

storing data, etc.

Another concept to be explored is that of partitioning the expert

system. The program, as currently written, does not support this,

but the idea of breaking the system into modules, either

functionally, where a module would perform certain tasks, or by

domain, where each module would service a system or subsystem of

the overall domain. The ability to do so would have quite an

effect on the memory requirements and speed of the system.

8

DI Ada Implementation of a C&T Subsystem Simulator (TRW), Fault Detection

and Explanation Facility with User Interaction

Motivation (objective)

This demonstration program was initiated for two reasons. First to

demonstrate how a sequential software system could effectively

duplicate the results of a simulation written in C and an expert

system written in a specialized rule-based language such as ART

(Automated Reasoning Tool by Inference Corp.). The second reason

was to demonstrate that in contrast to conventional rule-based

systems a sequential system can more easily store facts in a

database and access them for an explanation facility. An ancillary

reason was to examine how moduiarization could be used when

implementing both diagnostic and explanation facilities.

Structure (program outline)

The program, written in Ada, consists of five modules called

packages.

MAIN SIM MOD3

This is really not a module but rather the driver program for

the demonstration system. It essentially structures the

system by calling subprograms. A simplified algorithm for

this program is given in the following enumerated steps.

(I) Initialize the communications system database;

(2) Check for inconsistencies in the data, and if there are

any, call a subprogram to ask the human monitor to

correct the data;

(3) Call the equipment emulator program;

(4) Based upon the measured equipment output and the status

of the switches, determine the condition of the equipment

(i.e., diagnose the probable cause of failure, if any);

(5) Call a subprogram to display the status of the equipment

to the human monitor;

(6) Call subprograms to provide an explanation of the

diagnosis if requested;

(7) Call a subprogram to interact with the human monitor to

see if another simulation is to be run;

(8) If the human monitor wishes to stop the program then

terminate else call a subprogram to ask the monitor to

update the simulation parameters and then go to step (2).

-- Structure (program outline) - continued 9

Y OUTMOD
This package contains the equipment emulator subprogram. It
effectively simulates the action of the hardware given the
parameters in the equipment status database.

o FAULT-ANALYZE

This package contains the subprograms which measure the

observable parameters and determines the probabie fault, if

any.

. EXPLAIN DIAGNOSIS

This package presents an analysis of the reasons behind the

fault diagnosis when requested by the human monitor.

. I 0 SIM MOD

This package is the one which accesses and updates the

simulated equipment parameters.

The source code for this system is shown in Appendix B.

Observations Based Upon Results

Not too much can be asserted with certainty but there are a few

points which the work suggests. Among those are:

I. To explain even a moderately complex fault analysis decision

it may be simpler to parallel a part of the decision process

rather than try to filter the information from information

written into the data base. Again, a trade-off exists between

the classical performance parameters of execution time versus

memory (primary and secondary storage). For example, in the

diagnostic package called FAULT ANALYZE the principal program

DIAGNOSIS tests the output power EQUIP Y OUT LEVEL and if it

is less than -145 dbm it calls a "low _e_el"--program to

examine the on-off switches in SWITCH STATUS. If the main

power switch is "ON" then the oscillator switches are tested.

If the selected oscillator is "ON" then the program "reasons"

that the selected oscillator is inoperative. Now when an

explanation of this event is requested the EXPLAIN DIAGNOSIS

package is activated. Examining the code for procedure

EXPLAIN DIAGNOSIS we see that it parallels the reasoning of

procedures DIAGNOSIS and SWITCH STATUS in package

FAULTANALYZE, that is to say, it has the same nested "if"

structure. The only thing it adds is the diagnostic message,

"We found the selected oscillator switch to be ON, the power

output was in the noise level, so potentially we had a

catastrophic oscillator failure." If the DIAGNOSIS and

SWITCH STATUS programs had been more cooperative they could

have selected the appropriate literal value for an enumeration

variable and stored this "hook" in the data base for access by

the EXPLAIN DIAGNOSIS package. Then all the EXPLAIN DIAGNOSIS

procedure would have to do is examine this variable by virtue

of a simple "case" statement and supply the quoted

explanation, "We found..etc."

Observations Based UponResults - continued 10

a

.

.

Such a "type" definition for the desired variable might be:

type SwitchPermutationType is

(POWER OFF,

POWER ON OSC OFF,

POWER ON OSC ON);

A variable of this type could be set equal to one of the

enumeration literals by procedure SWITCH STATUS in package
FAULT ANALYZE.

Communicating with a user and _rriting facts to files and/or

ephemeral data storage which facts are useful for explanation

facilities may require interfacing a given expert system to

procedural language I/O routines.

It seems that it should be possible to modularize a given

expert system to some extent. For example, a FAULT ANALYZE

subsystem could in large measure be separate from an

EXPLAIN DIAGNOSIS subsystem. There would probably be some

shared data and possibly even some shared utility routines,

but the main thread of each subsystem could be separate.

One of the deficiencies of this implementation is that

explanations are done with the same database as the fault

analysis system, and before any recovery corrections are made.

Thus, the database is unchanged when the explanations are

made. The programming system could easily be altered to allow

changes in the data and still allow an explanation after the

fact. The technique employed would be to create two variables

for each entity, one for the old value and one for the current

value. This is easily done in Ada or in any procedural

language but is more difficult in a so-called expert systems

language. This may indicate that any production system would

require its expert systems language to provide an interface to

procedural language subprograms.

Future Direction

The next task which may be proposed is to expand this demonstration

program to include more realistic fault detection with more

realistic "hook" data generation. Then the explanation subsystem

could be restructured to use these improvements. A parallel system

in ART will also be implemented (if feasible).

ii

SUMMARY OF OVERALL RESULTS AND RECOMMENDATIONS

Am The issue of storing the complete decision tree versus only storing the

knowledge base for an explanation facility has not been resolved, but a

few alternatives to be explored have been identified.

I. Store the decision tree in its entirety with perhaps one branch

node for paths not taken at each node in the decision tree.

, Build and store a complete knowledge data base whenever an anomaly

occurs. (This could be any undesirable outcome such as the

software system displaying unanticipated behavior. This could be

signalled by the astronaut monitor or the expert system itself such

as when a system failure is detected by the low level systems.)

Q Store only the facts with appropriate time stamps, and when an

explanation is required, load a system containing rules similar to

the original expert system so as to effectively parallel the

operation of the original expert system but this time allowing the

user to interrupt this parallel system to ask for appropriate

explanations about paths not taken.

These alternatives are not mutually exclusive but all should be examined
in future work.

Bo The issue of the features of an expert systems language which language

is appropriate for development and perhaps implementation of software

systems which meet C & T functional requirements needs to be addressed.

This recommendation is based upon the experience acquired by the

structuring of a simple simulation and diagnostic-explanation program

written in ART, (DIAG4.ART in Appendix A), the program had to be all in

one module. In addition, there were the file I/0 deficiencies of ART

and the difficulty of storing more than one value for a given parameter.

As a minimum any such language should be capable of interfacing with a

compiler language program in a straightforward manner.

Co It is recommended that the issues of object-orlented design for expert

systems be raised and investigated. In addition, the concept of

supplying adequate "hooks" for explanation should be addressed early.

Explanation facilities are best implemented when they are built in and

not just "added" as a separate entity. If this is not done the

explanation facility requires additional resources and must parallel

some previously "paths" already trodden by other systems. The issues of

object-oriented design, modularization, and so-called information hiding

may not be just academic but a necessity for implementation of any large

and perhaps distributed control and monitoring system, be it a

procedural and/or rule-based software system. The topic of object-

oriented design for expert systems addressing anomaly detection,

recovery and explanation was examined by structuring a procedural

software system in Ada. The system consisted of a driver and hardware

status simulator, fault diagnosis, and fault explanation modules for a

small radio frequency communication subsystem. Implementing expert

system functions in Ada indicated that modularization and object-

oriented design indeed are feasible without compromising effectiveness.

APPENDIXA

Source Codefor DIAG4.ART

an Engine Diagnostic/Explanation Program

w

MAX:>overland>diag4.art.23 12/01/86 13:08:16 Page 1

defschema

:: -'- Mode: ART; Base: I0.; Package: ART-User -'-

engine-state "state of engine - beginning of intake-stroke"

(carburatlon good)

(piston-direction descending)

(sparkplugl good)

(sparkplug2 standby))

(de fschema

(defschema

current

(instance-of engine-state))

ideal

(instance-of engine-state))

(deffacts state

(state-name intake))

(defrule

=>

compare-ok "compares current and ideal if same"

(schema current (carburation ?state3))

(schema ideal (carburation ?state3))

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ?state4))

(printout t t "compared ok" t t))

(defrJle compare-not-carburation

(schema current (carburation

(schema ideal (carburation

(defrule

=>

(defrule

=>

(defrule

=>

?state3))

~?state3))

(printout t t "carburation compared not ok" t t)

(assert (error-trap carburation)))

compare-not-direction

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ~?state4))

(printout t t "piston-direction compared not ok" t t)

(assert (error-trap direction)))

no-ignition

(state-name power)

?ignition <- (ignition fail)

(printout t t "sparkplug did not fire" t t)

(printout t t ?ignition t t)

(assert (error-trap ignition))

(retract ?ignition))

intake-stroke

?state-name <- (state-name intake)

(schema current (carburation ?state3))

(schema ideal (carburation ?state3))

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ?state4))

(printout t t "ist Stroke - Intake Completed" t t)

(modify

(schema current

(piston-direction ascending)))

(modify

(schema ideal

(piston-direction ascending)))

(retract ?state-name)

(assert (state-name compression)))

(defrule compression-stroke

?state-name <- (state-name compression)

(schema current (carburation ?state3))

(schema ideal (carburation ?state3))

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ?state4))

=>

(printout t t "2nd Stroke - Compression" t t)

(modify

(schema current

(piston-direction descending)))

(modify

ORIGINAL PAGE IS

OF POOR QUALITY

MAX:>overland>diag4.art.23 12/01/86 13:08:16 Page 2

(defrule

(defrule

=>

(defrule

(defrule

=>

(schema ideal

(piston-direction descending)))

(retract ?state-name)

(assert (state-name power)))

(printout t t "Did sparkplug : fire or fail?" t t)

(assert (ignition =(read))))

power-stroke

?state-name <- (state-name power)

?ignition <- (ignition fire)

(schema current (carburation ?state3))

(schema ideal (carburation ?state3))

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ?state4))

(printout t t "3rd Stroke - Power" t t)

(modify

(schema current

(piston-direction ascending)))

(modify

(schema ideal

(piston-direction ascending)))

(retract ?state-name)

(assert (state-name exhaust))

(retract ?ignition))

exhaust-stroke

?state-name <- (state-name exhaust)

(schema current (carburation ?state3))

(schema ideal (carburation ?state3))

(schema current (piston-direction ?state4))

(schema ideal (piston-direction ?state4))

(printout t t "4th Stroke - Exhaust" t t)

(modify

(schema current

(piston-direction descending)))

(modify

(schema ideal

(piston-direction descending)))

(retract ?state-name)

(assert (state-name intake)))

switch-plugs

?error-flag <- (error-trap ignition)

?state-name <- (state-name ?name)

(schema current (sparkplug2 standby))

(modify

(schema current

(sparkplugl fail)

(aparkplug2 good)))

(retract ?error-flag)

(retract ?state-name)

(assert (state-name compression))

(printout t t "Sparkplugl set to Failed" t t)

(printout t t "Sparkplug2 reset from standby to good" t t)

(printout t t "Is an explanation desired? yes or no" t t)

(assert (explanation-flag =(read))))

no-plugs

?error-flag <- (error-trap ignition)

?state-name <- (state-name ?name)

(schema current (sparkplug2 good)

(schema current (sparkplugl fail)

(modify

(schema current

(sparkplug2 fail))

(retract ?error-flag)

(retract ?name)

(assert (state-name compression))

(printout t t "Sparkplug2 set to Failed" t t)

(printout t t "Is an explanation desired? yes or no" t t)

(assert (explanation-flag =(read))))

'OC, QUALITY

MAX:>overland>diag4.art.23 12/01/86 13:08:16 Page 3

(defrule Ignltion-fire

(state-name power)

(split ((sparkplugl current good)

=>)

((sparkplug2 current good)

=>))

(printout t t "Did sparkplug : fire

(assert (ignition =(read))))

or fail?" t t)

(defrule

=->

explanation-I

?error-flag <- (error-trap ignition)

?ignition <- (ignition ?fire)

(schema current (sparkplugl fail))

(schema current (sparkplug2 good))

?expl-flag <- (explanation-flag yes)

(printout t t "Sparkplug I did not fire. Therefore it was replaced by the backup.

(retract ?error-flag)

(retract ?expl-flag))

(defrule explanation-2

?error-flag <- (error-trap ignition)

?ignition <- (ignition ?fire)

(schema current (sparkplugl fail))

(schema current (sparkplug2 fail))

?expl-flag <- (explanation-flag yes)

(printout t t "'Sparkplug 2 did not fire.

Sinc¢ it is the backup sparkplug,

(sparkplug 1 has already been considered failed)

there is no remedy.

_icwever, since it is unusual to have both sparkplugs

failed, the problem may reside elsewhere." t t)

(retract ?error-flag)

(retract ?expl-flag))

" t t)

(_iGi_iAL _%_CE IS

OF PODR QUALITY

APPENDIX B

Source Code for System MAIN SlM MOD3.ADA

a Communication Amplifier Diagnostlc/Explanatlon Software System
w

,'4

Q)

I

I-4

t

t

_ i ,_

• •

_ '°

o° .°

°...

0 o
_Z

I I
r-, I_
,..4 _-I

E
I..4

_1 I

t

°_

_H Z

0_

OU_

.H D Z

I_ I

U _

O0
U_J

I I

® I I

ID

or.-u

_gg

U U

n

o

4.1

'1:1
@

'0

I

ea_

I"4
I

I

•,4 _'_
U II

e_U

0

@

_1 ,..4

le
u

I ®
u_

u

i-i

0

0
U

@

1.4

o

I

0

1.1

®

0

0

0

®

ii

t

®

e_

e_
<

I

ral
I

_I _

rn<

_ 0

.. 0.

.o ,.
_rN ON

I-'- I_

I I
_1:I Cl

as m

I I

0

I-4

(,1
I

}-t

0

--0
i:

I

H
Ul

I

--I-I

T ""

Mt.l

.°

r_ _

r._ 1",-

4-I

' t

,<

I

D
0

I.i

u
0

E4
al
U

@
.C
a-;

o
Ia

IJ

m

i Ill I= to I
.._ m '._ o :l

In .,-I tl I._i4

_ _" _ O_

.,-I _. ._ _ t,,
G :2 G 0 • U
0 m 0 I=

_ II _1 _ .

"40 I:I m :3 ®

n'll ? -_ ._ ,_ o 0• o _a .]l:

=H -_0 -_ ._ "_ _ I

® I _H i_ o em _ I

•_ @ * _ ,,-I .,4 (J _1

,,-I .i.I _ @
i: el _I' _ _t,_ 0 0

:l .,-m H ,,-I H H H _l i_ l_

• • • * * . "l_

e

IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIII|IIIIII

H
,<
(L

I

:>
,-.1
,< _ ..

Z I
,,_ _ ,-1

I _
0 I>

'< I" I

i,,i l,.1 I

"_l -I>

ut_l_

0 m b.10_

I _""

i: _ ll:

I#1 ll_ ill r./1
I -_i

0 _ -,-1

I I,'_l_H U

I0

,- .- "=0 I

o _ _ _ ,
Ill o "_ _1_'1_

.- _Id_

°l o .-i < ,, o

o m_ o -_ E_

_H 0 _ _ m ,. H
-_m e _" . _ U "'_ - I I

• o. =, .._ _= ,_ o
•._ H _ H _ I li, ll_ l>li H

I,"l Iil ll Ili _,'1 _ _ l_

mo _0 .,_,_1 I I I 0

_i, u "" uuoool I IID OLO101 H
"I_ _ • I= -_ _ l_
i_i_ I _ '*M

l,i :, =.< I I'--':- I_,_ = o
H_..1br_ '_ ._ I

.il ,l: ij I_ I_ _l Ill ltl i r,Q Oi Oi _ _l i

_PrA

J
_ H

•,-I f_
_J

,-1

I,-1 o
a u_ I

_ I

l_H

l_ I

01_1_>

I _ t,1 _.1
I _,-I> I

•. _I_

Z _Io'I°I

,_ O_ I

H I _
n

H I

O O

_ M • H

n_ 0 -_ 0 I_ I
• H • H

n'l

0

0
0 14

I

M

e

0
u

O

I

H

I

NH

N _

u
e
Q

u

o _
_ o

u

@ •

_ o
O _

I "
_ o
H _

_- ,-4
M

O 4-1
.a O

el.

I.i

® ;
° ;

i °d =
i1.1 ®

U M $

M

4 O

.M

D

®

U
O

• m
_J •

@

o

H

_,..q A

v

@

en

0

I
0

I
1.4

I 0

• °

_w

9_ ,°

°..0

o. ,0

--ooo

e0

,-4 ,-4
I I

I I

,-4 ,-4

0

I

I

I
k.l

0

l=.l

I
0

_ s...l 0

1.4

¢
4

"e1A

t_

r_

-- 0

I
l¢
I-I

I
--0

I
H

<
1- Q

• o

f=.,

•o

o,

o,

r-r'-

o_

T

! I

m ,-I
e _

e
e

i:

o
ul

I

=¢
H

I o

ORIGINAL PAGE IS

OF POOR QUALITY

_'A

0

I

I

1

m,<
° ,

au

°,

r_ i_

I I

0

I
t_

<

m

@
m

U

o

@

3

1,4

_F FOOR QUAL_7_

A

v

@

e_
Q4

O_

O

O
E

X;
H

I
O

I
H

• •

>

'I_ .o

,_U3

....

oo=o
I'- P*
00 co

I I

I I

0
m _

I
5-,
H

I
0

w H 0

,-I

,-4

<

0
E

I
0

I
H

• o

r

_o

,o

o--c,

o o

r_ r_
, _o

• ..4

m
.,-t o.

(.1

0 M

_ H Q

E_ _n

On ,-
J ®

®

g

@
el.

o

• ,,t @

m C

_f _ ._ +-, o

. _'.. :3 ._i

,,'4
v

_,= .,.4 4J @
• @ ® 0 "0

.= ._ .= .4 = I

= = = I

® • • _t 0
m m = '_ I
® @ @ _ H

I I I I @

--1

H
o_

oRiGiNAL PAGE IS

OF pOOR QUALITY

,"4

1)

M

1
C_
O

I
E_

-- 0
I

• °

__1_ ,°

r-,- o_

N .-4
o, ,o

_ o

-i

o 0

I I

"-4 fN

I.--Q

0
E

I

0

. RI
o

U

• ,._ Cn 0

r_ U _J .,-I 0 "_ I_

I U I I M
I _1 I _ I

0 =1 I
.... n_.. I

• U I _..1 =1 _ --

I_ _ o0_

._ _ _ _,.._ r_,_
(n , _ o

o _ Ill I_ _-.1

o
I ., _ ,, .1_
I " _ :_

nn ",_ ,-1 I _: 0

c,.._,._ I I 1
•.4 - _4 _ I_ _

" I t I:)000
U_o I

_1 _'

,1 I 01 I J_-_ H H H

I _ a_ [4 M _oaoao'

0

I

_ I
Ul,,_

..QM
_:Ol:
HI:_.

;.10_
I

J=._ U
4J L) 0

O

I
E_

0
I

@

i)

1-1

^

v

I1
¢

I At4

0 _ _Q _ n.

I_,_ _ _ ,_ _'_ "

Or_ 0 n..._ -0 e - -

M ' _ II II II II II II II II II II

n

I

I

0000000000000

UU_Q_QQmQQ

U_UUU_U_UUU

_oUUQeQo_UQ

o° :: :N :
o o o

m U m
m

v

I "°

I

0 ,-.1 •

I
O
0

I
E_

0

I

r_ r,1

o

o
Q

e

,--1

E_

,¢

M uI

O0

UU
¢4, _n,

• •

I I
QQ
O0

I:11_ I

I100
• I I

U

@

U U

O
4d

_ °,

O
QO

O

0 1
I_"

t_ 0

"" I
or _

-,H

U ®

I®

I:1

00

U

0

U

e

n.
I

®

O

®

_ O

®

@ I¢1

e_

111

J

w
.°

A
1-1

@

m

0

I

- 0
I

• °

_w
•_1 ,°

>

r_

,, .°

I"_ r'-

,7

I I

,-i

--0
!"

I

0

,-4 i'"

,o O0

u I I

I I v I> .. _a _a _a

., ,, @

0 _ O_ t_ _, u_ II II _- _ I

,,..] _> cL1 ,- _.1 I'- "_ " _ _ "_

t_ • O_ [,.I , I ,-l_.._ _ _.

•, I I_ ¢,.I _..n m._ _ ,_ _a

_ _ '._ ,- _ I-, I I I o

® I II II rLlun m II o mu_ G::_ _ I *
_ ¢_'_ ,* , I_ I .,-,I _.I ._ ._ _._u_

.,_ _ ,_,_ _.__ ,, ®v
I _ • • "_ o ® _ :_ _ I I _', I

:1 ** @ • m .. II ® .,._ • _ o I I II
It ,-I ,-'I ,-_ II I :_ _l l _" I_ II "

®'_ I I _ m l 0., I v._ _ o _-_.- ..

l_ II ,lU l_ _l_ _l=l II ,'4 _f_ _-_ _ :9 @ BO t .,-_ l> I,,.I

I I_i I I I I I ® o -._ r_.=_ _®'_ _I '41l-*
• _ Io c_ • i .- It '-' • .- IM o',,_ ,-

13_ _,4_ .,.,_ _ u,-tll_ ._ • n.® .,4 _0

'_ o I

.. _I_ I

• _ I _-

. _ _.l, _ _ ._ ..., _0_ I

O_ ",'_ ® _ _
_ i:i _0

00_
UU_

@@@

_t_l_l

_000

U
@

_ooo

_ooo
ooo

_000

I

0

I
r'-

®

n 0
.H i)

O0
.ur

I

m_

_ m

o,,,t

®

I,%

f o
tJu

oo

,-4

J

Z

I
E_

r..

-d C_

E_

fx;

co

m

I I

,4 s._

.1

-g
I

e..,

U

FA
I

U

I

O_

U

*. °, ..

0 I_ 0

O_

I H ._ _ _ -_

,_ _ IoiO I _. OiOiOi

¢_I _ _I_I_I _l_l_l_I

H

.... ,-1 _ r_ 0

HO_ _' I '._

_i_i_i _: _ _¢

I I_ _ _ _ I
0 _ _ _

U V U ,_

._._ _ 0 0 0 _,,

.,,_ .,-_ U _ _ _ "_

,,¢

b.1 ._1

O0
UU

I I

"_i"_ i

®,-I,..I

U
¢i

OOU

N_O
._100
_00

O0

i.i

e_
-,.4

0
4_

@

1.1

U _

® o

® o

U ®

n,_

I®

I ®

u

1.1

o
u

@

0

I

o

,-4

-,4

®

eu

_ 0

®

0

,.. ,..

"U o o

e_ .,4 .,._
_, U U

g.g.

@

U
0

® _-_1 _

@

i_ ._

_3

0

H

_ I I
,_ :- I

.-I

ORIGINAL PP,GE IS

OF POOR QUALITY

0

I=I
I',I

,-I

Z

I

E_
.I

,<

0 •

I_I I,.I
_' l.q

r.- r..

co
o_

7

I I
o0
,-4

m
.,-I

I,.I

- r

,...I

:3 M

lid '°

I>I 0

0 t

II.I

U E

In

=
U

¢:I
.,-I

l.l

u1

0_

r_

U

In

O_
g.1

(31

u_
D

U

't:l
@

U
o

@
@ r_

@

U
o

I

J

,_,"_oO_R QUALITY

v

i
¢

,.1
4

I

.1

b.,

, .

H

r,a

1:'-= Z

t I _ 0

=

4_

4J

o
o_

,=4

mO
mz

0 _a

-I b3 _ ._ r,,.1

H r_ I

_ o I

,-1 ,-1 el,_

• _ _ '. 0 •
-- _, _ _

0 0 0

0 _ I_ I

0 _ _ _'0._ .-r=1

LJ

I=
.e4

I

I I

o I _

_ m

_ E

l _

1 13 " _ _

_ _ _ II

I_ I oo
o I I I II _ I I

m _ II
_000 _ _ _

IIII _ D oo

Jm_

I_ I

=0 _

@ @ ._ _

@ @

0
I.a

• ,-_ 0

E.t

@

,,

I

I

_0

oo_ _ I

m_m

_i_i_i __I_

_ _._

_ _._

om

@

._ _o
_ooo

ooo

0

w
4,.I

e.
0
0

0

I
e,
0

0

m ell

I_ _ ®

t _ ,--1 ,,1=

0

m

i °

m _

OF_Gp_q,_LPAGE [_
OF POOR QUALITY

A

0

_3
H

U3
0
Z
t9

I

H

,<

,<_

,-4 P_

.. o,

o

r- P-

YY

! I

_H

O
Z

,<

e_

eoU

oo

oo

m

i.a

.a

o

u3

o
Z_

,._

_o

I
zr'-

O,,._
• ,4 _

U _

_.,.4

U m

® O

® O

U ®

- ®

"_ o

I®

U _

H eL

U_
,,<

,,<
00

U

0
u

®

o

I

O

,.-t

®

O
n.

O

,<

O

"I:1 0 0

U u

-,'4 -,-I

@ @

@ ®

U U

®

U

O

u @un

@

O

,<

e_

,< •
m

_O

N

• , lal I-,I

I_ I I
I,l _0
V= l_' I

. 1

0

I

H

r,, _
! ill

r_

0 ¢)

I"- I_

¢ o

-?

I I
• -t

.4

0
r.

ill

ul

el

o
e,

I

.-4

r.1

0
n

e

U

ul

I
e_

r.1

I
I

@
rj

E_ .U

0 _ _ "_

e_ ® e e
• _ U_ _ _ •

m I o _ U

II o = 0 ._

_ _1 n" O

I I_ = _

(_ ,.-3 -._ 0 o " ®
r_ r_ _ U'_

B=_ _ *_ O n" ®

Io oo_ em

_ I _ o
_l r'- I _ _ m

J I - I _ H .,_ ® "
_ .,4_ _ I o
r,a B.] H _ _ .,..I

_.. I u .= m •

I_.1 _.1 _1 _ o o o n,.,._

a,,:> I I Ic ®m

_ _ D D D I I I:I4a

Iooo .. ,_ CIH

.1 I I m _m I

Q H n._ 0

I=4

1,4 M O_ m,-4[*1 (_ +4 m
_ _ U

@ _ n. 0 .4

@ e_ ..-I 4J

0

I I I
in. I I I

'_1 -,-.I
O

44 _ _ 0 ta..,

._ ® I0
:.4 _ "-_ II

O_:3_ m

I _ .,_ _3 _J
I _0 _m_
• . _ _14 _1 _

O

I m ._

_o _ U 0_

u 't_ .,,._ ®_'U

M,'_ _ _10E _1

v

Im

I
E-I II

_D
'-_0
o,.-I i I

II _ 0 l
• , ,1"4 r'a I_r_ I I I

000_ _._

I I .=

u_ I
u10

I

r..

0

®
_4
@

e._ ..
u

0

111 1.4

0 0

,_ = I

._ ®,_

m
o ¢4 _.1

@ i/)

O ._ ',3

U_

• - e.i_ • _ _, ,-4 I1_

I _,_ .,._._ •
II _ _-_ I .,.,.+.,e_
,. n,® _ .U 0 0

O :_ oO_ I_ m I
1 ° " Elol H

a,'+ :_OH_ m I

m l_a_
m i i i o ®_

@

....-4

o

®o
n

0 _'_

U

u o

I,_ O _

,--t _ Ul

•,_ _,_

@ ®

,.._r

O ® OO

I I VI ,-

0 _ 0 ',"+
le_ I

A

0.

O

4 _

._ ®.-4
0 _ m U u

,-.I 0 =I.U
_1_4 0 0

e,n e @

O ._ _'

o Id o

* _ U
0 O_ 0

o _ _ 0 @,_,-

t_l @ U 0

a ,_ n._= I

o ul .u :_ t_

_= .m _0 m E

._ o _ _
U _ I o _ em

:_ _' _ _._oe I

m n. I _ ._ o ._

II I _l r_ _ u'_
.. -- _ +-I 4J @ LI _ I_

0._ _0 I II 0-_ 0 0_1
=_ _ ;= _ _ .. :_ .,.+ .

I--_ I _ ® ® ® :,"

r_ I I H I _ _0_
< I I m _ I I
.m I I _ x:

b./ _ I I I t _),+ I= _ +,
OI _1 0

,'_ ra _ r,.3 I

in .+.i .ll.l

'--I"

,-4

_A

0
Z

I
Z

,-1

N1

X _

°,

°,

_ o

,-I

I

' I
,-4

ul
,.-1

E_

0
t

e',.4

_1 .- ",.I .El

II m"_

:3 U_o

0 0 • •

I ,_ i

m i i

A

®

.,.4

0_
0 _'_

J,J

_ • O

O u

4,'o

U _ U

O @ ,"_
,-t @

_J

m

• .t O

.-I @

u

.,.4 .,,4

N

I I
I I

U

u
@

.,4

o

_ _0

_ O_ 0

_ I

" _ _

Ot_ II

_" I
.,_ u_ _U

,-I

® M
._ ,

0

n_
N

I
I 0

-g

_J
_A
o ,

Ii ®

0

= mO

,_ o_

0_

4_ 0
-_._ ,-I

t_

0 -,'1

•-_ O_
_- ®

H .u
E_ .. ,--t

0 O_UO

I r,.ll_ _ _:

(> u} I I 0'_ "-

_ _ _ .,._.,

u_

'_ I-_ 0

M.,.I
M _

" N

Cl
@

00_

III

O

e_ Nr_O0
•,4000
u}ooo

__ _ .o°°o °

[U ®

ce
o

f-.
_o

Y

I

n_
@

•Q 0
•,-I t_

u_
o

O

'_ ..H

O I

O_

_ @.,._

_U

@ O _

-,, _

_ O

_ _ @

H _u_
I @ O

I:1
0

U

4#

0
U

i.I

O

I

O

41

0

o

@

O

@

@
I.i

@

'_ 0 0 0

u u U

_ =.,_=

_ U U U
@ I1_ @

m m ul

U U _1

U
O

111

e_

0

m

_ @ tJl
_ • 0

_.. ,. ILl I

"_ _ "i¢"i

_I I,.I _0

H m _ I

c_

OFF

_CTIVE
3.0

7.0

-60.0
3.0

INITIAL SIM.DAT

_,-.....WS

@

oo
!

e,
.M

,--i

ct'l

---o o

co

Z

o
r_ 0

0

.11

0

÷ -. ÷

0

I

H

-- rJl
I

I-i

0

®

o

4;

LJ

m

0
@

@
I

@

0
X

IIIIIIIII I Illl

. ,

4444f4494 g 1ft4

.... =.... °.°,.,,,, °, °.

IIIIIIIII I IIII

llltlllll l IIII

_J

,M

_ ..

,-_ 00,_

.... 0 +-'+
I I'_

0 _00_ '" ""I

_ .0 u_ o
0 _ D :::, (" *- _ _"

t.,.10000 _ .-

_o_o_ o o ,,. ,, . _ I,,,I I,,.I ,'_

I.-1 • .,-1,-.1 I ' _ 0 _"

_ _ _ H _ _'_ 00 H H,..1,,..1 _

,¢ _ _,,_,_ _ H H _ _ '_H _,} Im I

,a lu],..l_mcn I I ,-I ,..I,-I,..IZ '0

,-I

I I o o I

HH 00H _

_m_00
_ llHHHMH H _l_lm

llmm_ _I

lj

l.q

0

E_

0

d

U IJ U

l> :> :>
0 0 0

0 0

_, d d

G

0

,--1

0

I./

N M N
i_I l.d '..d,

0 0 0

0 0

U _1 U

_, 0 0

U U _

0

000000 0 000_0 00000 O0

,..., ,.,,,,°. °

OOOOOO O OOOOOOO OOOOO OO

OOOOOO O _OOOOOO OOOOO OO
_OOOOO O OOOOOOO OOOOO OO

H H H H
m

o o I I o

H IOOH H _ 0 OH

Ioo III I Z= m

II_H_ H II HH

moooo_ _ _ _o

4 H

m 0 H

N H

@

Ii

'0

0

@
El

==

O

@

0 _llll ,,_

INHId I

O,_IGINAL Ph,_£ _S

OF POOR QUALITY

O4

0

!

r.

"--F

0

r_

i- 3
I

r_

U

0

0
Z

d

®

,--I

.2

U

ul

0
t.)

L_

e_
It

.J

@
,-1

_oooooooo o oooo

0 0__ _ _

_>

...... , °°0°

0

0000_000_ 0 00_

+ -. +

®
m

al

0

II

I
o
c3

o
o
o

0

ul
I

I

(,,1

o

_+ +

®

_eu_o

_._U

_exe
u DD_

IIIII

_+ +
m

0

OF PG_R QUALITY

r_

_W

I

O

i _- .. +

O
e,
b_
u3

O_

B

4- -, -I-

r_

O_

r_

• O

E
• I-4

® I

_3

n_ r..

o ,-

,-4,-40
.H

o 0 U

.,4

O _ _11_

@

m

@ ,.

O H

Ul 0.

_ o o ,, _ I= J

,c:

,.-4 _ _ _ ,. ul _ _ W-_ ®

0 _ _._._ O _,-_ ffi ® _ O _ _1

,,_ _.,_ _ O O O O O • _ O _ _ ®

-F -. +

,.W:

r',

@
i

El

Ew

rj

0 0
,, ,° °.....

0, .° ,, ,0 ,0 ,. ,,

...... °

00000(_0
,, °.... °
0(_00000
0(_00000
0, ,..... ,.....

0000000
0000000

,°

0

,'4

'O
O

O (J .°
•, .,'4 _ 4J

m .D cu
._ u o 4_

3 ,- _ O
@ 4) .,

0 _. _._ ,-_ •

O _-_

"_ ,, ._ .. 4,.' _'

_ _ 0 _

I_ _ O _ ._ :_

O _,-_ _1 _ _

,g

A

@

_ ®

@ "_ "q

.,=1

o U

,-4

_ .,4

o _ @

O • _

._ o _

®

e, O '_

•,_ ,_

O ,,£1 .,'_ _

_' _ 0

o

II

II

@

U "'

,-'4

@*--I
0

@ ®

0

@ @

U

0 @

t
eq

O_

-,'4

e_
u

@

_ .,.4

.,-4

O _

U

O

O ,-4
g.l o

" O

@ o
m

ttd

.,,4 O

o 4

0
i-4

0

O

I

I

N

O

M

I

\

I..4

