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ABSTRACT

In this paper a tuple space based object oriented model for knowledge base representation and
interpretation is presented. An architecture for managing distributed knowledge agents is then
implemented within the model.

The general model is based upon a database implementation of a tuple space. Objects are then
defined as an additional layer upon the data base. The tuple space may or may not be distributed
depending upon the database implementation. A language for representing knowledge and inference
strategy is defined whose implementation takes advantage of the tuple space. The general model
may then be instantiated in many different forms, each of which may be a distinct knowledge
agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA
model as well as using more well known message passing mechanisms.

An implementation of the model is presented describing strategies used to keep inference tractable
without giving up expressivity. An example applied to a power management and distribution
network for Space Station Freedom is given.

1. Introduction

In this paper a tuple space based object oriented model for knowledge base representation
and interpretation is presented. The model provides a general knowledge language that is at once
expressive and extendable. This allows it to be applied to many different domains including
knowledge base management systems for expert system shells and architectures for distributed
knowledge agents.

The field of Distributed Artificial Intelligence (DAI) is very complex. Besides the problems
involving representing any particular agent, there is a whole new set of problems that are
concerned with how multiple agents communicate with one another. This problem is more than
just defining a mechanism but also involves protocols. How does one model of communication
enhance the ease of solving one problem over another model?
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The model presented in this paper supports DAI at a low level. This model presents a
framework for defining multiple knowledge agents that must coordinate and cooperate with one
another to solve some problem. This is different than most papers about DAI in that most papers
are concerned with problems of communication and cooperation protocols. This model defines an
architecture that supports the definition and implementation of diverse knowledge agents and their
necessary protocols as the problem requires.

1.1. Three Requirements for Representing Distributed Knowledge Agents

There are a number of requirements a model will need to represent distributed knowledge
agents adequately. Four interrelated requirements are identified and discussed here: Domain
independence and expressivity, control knowledge, and communication.

1.1.1. Domain Independence and Expressivity

Domain independence and expressivity of a model are very closely related. Domain
independence is concerned with the ability of the model to represent problems from any domain.
The particular representation and storage of knowledge is important to domain independence.
However, more than simply being concerned with expressing a problem in the model, domain
independence is concerned with the ability of the model to integrate with the various problem
domain environments. Expressiveness is concerned particularly with the ability and ease of stating
a problem in the model language and not how the problem might have to deal with the environment
of the problem.

The requirement for domain independence is concerned with the ability to represent a
problem in the model and integrate that problem solution into the problem environment. This really
implies that the language of the model must be extensible. It must be possible to enlarge the
language using the base language as a start. This includes the ability to change inference
mechanisms and define new models of inference. While most languages are concerned with
representing data, this language is also concerned with representing control knowledge.

To support this requirement the language of the model presented here is a rule language
built using object-oriented programming and extendable using the objects of the language. Rules
are a primitive object and are evaluated and interpreted based upon a generic view of data stored in
an independent database. A basic rule group object is provided with a forward chaining inference
mechanism. A rule group may also be used to control the execution of another rule group thus
enabling the definition of new inference mechanisms using the language. Additionally, more
specific rule groups may be defined as sub-classes of the base rule group to support different
inference mechanisms defined with meta-rule groups.

The other hand of domain independence is expressivity. There are at least two aspects to
expressiveness: domain knowledge representation and control knowledge representation.

The problem of expressivity is that as more expressivity is allowed, along with more
domain independence, the more intractable a language may become. The basic inference model for
knowledge based systems consists of a match-select-fire cycle. The match phase determines those
rules which are enabled and may be fired. The select phase selects one rule from the matched rules
and the fire phase fires, or interprets, the selected rule. This basic paradigm captures the model of
inference that knowledge base systems perform. To make this efficient, there are a number of
options to the knowledge base designer. The language may be restricted, for example providing
only universal quantification. Various compilation mechanisms may also be incorporated to make
the match phase as static as possible. Both of these mechanisms are performed in OPS5 using the
RETE network ([7, 8]).
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The model presented here provides a large amount of expressivity while moving from the
basic inference model presented above to something more tractable such as OPS5 and the RETE
network.

To provide a large amount of expressiveness, the language of the model provides a frame
system for representing structured knowledge as well as simple facts. Rules may use data from
frame knowledge and fact knowledge. In [11], Hayes-Roth presents a number of knowledge
categories that are needed for benchmarking different knowledge base systems. The categories
fact, rule, class, entity, relation, and structure are provided by the model presented here. The
remaining categories are not provided for but are planned as future work.

1.1.2. Control Knowledge Representation

Another requirement is the representation of control knowledge. The interpretation of the
knowledge of different knowledge agents will need to be based upon the needs of the different
knowledge agents. Some may require forward chaining while some may require backward
chaining. Some may require more exotic strategies such as forward chaining with beam search.

There are two aspects of control knowledge identified here. One is the inference strategy
used over a rule group and may be provided by defining meta-rule groups or LISP code. The
other way of controlling rules is by providing a level of determinism into the ordering of rules
themselves ([1, 9]). The way this is done in most expert system shells is by adding variable
references into rules that provide control (e.g. IF [step = 1] ... THEN ..). This makes
maintenance of the rules very difficult. An alternative is to use a transition table, allowing any level
of non-determinism. Each entry in the transition table is used to index into the next possible rules.
This is equivalent to defining a regular expression over a rule group ([9]).

The mechanism provided here is a transition table. As a rule is fired, that rule (its name) is
used to index into the transition table to determine what rules are allowed to be fired on the next
cycle. If the particular inference strategy being used allows more than one rule to be fired in a
particular cycle, each of the fired rules is used to index into the transition table and the resulting
lookups are unioned together. Complete non-determinism may be provided by not using a
transition table and complete determinism may be provided by specifying only one rule as the next
rule for any particular rule fire. Any mix of determinism and non-determinism may be specified
using this mechanism. This is discussed further in section 2.

1.1.3. Robust Communication

The last requirement is for mechanisms for communication and coordination between
knowledge agents. There is definitely not a consensus on the best mechanism for communication
in the literature. The basic mechanism for communication and coordination provided here is a tuple
space model based on LINDA ([5, 14]).

The tuple space model allows the addition of knowledge agents without having to modify
existing knowledge agents about the communication interactions of the new agents.
Communication is performed by inserting and removing tuples from the tuple space. If a
knowledge agent is defined to take action based upon the existence of a tuple, the data-driven
nature of the database will notify the knowledge agent of the ability of the rule to fire.

In addition to the tuple space model, it is entirely possible to perform message passing and
other forms of communication by defining new functions that implement message passing to the
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knowledge language. Thus the tuple space, although probably the primary mechanism for
communication in this model, need not be at all restrictive to robust communications.

1.2. The Model Overview

Figure 1 shows the general architecture for supporting distributed knowledge agents. The
database, to support the common tuple space, is the only module common to the agents. Even
then, a common database is not a requirement if alternative forms of message passing are chosen.
The database interface and Knowledge Base Management System (KBMS) are instantiated once on
each physical platform.

In the figure a database is shown that exists independently of the KBMS. How the
database is implemented is not important to the operation of the KBMS. The database interface is
concerned with interfacing knowledge agents to the database. If a tuple is asserted to the database
by a knowledge agent, the database interface will both add it to the database as well as notify any
other knowledge agents that use that tuple of it. Rule Group 1 represents one knowledge agent and
Rule Group 2 represents another. Both of these knowledge agents happen to be defined in a single
instantiation of the KBMS system. Rule Group 3 and 4 are sub-rule groups and are part of the
knowledge agent consisting of Rule Group 1. Another way to think of it is that each rule group
represents a distinct knowledge agent where Rule Group 3 and 4 are strictly controlled by the agent
of Rule Group 1. If another knowledge agent existed on another physical platform, there would be
an additional instantiation of a database interface and KBMS. The database itself would remain
(whether distributed or not) the same.
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Figure 1 - KBMS Architecture
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2. The Model: Its Design and Implementation

The model described here is based on a shared database, used to communicated between
various knowledge agents through the passing of tuple data structures. Frames are defined on this
base through a database interface to the knowledge agents, allowing data abstraction, inheritance,
and structuring. Each knowledge agent contains domain knowledge in the form of rules and data
and is controlled by the KBMS. The knowledge language of the KBMS provides the support to
implement knowledge agents and allows arbitrary function calls. Tractability is maintained by a
combination of rule compilation provided by the system and heuristic control knowledge provided
by the knowledge engineer. The following subsections describe the design of the KBMS in much
more detail.

2.1. The Base: The Database and Tuple Space

The first level of support for a KBMS is working memory, or the database. The
architecture presented here views the database as a plug compatible module. This provides the
ability to take advantage of existing databases and database management mechanisms such as
ORACLE or INGRES for example.

The KBMS takes a tuple space view of the world and requires that the database represent
them. A tuple is an ordered sequence of (possibly) typed fields. Conceptually, a tuple may be
thought of as an object that exists independent of the process that created it. This implies that a
place to store it is needed if it is to live a life independent of processes used to create and destroy it.
The tuple space is sufficient for representing First Order Logic (FOL) and also sufficient for
representing at least relational databases ([17]).

The tuple space has also been proposed as a mechanism for supporting distributed
processing (the LINDA model, see [5]). There are three basic mechanisms that a process may
perform on tuples in the tuple space: IN, OUT, and READ. The tuple fields in the IN and READ
operations may optionally contain variable arguments for matching. IN and READ block until the
tuple is present in the database. IN subsequently removes the tuple from the database while READ
does not. OUT installs a tuple in the database. The benefit to distributed processing that the tuple
space provides is the ability to add processes to the environment and have them communicate with
existing processes without first having to encode knowledge about existing processes directly into
their formalism. It has also been proposed that these basic tuple space operations are sufficient for
supporting other communication mechanisms such as those defined in contract nets and Actors.
On the other hand, the use of IN must be judicious in order to support the addition of other
processes that may also need to use the tuple. See [5, 14] for more details.

The database provides three operations similar to the tuple space operations, these are:
STORE, RETRIEVE/MATCH, and DB-REMOVE. The major difference between these operators
and the tuple space operators IN, READ, and OUT, is that these do not block. Another difference
is that while IN and READ will non-deterministically select one of multiple matching tuples,
MATCH will return all of them (RETRIEVE will also act non-deterministically). Although the
database operations defined here are not identical to the tuple space operations in the LINDA model
(they do not block), the operations, in combination with the data-driven nature of a KBMS are
probably sufficient for managing distributed processing protocols as LINDA does ([5)).

This view of the database allows for many different implementations of the database to be

used, including distributed databases. A distributed database would provide the ability to support
distributed knowledge agents defined using the knowledge representation presented here. Their
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communication is then supported by the tuple space mechanism as implemented in the distributed
database.

The implementation of the database for the KBMS described here also supports a form of
integrity constraints and a restricted version of views. An integrity constraint is defined by a tuple.
Fields of the tuple may contain one of four items: An actual field descriptor (formal argument); a
variable (to match an argument); a type specifier, meaning that the field may match tuples with the
corresponding field of the same type; and finally, a type declarator, meaning that for all tuples
matched on the other three options, this field must be of the declared type. Views provide different
databases for storage and retrieval. This is quite different to the traditional use of views in most
databases. What this provides is a way to organize data into logical groupings. Currently, the use
of integrity constraints is global across all views, in the future this should use the view mechanism
just as any other storage or retrieval operation does.

2.2. The Next Level: Data Abstraction and Inheritance

The database interface is the module that links the database to the KBMS and vice versa.
The interface provides the necessary hooks for proper accessing and notification of data in the
database and of interest to the KBMS. The database interface provides the operations STORE !,
REMOVE!, MATCH!, and RETRIEVE!. It also provides a data and procedure abstraction
mechanism-a frame system ([10, 15]). Frames are used to extend the knowledge representation
language of the KBMS for supporting complex domains requiring novel abstractions and
inheritance.

Frames are an abstract organization of data into conceptual units. In this definition data
may be any object, it may be simple data or even procedural objects. A frame may have any
number of slots. Frames may be defined as children of multiple parents (making inheritance
potentially more complex) and may also have code attached to them that is executed whenever a
new instance of the frame or one of its children is created. Slots may have six optional aspects.
The most used aspect is the : value aspect. This aspect is where a value for the slot is located.
The :if-needed aspect is used to store code that is executed if a slot value is asked for. The
:if-added aspect is used to store code that is executed whenever the slot gets a new value.
There are two aspects that are used to constrain the value of the slot. The : constraint aspect is
used to store code that checks if an added value passes the constraint. Since this is user-defined
code there is no restriction on what it may do, only that it return a true or false status indicating the
result of the constraint. The :mustbe aspect constrains the value to be one of a list of formal
values or frames. Finally, the :distribution aspect is used to determine if the value of the
slot is for global distribution, accessible to all knowledge agents, or only for local use.

Frame data is stored in the database as 5-tuples of the form: (frame <name> <slot>
<aspect> <value>). Obviously, there is no restriction on the value aspects, they can be any
normal data type as well as executable code. Facts are stored in the database as 4-tuples: (fact
<name> :value <value>).

Frame inheritance information must also be stored in the database so that inheritance over
frames may take place in response to different knowledge agent's requests for data values. The
current implementation does not yet store this data in the database.

It is the responsibility of the database interface to both store and retrieve information and to
notify the KBMS of changes to data made by other knowledge agents. Thus, if knowledge agent 1
makes a change to the value of a fact and knowledge agent 2 uses that fact on the left hand side
(LHS) of arule, it is the responsibility of the database interface (and distributed database) to notify
knowledge agent 2 of the changed fact. And vice versa, it is the responsibility of the system, when
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knowledge agents are being defined to notify the database interface of which knowledge agents
index on which facts.

2.3. The Knowledge Base Management System

Now that the basic knowledge storing and retrieving mechanisms have been outlined, the
heart of the system needs to be defined.

The knowledge representation language is defined as a set of objects up to the level of
rules. A KBMS is then instantiated in the language using a combination of user-defined objects,
user-defined code, rules and KBMS domain knowledge (i.e. knowledge about what the KBMS
is). The KBMS instantiated here consists of the user-defined objects: rule-group and
knowledge-base. The default inference strategy is implemented in code, but can also be
implemented in the form of meta-rule groups. Rules for defining control strategy, for instance, are
defined. The domain knowledge consists of frame knowledge about rule groups, knowledge
bases, and knowledge of executable procedures.

To go one level further, an expert system is then instantiated from the KBMS. Here, rules
and rule groups are provided for the domain; domain knowledge is provided, as well as more
specific inference strategies for the expert system. To use an analogy from the £1lavors object
oriented system, the knowledge representation language is like a base flavor. It is necessary to
define a mixin to it in order to give it functionality. Finally, the flavor can be instantiated into a
user-definable object (e.g an expert system for fault diagnosis).

The knowledge representation language provides functionality to the level of rules. A rule
has the basic form of LHS ::> RHS, and may include else conditions. Quantified rules quantify
over some set, binding a variable to successive values and executing the sub-rule of the quantified
rule. Rules have the basic operations: evaluate-1hs, evaluate-rhs, interpret-1lhs,
interpret-rhs, and interpret-else. These operations may return one of three values:
:0k, :ng, and :missing-patterns. If the rule evaluates : ok is returned, if conditions are
not met :ng is returned, and finally, if patterns needed to check conditions do not yet exist (i.e.
values do not exist for referenced variables) :missing-patterns is returned. These return
values are used by various control strategies that can be user-defined.

The current implementation of the knowledge representation language assumes the
existence of a rule—group definition that must include the slots: *1hs-tickled-queue*
and *rhs-tickled-queue*. These slots are used to queue up rules whose LHS and RHS
(respectively) are potentially : ok. This allows a wide variety of control strategies to be defined
including forward and backward chaining as well as various combinations thereof.

The KBMS implemented here defines a knowledge base to consist of a number of rule
groups as well as domain knowledge. Each rule group provides mechanisms for defining aspects
of the inference strategy using either further rule groups or user-defined functions. A rule group
also has a mechanism for specifying the level of determinism desired over rule execution ([1, 9]).
Basically, the rule group inference strategy consists of a match, evaluate, and fire loop. The match
phase is supported by the database interface which automatically queues up potential rules on the
tickled-queues. The evaluate phase then checks the rules on the tickled-queues to determine which
ones belong in the conflict set. Finally, one rule is selected and fired. This approach is completely
non-deterministic in determining which rules get fired from the conflict set. In between the match
and evaluate phases a control phase is added. This control phase consists of the definition of a
regular expression that defines which rules may be fired next. In this implementation the transition
table derived from the regular expression is given instead of the regular expression itself. This is
much simpler from the user's perspective. For the user defining a number of rules and wanting to
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insert some control over them, it is easier to specify a transition table over the rules than it is to
define the regular expression that the transition table can be derived from. Furthermore, it is easier
to maintain a transition table than a regular expression during rule group modification.

The knowledge representation language, although not completely independent of the
KBMS, defines a very general mechanism for specifying knowledge and inference. The KBMS
defined here is also very general and allows for a wide variety of specification of inference
strategies over the knowledge. This can be done using the knowledge language or by alternatively
writing executable code directly (i.e. interpreted vs. compiled).

2.4. The Tractability of the KBMS

Considering the generality and expressivity of the knowledge language and the KBMS,
efficiency has the potential of getting lost. There are three ways of maintaining tractability in the
knowledge language.

The first way of maintaining tractability is to manage the match phase of the inference cycle
efficiently. The conceptual definition of the match phase is to check each rule and evaluate its LHS
(RHS) and if it is : ok then to queue it up. Obviously, this is also the slowest approach. The step
this implementation takes is to compile rules into a rule constraint network that maintains rules in a
form more suited for recognizing when data becomes available that has the potential of satisfying
the LHS (RHS) of a rule. Consider the LHS of a rule. During evaluation, all the referenced
variables must have values in order to determine if the LHS is satisfied. The rule constraint
network represents variables as nodes in the network and rules as rule-nodes (see Figure 2). As
variables get values, the nodes representing the variables are triggered. All the rule-nodes
connected to the node are then triggered. These rule-nodes are then checked to see if all the nodes
representing the LHS (RHS) variables have a value. If so, the rule represented by the rule-node is
then put on the appropriate queue. As can be seen, this method allows rules to be tickled that may
not be satisfied. The rule constraint network only checks to see if variables have values, not if they
have the right value. Thus the rules on the tickled queues must still be evaluated for satisfaction.

Rule 1 [ wheels of car = 4 ]
[axels of car=2]
[ size of car = small ]
>
[ type of car = passenger ]

rule
Ihs-nodes rhs-nodes
node 1 rule-node 1 node 4
wheels of car type of car

node 2
axels of car

node 3
size of car

Figure 2 — Rule Constraint Network Example
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Quantified rules are also compiled into this form as the variables being quantified over are
given values. Thus, if a rule asks if there exists a symptom in the symptom-set and there are three
symptoms in symptom-set, then three instances of this graph structure will be created, one of
which may cause the rule to fire.

Alternatively, rules could be compiled more completely so that variables are checked to see
if they have the right value. The complexity of the knowledge language implemented here makes
this a difficult task and it has not been determined that it would be cost effective. Languages with
less expressivity can be completely compiled much more easily (such as OPSS5 using the RETE
network [7, 8]). The expressivity and tractability trade-off turns up once again.

The second way of maintaining tractability is by providing code for inference strategies
instead of providing rules defining the inference strategy. This is making use of the compiled vs.
interpreted option. This means that a programmer fluent in the language that the knowledge
language is implemented in needs to be available for both implementation and maintenance.
However, considering the expressivity of the knowledge language, this may be a cost effective
solution. It is very easy for the programmer to express what is desired without having to go into
contortions over representational limits.

The third way to maintain tractability is by the effective use of knowledge. This is to make
use of Raj Reddy's fifth principle: "Knowledge eliminates the need for search” ([16] see also
[12]). In other words, the domain to be represented needs to be analyzed for maximum efficiency
in terms of knowledge organization. For example, I can have two rule groups; one rule group
forward chains on various data and computes a value for the variable diagnosis. The other rule
group then uses the value of diagnosis to output the results to the user. If there are 50 rules in
each rule group that use the variable diagnosis, then 100 rules are triggered whenever the value
of the variable changes. If both of these rule groups are made to be sub-rule groups of a control
rule group, the first rule group can compute a value for diagnosis. The control rule group can
then set the value for the variable the-diagnosis as the value of diagnosis. the-
diagnosis is then used by the second rule group instead of diagnosis. Now only 50 rules
get triggered at one time.

The representation of knowledge should make maximum use of divide and conquer
principles of knowledge organization. Another approach along the same lines is to provide strong
heuristic knowledge to eliminate the need for search. This can come in many forms including
domain guided inference strategies over rule groups as well as judicious use of control over the
execution of rules in a rule group (i.e. the transition table method over rules).

3. A Power Management and Distribution Knowledge Agent

In this example a knowledge agent for managing power and distribution for Space Station
Freedom is presented. The knowledge base consists of approximately 150 rules at this time.
Naturally, space limitations prohibits the presentation of the entire knowledge base. This example
should be sufficient to illustrate the representational capabilities of the knowledge language and
how it can be applied to defining multiple agents for distributed processing tasks.

The first part of this example consists of the definitions required by the knowledge

language to support the KBMS. The second part then describes the Power Management and
Distribution Knowledge Agent.
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3.1. Definitions for KBMS Support

These definitions define the user-accessible structure of a knowledge base and of a rule
group. The lisp frame is for defining various functions that may be called from rules.

(frame :name knowledge-base
:slots ((rule-groups :value nil)
(agents :value nil)
(name :value nil)))

(frame :name rule-group
:slots ((rules :value nil)
(name)
(quantified-vars)
(rg-var)
(plan)
(plan-state)
(plan-table)
(viable~-set :value nil)
(not-yet-viable-set :value nil)
(fire~-set :value nil)
(local-variables)
(conflict-set :value nil)
(tickle-set :value nil)
(satisfied-set :value nil)
(unsatisfied-set :value nil)
(cant-fire-set :value nil)
{(fired-set :value nil)
{(untickled-set :value nil)
{(*1lhs-tickled-queue* :value nil)
(*rhs-tickled-queue* :value nil)
(termination-condition :value nil)
(control-strategy :value
#'default-control-strategy)
(conflict-resolution-strategy :value
#’default—conflict—resolution—strategy)
(execute :value #'execute)))

(frame :name lisp

:slots ((evaluate :value #'evaluate)
(evaluate-lhs :value #'evaluate-lhs)
(evaluate-rhs :value #'evaluate-rhs)
(interpret-rhs :value #'interpret-rhs)
(interpret-lhs :value #'interpret-lhs)
(interpret-else :value #'interpret-else)
(first :value #'first)
(second :value #'second)
(format :value #'format)
(length :value #'length)))

3.2. Power Management and Distribution Knowledge Agent
The main knowledge base is defined here. It is called pmad and uses a domain file

(domain.lisp) to define the various data structures (domain knowledge) relevant to the knowledge
agent. The knowledge base consists of three rule groups; a control rule group for controlling the
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diagnosis of hard faults, a hard fault rule group for computing a diagnosis, and a diagnosis rule
group simply for printing a diagnosis.

KB : pmad
DOMAIN : domain.lisp
RULE-GRQOUP : control-rg

This control rule group currently manages the collection of fault information for diagnosis. It controls the execution
of two rule groups: hard-fault and diagnosis, for performing and printing out diagnosis information respectively.
Eventually rules will be added to this knowledge agent for soft fault and incipient fault analysis.

CONTROL : ((start (Control-Rulel))

(Control-Rulel (Control-Rule2))

(Control-Rule2 (Control-Rule3 Control-Rule4
Control-Ruleb))

(Control-Rule3 (Control-Rule3 Control-Rule4
Control-Ruleb5))

(Control-Rule4 (Control-Rule3 Control-Rule4
Control-Ruleb))

(Control-RuleS5 (Control-Ruleb6))

(Control-Rule6 (Control-Rulel)))

Control-Rulel
THERE EXISTS symptom-set in symptom-set-queue
< :1:>
[ the-symptom-set = symptom-set ]
[ diagnosis-set = empty ] >
Control-Rule?
1>
[ clusters = power-domain :: cluster-symptoms
( the-symptom-set ) ]
Control-Rule3
THERE EXISTS cluster in clusters
< :>
[ symptoms of symptom-setl = symptoms of cluster ]
[ symptom-setl = cluster ] >
ELSE
[ ready-to-diagnose = false ]
Control-Ruled
THERE EXISTS symptom in symptoms of symptom-setl
< [ hard-fault :: execute ( hard-fault ) = :o0k ]
>
diagnosis-set diagnosis-set PLUS diagnosis ]
the-diagnosis = diagnosis ]
diagnosis = :unknown ]
diagnosis-rg :: execute ( diagnosis-rg ) ]
clusters = clusters MINUS symptom-setl ] >

— . e

Control-Ruleb

[ ready-to-diagnose = false ]

[ FOR ALL diagnosisl in diagnosis-set
< [ diagnosisl = diagnosis-2 ]
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OR
[ diagnosisl = diagnosis-31 1 > ]}
s>
[ the-diagnosis = diagnosis-no-power ]
[ diagnosis-set = diagnosis-set PLUS the-diagnosis ]
[ ready-to-diagnose = true ]
ELSE

[ ready-to-diagnose = true ]

Control-Rule6

[ ready-to-diagnose = true ]

HE4

[ diagnosis-rg :: execute ( diagnosis-rg ) ]

[ symptom-set-queue = symptom~set-queue
MINUS the-symptom-set ]
[ symptom-setl = :unknown ]
[ clusters = :unknown ]
[ ready-to-diagnose = :unknown ]

RULE-GROUP : hard-fault.rg

This rule group takes information about a fault and, after determining if any testing needs to be done and doing it,
determines the fault and assigns diagnosis a value.

As can be seen, the control that is specifiable over a rule group may be quite complex. The whole transition table
for this rule group is not given (although this is one-third of it, for a rule group consisting of about 90 rules), but
the expressivity is still quite apparent.

CONTROL : ((start (init-rule))

(init-rule (Rulel))

(Rulel (Rule2))

(Rule2 (Rule3 Ruled4.l Rule5 Rule3l Rule3l.1l
Rule31.2 Rule35 Rule35.1))

(Rule3 (Ruled)) .

(Rule4 (Rule20 Rule32)

(Rule32 (Rule33))

(Rule33 (Rule34))

(Ruled4.1 (Ruled4.2))

(Rule4.2 (Rule4.3))

(Rule4.3 (Rule4.4 Ruled4.5 Ruled.6 Ruled.?
Rule4.8))

Init-rule

HE 4

[ symptom-set = symptoms of symptom-setl ]

[ possible-top-switches = empty ]

[ tripped-top-switches = empty ]

Rulel

11>

[ top-symptoms = power-domain
top-symptoms ( symptom-set ) ]

Rule2

[ lisp :: length ( top-symptoms ) > 1 ]
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{

1>

type = multiple-tops ]
ELSE
[ type = single-top ]
Rule3
[ type = multiple-tops ]

[

[
[

’

THERE EXISTS symptom in top-symptoms
< [ lisp :: length
( switches-below of switch of symptom ) > 0 ] > ]
FOR ALL symptom in top-symptoms
< [ fault of symptom = fast-trip ]
CR
[ fault of symptom = over-current ] > ]

>

FOR ALL symptom in top-symptoms
< [ tripped-top-switches = tripped-top-switches PLUS
switch of symptom ] > ]

THERE EXISTS symptom in top-symptoms
< [ possible-top-switches = switch of symptom PLUS

siblings of switch of symptom ] > ]
THERE EXISTS symptom in top-symptoms
< [ trip-type = fault of symptom ] > ]
type = multiple-top-current-trip ]

Ruled.4

[
{
(

o

type = multiple-tops ]
lisp :: length ( new-symptoms ) = 1 ]
THERE EXISTS symptom in new-symptoms
< [ THERE EXISTS symptoml in top-symptoms
< [ switch of symptom = switch of symptoml ]
[ fault of symptom = fault of symptoml ] > ] > ]

:>

diagnosis = diagnosis-54 }

diagnosis )

RULE-GROUP : diagnosis.rg

This rule group simply prints out some statements and communicates diagnostic information to the scheduling
knowledge agent depending on the particular diagnosis encountered.

d-rulel @@ backrush in load center

(
[
(

the-diagnosis = diagnosis-54 ]

t>

the-diagnosis = :unknown ]

lisp :: format ( t "~%The following load center
RPCs tripped on fast-trip~%" ) ]

the-diagnosis = :unknown ]
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The rest of the knowledge base for this knowledge agent.

Domain-Knowledge
constants

t ; :ok ; :ng ; :missing-patterns ; yes ; no ;
hard-fault ;
diagnosis-rg ;
multiple-tops ;
single~top ;
multiple-top-current-trip ;
over-current ;
under-voltage ;
fast-trip ;
ground-fault ;
diagnosis-1 ;
diagnosis-2 ;

diagnosis-no-power
facts
empty = ()
frames
(fcreate-instance 'symptom-set 'symptom-setl)

Begin : control-rg

END-KB

HHtFttFt bttt
domain.lisp
ttttt bttt F o+

(frame :name power-domain
:slots ((top-symptoms :value #'top-symptoms)

(close-switch :value #'close-switch)))

(frame :name symptom-set
:slots ((symptoms)))

(frame :name symptom
:slots (({switch) (fault)))

(frame :name switch
:slots ((name)
(type)
(current)
(switches-below :value nil)
(switch-above :value nil)
(siblings)

(current-rating)
(fast-trip-percent)))

Lots of domain knowledge here to build instances of switches and sensors, etc. Knowledge of the topology is
encoded here. About 30k worth.
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4. Conclusions and Future Work

An architecture for defining and modifying knowledge base management systems that may
be used for applications in distributed Al has been presented. The architecture is very flexible and
relatively efficient. It has been used to define three very different knowledge agents: One for
solving a toy problem to compute how to send a package consisting of about ten rules; One for
solving the monkeys and bananas problem consisting of about twenty fairly complex rules, this
one was directly adapted from a solution given for OPSS; Finally the agent given in this paper and
consisting of around 150 rules.

The results we have noticed so far have shown that this architecture provided the ability to
easily implement a solution to a wide variety of problems. The monkeys and bananas problem has
driven out many areas of weakness in the implementation that are being dealt with. The speed with
which this architecture solves the monkeys and bananas problem is hardly even comparable to that
of OPSS5 at this point. However, the result of implementing our fault diagnosis problem for power
management and distribution has turned out very well. Using simple forward chaining and lots of
control knowledge in the hard fault rule group has enabled us to provide a solution that is very fast
and easily maintainable. The maintainability is very important for this domain as the requirements
for Space Station Freedom have not been completely specified.

4.1. Future Work

This system is being implemented as part of a much larger system, KNOMAD (Knowledge
Management and Design System). We have identified a number of areas where knowledge needs
to be added to support a completely robust, domain independent environment for specifying
knowledge based systems. These include the addition of a constraint system, a temporal database,
and analytical and qualitative reasoning. These additions will then support planning, scheduling,
and causal reasoning at the least. Adding these components must involve how the KBMS will
access and use these components as well as how these components will use the existing database
and database interface mechanisms.

Work also needs to be pursued to determine the possibility of adding RETE-like structures
as a part of the rule constraint network.
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