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SUMMARY

Future commercial space systems may include geosynchronous-orbit communi-
cation satellites; Earth-observing satellites in polar, Sun-synchronous orbits;
and tended low-Earth-orbit platforms. All such space systems require onboard
propulsion for a variety of functions, including stationkeeping and drag makeup,
apogee motors, and delivery and return. In many cases, the onboard propulsion
exerts a major influence on the overall mission performance, lifetime, and
integration. NASA has established a Low Thrust Propulsion Program, which is
developing chemical and electric propulsion concepts that offer potential for
significant benefits for onboard propulsion for the various classes of commer-
cial spacecraft. The onboard propulsion requirements of future commercial
space systems are briefly discussed, followed by a summary of the characteris-
tics and status of relevant elements of the NASA Low Thrust Program.

INTRODUCTION

Onboard propulsion is used for a variety of functions on many commercial

class space systems. Major roles include apogee motors and north-south sta-
tionkeeping for geosynchronous (GEO) communications spacecraft (refs. 1 and 2),
insertion and orbit control for Earth-observing satellites (refs. 3 and 4), and

drag makeup and logistics (delivery and return) for systems in low-Earth-orbit
(LEO) (refs. 5 to 7). In many cases, onboard propulsion exerts a major influ-
ence on the characteristics of the space systems and their overall mission

performance.

Figures 1 and 2 show injected and on-orbit mass fractions, respectively,
for several recent GEO communication satellites. Such satellites are placed in

GEO directly with an apogee motor, or via a two-step process involving a peri-
gee burn to an elliptical GEO transfer orbit (GTO) and subsequent apogee pro-
pulsion for orbit circularization. Considerations of cost and launch vehicle
availability indicate that most commercial GEO systems will be placed via the

latter, two-step process. Figure 1 shows that, for GEO satellites, apogee pro-
pellant now constitutes from 40 to 50 percent of the mass injected into GTO.
Apogee propulsion requirements, for a given beginning-of-life (BOL) GEO mass,
depend somewhat on a m_nber of factors, including the site and characteristics
of the launch vehicles. As seen in figure 1, however, it is clear that apogee
propulsion represents technology of major potential mission leverage. For a
number of reasons, including minimization of "gravity losses, acceleration
level control, and schedule, near-term apogee propulsion will probably require

chemical rockets operating at thrust levels from about 200 to 1000 N. The data
of figure 2 show that GEO on-orbit propulsion for communication satellites now
constitutes about 30 percent of the BOL on-orbit mass. The satellites use
storable chemical and resistojet systems for stationkeeping that operate at

specific impulses slightly below 300 s. The useful lifetime of communication



satellites is now basically determined by availability of propellant for N-S
stationkeeping. Development of higher-performance, small stationkeeping pro-
pulsion can therefore enable major increases in the revenue-producing lifetime
of GEO spacecraft.

Earth-observing satellites are most often at high inclination at Sun-
synchronous, middle-Earth-orbit (MEO) altitudes between about 600 to 1200 km.

On-orbit propulsion is required (ref. 3) for orbit control, including mainte-
nance of both a circular near-polar orbit and the desired ground track. These
propulsive requirements derive from (1) loss of altitude due to small but non-

negligible atmospheric drag and (2) lunar and solar perturbations. Some pro-
pulsion is also required for attitude control, which can be quite demanding for
mission phases that require fine pointing. The SPOT spacecraft (ref. 3) is
representative of this type of free-flying spacecraft, and the (hydrazine) pro-
pellant, depending on the mission, can range from about 8 to 16 percent of the
initial on-orbit mass. Palaszewski and Uphoff (ref. 8) have recently presented
analyses of on-orbit propulsion for several Earth-observation systems that max-
imize the viewing durations of selected regions on the Earth's surface. These

types of systems can often require significantly greater onboard propulsion
capabilities than Earth observers of the SPOT class; the reader is referred to
reference 8 for details.

Delivery and return of Earth-observing satellites may be performed by
transfer vehicles, such as the OMV, or by onboard propulsion. As illustrated
in figure 3 (ref. 7), such maneuvers involve large velocity increments.
Uetailed parametric studies of on-orbit propulsion systems for delivery and
return of MEO spacecraft were presented in reference 7, which evaluated onboard

Earth-storable bipropellants, hydrazine, cold-gas, and stoichiometric hydrogen/
oxygen (produced by an onboard electrolysis system) propulsion systems. The
results of reference 7 indicate that, for the highest-performance propulsion
systems, about 25 percent of the initial LEO mass was required for delivery,
on-orbit functions, and return of a MEO satellite to and from 900 km. This is
in good agreement with the detailed calculations 4 of delivery and return of a
large radar-bearing satellite at an inclination and altitude of 99.5 ° and
1007 km, respectively. More recent calculations were conducted to evaluate the

use of both chemical and electric propulsion for the delivery and return, after
30 months, of a 12 O00-kg polar satellite between 350 and 900 km. Table I

shows the results of these calculations for the baseline hydrazine, dual-mode
Earth-storable bipropellant, resistojet, and arcjet systems. It is seen that

significant payload benefits may be gained with advanced chemical technology
and that use of electric propulsion, operated at 5 kW, can provide yet more
benefits, at the expense of increased orbit transfer times.

Numerous commercial LEO systems, such as the Industrial Space Facility
(ISF) (ref. 6), have been proposed. In general, the proposed LEO platforms
have assumed the capacity of refurbishment ("tending") via Shuttle Orbiter and/
or Space Station Freedom. The major onboard propulsion tasks are to provide
for the system placement and return and to overcome drag forces when required
for reasons of altitude and/or acceleration control. The capability of tending
offers some unique opportunities and imposes some constraints on onboard pro-
pulsion. Resistojets, operated on waste gases have been baselined on Space
Station Freedom (ref. 5). The use of waste gases eliminated requirements for
(1) launch of drag makeup propellant and (2) return of the waste gases to

Earth. Water resistojets were selected for the ISF (ref. 6), primarily because



the benign and well-known properties of water were felt to offer major simpli-
fications in the integration of the ISF with the Shuttle Orbiter during both
launch and in-space missions phases. The issue of integration, including spe-
cial considerations of safety for the crew of the tending element, will proba-

bly be of critical importance in selection of onboard propulsion for LEO tended

commercial systems.

LEO orbit maneuver and drag makeup impose major propulsion requirements.

Figure 4 shows a typical mission profile selected for the ISF, which resulted
in reboost total impulse requirements between about 1 to 2.4×106 N-S/year over

the time span from 1992 to 2003 (ref. 6). The impulse variations were due to
changes in the atmospheric density and mission profile over the solar sunspot
cycle. With a water resistojet operated at 152-s specific impulse, the propel-
lant mass required per year ranged between 3 and 8 percent of the ISF mass
(including payload). These masses did not include provisions for attitude con-
trol or special docking requirements. The fractional propellant penalty will
vary with LEO system, configuration, operating altitudes of the tended and
tending systems, and other issues. Propulsion is, however, a major issue for
future commercial LEO systems, and the appropriate choice for specific applica-

tion will probably result from detailed considerations of both performance and
overall integration issues.

NASA has established the Low Thrust Propulsion Program in response to the

great leverage and range of requirements for onboard propulsion. The specific
elements of the Low Thrust Propulsion Program are shown on table II. The ele-
ments were selected to address the propulsion requirements of launch and orbit
transfer vehicles, Earth-orbit systems, and planetary spacecraft for a broad

range of civil and government missions. Some aspects of the program are,
therefore, probably beyond the near-term interest of the commercial sector. It
is clear, however, that onboard propulsion does and will play an important role
in the characteristics and performance of future commercial space systems. The
following section of the paper will briefly discuss the various relevant ele-
ments of the NASA Low Thrust Propulsion Program to provide insights into their
characteristics and status regarding application to commercial systems.

LOW THRUST PROPULSION

Future commercial space applications range from GEO communications satel-
lites, to Earth observers at MEO, to LEO platforms. The onboard propulsion
requirements for these different systems are very diverse, and the NASA Low

Thrust Propulsion Progr_ contains elements with a range of characteristics to
accommodate the various applications. In the following, selected elements of
the NASA program will be presented and their characteristics, status, and

potential use on commercial systems discussed.

Storable Chemical Rockets

For several years, efforts have been under way to develop storable chemi-
cal rockets that can operate at very high temperatures with Earth- and, ulti-

mately, space-storable bipropellants. An AerojetTechSystems and Ultramet team
conducted a program to tdentify material combinations that could withstand the



oxidizing environments associated with storable bipropellants and then fabri-
cate and demonstrate 22- and 445-N thrust rockets. After an extensive test
program, rhenium coated with iridium was selected for the rocket chamber.
Small, Earth-storable bipropellant rockets now use columbium coated with sili-
cides for resistance to oxidation. The state of the art of these rockets is

shown on figure 5 as a time to failure versus chamber operating temperature.
The AerojetTechSystems/Ultramet program was extremely successful as increases

in rocket chamber temperatures of about 800 K were demonstrated for significant
periods of time {fig. 5). This capability allowed elimination of the film

cooling usually used to maintain the silicides at acceptable temperatures and
thereby resulted in increases in specific impulse of between 20 and 30 s at a
fixed thrust level. The increased performance offers significant reductions in

propellant masses for functions such as apogee insertion of GEO spacecraft and
delivery and return of MEO space systems. From figure 5, it is also clear that

the rhenium/iridium concept can offer great increases in on-orbit propulsion
system lifetimes. This feature may also be of leverage for commercial space
systems where on-orbit lifetimes are directly related to overall system value.

Resistojets

Resistojets are under development for several applications. All resisto-
jets basically add enthalpy to the propellant from a heater element and accel-

erate the gas by expansion through a nozzle. Multipropellant resistojets were
baselined for Space Station Freedom, and a Rocketdyne/Technion team designed
and fabricated a concept that operates at about 0.5 kW. This device has been

successfully tested on H2, He, CH4, N2, Ar, C02, and water (steam) and has
demonstrated 10 000 h of operation in a life test with CO2. The multipropel-
lant resistojet was designed to accept gaseous propellants. The interest in

water resistojets for the ISF (ref. 6) led to development of a resistojet con-
cept that could accept liquid as well as gaseous propellants (ref. 9).

Figure 6 shows the selected "cyclone boiler" approach, in which the liquid
vaporization (if required} and propellant heating are provided by a single
heater. To date, the water resistojet has been demonstrated at thrust, power,
and specific impulse levels up to about 0.35 N, 1 kW, and 190 s, respectively.
As discussed previously, the concept of a "water economy" may offer some sig-
nificant benefits to the integration of propulsion systems during launch and
in-space mission phases. The water resistojet may be of use in those situa-

tions where integration issues are paramount and/or may exert major resource
leverage on a particular space application.

Arcjets

NASA is developing 1-kff-class arcjets for stationkeeping applications

(ref. 10). In arcjets, the propellant is heated by an electrical arc (fig. 7)
struck between a cathode and an anode. The anode is usually the nozzle through
which the propellant is expanded. The propellant temperature, hence values of
specific impulse, achievable via arc heating are significantly above those pos-
sible with chemical rockets or resistojets. For example, with hydrazine fuel,
the upper limits of specific impulse of monopropellant chemical, bipropellant
chemical (with NTO as the oxidizer), and resistojets are about 235, 350, and

325 s, respectively. One-kilowatt hydrazine arcjets have been operated at spe-
cific impulses over 700 s which, where power is available and low thrust levels



are acceptable and/or preferred, enables major mission benefits. The Rocket
Research Company, under NASA sponsorship, is developing a flight-type, 1-kW,
hydrazine arcjet system. The arcjet has been fabricated, structurally quali-
fied, and has met design thermal interface and performance goals. Similar arc-

jets have demonstrated 1000 h/500 cycles, which is adequate for over 15-years
on-orbit lifetime on a typical GEO communication satellite. Major arcjet sys-
tem efforts are now concentrated on demonstrations of an efficient and flight-

weight power processor and long-life catalyst beds to vaporize the hydrazine.
Efforts are also under way (ref. 11) to evaluate fully arcjet particle and
field effluents to assure that they pose no problems to spacecraft subsystems

and functions.

The arcjet represents a first step toward propulsion systems with perform-
ance levels beyond those dictated by material limits. Use of the arcjet for
N-S stationkeeping on a 1600-ks (BOL) GEO satellite has been estimated to
result in life extensions of over 5 years. Additionally, as seen on table I,

use of modestly powered arcjets may result in very great propellant savings for

MEO system delivery and/or return if the substantial increases in associated
transit times are acceptable.

Ion Thrusters

NASA has conducted and sponsored technology programs on ion propulsion for
many years. In ion thrusters (fig. 8), a propellant is ionized by electron
impact, and ions are then accelerated by pure electrostatic forces applied by
perforated ion optics systems. The use of electrostatic forces enables propel-
lant velocities not attainable by any chemical, resistojet, or arcjet system.
For a number of reasons, ion thrusters operate most efficiently at values of

specific impulse above about 2500 s. The ratio of thruster power to thrust
level for any electric propulsion device is roughly proportional to the value
of specific impulse, therefore, ion thrusters require more than about 8 and
2.5 times the power, for a given thrust, than resistojets and arcjets, respec-
tively. Additionally, ion thrusters of present design use inert gas propel-
lants, which implies a propellant management system different from that
routinely used on commercial spacecraft. Regardless of the requirements for
power and new propellant systems, the ion thruster does offer unprecedented
performance. This quality, as well as the substantial ground and space test
development history in the United States and several other countries, has led
to recommendation (ref. 12) of ion propulsion for stationkeeping applications
and planned space tests on a GEO, Japanese (ref. 13) and a MEO, West German

(ref. 14) space system in the near future.

SUMMARY OF RESULTS

Future commercial space systems will include GEO communication spacecraft,
and may include MEO Earth observers, and LEO tended platforms. Onboard propul-

sion is required for all such space systems and can exert major leverage on
their performance and resource expectations and constraints. At present, apo-
gee propulsion represents between 40 and 50 percent of the mass injected into
geosynchronous transfer orbit, and the useful on-orbit lifetime of GEO communi-
cation satellites is now determined by the performance of the N-S stationkeep-

ins propulsion systems. Earth-observing satellites are usually in polar



Sun-synchronous orbits and require propulsion for orbit and attitude control

and may also demand delivery/return functions. The on-orbit propulsion for
this class of satellite can represent over I0 percent of the BOL on-orbit mass,
and studies indicate that the propellant for placement and return is of the

order of 25 percent of the initial mass in LEO. Drag makeup and logistics for
LEO platforms is also demanding, and evaluation of the proposed Industrial
Space Facility, taken as a representative LEO commercial system, indicated
requirements for propellant masses between 3 and 8 percent of ISF mass/year.
Onboard propulsion is therefore a very major leverage issue for the various
classes of potential commercial space systems. NASA has established a Low

Thrust Propulsion Program, which includes a variety of chemical and electric

propulsion concepts that offer major benefits for onboard propulsion. In par-
ticular, advanced Earth and space-storable rockets, resistojet, arcjets, and
ion thrusters appear to have promise of near-term application for commercial
space systems.
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TABLE I. - PROPULSION REQUIREMENTS FOR BOOST, ON-ORBIT, AND DEBOOST OF A

12 500-kg (BOL) SATELLITE

[Initial and operational altitudes, 350 and 900 km; 5 kW of power assumed
for resistojets and arcjets.]

System

N2H4
monoprop

NTO/N2H 4
on-orbit

N2H4

N2H4
resisto-

jet

N2H4
arcjet

Orbit transfer/
on orbit

Thrust,
N

220/220

220/22

Specific
impulse,

s

220/220

310/220

3.2 350

1.0 500

Propel-
lant

mass,
kg

3510

2610

2210

1540

Mass of

propel-
lant and

tanks,
kg

3945

2950

2500

1760

Mass G

N2H4
propel-
lant and

tanks,

percent

Orbit
trans-

fer

time,
days

0.2

-25 .2

-37 13

-55 40

Thrust-
to-

weight
ratio

2x10-3

2xi0-3

3x10-5

8×10-6

TABLE 2. - ELEMENTS OF

THE NASA LOWTHRUST

PROPULSION PROGRAM

Low thrust propulsion

Chemical Electric

Storables

Integrated
H/O

Resistojets

Arcjets
Ion

MPD
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