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Introduction

Work under Cooperative Agreement NCC2-312 was performed

in two stages. Stage one commenced on 1 June 1984 and

extended through 2/28/87. It was performed under the

direction of Dr. Bala A. Balakrishnan as Eloret Principal

Investigator; Mr. Mike Green of NASA-Ames Research Center

being the Technical Monitor. The final reporting for that

stage of the research program was submitted on 31 July, 1987.

It included the following five AIAA papers: 85-1006; 85-1064;

85-1063; 86-1277; and 86-1312.

Stage two was performed under the Direction of Dr. Dinesh

K. Prabhu during the period 7/1/87 through 5/31/90. Mr.

William C. Davy and Dr. George S. Deiwert were the NASA

Technical Monitors. This final report concentrates on Dr.

Prabhu's work.
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Abstract

The equations governing the multidimensional flow of a reacting

mixture of thermally perfect gases have been derived. The modelling

procedures for the various terms of the conservation laws have been

discussed. Anumerical algorithm (based on the finite-volume approach)

to solve these conservation equations has been developed. The ad-

vantages and disadvantages of the present numerical scheme have been

discussed from the point of view of accuracy, computer time and memory

requirements. A simple one-dimensional model problem has been solved

to prove the feasibility and accuracy fo the algorithm. A computer

code implementing the above algorithm has been developed and is cur-

rently being applied to simple geometries and comditions. Once the

code is completely debugged and validated it will be used to compute

the complete, unsteady flow fieldaournd the Aeroassist Flight Exper-

iment (AFE) body.

Nomenclature

0

al

Cs

Cv s

C_8

_D

E

e

es

: null vector

: frozen speed of sound

: mass fraction of species s

: frozen specific heat of the mixture

: specific heat of species 8

: binary diffusion coefficient

: total energy per unit volume of the mixture

: specific internal energy of the mixture

: specific internal energy of species s
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F

F.

H

ho

I

Kbm

K f,.

L

£e

Mf

M

nd

Tt¢

?ls

n

P

P

q

Q

7¢

r

Re

S

s

: algebraic flux vector

: numerical flux vector

: normal component of the flux

: specific total enthalpy of the mixture

: specific enthalpy of formation of species s

: identity tensor

: backward reaction rate constant for the mth reaction

: forward reaction rate constant for the mth reaction

: reference length (m)

: binary Lewis number

: number of reactions

: frozen Mach number

: molecular weight

: number of dimensions

: number of conservation equations

: number of species

: unit normal to cell surface

: static pressure

: pressure tensor

: heat flux vector

: algebraic vector of conservative variables

: universal gas constant, 8314.34 J/(kmol.K)

: position vector

: Reynolds number based on L

: magnitude of surface area vector

: unit tangent to cell surface



S

t

t

T

T

U

U

V

V

Vs

V

tvs

Xs

[Xs]

#

#s

p

Ps

Subscripts

j,k,l

1
(j,k,O + :

surface area vector

time

unit tangent tocell surface

temperature

viscous stress tensor

algebraic vector of primitive variables

mass-averaged velocity

velocity component normal to cell surface

magnitude of the mass-averaged velocity

cell volume

diffusion velocity of species s

control surface velocity

mass production rate of species s

vector of production terms

numerical representation of the source vector

mole fraction of species s

molar concentration per unit volume of species s

thermal conductivity of the mixture

thermal conductivity of species s

viscosity of the mixture

viscosity of species s

mass density of the mixture

mass density of species s

cell centroid indices

cell face indices



n

r, 3, l

ref

w

Superscripts

i :

v :

time index

indices denoting species

reference condition

wall

freestream

dimensional quantity

inviscid/convective quantity

viscous/nonconvective quantity

direction index

Governing Equations

Let _ be the control volume of interest and @_ its bounding control

surface which moves with a velocityv. The equations governing the

flow are1'2:

(a) the law of conservation of mass of species s (s = l_2_..._ns):

_ fv(t)psdV + /ov(t)Ps(U_ v) . ndA + /ov(t)psVs . ndA = /v(t)wsdV (1)

The first term on the left hand side of Eq. 1 represents the time-rate

of change of species mass in the control volume, the second term rep-

resents the net flux across the control surface and the third term

represents the diffusion mass flux. The term on the right hand side

of Eq. 1 represents the rate of mass production/depletion within the

control volume. The equation for the overall conservation of mass is

obtained by summing Eq. 1 over all the species and noting that

$ 8 $
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Thus, the global continuity equation is

d iv pdV + /o p(u- v). ndA = O
(t) vct)

(b) the law of conservation of linear momentum:

dfv pudV+/a pu(u_v).ndA-fo P.ndA = 0 (2)-_ (t) v(O vct)

where body forces have been neglected and P represents the surface

forces (stress tensor) . The above vector equation leads to nd scalar

equations, where nd is the number of dimensions.

(c) the law of conservation of energy:

div EdV+ _ E(u_v).ndA=_/a q.ndA+/a P.u.ndA (3)
dt (t) v(t) v(t) v(t)

where E is volumetric total energy of the mixture, and q is the heat

flux vector. The second term on the right hand side of Eq. 3 repre-

sents the work done by the surface forces. The volumetric total en-

ergy of the mixture is defined as

1

S = p(e + _u. u) (4)

We have, therefore, a total of ne =ns+nd+l conservation equations

to solve. The scalar and vector fields of interest to us are Ps, P, u,

p, andT. In order to close the set of governing equations we need to

model the various terms appearing in the set. This is discussed in the

following section.



Physical Model

(a) thermal equation of state:

The constituent gases of the mixture are assumed to be thermally

perfect and obey the following equation of state for the partial pres-

sure Ps

Using Dalton's law of partial pressures,

state is obtained for the mixture

the following equation of

where /%4 is the molecular weight of the mixture and is defined as

--I

(b) thermodynamic properties:

The thermodynamic properties of the individual species of the gas

are available as cubic-spline fits. These curve fits are of the form

(7)

e, = es(T) + h_ = ao + alT + a2T 2 + a3T 3

C_. = Cv.(T) de,= d---T = al + 2a2T + 3a3T 2

where ao,...,a3 are the spline coefficients. These coefficients have

been generated by Liu and Vinokur 3 and based on quantum calculations

done by gaffe 4. These thermodynamic properties are considered more

7



realistic than previous calculations because they account for the in-

ternal structure of the atoms and molecules. The thermodynamic prop-

erties of mixture as a whole are computed as simple weighted sums of

the individual species properties, i.e.,

8 8

(c) transport properties:

The viscosities of the individual species are computed using curve

fits developed by Blottner et al. s and these are of the form

#s = exp[(a log_ T + b) loge T + c]

where a,b,c are constants. The thermal conductivities of the individ-

ual species are computed using Eucken's formula

_ ( • + 2.9.5)

The transport properties of the mixture are calculated using Wilke' s

mixing rule. 6 This mixing rule, considered adequate for weakly ioniz-

ing flows, is mathematically expressed as

# = 4, , _ = (9)
8=I 8=I ¢8

where

csM
Xs =

_48

¢,=__jX,. 1+ v #,-k..k,4,] vr8 1+_-_
r= 1

-1



The binary diffusion coefficient is obtained from the definition

of the Lewis number, re, which is assumed to be the same for all species.

Therefore,

_-- role (10)
pCp,

(d) diffusion mass flux:

Assuming the thermal and pressure diffusion effects to be negligi-

ble and that mass diffusion is binary, the diffusion mass flux can be

expressed as

p,Vs = -pDVcs (11)

The binary diffusion approximation is valid for mildly ionizing air

consisting of "heavy" particles (molecules and ions) and "light" par-

ticles (atoms). This assumption considerably simplifies the complex-

ities of a true multicomponent diffusion model.

(e) stress tensor:

Bulk viscosity effects are considered to be negligibly small. The

stress tensor represented as the sum of the hydrostatic and devia-

toric stress is written as

P = -pI + T = -pI + #[Vu + (Vu) T - _V. uI] (12)
3

where _ is the coefficient of viscosity, I is the identity tensor,and

V is the usual gradient operator.

(f) heat flux vector:

The heat flux vector consists of two parts, (i) a conduction part

and (ii) a diffusion part. This is expressed as

q = -_VT + E h,p,V, (13)
8



where _ is the coefficient of thermal conductivity.

due to radiation has been neglected.

(g) chemical production terms:

Consider the chemical reactions

The heat transfer

_ ' A _ "Al/k,s s 1./k,s s
8 8

k = 1,2,...,m

where As represents the species 8. Then the mass-production rate of

species s is

w_ = .M. _(v_:',. - _'k,_) Kfk (T) E[X,] k,, _ Kb. (T) E[Xt] Vk.'
k ! !

(14)

where the forward and backward production rates are expressed in the

modified Arrhenius form as

KI_ (T) = exp(Co,k + -_ + C2,k loge T)

KIk(T ) = exp(Do,k + D_ + D2,k loge T)

5
where C0,k,...,D2,k are given constants.

Nondimensionalization

All the physical quantities appearing in the preceding equations

are nondimensionalized using their reference values. These reference

values (dimensional quantities being denoted by*) are defined as:

It*Ires = L* M*_f = M_o

* V;:f _ref -- PrefRref_'_ ere f =

V;*e f --" V£ Rre f - .All* , #re/
re f . 7)tel --

C ,,ef = R: f *Pref
Ir*lr, f V;:f • ,

t*ef-- Vr* f Tr*ef- , * PrefV;ef

R*ef #ref -- #oo (v*ef -- L*

Prey = Poo . = * ,r*2Prey PrefVreY

(15)

10



and the other nondimensional parameter of interest is the Reynolds

number which is defined as

T¥_ _

The equations Eq. I, 2, and 3 along with the equations Eqs. 4-14

provide a complete set of equations for the unlnown fields ps,p,u,p,

andT. These equations are discretizedusingthe finite-volume ap-

proach which is discussed next.

Discretization

(a) Preliminaries:

The conservation equations, Eqs. i,

gle equation in nondimensional integral form as

d /v(t)QdV + /av(oF'ndA = /v(t)]/VdV

where the vector of dependent conservative variables, Q,

2, 3 can be written as one sin-

(16)

is:

Q = {pl,p2,... ,Pn,,pu, E} T (17)

F = F i - F v =

( p_(u- v)
p2(u - v)

p,,.(u- v)
pu(u - v) + pI

E(u - v) + pu

1

p(DVCl

p_DVc2

pl)Vc.,
T

T.u-q

tb2

Z0no

Let the nbe the unit vector normal to the control surface. Fur-

(is)

ther, let Fn = n.F be the normal component of the algebraic flux vector

land let Un = n.u, Vn = n.v, u n = Un Vn be respectively, the flow, the

ii



control surface,

control surface.

and the relative velocity components normal to the

The normal component of the inviscid flux vector is:

= I " t _ %/I l r }TF_(Q;n)=n.F i {plu.,p2u.,... P.. .,pu.u+pn, Eu.+pu.

In many numerical algorithms, the above nonlinear flux vector is

often linearized in time or space. This linearization leads to the

following ne × ne inviscid Jacobian matrix

u'6rs - cru.

Ai(U;n) = [ V(}u'u + Cs)n- u.u

\ [v(}u •u + Cs)- H]u.

Crn

un - _nu + u_I

Hn - _UnU

7n

' +_u.JU n

where 6rs is the Kronecker delta with r,s = 1,2,...,ns and

(19)

1 Cs Cv, T.A4 (20)e 8

_- MC_, Ms

U is the vector of primitive variables ps,p,u,p, .... The eigenvalues of

this inviscid Jacobian matrix are:

hi=u_ i=l,2,...,ns+nd-1

' - ay)_n,+na _--- Un
(21)

)_n,Wn,l+l "- _Ztn "l- af

where the frozen speed of sound ay is defined as

paI = (1 + V)p
(22)

Define the unit tangent vectors s, t such that n,s,t form a unit or-

thonormal spatial basis, i.e.,

n.s = n. t = s. t = 0 Inl = Isl = Itl -- 1

12



The Jacobian matrix A can also be written as A - RAL, where A is a

diagonal matrix of eigenvalues of A,

dlag {u,, 'A(U; n) " ' , , , T= un,... , u,, u n - af, u n + a!} (23)

and L and R are the left and right eigenvector matrices, respectively.

R(U; n,s,t) - u air als u- aln u + asn

1
gU'U--_/s afu't afu's H-a fun H +afUn/

(24)

1

L(U; n, s, t) - 2ai2

,2ai 2 6,._ 2c,-_( 1-

-2afu. t

-2afu • s

-- 1
_(_u- u+¢s)+ alun

\ 7( 1_u.u+¢_)-alun

2c,_u -2c,_ _

2ayt 0

2afs 0

--_U -- afn

--_u + afn 7

(25)

Columns 2 and 3 of R and rows 2 and 3 of L can be dropped for the case of

a one-dimensional flow. Column 3 of }% and row 3 of L can be dropped for

the case of a two-dimensional flow.

(b) Spatial Discretization:

In this research effort, the finite-volume method 7 is chosen to

discretize the governing equations. In the finite-volume method the

flow domain is divided into contiguous cells and the conservation prin-

ciples applied to each of these cells. This in effect replaces the

surface integrals in Eq. 16 by the sum of integrals over the faces of

the cells. For the case of three dimensional flow, the cells are hex-

ahedra defined by specifying the vertices r.3±_,k_i,l_, * , (whole indices

13



represent the cell centroid or cell center) and these vertices are

used to compute the surface area vectors and cell volumes. In the in-

terpretation of the volume integrals, the state of dependent vari-

ables is assumed to be the value of Q at some average point in the cell,

e.g., the cell center. For ahexahedral cell (see Fig. i) centered at

j,k,l, the semi-discrete version of Eq. 8 can be written as

d nd

+ - = Vj,k, ff'i,k,, (26)
Ot----1

mot represents either j, or k,or l according to whether _ is I, or 2, or

3. In any case the index mot is always an integer. The circumflex above

the flux and source vectors indicates that these are numerical quan-

tities. These are consistent with the physical fluxes and source vec-

tors. For example, if the numerical flux vector Fot is defined as:

pot l --- ^ OtF (Q_,_+2,Qm,_+I,Q,n,_ Qm__l;sot _)
m_+_ _ m_+_

then the consistency requirement is simply

, •Sot Sot •F (Qm.,Qm.,Qm,_ Qm., m,,+½) = m.,+½ F(Qm,_)

The required surface area vectors of the cell faces are computed

using the formulas below 7

1 r. 1 1 l-r- 1 1 _)
Sj+½,k, t = _(rj+_,k+½,t_ _ -- rj+½,k-½,t+½) ® ( j+-_,k+-_,t+-_ j+-_,k-_,t-

1

S_,k,t+ ½ = (rj+½,k+_,Z+_l 1 --rj_l_,..__,.__ ,,.l)®(rj_l , t --r. 1 1 1)

and the cell volume is computed using the formula 7

Vj,k,t = _1(rj+i,k+_,l+_l1 _ -- rj_!,k-_,l-_)'2 (SJ-_, k,l d- Sj, k__, l d- Sj,k,l__)

(27)

(28)

14



There are two ways of obtaining second and higher order representa-

tion of the inviscidnumerical flux at a call face. In the first ap-

proach, the cell centroidvalues at the neighboring cells are used

to set up a Riemann problem at the face under consideration and this

is called the MUSCL (Monotonic Upwind Schemes for Conservation Laws)

approach. This approach is closer to the spirit of the finite-volume

formulation. In the second approach, the physical fluxes at computed

at the neighboring cell centers and then used in a weighted manner.

This approach is called the non-MUSCL approach approach. Both these

approaches are discussed below.

(i) Inviscid Fluxes - MUSCL representation

In the MUSCL approach 15 the piecewise constant initial data of the

Riemann problem in Godunov' s method 16 are replaced with piecewise lin-

ear inital data. The required right (R) and left (L) states of the

I
Riemann problem at the face j + _ are defined as

QRm_+½ =Qm_+1- [_4 _ (Qm_+2 - Qm_+1) + _-_( Qm_+I - Q_

QIo+_:Q,.. + (Q_a-e,_.-_)+---_

The parameter ¢ determines the spatial order of accuracy. For exam-

I
ple, ¢ = --I leads to a fully upwind scheme and¢ = _ leads to a third-

order upwind-biased scheme. The left and right states as defined above

lead to nonphysical oscillations at discontinuities. In order to elim-

inate these oscillations we define the following intermediate vec-

15



tors
Xl,m_+½ =(Q,,,_,+2-Q.,.+I)

X2,m_,+½ --(Qm,.+l-Qrao)

x3,.,o+-_= (Q-,o - Q,,,_-I)

The elements of these intermediate vectors are then limited relative

to each other. The limited vectors are given by

Xl,m _,+ _ -_ minmod(x 1, m a + _ ' 5)(.2, "*a + _ )

X2,m.+½ = minmod(x2,m.+½, bxa,m.+½)

_2,.,_+½ = minmod(x2,.,_+½,bxl,.,.+½)

_3,...+½ = minmod(xa,m.+½, bx2,m.+½)

where the limiting operator is defined by

minmod(x, by) = sgn(x) max { O, min[lxl, bvsgn(x)] }

and 1 < b < (3-¢)/(I-¢) and ¢ ¢ I. In terms of these limited intermedi-

ate vectors, the limited left and right states at a cell face are

Q _. + ½ = Q m. + l - "Xl,mc,-b_ -lt- T X 2 ,ma "t-½

Oio+__ = e_o + _,=o+½ +--7-x=,=o+½

Using these limited states in the first-order Roe scheme I° we obtain

the higher-order inviscid numerical flux

i/, _,i 1 {S _ . Qa,,,_+½ = _ "-+½ [Fi( ,._

where

• S _ A _ L _
IA,_'+½I = .,_+½R,_+½ ,._+½ mo+½

IA,.. + ½I(Q,_. +½ - Q,,,. + ½)} (29)+½) + Fi(Q_.+_)] _ _,,i n c

(30)

16



and the elements of the diagonal matrix[Alare

_(_ o •I( m.+])tl = ¢[(A_.+])t] g= 1,2, .,he

The function ¢[z] is necessary to prevent entropy-violating expansion

shocks and defined as la

Izl Izl>_ (31)¢[z] = (z2+ _2)/2_ Izl<

and e is some small positive parameter. This function is required at

points where the eigenvalue goes to zero. The superscript _ on L, R,

and A indicates that these matrices are evaluated using the basis vec-

a
tors n, s, t for the s-direction and the subscript m_ + _ indicates that

an averaged state at the cell face is used in the evaluation. This av-

eraged state is some symmetric average of the limited left and right

states. Note that the spatial differencing stencil consists of five

points.

(ii) Inviscid Fluxes - Non-MUSCL representation

(I) Osher-Chakravarthy :

The first-order accurate inviscid numerical flux _,i is written
m_+½

as I0

p(,,i - S:.+{ [ (Qm.+,)+ (Q,_)]-._.,.+{I(Qm_+,-Qm.)
m,,+½ FO

which is actually the average of two one-sided representations

I Aa, i-_,_,i =S '_ • Fi(Q.,.) + _ (Qm,_+l - Qm,_)
ma+½ FO m.+½ ma+-

(33)

_,,_,i = S _ , ---,i+ /,_ Q,,,_)o+½ m_+½"F (Qm.+l) - _m.+½_u"o+_ -
FO

(32)

17



where IAI is defined in Eq. 30 and the matrices A + are

A_,i + S _ _ A _+ L _
--- i IL_m A_I __ Jl 17_ A-1

The elements of the diagonal matrices A + are

,.,_,+ , I "l.f(Am,, = 1,2,...,n_

where the function ¢[z] is defined in Eq. 31.

In order to improve the spatial accuracy to second order the fol-

lowing intermediate algebraic vectors (characteristic variables)

are defined 3

Xl, m.+½ = L,_.+½(Q.,_+2- Qm.+l)

x$,.,. + ½ =L_ m_+- _(Qm.+I-Q.,_,)

O' -- LO _X3,mo+_-- .,:+__(Qm. -Qm:-_)

As before, to prevent nonphysical oscillations at shocks, the ele-

ments of these intermediate vectors are limited relative to each other.

The limited vectors are

• Of b (_

_l,m_+_ =mlnm°d(Xl,m_+_' X2,m_+_)

X-'_2,m,,+ ½ = minmod(X_,m,, + _, bX3,mo ' + _ )

=_ • d(x_ ½bx_ ½)_2,ma+_ = mmmo 2,m=+ _ l,m_+

X3,m,,+½ = mlnm°d(X3,mo+}, X2,ma.q-})

In terms of these limited fluxes, the higher order inviscid flux can

be written as 12

4 _ ,,,a-r_ ,
_+½ -" _°+½ FO 4 "'_.+½hl,m.+½

+½

(34)
+_--_-R,_o+½A,_:+½_=-_,,_,,+½ + _n'mo+½",n,,+½z,2,,_o+_

18



The parameter _has the same meaning as in the MUSCL approach. Again,

the matrices R, L, andA are evaluated at some averaged state at the

cell face. This averaging could be done using Roe averaging proce-

dure or even a simple arithmetic averaging procedure. Roe-averaging

in the context of nonequilibrium is a little difficult since we can

only satisfy either the jump condition or the jump condition but not

both simultaneously. In the present work simple arithmetic averaging

is used. Note that the spatial differencing stencil again consists of

five points.

(2) Harten :

In this method of representing the numerical flux, the concept of

amodified flux is used. In terms of this modified flux 11, the second-

_,i
order accurate inviscid numerical flux _ m_+_ is written as 2

• [Fi(Qm_+l) i c_ t (35)
_.+½ "° = _ S_m.+½ + F (Q_.)] + ,._+½a (Qm.+½)(I),_.+_

The elements of the vector • are

_po_,l _. _ _r o_,l _,l o/,(_a,i o_,l ., _,lma+_ _3(/k_r_lc,+½)t, gm,_+l 'l-grn,,) -- _"_,"m_,+_ "l-'Tmc,+_)Xma+ ½

where gt is the /th element of the modified flux g and X / the /th element

of the characteristic variable X. As before the characteristic vari-

able is defined as

X,n.+_ = L (Qm,,+._)(Qmo+l - Qra,_)

In the expression for the flux, the modifiedeigenvalue7 / is

{ (g'mo+1 t I
-- Otm_,+ _

-- 1
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and the modified flux is

• l
9tin,, = mxnrnod(am, ' _, oti__ rn_,+ t )

Note that in this representation, we can achieve second-order accu-

racy in both space and time. This scheme, however, is a little more

dissipative than the other two schemes that have been outlined in the

preceding sections.

(iii) Viscous Fluxes

The computation of the viscous part of the numerical flux involves

the evaluation of the stress tensor and heat flux vector at the cell

interfaces, i.e., we have to compute Tm.±½, qm.±_. First consider

the viscous stress tensor Tm_+½. This can be written as

Tm_+½ =#m.+½ (Vu)_.+_+(V)_+½- (V.u)_.+½I (36)

In order to evaluate the terms indicated in the parentheses, we use

the divergence theorem. 7 For an arbitrary fielda (scalar or vector)

we have

/Iv®a) V=

where ® represents either a gradient, or a divergence, or a curl op-

eration. Applying Eq. 36 to the gradient of the velocity fieldu on an

auxiliary cellABCD (see Fig.

(rn_ = 3) yields

2) surrounding the point indexed j+ ½,k,I

_ - uj,k,tS_ + 1 , S"(_Tu)j+_,k,l])j+½,k,l = UjWl,k,lSjwl,k,i ,k,l Uj+_,k+_,l jW t,k+_,l

-u,+_ k _ zs_. , _,k-½,t + U_+½,k,l+½S_+½,k,Z+½-- Uj+½'k'z-½S_+½,k,_-½
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The expression for the divergence of the velocity field can be ob-

tained in a similar manner. Using these expressions, the final form

of the viscous stress tensor at a cell face is

Tj+½'k3= V j+½,_,t

Sj+l,k3 -- Uj, k,t" S_,k,t)I +-- _, j+_,k+½,t
3 j+½,k,z

--Ujjr_,k_½,1Sy+½,k__,l Jr Uj+½,k,l+_ S_+_,k,l+ ½ -- Uj+_,k,l-_ Sj+_,k,l-_

71 17 _ _ ,k,l+-__-S,__1 ,..1,1Uj+ l *_,k+_,z - Sj+½,k-!,tu_+½,k-½,t + S +½,k,l+½u_+_ ,
2T_,_T_ 2

2
-s_+_,k,,_ _u. _ _ - ("j+_,k+ _ -":-_ _ ',"s , ,

+Uj+½,k,t+½ "Sj+½,k,t+½ --uj+½,kJ-½ "S_+½,k3-½)I

The first term in brackets represents the thin-layer contribution to

the viscous flux and the second term in brackets represents the con-

tributions due to the cross-derivatives. The geometrical quantities

(volumes and area vectors) in the above expression are simple arith-

metic averages. For the scalar and vector fields there are many dif-

ferent ways of doing the averaging. Consider the velocity field u.

The possible averaging procedures are

U j+ * I = 1

1

The choice of averaging is

plicit scheme. Therefore,

improve diagonal dominance.

1 [UjWl,k,i + UjWl,k+l,i + Uj,k+l,l + Uj,k,l]

[uj,_,,+ u_+l,k+l,,]

[Uj+l,k,l + Uj,k+l,i]

dictated by diagonal dominance in an ±m-

for an implicit scheme the last two choices

The criteria for choosing the averaging
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procedure are given in Ref. 12. The heat flux vector can be derived in

a similar manner and the final form of this vector is given by

LT +½,k+½,,S+½,k+½,Z j- ½,k-½,Z

- rj+ ½,k,,-½ S_+ ½]+Tj+½,k,t+½St+½,k,l+½ ½,k,i-

The viscous numerical fluxes for the other faces and directions can

be derived in a similar manner.

(c) Temporal differencing:

So far, the time-differencing part of the algorithm was not ad-

dressed because we considered only the semi-discrete conservation

law. If /kt represents the time steps, then the temporal term of Eq. 16

is represented as

d /v(t)QdV- ujAn-lz'_ ]
Vj,k,t [(1 + w)A"Qj,k,i -- _j,k,q

At

Qn+l nwhere /knQj,k,l = j,k,l- Qj, k,l and w controls the temporal accuracy of this

representation. For example, if w = 0 we have first-order temporal

1
accuracy and if w ----_ we have second-order temporal accuracy.

Algorithm

Using the concepts developed in the preceding sections, the numer-

ical algorithm is written as a two-parameter family of implicit and

explicit schemes.

^ or,n+1 ^ or,n+1 ^ n+l

+ (F:o+½- F:o_½)- =

22



"_ ]A.__,_ A_ (I- 0) _.a,.
(1+,,.,) w_,k,z-:vj,k,_(1+,,,) z...,_",,o+_-"-,o-½)- V,,k,_W;,k,_ (38)

a=l

where 0 = 0 defines an explicit scheme and0 _ 0 defines an implicit

scheme. Further, second-order temporal accuracy is achieved only

i
when O ----w + _. In the present study we concentrate only on implicit

schemes. Before considering the actual solution procedure we assume

that the grid is invariant in time, i.e., v=0. This also implies that

the geometrical parameters such as the volume and surface area vec-

tors are invariant in time.

The usual method of solving the nonlinear difference equation is

through time linearization, i.e., the nonlinear equation is linearized

about the known state Q" and the linear system of equations is solved

using known techniques. This approach suffers from linearization er-

rors. In order to avoid linearization errors a Newton method is used x2.

As an analogy consider a simple nonlinear equation f(x) =0. The Newton

method for this equation is

f,(_k)(_k+__ _k)_ _f(_k) k= 1,2,...

In the nonlinear difference equation represented by Eq. 38, Qn+I is

the unknown quantity. Let qP be an approximation to Q,+I such that as

p increases, qP approaches Qn+I. Linearizing Eq. 38 about the known

state qP we have
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viscid numerical flux, Eq. 33, and making using of the fact that _f

vj,,,,(1
(38)

La=1

where _Pq = qp+1 _ qp and 6_() = ()m_+_ -- ()m_-_ similarly the other terms.

If q0 = Q, and only one subiteration is carried out then we have the

usual noniterative algorithm. The LHS of the algorithm can be sim-

plified by considering only a spatially first-order accurate scheme.

Even so, when the subiterations converge, the RHS is satisfied to the

desired accuracy. We also assume that eigenvalues andeigenvectors

are independent of qP. Using the one-sided representation of the in-

S f =

0 for a closed cell, we get

Aj+½ (A_'- I' qj+l" - APqj) + A_'+,.__(APqk -- APqk-1) q- A,,,:+ ½(APqk+1_'- - APqk) +

(40)

The above equation is too large to solve on the computer and hence needs

to be simplified. There are several options available to us. The first

of these is to use a Gauss-Seidel relaxation in the predominant stream

direction. 12 Let this direction be the ]-direction. We then drop the

j - 1 and j + 1 terms to obtain

I-AtO + %;/,k,i (1 +.,) _/_ ½

_,_ p
At 8 A_'+½(APqk --APqk-,)+ Ak+ ½(A qk+_- APqk)+

V.i,k,t (1 + w) --

]'A_,+½(A,q,_ APq,_,)+ A__'-½(APq,+,- APq,) = RHS(Eq. 39)
(41)
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This equation is still too large to solve and is now impemented in an

approximately factorized form. First define the operator A as

[ ,At 8 ?A_,+ _ A j+
b e= I- At0 + Vj,k,_(I+ w)<=J-½

(42)

Then the approximately factorized scheme is

[ At oX_ + Vj,k,z (1 + w)

At 0 ]P(X_)__ X_+V_,_,,(I+_)(A_,+,_+A_,-,[) A,q_=RHS(Eq. 39) (43)

The operators _b amd 6f represent the conventional backward and for-

ward difference operators, respectively. Equation 43 is the final

form of the algorithm which is implemented in the computer code. In

its present form the algorithm is for three-dimensional flows. For a

two-dimensional flow there is no approximate factorization and the

algorithm reduces to the following line-relaxation algorithm

At 0 ]P"&_ + l,'j,k,t (1 +w)(A"'+6"b + A"'-6"f) Apqj = RHS(Eq. 39) (44)

For a one-dimensional flow this further reduces to apoint-relaxation

scheme given by

_,PAPqj = RHS(Eq. 39) (45)

Note that for the two- and three-dimensional cases the operators rep-

resent block-tridiagonal systems of equations where the order of the

block matrices is he. The one-dimensional case involves the inversion

of a full matrix of order he.
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Boundary Conditions

The discussion in this section is only applicable to external flows.

For such a situation, the typical computational domain(s) (see Fig.

3) are bounded by (i) an inflow boundary, (ii) an outflow boundary,

(iii) a wall boundary, (iv) a freestreamboundary, and (v) a symmetry

boundary. There are additional special cases to consider such as (i)

a geometrically singular boundary (axis), and (ii) zonal or overlap

boundaries. Each of these boundary conditions is discussed below:

Inflow Boundary

For the types of flows of interest, the inflow boundary is assumed

to be in the freestream and Dirichlet boundary conditions are imple-

mented implicitly. A special case of this boundary condition occurs

in the three-dimensional flow around blunt bodies where the entire

face collapses into a line. Such aboundary has to be treated with spe-

cial care as it has been known to have caused problems in other three-

dimensional calculations. This boundary is discussed later in this

section. For a freestream inflow we have

Q.+I = Q_ vu, k, l
1,k,l

Outflow Boundary

In the this research effort, the outflow is assumed to be super-

sonic and hence a simple zeroth/first extrapolation of flow variables

is done. This can be implemented implicitly. The extrapolation causes
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some error in the subsonic layer close to the wall.

perience has shown that this effect is negligible.

mathematically as

Qn+l _n+1 Vn, k, I
NJ, k,l = _NJ-l,k,l

However, past ex-

This is expressed

Wall Boundary

The wall is assumed to noncatalytic, i.e., n. VCs = O. Further the

wall is assumed to be a isothermal with a fixed wall temperature Tw

which in principle can vary from point to point on the surface. No slip

conditions u = 0 are also implemented at the wall. Assuming no-slip

condition at the wall leaves us with only the pressure to be estimated

at the wall. Assuming near boundary-layer behavior at the wall, this

pressure is obtained by zeroth order extrapolation from the interior.

Strictly speaking, the value of the wall pressure should be deter-

mined by solving the normal momentum equation. 7 In the present case

this is not done.

The implementation of the wall boundary condition is quite involved.

The layer of cells close to the wall have indices j_2_l and cells in-

dexedj_l,/ are fictitious cells (see Fig. 4). The values of the flow

variables in these cells are determined from the simple relations given

below

tln+l . n+l
j,l,l = --uj,2,/

Tjn+l __ 2Tw Tn+I
,1,1 -- " j,2,l

pn-I-1 _n+l
j,l,t = Pw = Pj,2,t

In evaluating the viscous stresses, one sided differences are used at

the wall.
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Freestream Boundary

Like the inflow boundary, at the freestreamboundary Dirichlet con-

ditions are used implicitly in the code. This far field boundary con-

dition assumes that all flow discontinuities are contained well within

this boundary.

Q,_+a Vn,j, 1
j,NK, I = _c_

Symmetry Boundary

The three-dimensional geometry considered in this research are as-

sumed to possess a plane of symmetry. Across this plane of symmetry,

all flow quantities are reflected. These reflection boundary condi-

tions are implemented implicitly and are expressed as

U,_+a rr,_+l U = p_, p, p, T, E, u, v
j,k,N L -- 'J j,k,N L+ I

wn+l .n+l

j,k,NL _ --'Wj,k,NL+I

u2n+l _n+l
,k,1 _ _j,k,O

_n+l .n+l

j,k,1 = --'Wj,k,O

U = p_,p,p,T,E,u,v

U = p_,p,p,T,E

Axis Boundary 13

This boundary condition is perhaps the most difficult one to im-

plement. It must be emphasized here that a geometric singularity does

not imply that the flow variables are singular. There is some respite

from this singularity in the finite-volume method because the cell

centers done not coincide with the axis (see Fig. 5) . In the present

analysis it is assumed that the grid is sufficiently smooth in the
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neighborhood of the singularity. First we write the semidiscrete ver-

sion of Eq. 1 for a cell indexed l,k,l. However the state Q considered

is assumed to be located at 5/6, k_l where

5 1

Q_,k,l = _Ql,kJ + _Q2,k,i

a similar conservation equation can be written for the call indexed

Q2,k,/. Using this equation, Q2,k,l can be eliminated from the conserva-

tion equation for the cell indexedQ1,k,/. The variables required for

the higher-order flux corrections are obtained from cells that are

diametrically opposite to the cell being considered (see Fig. 5).

This is probably the single most important requirement. In this ef-

fort we generate grids such that the singular axis is enclosed in a

cylindrical tube extending two cell widths. This reduces the require-

ment of interpolation to obtain the state vector at diametrically op-

posite locations.

Overlap Boundary

Dirichlet boundary conditions are used at overlap boundaries. The

values of Q from one grid are transferred to another through the over-

lap region. If the overlapping regions do not exactly match then we

have to use interpolation to transfer the values. The tranferredval-

ues are assumed to remain constant during the subiteration.

Finally, it must be noted that low order boundary conditions are

used in the implicit part of the algorithm. These boundary conditions

are explicitly corrected to second-order accuracy at the end of every
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subiteration, inasmuch as the left hand side goes to zero at conver-

gence. We are also investigating the possibility of using character-

istic boundary conditions.

Code Development

Before delving into the details of the new multidimensional code

for reacting flows, the important aspect of grid generation has to be

addressed. This is discussed next.

(a) Grid Generation:

The grid required by the new code is always three-dimensional ir-

respective of the dimensionality of the flow being computed. For a

one-dimensional flow the grid is a tube of a unit square cross-section

and for a two-dimensional flow the grid is a slab of unit depth. The

reason for this is that a three-dimensional grid is necessary to com-

pute the surface area vectors and cell volumes required by the finite-

volume approach. In doing so one removes conditionality (which slows

down the code) and the grid can be treated the same way for all flows.

The price paid in this approach is increased storage for the one- and

two-dimensional cases. In the present research, however, the very

important aspect of grid generation is kept independent of the code,

i.e., the reacting flow code does not include any grid generation pack-

age. This makes the code more flexible and applicable to a variety of

problems and faster at the same time.

Now the code to integrate the equations is divided into three codes;

a pre-processor, an integrator, and a post-processor. Each of these

codes is discussed below.
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(b) Preprocessor:

The basic unit in the integration of the equations is a sequence.

A sequence can contain one or more finite-volume grids. Currently,

these grids have to have a continuous overlap. For example, in the

case of hypersonic flow past a wedge, one can have two sequences; the

first sequence consisting of a single grid around the forebody and

the second sequence containing two grids in the wake. Each sequence

can have its own spatial and temporal accuracy. For the example of

the wedge, the forebody sequence can have first-order temporal and

second-order spatial accuracy, while the aftbody sequence can have

second-order temporal and spatial accuracy.

The function of the preprocessor is to set up the datasets and files

necessary for the integration package. The preprocessor reads the

flow conditions, the species set and the number of reactions. The pro-

gram then gets the species thermodynamic, transport and reaction data

from the database. Currently, the data base contains the species 02,

N2, NO, NO + , O, N, ande-. The thermodynamic data are in the form

cubic-spline coefficients. Using these data the code sets up the ref-

erence conditions required for nondimensionalization. The number of

sequences is then read in along with the pertinent accuarcy informa-

tion. The coordinates of the grids that form the sequences are also

read in. Based on these coordinates the surface area vectors and cell

volumes are computed and written into files and the flow variables are

initizalized at two time levels. The details of the reference con-

ditions and file structure are written into the preprocessor output

file which is read by the integration package.
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(c) Integrator:

This is the main code of the three and is a FORTRAN implementation

of the algorithm shown in Eq. 43. It is in this code that the flow equa-

tions are actually integrated. The integration package reads in the

reference conditions and file structure from the preprocessor file.

Note that the integration package does not read in the grid coordi-

nates but reads in the cell surface area vectors and volumes instead.

This saves both computational time and storage since the area vectors

and volumes are not computed over and over again and the grid coordi-

nates are not stored. This assumes that the grids used in the compu-

tation are invariant in time. If at later date dynamic adpative grid-

ding is desired then this code will have to be modified.

It must be noted here that the boundary condition procedures are

also not integral to the code. The code provides hooks for boundary

conditions and it is up to the user to write the boundary condition

procedures and routines. This was done in order to make the code flex-

ible. Datasets in the code's native format and residual history are

the only outputs from the integration package. These datasets and

histories are analyzed by the postprocessor which is discussed next.

(d) Postprocessor

The main function of the postprocessor is to analyze the flowfield

datasets computed by the integration package. The postprocessor com-

putes the various fields like pressure, temperature, Mach number,

etc. for purpose of graphical representation. The most important func-

tion of the postprocessor is the computation of the aerothermal loads.

32



The postprocessor computes the heat-transfer and aerodynamic coeffi-

cients. The postprocessor can also be used for creating files for the

purpose of computing radiation intensities and transport.

Results

(a) Model Problem

In order to test the feasiblity of the numerical method outlined in

the preceding sections, a model problem was solved. This model prob-

lem is shown below in the integral form

d udV + (._u+ _-_)dA = _ a_ + _ u(u - -
-dr (t) v(t) v(t) (t)

where w,%b,#,_ are constants. The second term on the left hand side of

the equation represents the advection term. The first and second terms

on the right hand side represent the viscous and source terms, re-

spectively. The model problem is actually Burgers equation and in the

differential form is

u 2 02u 1

a_, a (_u + _T) = #-Efiz_+ ,.,(u- 5)(u - 1)O-7+

Equation 46 represents many problems and of these a few representa-

tiveproblems have been selected. These are

Problem 1: The first model problem solved was that of steady, in-

viscid, non-reacting flow, i.e., w=0, #=_=0, and¢=l. Mathemat-

ically stated,

au a (,.,2)_+_T =0

subject to the following initial and boundary conditions

u(x,O) = l- 2x O < x <1, u(O,t)= l,u(1,t)=-I 0_<t<oo
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The exact solution to the above problem is

u(x,t) = { 1 0 <_x < 0.5-1 0.5 < x _< 1

which means that there is a stationary shock located at x = 0.5. This

case was computed using a CFLnumber of 1 x 106 . The calculations con-

verged within four steps and the results are shown in Fig. 6. It is ev-

ident that discontinuity that develops can be captured without os-

cillations within two to three cells. Such crisp capture is due to the

upwind nature of the scheme.

Problem 2: The second model problem solved was that of unsteady,

inviscid, non-reacting flow. This was to check the time-accuracy (es-

pecially important in the calculation of unsteady flows) of the algo-

rithm. The problem statement is identical to the the one above except

that the initial and boundary conditions are changed. Specifically,

the initial and boundary conditions used are

1 O<x<0.3 u(O,t)=l t>Ou(x,O) = 0 0.3<x<_1

The exact solution to the above problem is of a discontinuity travel-

ling to the right with a speed of stopped at t -- 0.6, the discontinuity

would be located at x ----0.6. The results of this calculation are shown

in Fig. 7. The figure clearly shows that the shock is tracked nearly

perfectly.

Problem 3:14 The third model problem solved was that of unsteady,

inviscid, reacting flow. This was to check the influence of the source

term on the calculation. The source term is somewhat contrived in the
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sense that it does not represent the actual source term of a chemi-

cally reacting system. The initial and boundary conditions used are

the same as in the previous problem. The problem has been solved for

various values of the source term strength _. The results of this cal-

culation are shown in Figs. 8a-8f. Several important conclusions can

be made from these computations. For small values of _, there is lit-

tle or no influence on the solution. The source term tends to sharpen

the discontinuity. When the source term reaches a critical value the

discontinuity does not move very far from its initial position. It is

unlikely that this situation will be encountered in the actual chem-

ically reacting problem. Ahigh source term strength translates to

near equilibrium conditions. For such a situation it is not a good

idea to use the nonequilibrium code to compute the equilibrium flow

- one has to use a code dedicated to computing the equilibrium flow.

Problem 4: The final model problem solved was that of steady, vis-

cous, reacting and non-reacting flow. For the non-reacting case, the

exact solution of the problem is known. The computed solution and the

corresponding convergence history are shown in Figs. 9a-9b. Note that

the reaction term again sharpens the gradient.

These four model problems clearly demonstrate the feasilbilty and

accuracy of the algorithm. The FORTRAN code developed for the actual

chemically reacting system is currently being tested for a variety

of problems. The results of these calculations will be presented at a

later date.
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Concluding Remarks

The equations governing the reacting flow of a multicomponent gas

have been derived. These equations are applicable to one-, two- and

three-dimensional flows. The various modelling assumptions and ex-

pressions have been detailed. Anumerical scheme based on the finite-

volume method has been developed to solve the governing equations.

The various methods of representing the inviscid and viscous numer-

ical fluxes have been detailed. The algorithm is spatially second

order accurate (third order accuracy can be achieved in principle)

and temporally second-order accurate. This temporal accuracy can

be reduced to first order for cases where a steady state solution is

required. The feasibility and accuracy of the algorithmhace been

demonstrated for some simple one-dimensional model problems. For

the actual problem of multi-dimensional chemically reacting flows,

the algorithm has been implemented as a set of three computer codes -

a preprocessor, an integrator, and a postprocessor. The code is cu-

urently being debugged and tested for simple geometrical shapes in

two dimensions. Once the code has been validated for the simpler cases,

it will be used to compute the complete unsteady reacting flow field

around the Aeroassist Flight Experiment (AFE) body shape.
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