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ABSTRACT

This paper presents an improved k-e model and a second order closure model for low-

Reynolds number turbulence near a wall. For the k-e model, a modified form of the eddy

viscosity having correct asymptotic near-wall behavior is suggested, and a model for the pres-

sure diffusion term in the turbulent kinetic energy equation is proposed. For the second order

closure model, we modify the existing models for the Reynolds-stress equations to have proper

near-wall behavior. A dissipation rate equation for the turbulent kinetic energy is also refor-

mulated. The proposed models satisfy realizability and will not produce unphysical behavior.

Fully developed channel flows are used for model testing. The calculations are compared with

direct numerical simulations. It is shown that the present models, both the k-e model and the

second order closure model, perform well in predicting the behavior of the near wall turbulence.

Significant improvements over previous models are obtained.

1. INTRODUCTION

Many flow problems of practical importance such as diffusion controlled transition, drag-

reduction, and flow separation and reattachment, are the result of low-Reynolds number tur-

bulence near a wall. Accurate predictions of these flows require better understanding and

modeling of turbulence near a wall. Most practical closure models (including k-e models and

second order closure models) do not resolve a rather thin, viscosity-affected sublayer. They

are usually incorporated with wall functions (Launder et al.[1], Shih and Lumley 1_']). However,

wall functions are not suitable for many flows of practical importance where the equilibrium

assumptions built in the wall functions are not valid. It is therefore necessary to extend and

develop schemes for modeling turbulence directly down to the wall. There exist several low-

Reynolds number k-e models which were discussed in detail by Patel et al. 131. Patel et al.

pointed out that the damping functions used in those models, especially the one for the eddy
viscosity, need to be modified in order to improve model performance. Hanjalic and Launder [4]

proposed a Reynolds-stress closure model for near wall turbulence with no wall functions. How-

ever, they did not use the full set of transport equations for the Reynolds-stress tensor in their

implementation of the model. Most of the existing models that do not use wall functions do

not properly predict the level of the normal components of the Reynolds-stress. For more
discussions about the development of models for low-Reynolds number near wall turbulence,

see Rodi [sl and Launder and Tselepidakis [81

In this paper, the k-_ model is presented in section 2. The near-wall asymptotic behavior

of the eddy viscosity and the pressure transport term in the k-equation is analyzed. According
to that near-wall behavior, we proposed new models for the eddy viscosity and the pressure

transport term. In addition, a modified dissipation rate equation is proposed following an

argument similar to that of Lumley [rl. In section 3, we present the second order closure model.

*Work funded under Space Act Agreement C-99066-G.



The near-wall behavior of turbulence (see e.g. Mansour, Kim & Moin [sl, MKM hereafter) is used

to form a set of model transport equations for the Reynolds-stress tensor and the dissipation

rate of turbulent kinetic energy. We developed a near wall model for the combination of the

velocity pressure-gradient correlation and dissipation rate tensor, and constructed a modeled

dissipation rate equation. Near the wall, viscous effects become important and the reduction

of velocity fluctuations normal to the wall becomes much more significant comparing to other

velocity components. This wall effect makes the viscous diffusion terms (which are usually

neglected in high-Reynolds number turbulence closures away from the wall) become one of

the largest terms that must be properly balanced by the other terms in the Reynolds-stress

equations. The proposed model equations satisfy the realizability condition which ensure no

unphysical behavior. In section 4, we test the proposed models using a fully developed channel

flow. For this flow, direct numerical simulation (Kim et al.[ 91) data is available. This data was

recently verified using three-dimensional particle tracking velocimeter measurements (Nishino

and Kasagi [1°]). The modeled transport equations in this flow are one-dimensional and steady,

hence model testing will be accurate. The results show that the k-_ model proposed in this

paper obtains an improvement over existing k-_ model. The present second order closure

model is capable of predicting wall behavior of various turbulent quantities. The mean velocity,

shear stress and normal stresses calculated from the second order closure model are in a good

agreement with the direct numerical simulation data.

2. k-e MODEL

2.1 Near-Wall Asymptotic Behavior

To analyze the near-wall asymptotic behavior of the eddy viscosity and other turbulent

quantities, we expand the fluctuating velocity and pressure in Taylor series about a normal

distance y from the wall as follows:

ul = bly + cly _ + dly 3 + ...

u2 = c2y2 + d_ya + ...
(2.1)

U3 = b3y 4- c3y 2 + d3y 3 "4- ...

p = ap + bpy + cpy 2 + dpy 3 + ...

where the coefficients ap,bl,c2,.., are functions of x,z and t. Based on the continuity and

momentum equations, MKM show that the following relations between the coefficients hold:

2c_ = -(b,,, + b3,3)

ap,1 = 21./c 1

ap,3 = _VC3

bp = 2vc2

where ( ),i represents a derivative with respect to xi. The eddy viscosity is defined by

-<u,uj> =  r(vi,i + 2-k  j (2.2)
3

where ( ) stands for ensemble average and k - (uiu,)/2 =_ (q2)/2 is the turbulent kinetic

energy. For plane shear flows, VT = --<uv>/_U_ from Eq. (2.2). Using Sq. (2.1), we obtain the



near-wall asymptotic behavior of the eddy viscosity:

OU
- (bac_}y 3 + (-(bid2 + clc2} + 2{blc2)(cl))y 4 + O(Y 5) (2.3)

12T Oy

That is, near the wall UT is O(y3), because OU/Oy is usually 0(1). We shall see later that

some existing models do not have this wall behavior. The near-wall asymptotic behavior of the
turbulent kinetic energy k and its dissipation rate e - v(ui,jui,j) are from Eq. (2.1)

k - (b_)+ (b_)y_+ ((b,c,) + <b_))y _ + o(y *)
2

i : <bl_>+ <b_>+ 4((_,_,>+ <b_c_>)y+ o&)
/2

(2.4)

(2.5)

-l(uip,{ ) becomesIn the k-equation, the pressure transport term II - p

II : -2.((b_) + (b_))y + O(y_) (2.6)

while the turbulent transport term, -(kui),i, is O(y3). Therefore, the pressure transport term

becomes much more important than the turbulent transport term near the wall and must be

properly modeled.

2.2 Eddy Viscosity and Pressure Transport Term

The eddy viscosity model can be in general written as UT = c u'g', where u' and g' are the

turbulent characteristic velocity and length scale, respectively. In two-equation models, e.g.

k-e models, k 1/2 is used as the characteristic velocity, and the length scale is characterized by

k3/2/e. Hence, the eddy viscosity is written as [la]

k 2

12T = cur,-- (2.7)
(

where Cu = 0.07, fu is a damping function. The form of the damping function is quite critical
to the prediction of the mean flow field [31. In fact, the prediction of the mean velocity depends

on the eddy viscosity model. Therefore it is important for an eddy viscosity model to have

proper near-wall behavior. We have examined the near-wall behavior of various eddy viscosity
models which are listed in table 1. Table 1 shows that some of the k-e models do not have the

correct near-wall behavior of the eddy viscosity.

One expects that near the wall, the size of the large eddies (or energy containing eddies)
should be order of the wall distance O(y). Equations (2.4) and (2.5) show that k312/e is O(y3).

Hence, k3/2/e is not an appropriate quantity to represent the length scale of the large eddies
near the wall. However, we can define a variable g - e - uk,ik,i/2k which has a nice property:

approaches e away from the wall and is O(y 2) near the wall. Therefore ka/2/_ is O(y) and is

a proper quantity to characterize the length scale of the large eddies. With this length scale,

the eddy viscosity model should be written as

k 2

/]T = Cp_ A '7" (2.8)
(

Now, in order for UT to have correct near-wall behavior, the damping function fu must be O(y)
near the wall and approach 1 away fl'om the wall. The damping functions used in various k-e



models are also listed in table 1. If we consider the presence of the wall as the main effect on

the eddy viscosity, then we can assume f, is mainly a function of y+ (defined as u_.y/v, where
ur is the friction velocity). The form of f_ can be determined quite accurately if we know VT, k

and _, for example, from the direct numerical simulations. We may also optimize the following
simple form by numerical experiments:

ft, = 1 - exp(-aly + - a2y +2 - a3y +3 - a4y +4) (2.9)

The optimal values for channel flows are al = 6 × 10-3,a2 = 4 x 10-4,a3 = --2.5 × 10-6,a4 =

4 × 10 -9. They can be further tuned using the direct numerical simulation data.

For the term of the pressure transport of the turbulent kinetic energy, we propose:

0.05 _kkk,J}, j (2.10)II = { ft,[ 1 _ exp(-y+)]

which has a similar form to the standard turbulent transport model, but with a coefficient to

ensure the near-wall behavior, Eq. (2.6). Here the coefficient 0.05 is an optimal model constant
for the channel flows.

2.3 Modeled k-e Equation

To complete the eddy viscosity model, we need the modeled equations for the turbulent

kinetic energy and for its dissipation rate. In general one may write the modeled k -equation
as follows:

Ok Ok 0 VT Ok ,OUi OUj. OUi

O"-[+UJoxj-Ox [(v+'_k)'_x ]+II+vw('_xj+'-_xi)-_x -e+D (2.11/

where D is zero in the present k-e model, because _ is finite at the wall. In k-e models that

assume _ = 0 at the wall, an artificial term D must be added in order to balance the viscous
diffusion term at the wall. The form of D for various k-e models is listed in table 1.

For the modeled dissipation rate equation, we write

e_
e,t + v:,j = [(1 + vr/a,)e,j],j - (2.12)

where _ stands for the entire mechanism of the production and destruction of the dissipation

rate e. At the level of the k-e model, we assume that _ is a function of v, VT, k, e, _, Ui,j
and Ui,jk. Because _ is an invariant, it must be a function of the invariants that can be

constructed from at least following quantities: Rt, vTVi,jUi,j/_, and vvTUi,jkUi,j_k/ei, where
Rt is the turbulent Reynolds number k2/ve. We now expand _/in a Taylor series about these
invariants and take only the linear terms. We obtain

_-- _20 .__ _21 i]T Ui,j Ui,j k
+ ¢21]12TUi,jkUi,jk-_

where the coefficients _)0,_21 and ¢2 are in general functions of Rt.
dissipation rate equation as

(2.13)

Finally, we write the

vr
J_j[(t:+_)_xj]+C, fl-_VTUi,jUi,j-C2f26---_ +E (2.14)



where C1 and C2 are model constants, and fl and ./'2 are functions of Rt. The term E in the

present model comes from the last term in Eq. (2.13): E = VlJTUi,jkUi,jk , where we have taken
¢2 = -1. The forms of E and C1, C_, fl and f2 for various k-e models are listed in table 1.

3. SECOND ORDER CLOSURE MODEL

3.1 Reynolds-Stress Equation

For an incompressible flow, the Reynolds-stress equations can be written

--_(UiUj) = Pij q- Tij + Dij q- IIij - Eij (3.1)

where ( ) stands for an ensemble average, D/Dt = O/Ot + UkO/Ozk, and the terms on the right

hand side of the above equations are identified as follows: Pij = --(Uiuk)Uj,k -- (UjUk)Ui.k,
Tij --(UiUjUk),k, Dij = u(uiuj),_,k, IIij 1= = --'_(uiP,j + ujp,i), and eij = 2u(ui,ku.i,k ). In

Eq. (3.1), the turbulent transport Tij, the velocity pressure-gradient correlation IIij and the

dissipation rate eij must be modeled. Near-wall analysis of existing models shows that they do

not exhibit a proper near-wall behavior, which indicates that the modeled transport equations

are not properly balanced near the wall. This may explain the poor quantitative predictions

from existing models for near wall turbulence, specifically, in predicting the normal stresses. [s]'[6]

To analyze the near-wall asymptotic behavior of the different terms in the Reynolds-stress

equations, we use (2.1) to estimate each term in the Reynolds-stress equations. For example,

for the (UaU_) component,

D(UlU2) _ O(y3)
Dt

/912 = O(Y 4)

T12 = O(y 4)

O12 = 6v(blc2)y + O(y 2)

H12 = -2V(blc2)y + O(y 2)

E12= 4.(blc )y + O(y2)

(3.2)

The near-wall budget for other components can be expressed similarly. We see from these

budgets that the viscous diffusion term Dij is always the largest term. Its leading term is

balanced by the dissipation rate eij or by the combination of the dissipation rate and the

velocity pressure-gradient correlation, -eij + IIij. In this paper, we derive a near wall model

for sij and IIij in a rational way, using the wall behavior as a model constraint. Away from
the wall, we adopt the high-Reynolds number realizable model of Shih and Lumley. [HI Near

the wall, we write the combination velocity pressure-gradient and dissipation rate as

E

IIij - eij -- (q2) _ij (3.3)

Note, (bij is not trace free because it includes the dissipation rate and the pressure diffusion.

We model ¢ij by assuming that it is a linear function of (uiuj), and function of a unit vector

5



normalto thesurface,ni. Under these assumptions, the most general form of ¢ij which satisfies
symmetry is

¢ij = aooninj + aoifij + al(uiuj) + a2((UiUk)njnk + (ujuk)nink)

+ a3(ukut)nkntninj + a4(ukut)nknt_ij
(3.4)

Using Eq. (3.4) and the wall constraint,

Dij + "_Oi.i = 0 as y ---. 0 (3.5)

the coefficients can be determined as a00 = a0 = 0, al = 2, a2 = 4, and a3 = 2, with an

undetermined 34, which is set to be zero according to numerical experiments. The above model,

Eq. (3.4), is valid only in the region near the wall. The influence of the wall should vanish at

the place far away from the wall. Numerical experiments suggest the use of a damping function

of the form fw = exp(-(Rt/C)2), where Rt = (q2)2/9ve, C = 1.358R°¢ _, Re_ = urh/v, u_. is

the friction velocity, and df is the thickness of the boundary layer or half width of a channel.

Therefore, the model in Eq. (3.3) can be written as follows:

(3.6)

Away from the wall, the velocity pressure-gradient correlation is split into a rapid part

II_) ) and a slow part II_ ). Lumley's high-Reynolds number model [71for the return to isotropy

term IT!2.) - eij has been successfully used in conjunction with wall functions. However, this--I 3

return to isotropy model does not vanish as y --, 0, and should be modified with a damping

function if one wants to use it to the wall. We use the same f,_ damping function to minimize

the arbitrary choice of the damping functions, and set

2

o
(3.7)

where bij = (uiuj)/(q 2) - _0/3. The rapid part of the velocity pressure-gradient, IIl_ ), is

modeled using the model of Shih and Lumley [2] with a modified coefficient C. Notice that

this rapid model decays as O(y _) as y --. 0. Therefore, we use it down to the wall without a

damping function. Shih and Lumley [_l set C = 0.8 when the model was used in conjunction

with wall functions. Here, we modify the coefficient as a function of the turbulent Reynolds

number: C = 0.8[1 - exp(-(Rt/40)_)]; C will approach 0.8 when Rt becomes large.

For the third moments, we use the model of Hanjalic and Launder [41, but with a different
model constant:

q2
(UiUjUk) = --O.07 (qZ) [<UkUr,)<UiUj),p + (UjUp)(UiUk),p + (uiur,)(ujuk),n] (3.8)

3.2 Dissipation Rate Equation

We write the dissipation rate equation as

e_
{,t 3t" Ui{,i - (Pf.,i - ((.ui)),, = -t--._'-(_

_q'l

6

(3.9)



At the level of the second order closure, we assume that • is a function of (uiuj), e, p, Ui,j

and Ui,jk. Since • is an invariant, it should be at least a function of II, III, Rt, (_,_,)u,,,,

Ui,jkUi,jl(UkUl) / _ _ e E _(q--_) (q-]-_)_, and Ui,jkUl,ij(UkUl)/ (q'-2)(_)_, where

II and III are the invariants of bij. We then expand • in Taylor series about the invariants
and take only first order linear terms. We obtain

= ¢0 + ¢1 (u us)Ui'j
£

•"[- _32 Ui'jkUi'jl(UkUl)
e_

./. Vi,jkVj,il(UkUl)
+,ca ; _ 7 + ¢4 Ui,jkUl,ij(UkU )

(q2> (q2) v (q2) (q2) w

(3.10)

where the coefficients _b0, _bx, _b2, ¢3 and ¢4 are, in general, functions of II, III and Rt. Now

if we consider the terms in (3.10) containing the second derivative of the mean velocity as a

model of the term --2u(ujui,klUi,kj (the term in the exact equation of e containing the second

derivative of the mean velocity) and use continuity, (ujuk,k) = 0, we obtain _b3 = 0, ¢4 = -¢_.

In addition, at high Reynolds number or when the small scales are isotropic, the dissipation

rate should not respond instantaneously to a change in the mean velocity derivatives. Under

this constraint, we require ¢2 to vanish as the turbulence becomes isotropic. The simplest

form that satisfies this condition is ¢2 = -0.15(1 - F), where Lumley's parameterIT] F =

1 + 9bijbjkbki - 4.5bijbij approaches one as the turbulence becomes isotropic. Finally, the
modeled dissipation rate equation can be written as

,,, + u,,,, = , - (,u,)),, - ¢o

-- _31(--_ (uiuj)Ui'j -- E. (UkUl)(Ui,jl- Ul,ij)Ui,jk

(3.11)

where _b0, and _bx are Lumley's coefficients. V] To close the above equation, we use Hanjalic and
Launder's diffusion model with a different model constant:

( }q2

,d(
(3.12)

4. FULLY DEVELOPED TURBULENT CHANNEL FLOW

To test the models developed in this paper, we chose a fully developed channel flow. The

Reynolds number based on the friction velocity and the half width of the channel Re_ is 180,
for which direct numerical simulation [9] and experimental data[ TM are available for comparison.

The Reynolds-stress equations for this flow are one-dimensional and steady, therefore the model

testing will be accurate.

The main results of the k-e models are shown in figures (1) to (4). These figures present

predictions for the mean velocity, turbulent kinetic energy and its dissipation rate and eddy
viscosity profiles, using several k-e models [13]'1141'[15]'Ia_]including the present one. These re-

sults show clearly that the present k-e model gives significant improvements over previous k-e

models according to the comparisons with the direct numerical simulations. The main results

of the present second order closure model are shown in the figures (5) to (8). All the predic-

tions are in a good agreement with the direct numerical simulation data. Figures (5) and (6)



presentthe comparisons of predicted mean velocity and turbulent kinetic energy using different
models (both k-e models and second order closure models) with the numerical simulation data.

The comparison with data of the normal components of the stresses are shown in figure (7).
Predictions for all the components are quantitatively accurate. The near wall behavior of the

three normal components is also reflected by the present models. None of the previous models
have succeeded in predicting these trends.lS],[6]

It should be noted, in our comparison with the data, the channel flow was computed

at fairly low Reynolds number. At high Reynolds numbers, the models still predict the log

law profile for the mean velocity. Comparison with new channel data [ls] (see figure (8)) at
Rer = 393 shows that the normal stresses near the wall are still well predicted. However, in

the core region the model slightly overpredicts the level of the turbulent kinetic energy.
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TABLE 1. Constantsandfunctionsfor variousK - e models

Model e_-BC C_ C¢1 C_2 ak at1.0 1.3
JL 0 .09 1.45 2.0

o=I< .084 1.0 1.83 1.69 1.3
Reynolds v-_'_-y 1.3

vO___g .09 1.44 1.92 1.0
LB 0r- 1.8 1.0 1.3
Chien 0 .09 1.35
NH 0 .09 1.45 1.9 1.0 1.3

v °=I< .09 1.45 2.0 1.3 1.3
Present

Model

]L

Reynolds
LB

Chien

NH

Present

f, I1
-2.5 1.0exp(_)

1 - exp(-.0198Rk) 1.0

[1-exp(--0165R_)] 2 1+ (_s)3

x(1+%, +
1 - exp(-.0115y ) 1.0

[I - exp(-Y +/26"5)12 1.0

Eq. (2.9) 1.o

f=
1 - .3 exp(- n_)

[1 - .3exp(- R_/9)If.
i - expt-R_)

1 - .22exp(-R_/36)

I - .3exp(-R_)

1 - .22exp(- R_/36)

Model 1I D
k Oy /JL 0 -2v[ °-2_12

Reynolds 0 0
LB 0 0 2_K

Chien 0 -_-_-

NH 0 -"" _ or

Present Eq. (2.10) 0

E
.02U .2

2VVT('_-y )

0

0

VT

o(y _)
o(y s)
o(y 4)

2V_exp(_5y+) O(y 3)-7
_ f.)(-5-_v_:) O(Y )rUT( 1 _:U 2 4

._=U'.2
vvr(-_ ) O(ys)

n, = I¢_/_ '_, Irk = vq_y/v, y+ = _y/_'.
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DNSl°l-data for mean velocity profiles in the 2D channel.

O

f -- --- LB

O0 250 50.0 ";'5,0 1000 1250 150.0 175.0 200 0

y÷

Figure 2. Comparisons between k-_ models and
DNSl°l-data for turbulent kinetic energy in the 2D channel.

10



0

c)

0 [3NS

JL

[13

---_ Chlen

I','11

Present

0

0.0 25,0 50.0 75.0 100.0 125.0 150.0 175.0 2000

V+

Figure 3. Comparisons between k-_ models and

DNSI°l-data for the disslpation rate in the 2D channel.

30.

.. , .......y.--...............

15.

10.

S.

O. 20 40. 6Q. I10. tOO 120 140. |BCI. leO.

g+

Figure 4. Comparisons between k-_ models and

DNSl°Ldata for eddy viscosity in the 2D channel.

11



o

o

q

0

a:l

--.-- : JLIt_I k-( model'
LBI"I k-e model
HLI41 SOCial

-- : Present model ._

: - / - .

10' ld 1o'
y+

Figure 5. Mean velocity profiles, Re, = 180.

__.__ : JLII3I k-e model

[ ,- ---- : LBI"I k-_ model
[- ,¢_._ ----- : HLI'tl SOCM
I ;/7,% --: Present model
[ d./,.__,_ ,, o o o o: DNSI°I-d-tL

',_._

,,4

g
0.0 2_.0 ,50.0 75.0 tOO0 IP_O If_0 0 17fi0 200.0

Figure 6. Turbulent kinetic energy profiles. Re, = 180.

12



o

"1 O000,' &|

o _A_:v

_I" o ++ t:w

°" "i i_ ::-F---i==_. b_...=

• ¥'

d _

0.0 25,0 50.0 75.0 I00.0 125.0 150.0 175,0 200.0

Figure 7. ItMS of fluctuating velocities, Re, = 180.

Lines represent present model; Symbols are DNsl°l-data.

O

o

c_

.O

O
.-4

o
o

0 0 0 0 : il

AA_:v

+-I +:w

o

w *

_ .o .................. o....., • , ,, • .-.-,. ............. _..:...o.__.,

i" ' : " ----_-"

a/

¢

• ! • I • I • I • I • i i L I

O.O 50.0 1000 150.0 2000 250.0 3000 35U0 4000

yl"

Figure 8. RMS of fluctuating velocities, Re,=393.

Lines represent present model; Symbols are DNS[15]-data.
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