
Tolerating Failures of Continuous-Valued
Sensors

Keith Marzullo - C/_

TR 90-1156

September 1990 "

3/

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames Grant Number NAG2-593, Contract N00140-87-C-8904.
The views, opinions, and findings contained in this report are those of the authors and
should not be construed as an official Department of Defense position, policy, or
decision.

https://ntrs.nasa.gov/search.jsp?R=19900018719 2020-03-19T21:03:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42822309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tolerating Failures of Continuous-Valued

Sensors

Keith MarzuUo"

Cornell University

Department of Computer Science

September 14, 1990

Abstract

One aspect of fault-tolerance in process control programs is the

ability to tolerate sensor failure. This paper presents a methodology

for transforming a process control program that cannot tolerate sensor
failures into one that can. Issues addressed include modifying spec-

ifications in order to accommodate uncertainty in sensor values and

averaging sensor values in a fault-tolerant manner. In addition, a hi-

erarchy of sensor failure models is identified, and both the attainable

accuracy and the run-time complexity of sensor averaging with respect

to this hierarchy is discussed.

Keywords: fault-tolerance, process control systems, real-time dis-

tributed systems.

1 Introduction

A process control program communicates and synchronizes with a physi-

cal process. Typically, the program reads values from the physical process

through sensors and writes values through actuators, as shown schematically

in Figure 1. This paper is concerned with tolerating failures of continuous-

valued sensors.

The approach developed in this paper is outlined as follows:

"This work was supported by the Defense Advanced Research Projects Agency (DoD)

under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904. The views,
opinions, and findings contained in this report axe thooe of the authors and should not be
construed s.s an official Department of Defense position, policy, or decision.

process
control

program

actuator

sensor

Figure 1: A process-control program

1. A specificationof the controlprogram iswrittenin terms of the state

variablesof the physicalsystem. For example, the specificationof a

program controllinga chemical reactionvesselwould referto a variable

T whose value isassumed to be the temperature of the vessel.

2. Each physicalstatevariablereferencedby the specificationisreplaced

with a referenceto an abstractsensor. An abstractsensor is a set

of valuesthat contains the physicalvariableof interest.Uncertainty

in sensorvaluesnow becomes an issue,and the specificationmust be

re-examined and possiblychanged to accommodate it.

3. The controlprogram iswrittenbased on the specificationproduced by

Step 2. This program reads abstract sensors that are assumed to al-

ways contain the correct value of the corresponding physical variables.

4. For each abstract sensor referenced by the program written in Step 3,

a set of abstract sensors that fail independently axe constructed. Each

abstractsensor is implemented using a concrete sensor,which is a

physicaldevice that "reads" a physicalvariableI, such as a thermo-

meter. This stepwillrequiresome knowledge of the physicalprocess

being controlledas wellas the specificationof the concretesensor.

5. A fault-tolerantaveragingalgorithmisused with thesereplicatedab-

stractsensorvaluesin order to calculateanother abstractsensorthat

tThe concrete sensor need not sense the exact physical state variable of interest. For
example, an abstract temperature sensor could be constructed from a pressure gauge by
using Boyle's law: PV -- nRT.

is correct even if some of the original sensors are incorrect. The av-

eraging algorithm assumes that no more than f out of the n abstract

sensors are incorrect, where f is a parameter. The relation between n

and f depemis on the way sensors can fail.

The resulting system will have a structure like that shown in Figure 2.

The rest of the paper is organized as follows. In Section 2, we define a

process
control

program

actuator

-D
"averager"

abstract concrete

sensor sensor

,q
abstract concrete

sensor sensor

:D D
;_bstract concrete

sensor sensor

o

Figure 2: Replicated sensors

method of representing sensors that makes them amenable to replication and

discuss the effect of uncertainty on process control program specifications.

In Section 3, we discuss sensor failure models and present a sensor averaging

algorithm. Section 4 contains a demonstration of our methodology.

2 Physical State Variables and Concrete Sensors

A variable in a computer is quite different from a state variable in a physical

process. A computer variable takes on values from a finite domain, and

can assume only a bounded number of values in any finite time period.

A physical state variable, however, may take on any real value at arbitrary

times.A convenientway to represent a physical state variable in a computer

program is as a function. The domain of such a function is typically time, but

it can be some other physical variable, depending on the safety properties
of interest.

A concrete sensor is a device that can be used to sample a physical state

variable. For example, a computer controlling a reaction vessel might have a

thermometer as a concrete sensor. A concrete sensor may interact with the

computer in a variety of way: the computer may poll the sensor, the sensor

may asynchronously alert the computer when a certain value is sensed, or

the sensor may send a stream of values to the computer where each value

indicates that the physical variable has changed by a certain amount. We

will assume that a concrete sensor a has a specification _,, and will call this

sensor faulty if it exhibits a behavior not consistent with its specification.

For example, consider a thermometer whose value is read by polling.

Suppose this concrete sensor returns a value T with an accuracy of e de-

grees and the computer obtains the sensor's value within 6 seconds of the
thermometer being sampled. If the time the computer program receives

is _, then the specification of this thermometer is:

• ('2, i) = 3to : i - <_to < i : - <_T(to) <_ + el2

A concrete sensor is not very convenient mechanism. For example, with

the thermometer:

• The sensor has a limited accuracy. Network delay and processor

scheduling further limit the accuracy of the sensor.

• The control program may be interested in a temperature at a time the

thermometer was not sampled. A value must then be interpolated;

doing so requires knowledge of the physical process being monitored.

• Some properties of the concrete sensor, while important to the imple-
mentation, should be irrelevant to the specification used by the process

control program. For example, another thermometer might generate

au interrupt if the temperature rises above 100 degrees. This is an im-

portant property of the sensor-it allows for an accurate determination

of when 100 degrees is reached. There may be other ways to make the

same kind of precise measurement, however, for a sensor that is polled.

It would be convenient if the control program could be the same for

any method of measurement, as long as the measurement is accurate

enough.

4

Wewill addressthesedifficultiesin two ways.The first problemcannot
be eliminated,so in Section2.2the effectof inaccuracyin specificationsis
addressed.The other twoproblems,interpolationand dataabstraction,are
addressedhereby abstract sensors.

2.1 Abstract Sensors

An abstract sensor is a piecewise continuous function from a physical state

variable to a dense interval of real numbers. We will denote an abstract

sensor with an overbar over the variable, such as T(t). When possible, we

will simply write _ if we are interested in the "current" value; that is, the
sensor value for the current value of t. Intuitively, interval T represents the

possible values of T, given the imprecision of the concrete sensor used to

compute T and any uncertainty in the physical process.

An abstract sensor T(t) can be represented as a pair of functions Tram(t)

and Tmaz(t), allowing T(t) to be the interval [Train(t) .. Tmaz(t)]. The

accuracy of an abstract sensor is the width of the interval, or [T(t)l. With

this representation, min T(t) = Train(t), max T(t) = Tmaz(t), and IT(t)[=

Tr.a,(t) -- Tmi.(t).
An abstract sensor T is correct if it is not too inaccurate and always

includes the value of the actual physical variable. More precisely, for some

upper bound acc T on the accuracy of T,

correctover D de=f

VtED:minT(t)<T(t)< maxT(t) h IT(t)l <acc T

We assume that a failure of an abstract sensor can arise when the un-

derlying concrete sensor fails. As will be discussed in Section 3, a hierarchy

of failure classes can be defined:

• fail-stop failures (following [17]), in which a failed abstract sensor can

be detected2;

• arbitrary failures with bounded inaccuracy 3, in which either IT(t)l _<

2The value of a failed fail-stop sensor can be defined to be the empty interval whose
value is [e .. e - 1] for some value of e. The empty interval has the convenient properties
that it contains no points and intersects no interval, including itself.

ZWe use the term bounded inaccuracy to refer to bounding from above the accuracy of
an abstract sensor. Similarly, an abstract sensor is too inaccurate if the numeric value of
its accuracy is too large.

acc T is always true or acc T is known, and thus abstract sensors that
are too inaccurate can be detected;

• arbitrary failures, in which an abstract sensor can fail arbitrarily.

Given a concrete sensor, it may not be easy to implement an abstract

sensor. In general, it may require considerable knowledge about the physical

process being monitored. For example, consider the specification q_(7;, t) for

the polled thermometer. The specification, alone, is not sufficient informa-

tion to define an abstract sensor T, since we don't know how to interpolate

values between successive sensor readings. Suppose, however, we know from

the physical process being monitored that dTI_i'l < AT" This bound on the

change of T allows us to interpolate intermediate values with a known ac-

curacy. The abstract sensor T(t) can be defined as

_'-- ¢I2 -- AT(t -- _ + $) < T(t) < _ + ¢12 + AT(t - i + _) fort_>

One can use this example as a recipe for writing abstract sensors, but the

resulting sensor may be too inaccurate for any practical use. For example,

if I_'tl can be bound more tightly at certain known times, a more accurate
sensor can be constructed. In Section 4, the development of an abstract

sensor is shown in some detail.

2.2 Abstract Sensors in Specifications

The specification of a system typically includes a set of safety conditions:

predicates on the state of the system that the implementation must ensure

axe always true. A safety condition on a process control program will refer-

ence physical state variables. For example, consider a reaction vessel with

a pressure relief valve. One safety condition might be that whenever the

pressure p is greater than some ceiling P,naz, the valve must be open. We

could write this safety condition as p > Pmax - ope_ where open is a state

function that is true when the valve is open.

The specification of a process control program will have to be changed

when expressed in terms of abstract sensors. It is not possible to take a con-

trol program written in terms of physical state variables and, for each ref-

erence to such a variable, substitute a reference to a corresponding abstract

sensor. Consider p > Pmax -- open. The condition that results from replac-

ing the physical state variable with an abstract sensor is _ > P,naz _ open;

one must decide what the term p > Prnaz means.

6

Let S be a predicate on the system state and V be the set of physical

variables mentioned in S that will be accessed through abstract sensors. We

need another condition S _ that contains no references to any vi E V but

may instead contain references to _i. The only constraint on S' is that it
reduces to S when the abstract sensors have perfect accuracy 4.

(S'A = 0) S"'

There are several ways such an S t can be constructed. We could replace

all references to vi in S with references to the midpoint of_i. However, if all

values in _i have the same likelihood of being valid, then there are only two

reasonable alternatives. We can either require that all points in _i satisfy S

or that there ezist.s at least one point in _i that satisfies S. More precisely,

for each physical variable vi the condition S can be generalized as

S' def = 3Vi E _i : S= VviE_i:S or s'def

The generalization of S cannot be done automatically, since it is really a

refinement of the problem specification. Ideally, one would like to strengthen

S so that states excluded by the safety condition are still excluded. For

example, we might want to assert that a catalyst is injected (denoted by

the state function C) only when the pressure is above a minimum value:

C _ (p > Pmin). In this case, the state we are trying to avoid is one

where the catalyst is injected at too low a pressure, and we cart strengthen

C :, (p > pm .) to C :, (Vp :p >
We may find, however, that a specification cannot be strengthened in a

meaningful way, The property p > Pmax = open is an example. Changing

the property to (Vp E _ : p > Pmax) = open will allow states with p > P,na=

and -,open, and changing the specification to (3p E _ : p > P,na=) = open

will allow states with p < Pma= and open. Unless we can guarantee that

Ii 1= 0, the program's specification must be changed. Here, we are probably

more interested in avoiding an explosion of the vessel. If so, the condition

we want is (3p E _ : p > p,,_..=) = open, and we would accept the fact that

the pressurevalvemay be unnecessarilyopen.

Itshouldn'tbe surprisingthat,in some cases,a property of a specifica-

tionmust be changed (ascompared to being strengthened)when references

4The expression S "' is S with all occurrences of physical state variable vi changed to
el

abstract sensor _.

to physical state variables are replaced with references to abstract sensors.

Using abstract sensors exposes uncertainty in the physical process' state and

a specification may have been written implicitly assuming no such uncer-

tainty. Of course, specifications are sometimes written with such uncertainty

explicitly mentioned. For example, an informal expression of the pressure

relief valve property might be "if the pressure rises to within 0.1 millibars of

Pmaz then the relief valve must open". In our notation, this property would

be expressed as ((3p 6 _:p > Pmax) =--open) A (IPl < 0.1).

3 Fault-Tolerant Abstract Sensors

Given n independent abstract sensors and some assumptions about failures,
we would like to construct an abstract sensor that is tolerant of failures. We

will first present an algorithm that constructs a sensor containing the correct

value given that no more than f of the original sensors are not correct. We

will then consider how this algorithm performs with different failure models.

3.1 Fault-Tolerant Sensor Averaging

Let Ti and Ti (i _ j) be two abstract sensors for the same physical value

T. If Ti and T-"i both contain the correct value, then the intervals Ti and Tj

must intersect, and their intersection must contain the (unknown) value T.

If f or less sensors do not contain the correct value, then any (n - f)-

clique, or set of n - f mutually intersecting sensors may contain the correct

value, since they each share a common value. Conversely, any point not

contained in at least n - .f intervals cannot be the correct value; if it were,

then there would be more than f sensors that do not contain the correct

value. So, the cover of all (n - f)-cliques must contain the correct value.

This gives us an abstract sensor averaging algorithm.

Algorithm 1 Fault-tolerant Sensor Averaging

Let ,.q be a set of values taken from n abstract sensors, and sup-

pose the abstract sensors are of the same physical state variable

where their values were read at the same point in their domain

(e.g. at the same time). Assuming that at most f of these sen-

sors are incorrect, calculate nl,,(S) which is the smallest interval

that is guaranteed to contain the correct physical value.

8

Implementation: Let I be the smallest vMue contained in at least

n - f of the intervals in S and h be the largest value contained in

at least n - f of the intervals in S (by assumption, these values

must exist). Let nl,n(S) be the interval l .. h].

Algorithm 1 is inexpensive-it can be implemented in O(nlogn) time.

Appendix B gives an implementation that has this running time.

The accuracy of OI,,(S) depends on the value of f, as illustrated in

Figure 3. In this example, the value of no,n(S) is the empty interval because

it is impossible for both intervals a and b to contain the correct value; at

least one of them must be incorrect. In general and when defined, N0.,(S) is

the intersection of the intervals in S, On-l,n(S) is the cover of the intervals

in S, and I (S)l _<I nr,. (S)l if f <_ ft.

a _ : _ : b

e 4 •

q , d

e 4

4

11

nl,5

n2,5

n3,5

n4,5

Figure 3: Intersection with f = 1, 2, 3 and 4

One consequence of the definition of GLn(S) is that for f > O, n1,n(S)
can contain values that cannot be the correct value. For example, Figure 4

shows the intersection of three intervals a, b and c. If f - 1 then the correct

value must be within I1 or/'2. Algorithm 1, however, would calculate the

interval/.. The points between I1 and I2 are added to preserve the "shape"

of the abstract sensor as seen by the control program.

It is instructive to compare At,n(5) with n-modular redundancy [20]

(N MIt). In NMit, n independently produced values of a variable are presented
to a voter that selects the majority value as its output. By doing so, the

9

voter can mask up to f incorrect inputs where n >_ 2f + 1. The function

Nl.n(S) resembles an NMR voter, except that it accepts intervals rather than

points as inputs and it produces the most accurate value possible as output

for any value of f : (0 _< f < n). If the inputs to nl,n(S) are point intervals

(that is, have a width of zero), then the NMR voter and AI,,(S) produce the

same output when n >_ 2f + 1.

b I i I I

I I I I

I I I I

Figure 4: Intersection with n = 3 and f = 1

The relation of f to n (and hence the accuracy of ALn(S)) depends on

the failure model that is assumed. We will first assume arbitrary failures

(both with and without bounded inaccuracy) and then consider a fail-stop

failure model. We assume that no more than f of the n sensors can be faulty

and that once failed, a sensor remains failed.

3.2 Arbitrary Failures

The width of an interval that is an abstract sensor value determines the

sensor's accuracy. If the ratio .flu of the number of faulty to non-faulty

abstract sensors is too large, then one cannot bound the inaccuracy of the

resulting abstract sensor. The following theorem bounds flu. Define the

functions mini and max_ to be the i th smallest and largest values of a set

of u values respectively. Note that rnin_ is the same as maxn_s+l. For

example, if S = {13, 14, 15} then min3(8) = nlaxl(S) : 15.

Theorem 1 /.f,f < the,',In1,,,(S)l< min21+,{ls[:se $}.

The proof of this theorem is in Appendix A.

If f >_ [(n % 1)/2J then the derived interval can be more inaccurate than

any sensor in the system. Theorem 4 in Appendix A formally states this

property. An example is shown in Figure 5. Suppose the three sensors a, b

10

and c are "maliciously" faulty. They can m_ke n/,n(S) as inaccurate as

desired by choosing appropriately distant values from intervals d and e.

a c d

I I

' b 'e
I I

I I

i I I
I I
1 4 PI

Figure 5: Intersection with n = 5 and f = 3

One property of nl,n(S) is that, depending on the values of S, nl,,_(S)

can be more accurate than any sensor in S. Figure 6 illustrates this property.

Such a value of ,3 can result from different delays, errors, or other sources

of uncertainty that arise in computing the value of the abstract sensors

comprising S. This property makes replication of abstract sensors attractive

not only for tolerating failures, but also for increasing the expected accuracy

of a sensor's value.

d

a
i !

I I
I I

I I

I _._ I
I I

I I
I _ ;

I I
I _l
I _l

I I
I I

I
I !

b

_ c

Figure 6: Intersection with n = 5 and f = 1

If n = 2f + 1, however, then the accuracy of nt,n(S) is limited, in that
it cannot be more accurate than the most accurate sensor in S. This is

illustrated in Figure 7 where f = 1 and n = 3; here, the only way we could

change sensor c so that it contains values outside of NI,,(S) would be to

11

makec more inaccurate than either a or b or to make c detectably faulty (as

discussed in Section 3.3). It is, therefore, advantageous to have n > 2f+l for

a system with arbitrary failures. Theorems 5 and 6 in Appendix A formally

state tiffs property.

a 11

|_
_J C

!
!

! •
i

q I D b
I
I

I
I

II

Figure 7: Intersectionwith n = 3 and / = 1

Theorem 1 bounds the accuracy of a derived abstractsensorin terms

of the accuracy of one of the abstract sensors_ used in itsconstruction.

Such a bound isusefulonly if_ isnot faulty--inparticular,ifI_I _<accT.

Hence, Theorem i only appliesfor arbitraryfailureswith bounded inac-

curacy. However, iftiffsbounding sensorcould have an erroneouslylarge

inaccuracy,then the bound isnot meaningful. Consider the sensorsshown

in Figure 8. Ifsensorc iserroneouslyinaccurate,then the valueof nl,3(S)

isas inaccurateas c. Thus, the ratio.f/nof the number of faultyto non-

faultyabstractsensorsmust be smallerthan thatstatedinTheorem I when

sensors can have unbounded inaccuracy. Theorem 2 gives tiffsbound on

//n.

a I_ ,- I
I I

I I 1

I 4 Ill
I I

at4 D-I C

I I
I I

a_ _' I
I i

Figure 8: Intersectionwith n = 3 and .f= 1

12

Theorem 2 LetC be the (unknown) subset ors that are correct. If f < L_]

then I nj,. (S)l < minl+_{Isl : s • C).

The proof of this theorem is simple: from Theorem 1,

In_,.(S)l <_max__2l{Vs • S}

For In_,.(S)l to be bounded by a correct sensor, n - 2f > f and so n > aS,
The worst case is when f faulty sensors are the most inaccurate, so

Inj,.(S)l < mint+_{Ist : s • c}

o

Under the hypothesis of Theorem 2, a minimum of four sensors are nec-

essary to tolerate a single faulty sensor. Figure 9 illustrates this case---even

if sensor d has an erroneously large inaccuracy, I nl,4 ($)1 is bounded by a

nonfaulty sensor.

! I

;_.- -_ I

I I

I I

I

I I

I I

I I

I I

! I

I I

I I

I I

141 It I

b

C

• d

Figure 9: Intersection with n = 4 and f = 1

3.3 Other Issues on Failure

Iff' <__f sensorscan be detectedas failedthen they can be removed from

S, and n and f can be reduced by f' beforecomputing nl,.($). By doing

so, the ratio f/n willbe decreased,thereby improving the bound on the

inaccuracy of NLn(,.q). In a fail-stopfailuremodel, allsensorfailuresare

detectable,meaning thatup to n - 1 failurescan be toleratedand nL.(,5)

willbe as accurateas the most accuratenonfaultysensor.Additionally,the

running time of Algorithm 1 with fail-stopsensorsisO(n).

13

We can use Algorithm 1 to detect some failed abstract sensors assuming

an arbitrary failure model. This algorithm is very simple: any sensor in

$ that does not intersect AL,(8) cannot contain the correct value, and is
therefore incorrect.

Algorithm 2 Detecting failed sensors.

Given n sensors $ and a maximum number of faulty sensors f,

find a subset of the sensors/) C_S that are incorrect.

Implementation: Compute ALn(S) using Algorithm 1. Then,

= {s: s _ s ^ _ n (n1,.(s)) = _}.

It is likely that Algorithm 2 will fail to detect some of the incorrect

sensors. For example, using Algorithm 2 with the sensors in Figure 4 yields

:D = 0; even though we know that only one of the two sensors a, c must be

incorrect, we cannot tell which of the two is incorrect.

So far, we have assumed that once a sensor fails it remains failed. This

assumption may not be realistic for sensors, since an abstract sensor main-

tains no state. It seems natural to assume a sensor may occasionally fail in

an apparently malicious way and then "heal" itself and subsequently yield

correct values. So, a natural extension to the arbitrary failure model is to de-

note the faulty sensors at time t as a function _'(t) such that Vt : I.T'(t)l _< f.

Unfortunately, we cannot construct a correct abstract sensor under these

conditions; the averager might be unlucky and each time read a (temporar-

ily) incorrect abstract sensor. We must also guarantee that there exists a

period H such that the number of failures in all time intervals of length II

is bounded:

:_II > o : vt, t' : t < t' < t + II : I u Y(t')l < f.

If Algorithm 1 obtains values from each concrete sensor within 1I time units

then it constructs a correct abstract sensor. In the limit of large II, this

model reduces to the earlier arbitrary failure model.

4 Example

The methodology presented in this paper requires some thought to use.

An original specification may have to be changed to accommodate abstract

sensors, and it may be difficult to construct a set of independent abstract

14

sensors. In this section, we show an example of how a specification can be

converted from one that uses physical state variables to one using abstract

sensors. We also show how an abstract sensor can be implemented from a

concrete sensor.

As part of the Cornell Real-Time Reliable Distributed Systems (RR)

project, we are deriving correct process control programs from specifications.

One of the problems we have chosen is that of a train traversing a sequence of

n adjacent track segments of possibly unequal lengths. Assume that segment

/ spans track locations ci through ci+l where (V{ : 0 _< { < n : ci < c_+1). A

train has position x(t) and velocity v(t), has zero length 5, starts at position

co = 0 and moves in the direction of increasing x (towards cl). Each track

segment has an associated minimum and maximum speed mini and mar.i; if
the train exceeds these limits, it may derail. Additionally, there is a random

communications delay associated with all messages in the system that is

bounded by _ seconds.

A track circuit a(q,r) is a concrete sensor associated with a span of track

q _< z _< r. A nonfaulty track circuit returns true iff the train occupies any

part of the circuit's span at the time the circuit is polled. We will assume
that there are M track circuits.

The safety condition for correct operation of the train is that it not

derail, or

def
S = Vt, i:l<i< n:ci<x(t)<_ci+l _mini < v(t)< maxi

S is expressed in terms of physical variables, so it must be changed to

be expressed in terms of abstract sensors. The obvious condition is

St def= Vt, i:l<i<n:

(qz E x(t) : ci < z < ci+l) =_ (Vv E v(t) : mini < v < mazl)

sincethisalsoexcludes allunsafe states(at a penalty of running the train

conservatively).

Sincethe conditionS' refersto the abstractsensors• and _, the control

program willneed to referto thesesensors.We willshow how an abstract

positionsensor_i can be constructedfrom the track circuitsa(q,r).The

simplestway to do thisisto assume a bound on the velocityof the train

v <_ v,,,,=. Define the global array of M elements:

6In Appendix C we show that controlling a train of length L > 0 is equivalent to

controlling a train of zero length.

15

var train[i]: {before,in, after} := before, ..., before;

Define a polling process for each track circuit a(q,r). Note the delay is

represented by a delay statement; the implementation must ensure that no

more than & seconds elapse between successive polls of a sensor where & is

small enough so that the polling process does not "miss" the train traversing

the track segment it is monitoring: /x <__(r - q - *Vm.z)/Vmaz. Assertion I

is a loop invariant, and t is the current time.

process Poll[i] =

begin

{I : train[i] = before _ 0 < z(t) < q + _vmax ^

train[i] = in _ q <_ x(t) <_ r + _vra.z ^

train[i] = after =_ r < x(t) < ca}

do true --,

delay A;

if a(q,r)^ (train[i] = before) --+ train[i] := in

[] -,aC+,rl^ (train[i] = in) _ train[i] := after
I1 -'a(q,_I ^ (train[i] = before) --, skip
U a(+,_)^ (train[i] = in) --* skip
0 (train[i] = after) --, skip
fi

od;
end

The definition of the abstract sensor comes from the loop invariant I

and the distance the train could have moved since the last time a(q,_) was
read:

_i = if train[i] = before _ [0 .. q + (_ +/X)Vmax]

0 train[i] = in --* [q .. r + ($ + A)vma=]

0 train[i] = after _ [r .. c,]
fl

Fault-tolerance is achieved by constructing an abstract position sensor from

each track circuit and then using Algorithm 1. Additional fault-tolerance

could be achieved by replicating the track circuit for each track circuit.

The abstract sensor developed here is too simplistic to be of any real use.

Correct track circuits far away from the train give very inaccurate bounds

on the train's location, and by Theorem 2 the accuracy of the fault-tolerant

16

abstractsensorwill be poor for any reasonablef. In the actual system,

we make use of an abstract sensor _0(t) whose value is derived from the

initial condition x(0) = 0 and from the commands sent to the train. We
call this abstract sensor a model sensor since if it is incorrect, then either

the control program is faulty or the specification of the environment was

incorrect. The model sensor is initially very accurate, and can be used

to detect some of the failures of the abstract sensors _i. Having a model

sensor also simplifies the computation of the other abstract sensors. The

train has the property that if an abstract sensor _ is computed from a

fixed set of track circuit polls and the commands sent to the train, then

the interval[_i(t).min - _o(t).min .. _i(t).max - _o(t).max] is a constant.

So, the implementation of _i computes an accurate value of [_i(t).rnin -

_o(t).min .. _i(t).max - _o(t).max] at the time t it notes the track circuit

first coming on, and computes _(t')i for t' > t as [_(t').mino + _i(t).min -

To(t).min .. _(t').mazo + _(t).max - To(t).max]. The implementation of _

can do the same computation when the track circuit subsequently goes off,

and if the two resulting values of the abstract sensor do not intersect then

the abstract sensor is faulty.

For our program, it is necessary to ensure that that I_(t)l _< accx where

accx is length of the shortest track segment. Given a value of A, one can

estimate the accuracy of abstract sensors near the train, as these will be

the most accurate. The abstract sensors _i have a known bound on their

accuracy, so Theorem 1 can be used to find the maximum value of f that

willguarantee I (t)l < acc=.

5 Discussion

This paper presents a five-step process, through which a program written in

terms of physical state variables can be transformed into one that reads the

physical state variable through a set of concrete sensors, some of which may

be faulty. The degree of sensor replication depends on the failure model be-

ing assumed. Figure 10 summarizes the maximum number of faulty sensors
that can be tolerated for the three failure models considered in this paper,

assuming that an unboundedly accurate sensor is desired.

The work presented here is part of the general problem of input reifica-

tion [9]. The results in this paper are a generalization of the work done by

the author and presented in [15,14]. This earlier work looked at the problem

of clock _ynchronization in a distributed system. A clock is a special kind of

17

FailureModel f..,_ min n: f = I min n: f = 2

arbitrary failures,

unbounded inaccuracy
arbitrary failures,

bounded inaccuracy
fail-stop failures

L(n - 1)/3] 9

L(n- 2)/2J 4 6

n-1 2 3

Figure 10: Maximum failures for different error models

sensor, in that the physical process it senses can be expressed simply.

The approach presented in Section 2.2 concerning transforming specifi-

cations is novel. Much work has been done on expressing and determining

the validity of properties that refer to real time (for example, [7,19]), but

usually these specifications are typically written in terms of physical state

variables where, for each variable, an a priori upper bound on its accuracy

is known.

The methodology presented in this paper is related to the state machine

approach [18,10]. A set of sensors of the same physical value can be thought

of as a set of identical processors that return intervals rather than scalar

values. In both cases, failures are masked by replication and voting.

Studies on hierarchies of failure models (for example, [2,16]) originally

arose in the context of the agreement problem [5]; a problem not addressed

here. If the control program were to be replicated, then the processes of

this program would need to use an agreement protocol to disseminate the

sensor's values [3,4,8]. There has been work on agreement on the value

of sensors. For example, the inexact agreement problem discussed in [13]

relates the accuracy of the agreement value with respect to the number of

rounds the protocol executes. A different approach to agreement among

sensors is taken in [12], in which sensor failure is not considered.

The methodology presented here is incomplete. For example, there are

other kinds of sensors than those considered here; for example, discrete

sensors like one denoting whether or not a door is open, or multivalued

sensors like one that returns the altitude and azimuth of an airplane. We

are extending the material in this paper to accommodate these more general

sensors.

18

Acknowledgements This workprofitedfrom severaldiscussionsthe au-
thor had with Jacob Aizikowitz, Fred Schneider and Sam Toueg. In addi-

tion, Ozalp Babao_lu, Ken Birman, Amitabh Shah, and Mark Wood read

and commented on earlier versions of this paper. The criticisms and sug-

gestions by the reviewers contributed significantly to the coherence of the

paper.

A Proofs

The four theorems in this appendix give upper and lower bounds of Inl,,(S)l.

We need the following two definitions:

Definition 1 If S is a set of intervals, a c-clique ors is a subset S' ors

where ISq = c and all the intervals in S _ mutually intersect.

Definition 2 A set of intervals is c-reduced if each interval in S is a mem-

ber of a c-clique.

Note that a graph is (n- f)-reduced if and only if Algorithm 2 computes

the empty set.

The upper and lower bounds of INt,n(S)[are as follows. Theorem 1 is

the same as Theorem 3; it is repeated here for clarity:

Theorem 3 Lets be a set consisting ofn intervals. /f0 _< f < L(n+ 1)/2J

and n1,.(s) # _, then In/,.(S)l _<min21+l{l_l :_ E S}.

Theorem 4 Given a set {tl, 12, ..., t,} o fn lengths and n > f > [(n+l)/2J,

then .for any length A > min{tl,t2, ...,tn}, there ezists a set of n intervals

S = {:_1,_2,...,:_,} whereVi:i < i < n : I_1 = t_ and Iny,.(S)l = A.

Theorem 5 Lets be a (n- f)-reduced set of n intervals. If n > f > Ln/2J

and n/,.($) # 0, then Ins,.(S)l >_max2(._j,)__{['_l :_ e S}.

Theorem {I Given a set {/i,/2,...,e,} of n lengths, an arbitrarily small

length _, and 0 < f < [n/2J, there exists a (n- f)-reduced set of n intervals

s = {_1,_2,...,_.} where Vi :i < i < n :1_1 = t_ and In1,.(s)t = _.

Theorem 4 can be shown by construction.Let S consistof the following

two cliques:

19

• Ct containing n - f intervals, where each interval in this clique has

a minimum value of u, and by definition of A, a maximum value no

larger than u + A;

• C2 containing f intervals, where each interval in this clique has a

ma.vAmum value of u + A, and by definition of A, a minimum value no

smaller than u.

By hypothesis, Fn121 = L(n + 1)/2J _< f < n, or 2f > 2[n/2] >_ n

and so f >_ n - f meaning both cliques are contained in nt,n(S). So,

n/,n(S) = [u .. u + A] and the theorem follows, o

Theorem 6 can also be shown by construction. Let S consist of two

cliques:

• C1 containing [n/2J intervals such that [(n- f)/2J intervals have a

maximum value of u%e and the remaining [n/2J - [(n- f)/2J intervals

have a maximum value less than u;

• C2 containing In/2] intervals such that [(n - f)/2] intervals have a

minimum value of u and the remaining In/2] - I(n- f)/2] intervals

have a minimum value greater than u + e.

By hypothesis, 0 _< f < [n/2J or [n/2J _< In/2] < n - f _< n, and so

neither C1 nor 6"2 are entirely in Nt,n(S). However, n - f intervals intersect

over the interval [u .. u + e], and the theorem follows. 0

To prove theorems 3 and 5, we will need a few lemmas.

Lemma 1 Let S be a set of n intervals where S contains at least one c-

clique and all c-cliques in $ have ezactly i intervals in common with each

other. Then, n > c > i and n > 2c- i.

Proof." since $ contains at least one c-clique, we know n _> c. Fur-

thermore, since all c-cliques in $ have exactly i intervals in common, each

c-clique must have at least i intervals, or c _> i.

If c = i, then the smallest graph satisfying our assumptions is a single

/-clique, or n = i = 2c - i. If ¢ > i, then S must contain more than one

c-clique, for otherwise the single c-clique has e > i intervals in common with

itself. The smallest such set of intervals consists of two c-cliques sharing i

intervals. Each clique has c- i intervals not in common with each other, or

n=i+2(c-i)=2c-i. O

2O

Lemma 2 Let S be a set of n intervals where S contains at least one c-

clique. If n < 2c, then all c-cliques in S have at least 2c - n intervals in

common with each other.

Proof: by contradiction. Suppose that all the c-cliques in S have exactly

i' intervals in common with each other, where i' < 2c - n. By lemma 1,

S contains at least 2c - i' intervals, or n >__2c - i_. Rearranging the last

inequality, we get i' > 2c - n, which contradicts our hypothesis, o

Lemma 3 Let _ E S be any member of all maximal cliques orS. The cover

of the intersection of the maximal cliques is no larger than 151.

Proof: The intersection of any maximal clique cannot contain any point

outside of _, since by definition that point is not in an intersection containing

and _ is a member of each clique. The cover only adds points between the

intersections. Since S is a set of intervals over the reals, _ must contain all

points between the maximal cliques, so the cover does not add any points in

_. Since all the points in the cover are also in _, the cover cannot be larger

than I_l. 0
Theorem 3 can now be shown. From the definition of nj,,,(S), the

maximal clique in S must contain at least n - f intervals, for otherwise

NL,_(S) = 0. By assumption,] < [(n + 1)/2J or n < 2(n -]). By lemma 2,

at least n - 2] intervals intersect all cliques. By lemma 3 the cover of the

intersection cannot be larger than any of these n - 2f intervals. The cover,

however, may be larger than any of the remaining 2f intervals. In the worst

case, these remaining intervals are the smallest ones in S, and the theorem

follows, o

Lemma 4 Let S be a c-reduced set of n intervals, and let the intervals gi

in $ be ordered such that min _i < rain Xj if i < j. Then, the intervals

_1, _2, . . ._c form a c-clique.

Proof." by induction. The lemma is trivially true for c = 1 since any

interval is by itself a 1-clique. So, we assume the lemma holds for c = k

and show that it holds for c = k+ 1. Let S be a (k+ 1)-reduced set

of intervals. If a set is (k + 1)-reduced then it is k-reduced, so by the

induction hypothesis the intervals _t, _2,..._k form a k-clique. If _k+l does
not intersect some interval _ : 1 < i < k, then all intervals _i : J > k + 1

also do not intersect _i, and so _i is not a member of a (k + 1)-clique. This

21

contradictsour assumptionthat S is (k + 1)-reduced, and so ._k+t must
intersect each interval sl, s2,..._k, and the lemma holds, t3

The same argument can be used to prove the following lemma:

Lemma 5 Let S be a c-reduced set of n intervals, and let the intervals -gi

in ,9 be ordered such that max_i > max _j if i < j. Then, the intervals
Sl , S2, . . .-go form a c-clique.

Lemma 6 If S is a (n - f)-reduced set of n intervals, then

nl,,,(S) = [min,_t+l{min 3: s E S} .. max__l+l(max _: s E S}]

Proof: thislemma followsdirectlyfrom Lemma 4, Lemma 5 and the

definition of N/,n(,5). O

Theorem 5 can now be shown. From Lemma 6, all intervals intersect

nl,,(S) and there are exactly 2(n-f-1) (not necessarily distinct) intervals

that extend outside of n/,,(S). This means that there are at least n - 2(n -

f - 1) = 2(f+ 1) - n intervals that are completely contained by n/,n(S). So,

Inj,.(S)l ___min2(l+t)-,{_ : s" E S} or Int,.(S)l >__maX2tn_/)_x{_ : _ E S).
O

B Algorithms for Computing Nf, n(_S)

This section contains some algorithms for computing nl,,,(S). A set of ab-

stract sensors are isomorphic to a class of graphs called interval graphs,

which in turn are members of the class of triangulated graphs. Such graphs

are interesting in that many problems, such as coloring, clique, stable set

and clique cover can be solved for triangulated graphs in polynomial time.

A good reference on triangulated graphs is [6], which includes efficient algo-

rithms that solve the above problems.

The value of N/,,,(S) is [l .. h] where I is the smallest point contained in

n - f intervals and h is the largest point contained in n - f intervals, and

where a point x is contained in an interval _ if and only if min _ < x <

max _. Suppose that there are a intervals _ in S such that min _ < x and

that there are b intervals _ in 5 such that max _ < x. Any interval not

counted in a cannot contain x, and the intervals counted in b are those that

were counted in a but cannot contain z, so x is contained in exactly a - b
intervals.

22

Let v be an array of 2n pairs where for each _i E S, v2, = (min _,, 1)

and v2,+l = (max _i, -1). Given a point x,

a = _ v,[2]

and

or

b = - E v,[21

number ofSEScontainingz=a-b= y_v,[2] + _v,[21

Vi:vi[1]<x Vi:vi{1]----x

^v_[2]=l

Computing the number of intervals in $ that contain z can be made

linear if v is sorted. Define vi < vj = (vi[1] < vj[1]) y (vi[1] = vj[1] h v,[2] >

vj[2]), and let v' be v sorted with respect to <. Then,

max j:v/[1]<x^

(vj[1]=z)=_(_[2l=l)

number of_ E ,.q containing z = _ Vi[2]

i=O

(1)

Recall that l is the smallest point contained in n - f intervals. Thus, I is

the smallest z that makes Equation 1 equal to n -/, which is V[ow[1] where

J

low = min j: _ v_[2] = (n - f)
i=O

Similarly,h isthe largestpoint contained in n - f intervals,which isthe

largestz that makes Equation i equal to n - f. This point is also the

maximum value of some intervalsuch that allpointsgreater than z are

containedin no more than n f 1 intervals,or h isv_i0h[1]where

J

high = max j: _ v_[2] = (n - / - 1)
i=O

23

Both low and high can be computed from v_ in O(n) time, and v' can be

computed from v in O(n log n) time, so the overall running time is O(n log n).

There are two cases for which nl,n(S) can be calculated faster than

O(n log n):

. n,__l,n(S) is the cover of S, or I is the smallest minimum value of the

intervals and h is the largest maximum value of the intervals. For our

purposes, however, this case is not very interesting.

, If all of the intervals in S mutually intersect, then all of the minimum

values of these intervals are less than or equal to the smallest maximum

value of these intervals (this can be tested for in O(n) time). Under this

condition, the array v_ consists of all of the minimum values (having

v_[2] = 1) followed by the maximum values (having v_[2] = -1). Thus,

I is the f+ 1st largest minimum and h is the f+ 1a smallest maximum,

both which can be calculated in O(n) time [1]. If f = 0 or a fail-

stop failure model is assumed, then we are interested in the value of

_0,n(,S), which requires that all intervals mutually intersect and can

be calculated trivially in O(n) time.

C Train Length

In the example of Section 4, we assumed the train had zero length. This

is not an unreasonable assumption, since we can show that for every train

of length L on a track K, there exists a track K _ such that a zero-length

train is constrained in exactly the same way as the original train on K. In

this section, we show how to determine the track K _ from L and K. The

method is an example of transforming to configuration space [11].

A track K is defined by three sets (Vi : 1 < i < n : {ci}, {mini}, (max,.})

where ci is the location of the end of track segment i, mini is the minimum

allowable speed on segment i and maz/is the maximum allowable speed on

segment i. If the train has length L and the tail of the train is at x, the

safety condition is that edl parts of the train satisfy the speed constraints,

or

SL(X, u) def=

Vx',i : z < z' < z + L,l < i < n : ei < z' < ci+l _ mini < v < maxi

24

Supposewecouldfinda trackK': (Vi: 1 < i < n': {c',}, {min_}, {ma_})

such that

sL(x, = d.f ' ' mi. < < ma.',)= Vi:l <_i< :c i<_ x <_ci+ 1 =_ v

So is the safety condition for a zero-length train on track K' which is

constrained in exactly the same way an L-length train on the original track

is constrained. If we can find K' then we can write a program that controls

a zero-length train on K', and this program will also control the L-length

train on K.

Define the two functions

Min(L, z) d,._f¥j : x < c.7 < z + L : max mini

Max(L, z) def=Vj : x _< cj _< z + £ : min mazj

These functions determine the actual speed bounds the train must follow

when at X. With them, SL can be rewritten as SL : Min(L,x) <__v <_

Max(L, x).
We can now find the values of K' that alh)w SL(Z, v) to be rewritten as

S0(z, v). Both Min(L, x) and Max(L, x) are piecewise constant functions, so

we can define the track segments of K' to be the spans where both Min(L, x)

and Max(L, z) are constant. Let c_ be the union of the points of inflection

of Min(L, x) and Max(L, x), and let

rnin_ = lira Min(L, ci + _f)
6--+0

= lira Max(L, ci + _f)
6-.*+0

Figure 11 shows an example of K' given K and L. Each track segment is

drawn with the maximum speed above the segment and the minimum speed

below the segment. Note K' is shorter than K by L, since the end of the

train cannot traverse the whole length of K without the train leaving K.

Here, K and K' have the same number of segments; in general, K' can have

up to twice as many segments as K.

25

L

I0 20 I0 5
I

0 0 5 0

10 20 10 5

I I I I
0 0 5 5

Figure Ii: Configuration Space

References

[1] M. Blum, R. W. Floyd, V. R. Pratt, R. L. P,.ivest, and R. E. Tarjan.

Time bounds for selection. Journal of Computer and System Sciences,

7(4):448--461, 1972.

[2] Flaviu Cristian, Houtan Aghili, and Ray Strong. Atomic broadcast:

From simple message diffusion to byzantine agreement. Technical Re-

port RJ 5244 (54244), IBM Almaden Research Laboratory, July 1986.

[31D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl. Reaching

approximate agreement in the presence of faults. Journal of the A CM,

33(3):499-516, 1986.

[4] Alan D. Fekete. Asymptotically optimal algorithms for approximate

agreement. Distributed Computing, 4:9-29, 1990.

[5] M. J. Fischer. The consensus problem in unreliable distributed systems

(a brief survey). Technical Report DCS/RR-273, Yale University, June
1983.

[6] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.

Academic Press, 1980.

26

[7] FarnamJahanianand AloysiusKa-Lau Mok. Safetyanalysisof tim-
ing propertiesin real-time systems. IEEE Transactions on Software

Engineering, SE-12(9), September 1986.

[8] J. Kearns, S. Park, and Sjogren J. Data editing: Faster convergence for

synchronous approximate agreement. In Proceedings of the Eighth In-

ternational Conference on Distributed Computing Systems, pages 393-

4401. IEEE Computer Society, June 1988.

[9] R. Koymans, R. Kuiper, and E. Zijlstra. Paradigms for real-time sys-
tems. In G. Goos and J. ttartmanis, editors, Formal Techniques in

Real-Time and Fault-Tolerant Systems, volume 331 of Lecture Notes

on Computer Science, pages 159-174. Springer-Verlag, 1988.

[10] Leslie Lamport. Using time instead of timeout for fault-tolerant dis-

tributed systems. A CM Transactions on Programming Languages and

Systems, 6(2):254-280, April 1984.

[11] T. Lozano-P6rez. Spatial planning: A configuration space approach.

IEEE Transactions on Computers, (C-32):108-120, 1983.

[12] I. M. MacLeod. Data consistency in sensor-based distributed computer

control systems. In Proceedings of the Fourth International Conference

on Distributed Computing Systems, pages 440-446. IEEE Computer

Society, May 1984.

[13] Steve Maheney and Fred Schneider. Inexact agreement: Accuracy, pre-

cision, and graceful degredation. In Proceedings of the Fourth Sym-

posium on Principles of Distributed Computing, pages 237-249. ACM

SIGACT/SIGOPS, August 1985.

[14] Keith Marztillo. Maintaining the Time in a Distributed System. PhD
thesis, Stanford University, Department of Electrical Engineering, June

1984.

[15] Keith Maxzullo and Susan Owicki. Maintaining the time in a dis-

tributed system. In Proceedings of the Second Symposium on Principles

of Distributed Computing, pages 295-305. ACM SIGPLAN/SIGOPS,

1983.

[16] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance

of distributed systems. In Proceedings of the Eighth Symposium

27

[is]

[19]

[2o]

on Principles of Distributed Computing, pages 248-262. AC._[SIG-

PLAN/SIGOPS, August 1988.

Fred B. Schneider. Byzntine generals in action: Implementing fail-stop

processors. ACM Transactions on Computer Systems, 2(2):145-154,
May 1984.

Fred B. Schneider. The state machine approach: A tutorial. Computing

Surveys, 22(3), September 1990.

A. Udaya Shankar and Simon S. Lam. Time-dependent distributed

systems: Proving safety, liveness and real-time properties. Distributed

Computing, pages 61-79, 1987.

John yon Neumann. Probabilistic logics and the synthesis of reliable

organisms from unreliable components. In C. E. Shannon and J. Mc-

Marthy, editors, Automata Studies, pages 43-98. Princeton University

Press, 1956.

28

