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ABSTRACT. A model based on the micromechanical mechanism of crack growth resistance in
fiber reinforced ceramics is presented. The formulation of the model is based on a small scale

geometry of a macrocrack with a bridging zone, in this case the process zone, which governs the
resistance mechanism. The effect of high toughness of the fibers in retardation of the crack

advance, and the significance of the fiber pullout mechanism on the crack growth resistance, are
reflected in this model. The model allows one to address issues such as influence of fiber

spacing, fiber flexibility, and fiber-matrix friction.
Two approaches were used. One represents the fracture initiation and concentrates on the

development of the first microcrack between fibers. An exact closed form solution has been
obtained for this case. The second case deals with the development of an array of microcracks
between fibers forming the bridging zone. An implicit exact solution is formed for this case. In
both cases, a discrete fiber distribution is incorporated into the solution.

1. INTRODUCTION

Ceramic materials have promising potential for the aerospace industry as the structural

materials of the future. A serious drawback in their application is their brittle pattern of

failure. To improve the situation, material reinforcements are used in the form of

additives, such as particles or fibers. The function of these additives is to trap the growing

crack and, thus, to increase the toughness of the resulting composition. A rather detailed

description of these additives with key references are given by Rose (1987). Mostly, these

reinforcements improve fracture resistance under tensile loading. This paper deals with a



case of ceramics reinforced by unidirectional long fibers. There are several aspects involved

in the mechanics of fiber reinforcement. Two essentially different situations regarding the

effect of fiber reinforcement must be pointed out. One case may be described as a long

crack through the matrix with the fibers holding the crack surfaces (Aveston, Cooper and

Kelly, 1971, Luh and Evans, 1987). The second case deals with a growing crack through the

matrix and fibers with a region in the vicinity of the crack tip where the fibers are still intact.

This paper deals with the second case only. The aim of this paper is to develop a theory

describing the fracture resistance build up during this crack growth. The physical situation

considered here is very similar to the case considered by Budiansky and Amazigo (1989),

but the method of our analysis is totally different, and the results are different to a degree

as well. Our formulation is based on the discrete fiber distribution, and it includes a

restriction on fiber flexibility.

Several methods of analysis of fiber reinforcement have been developed and presented

in the literature. The common feature of these methods is representation of the

reinforcement effect of the fibers, or inclusions, as a continuous distribution of forces on

the crack surfaces (McCartney 1987, Rose 1987, Nemat-Nasser and Hori 1987, Budiansky

and Amazigo, 1988 and 1989). The distribution function of these forces may be specified

(Nemat-Nasser and Hori 1987); or the relationship between the surface separation and the

acting surface tractions may be assigned, and then the integral equation formed to find the

resulting distribution function and other important parameters of the problem. The

relationship between the local crack opening and acting surface tractions is the critical item

of the analysis. In the above-cited references, this relationship is assumed to be linear, as it

is assumed here, although we are not dealing with continuous distribution of surface

tractions; rather, we relate the local crack opening to a net force on a fiber. The choice of

this simplified linear relationship is motivated mostly by the fact that there are no

experimentally established data which would specify a relationship for the fiber pullout

under applied force. The formulation employed here may be easily generalized for a

nonlinear relationship describing the fiber pullout.

As mentioned above, the failure process in fiber reinforced ceramics involves several

aspects, some of which are not essential for the purpose of this study. We do not consider
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here fiber breaking (Marshal and Cox, 1987; Thoules,, and Evans, 1988), fiber - matrix

interface debonding,and frictional effects modeled by Budiansky,Hutchinson and Evans,

1986.

Assumptions. We assumethe elastic properties of r.hefibers to be very similar to the

properties of the matrix with no significant difference in valuesof elastic constants.The

difference between the strain magnitude in the fiber and in the matrix is insignificant at a

finite distance from the crack surface, y > 0 or y < 0. The amount of fiber pullout is

proportional to the net force acting on the fiber; that is, we assume a linear friction type

law.

2. FORMULATION AND ANALYSIS

The proposed mathematical model of the analysis of the crack growing mechanism is based

on consideration of a process zone development ahead of a macrocrack. The size of the

process zone should be significantly smaller than the length of the crack, so the surrounding

stress field is controlled by the stress intensity factor j;enerated by the macrocrack. The

main feature of the fracture process is the expansion of the main crack while some fibers

remain intact. In two dimensions, this expansion appe_trs as microcracks develop ahead of

the macrocrack with bridges formed by the fibers. In our formulation, we consider a two

dimensional problem corresponding to the described process. We consider the initial state

of the crack growth, that is, formation of the first microcrack; the intermediate state; and a

steady state case, when a complete assembly of microcracks starts to propagate without

increasing the number of microcracks. The configurati,ms of these problems are illustrated

in Figure 1. and Figure 2. Assuming that elastic properties of the fibers are similar to the

properties of the matrix, we treat the material as isotropic and homogeneous. We also

neglect the difference in displacements between material points in the fibers and the matrix

at any finite distance from the crack line (y > 0 or v < 0). With these assumptions, the

analysis described by Rubinstein, 1985 and 1987, can be applied. The basic relations of

plane elastostatics in terms of analytic potentials are, M uskhelishvili, 1975:

+ o 4Re_" (z)
Oll 22 =

022- o,,+ 2io,_ = 2(Z_"(Z) + _'(Z)) (2.1)
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2/-t(UI+ iu 2) = _4,(Z) - Z4,'(Z) - %b(z),

here _ is a shear modulus, v is a Poisson's ratio, and r =3-4v for plane strain, or

=(3-v)/(l+v) for plane stress. Limiting our attention to the Mode I loading, so the

direction of applied tension is parallel to the direction of fibers, the symmetry condition on

y = 0 can be stated as

°12 (Z=X) = 0 = Ira(z4," (z) + @" (z)) . (2.2)

Functions ,t, and ,k are analytic in the plane with cuts along y = 0, and, therefore, they may

be considered as analytic in the upper half plane. Using condition (2.2) and applying the

principle of analytical continuation, one obtains the relationship between the analytic

potentials, which is true up to a real constant,

_b" (Z) = - Z4," (Z) . (2.3)

The constant may be dropped since both sides of (2.3) have to vanish as z -. _o. With

relation (.3), the expressions for the normal stress and displacement components along

z = x become

= . _ J¢+l Im4,(x). (2 4)o22 2Re4, (x) , u 2 2L t

Thus, only one analytic function 4, has to be determined, and the boundary conditions can

be written in terms of this function. The condition at infinity states that function 4, " has to

match the applied stress field, which should be given in terms of a remote stress intensity

factor Koo (we consider Mode I loading only).

K
oo

4,'(Z) ---- as z -- co (2.5)
2_ 2_z

To form a correct boundary value problem we consider the upper half plane as a region for

4,; thus, to complete a set of boundary conditions the boundary values on z =x have to be

stated. On the intervals corresponding to the macrocrack and microcracks, the zero traction

statement will be complete if in addition to the symmetry condition (2.2), we form a

statement of zero normal stress given by (2.4). On the interval ahead of the complete

assembly of the microcracks the displacement has to be zero, and, equivalently, its
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derivative can be stated as such. On the ligaments corresponding to the fibers, the

displacement is not zero, due to the friction between the fibers and matrix. The matrix

separateshere, and the load is transmitted onto the fibers, and this is an essentialaspectof

the toughening mechanismwhich has to be accounted for. To realize the nature of the

displacementon theseligaments,we considerthe following:

It would be reasonableto assumethe fibers to be in the form of circular cylinders,and

therefore, the deformation createdby the fiber pullout locally should remain of cylindrical

symmetry. This meansthat the displacementof the matrix along the rim of the matrix-fiber

interface has to be constant, if the direction of the pultout is perpendicular to the matrix

surface. Therefore, in a two dimensionalmodel, the displacementmaybe consideredto be

of constantmagnitudeon eachinterval correspondingto the separatedmatrix and the intact

fiber. The value of this displacement is different for each particular interval, and it is

controlled by the friction law which relates this displacement to a net force acting on the

fiber. As a result, the derivatb)e of the displacemerLton these intervals is zero; this

completesthe necessaryset of boundary conditions for lhe function ,t," (z) in the upper half

plane.

i) One link solution. The case of formation of the first rnicrocrack can be resolved in closed

form and, therefore, deserves a separate consideration. The geometry of this problem is

given in Figure 1.

In addition to (2.5) the boundary conditions along z -- x are

Re_'(x)=O on x < 0 and a < x < b
(2.6)

Im4_" (x)=0 on 0 < x < a and b < )"

The relationship between the force on the fiber F and the matrix displacement B is

assumed to be linear, where _, is a friction coefficient.

IF = B (2.7)

The assumption of the linear friction law is not nece,;sary; as will be seen, the problem

could be solved numerically for any nonlinear relationship instead of (2.7). The only reason

we assume (2.7) is to simplify the problem, since in thi_; case we have an exact closed form

solution, and, additionally, currently there is no experimental evidence that the fiber pullout
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shouldbe describeddifferently.

The boundary conditions (2.5) and (2.6) form a mixed boundary value problem for an

analytic function. Muskhelishvili, 1953,outlined the Keldysh-Sedovproblem which deals

with mixed problems for analytic functions, which are regular at z -- ®. Rubinstein, 1985,

used an equivalent approach to form a solution with a branch cut extended to infinity. It is

clear that the same form of the analytic function will satisfy the conditions stated above.

Thus, we have

K
co z - d

_'(z) = . (2.8)

22.[_ _z(z-a) (z-b)

The constant d should be determined from the equation (2.7). The force on the fiber is

a K
F = 2Re _ x - d dx

0 22ff2_ _x(x-a) (x-b)

The following definitions of complete elliptic integrals were used here, Abramowitz, 1972:

i dx

K(m) = J0](l - t 2) (i - mt 2)

E (m) = 1 - t 2 dx

The displacement of the matrix on the ligament corresponding to the intact fiber is found as

a displacement gained due to the microcrack opening. Thus,

a

2_+Iz_ I K
B = ._ Im _ x - d dx

b 22ff_ _x(x-a) (x-b)

<
Introduce dimensionless constant

(2.10)

-6-



and from equation (2.7) find

(2.11)

The final expression for the force per unit thickness acting on the first fiber cell becomes

b _ (2 13)

The stress intensity factor is determined by evaluating the appropriate limits in the usual

fashion.

K = K d (2.14)

o _O_a b

K = K d - a (2.15)

a _oj a (b_a)

Kb= K_°.] bb(b-a)- d (2.16)

Substituting A =0 into equation (2.12), and then using this result in (2.14, 2.15, and 2.16),

one will obtain expressions given by Rubinstein, 1985, for a macrocrack interacting with a

microcrack; unfortunately, the expression corresponding to (2.15) was misprinted in that

reference.

The dimensionless parameter A characterizes the matrix-fiber friction, or it can be

interpreted as a spring constant (inverse to a standard definition), if the region 0 < x < a is

connected by a linear spring. The definition of this parameter is chosen in the form (2.7), so

the limit case of no friction would correspond to A := 0, and a less constrained (softer)

system will have higher values of A.

ii) The bridging zone of arbitrary length. The formulation described above is extended to

the case of an arbitrary number of microcracks (say IV) formed in the bridging zone. The

-7-



geometry of this general case is given in Figure 2. The symmetry condition (2.2) with results

(2.3) and (2.4) still apples. As mentioned previously, the displacement on the ligaments

corresponding to fibers are assumed constant (different on each interval, of course). Thus

the boundary conditions along the bridging zone become

Re4,'(x)=0 on x < 0 and a+pk < x < p(k+l)

(2.17)

Im4,'(x)=0 on pk < x < a+pk and pN < x , k=0,1,2,..,N-i

k=0,1,2,...,N-I

In combination with asymptotic behavior (2.5) conditions (2.17) determine a general form

of an analytic function up to N constants. As is known (Muskhelishvili, 1972), there are

several possibilities to form this function, which differ in the choice of the location of the

singular points. A physically suitable choice is the case with singularities at crack tips.

Thus, the stress potential 4, "(z) can be written as follows:

K
cO

4,"(z) -

N-1

(z-d k)
k=0

(z-a-pk) (z-p(k+l))
k=0

(2.18)

N constants d k have to be determined from the conditions on the fibers. Condition (2.7)

becomes

),Fk= Bk, k=0,1,2,...,N-1, (2.19)

where B k is the cumulative displacement on the interval on the left of the microcrack k; so

k = 0 corresponds to the location of the first fiber. Denoting aB i the displacement gain due

to nonuniform opening of the microcrack i, the total displacement on the interval k is

N-1

Bk = E ABi" (2.20)

i=k

The value of the displacement increment gained over the microcrack k is determined as
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integral

a+pkr

ABk_ - _+i _ Imp" (x)dx =

Jp (k+l)

N-I

p (k+l) (_:+I) K _ (x-di)
= i=0

Ja+pk J N-12# 2ex(x-a-pk) (pk+p-x) _ (x-a-pj) (x-pj-p)

j=0,j_k

dx. (2.21)

The force in (2.19) is obtained by integration of the real ])art of the stress function; thus,

Fk= la+pk [a+pk
21Re _" (x)dx= 2

J pk JP; 2J

N-I

K _ (x-di)
i=0

dx (2.22)

N-I

2_X

j=0

(x-a-pj) (x-pj-p)

N equations (2.19) with equations (2.20,-22) form a complete system for determination of

the N constants d k. This system is highly nonlinear. 'We solve this system by using the

following observation.

Rewrite the products in the numerators of (2.21) and (2.22) into polynomials

N
N-I i

(x-d k) = _ cix , CN=l

k=0 i=0

(2.23)

Substituting (2.23) into (2.21) and (2.22), taking coefficients c i out of the integrals, and

substituting the results into equations (2.19) one obtains a linear system for the coefficients

c i. On the other hand, the roots of the algebraic equation

N

cix

i=0

= 0 (2.24)

are the constants d k that we needed to find. Thus the problem is reduced to the numerical
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solution of the algebraicequation of power N. Usually the most difficult part of the solution

is the location of the roots. In the case considered here, this is not a problem; the value of

the constant d k corresponds to the location of the maximal opening of the microcrack

number k. Thus, the intervals of the location of the roots of the equation (2.24) are

completely determined, and this equation can be solved numerically with any a priori

specified accuracy. As a practical matter, the constants d k are necessary only for verification

of the resulting stress function (2.18); for any other purpose the substitution (2.23) may be

used. Thus, the problem is reduced to a linear system.

A detailed numerical scheme of this solution of the system (2.19) and the integration

procedure are given in the appendix.

The stress intensity factors at the crack tips are determined by taking the appropriate

limits, so

N-1

d k
k=0

K = K (2 25)
0 cO r •

J N-1pNN! _ (a-pk)

k=0

N-I

(a+pi-d k)
k=0

Ka+pi = Koo , (2.26)

J N-I(a+pi) (p-a) _ p(i-k) (a-p(k+l-i))

k=0, k_i

i=0,1,2,...,N-i

N-I

(pi-d k)
k=0

K .= K (2.27)
pl co [ N-I

Jpi (p-a) [I p (i-k+l) (p (i-k) -a)

k=0, k_ i+l

i=l,2,...,N

The integrals (2.25-27), as well as the integrals described in appendix, were evaluated by

using Gaus - Chebyshev numerical procedure.
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3.RESULTS

The numerical data given in this section were obtained in accordancewith the following

interpretations of the physical effects taking place during the processof the crack growth.

The main factors to consider are the crack growth resistanceof the composite, that is

material resistancebuild up due to extensionof the bridging zone,and the limiting value of

the length of the bridging zone. The resistance, or toughening, of the composite is

determined by the changeof the local stressintensity factor acting on the uncrackedmatrix

at the leading crack tip (at x= Np), due to extension of the bridging zone. The maximal

length of the bridging zone and, therefore, the maximat toughening, is determined by the

strength of the fibers, and, as a result, is controlled by the net force acting on the first fiber

(counting from the main crack tip, as in the Figure 2.) or by the local stress intensity factor

K(O). The behavior of these parameters within the bridging zone determines the stability of

the zone development.

The initial development of ttie bridging zone has been analyzed on the basis of the one

link model. Figure 3. depicts a dependence of the leading stress intensity factor (relative

value with respect to remote value is given) acting on the uncracked matrix versus the

coefficient A and the relative fiber thickness. In the sarae figure the topographical map of

this stress intensity distribution is given. The data are _.iven for the ratio a/b ranging from

0.05 to 0.95, and values of A ranging from 0.0 to 3.0. The choice of the range of values of A

is arbitrary since no data were available to relate it to a practical material composition. The

natural limitation on this value that we used, is a require merit that the net force on the fiber

remain strictly positive. That is, the displacement produced by the fiber slip out should not

reach the crack opening displacement which would take place without fiber restraint. The

physical nature of the bridging effect is well illustrated here. Increasing values of A

correspond to an easier fiber pullout, and accordingly, with higher fiber pullout, the load

gets transmitted from the main crack onto the leading crack tip at x = b. The data given in

Figure 3. correspond to a continuous growth of the mi,:rocrack ahead of the fiber, as well.

One notes that a small microcrack in combination with high values of A leads to unexpected

high values of the leading stress intensity factor. This effect is due to the enforcement of a

constant crack opening displacement on the matrix-fi3er intersection. The reality of this
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condition dependson the flexibility of the fiber, but it is evident that for any fiber there is a

critical length of a microcrack when this effect will take place. Below this critical length, the

smaller microcrack will experience a higher value of the stress intensity, and that value will

decrease with the microcrack extension until it drops below the critical value. This effect is

taking place only after the parameter A reaches a certain value. As follows from the shape

of the surface in Figure 3., smaller values of A will allow stable existence of a small

microcrack. This peculiar dependence of K(b) on the microcrack size will take place as well

in the case of a relaxed condition on the displacement on the matrix-fiber interface. For

example, our preliminary analysis shows the presence of the same effect in the case when

this displacement is specified as a linear function this displacement is specified as a linear

function across the fiber. Physically, the restriction imposed here represents the fiber

flexibility, which restrains the crack surface shape and, therefore, is equivalent to an

additional moment applied in the vicinity of the crack tip.

The net force acting on the fiber with the corresponding topographical map are given in

Figure 4, and the stress intensity factor on the main crack is given in Figure 5. The value of

the net force on the fiber is given as a value per unit thickness normalized by the value of

the net force acting on the fiber prior to matrix cracking. The shape of the fiber

cross-section is not considered; thus, assuming that the fiber is represented by the entire

ligament, the dimensionless force in Figure 4. is given as

*_ 7r J-b I

[ a ] [ a I " (3.1)F 2 a K I- _ + AK

The stress intensity factor in Figure 5. is normalized by the applied stress intensity factor.

The data in Figure 5. show the existence of the optimal fiber spacing - parameter A

combination for lower values of K(O). In Figure 6., data corresponding to the leading edge

of the fiber (x = a, Figure 1.) are given. The stress intensity factor at this point decreases

with increasing value A, that is, with decreasing stiffness of the composite. This stress

intensity factor becomes negative, which indicates that the tensile stress singularity becomes

eliminated and the stress state changes into compression. The curve of K(a)=0 on the

topographical map in Figure 6. appears to coincide with the optimal path for minimal values
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of K(O), Figure 5, and an optimal path on the topographical map in Figure 3. The existence

of the stress singularities at point x =0 and x=a may be argued as physically not very

realistic. However, in terms of the presented formulation which has no room for the

fiber-matrix delamination along the fiber direction, these stress intensity factors may be

used as a quantitative characteristic of the potential delamination.

The development of fracture parameters during an extension of the bridging zone is

discussed below. The length of the bridging zone is represented in terms of the number of

microcracks developed within the zone. The algorithm given in the previous section may be

used for any length of the bridging zone. However, the maximum number of microcracks

within the bridging zone considered here is limited by the applicability of the small scale

model. The small scale model may be applied up to a point, when the influence of non

singular terms in the surrounding stress field become_ significant, and the value of the

leading stress intensity factor no longer may be deter_nined on the basis of the applied

stress intensity factor only. An additional limitation of the length of the bridging zone in the

small scale formulation is related to a specific feature of this model, and associated with the

following fact: When the leading stress intensity factor is significantly reduced with respect

to a value acting at the tip of the main crack, the insignificant amount of fiber pullout in the

area of a leading crack tip brings that ligament surface to a state close to traction free

position. In other words, the local stress state becomes so released that the effect of fiber

reinforcement becomes insignificant. The data given by Rubinstein, 1985, for the case of

the array of microcracks ahead of the macrocrack, may be used to estimate a reasonable

length of the bridging zone with regard to the applicability of the small scale model. The

second factor in establishing effectiveness of the fiber reinforcement was evaluated

computationally. We found that a bridging zone with eighteen microcracks may serve as a

reasonable representation of the major effects taking place in association with the bridging

mechanism.

The physical limitation for the extension of the bridging zone is the strength of the

fibers. The first fiber (counting from the main crack tip) bears the highest load and

supposedly limits the total length of the bridging zone. In Figure 7. a history of the force

increase during the bridging zone extension is given. We considered three cases here,
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a/p = 0.25, a/p = 0.5 and a/p = 0.75, which reflect major tendencies in the model. The length

of the bridging zone is given in terms of a number of microcracks, N, involved in the zone.

The parameter A was varying from 0 to 3.5 in 0.5 intervals. The net force acting on the fiber

was computed in accordance with equation (2.22) and then normalized by the net force

acting on the ligament corresponding to a first fiber prior matrix cracking. That is

1 2V__ 
TI(N>0) - 2_,J_ FI" (3.2)

In the case N= 0 the matrix is still intact, and the net force on the fiber is a portion of the

force on the ligament proportional to the area occupied by the fiber. Assuming that the

fiber has a circular cross section, and that the period of fiber distribution is the same in the

crack front direction, the force on the first fiber is

T I(N=O) - _a 1
4p 2_J--a FI" (.3)

The data in Figure 7. shows that after a relatively small number of microcracks developed

in the bridging zone, the value of the force acting on the first fiber reaches the maximum,

and consequently this value does not depend on an additional number of microcracks.

Higher values of the parameter A increases the length of this transition. Thus, the

assumption that the maximal value of the force on the first fiber bounds the length of the

bridging zone, is not well justified. Consequently, the maximal amount of fiber pull out, as a

limiting criterion for the bridging zone length, has to be ruled out in terms of this model

inasmuch as that amount is proportional to the magnitude of the force and, therefore, has a

similar behavior with respect to the length of the bridging zone.

A similar trend is observed in the behavior of the stress intensity factor acting at the tip

of the main crack, Figure 8. This stress intensity factor also characterizes the stress intensity

within the fiber, and, additionally, it can be used as a parameter determining the possibility

of delamination at the fiber matrix interface. As shown in Figure 8., the values of the stress

intensity factors reach their maximum after relatively few microcracks develop in the

bridging zone. As in the case of the force on the first fiber, the higher values of the

parameter A increase the length of the transitional bridging zone, after which the stress

intensity factor practically does not change.
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The distribution of the forces acting on the fibers _tnd the local stress intensity factors

(only stress intensity factors at the leading tips are represented) are given in Figure 9. The

values of force in Figure 9a. are normalized differently from the previous case. If in the

previous case the fiber was assumed to be of constant lhickness and the fiber spacing was

changed, the force in Figure 9a. is given as a force per the period of fiber spacing. That is

i Fk" (3.4)Tk -

The subscript k in (3.4) indicates the position of the fiber. In this form the force on the fiber

practically does not depend on the fiber spacing ratio, and insignificantly depends on the

parameter A in the leading portion of the bridging zone.

The distributions of the leading stress intensity factors for different spacing ratios are

given in Figures 9b, 9c, and 9d. No significant dependence of the local stress intensity

factors on the parameter A are observed here, except for the stress intensities in the vicinity

of the main crack tip (first few microcracks) and the stress intensity factor at the leading

crack tip (x = Np). Higher values of A produce higher stress intensity at the leading crack tip

and lower stress intensity at the main crack tip. Basicaily, the fiber pull out mechanism is

the mechanism of load redistribution from the main crack onto the array and in a greater

part onto the leading microcrack. This phenomenon is reflected in the resistance curves

given in Figure 10. The resistance curves represent m_tterial ability to sustain higher load

due to internal toughening mechanisms. The composite fracture resistance is measured as a

value inverse to the leading stress intensity factor (R = Koo/K(Np)) and is given versus the

length of the bridging zone in terms of the number of microcracks. Three cases are given in

Figure 10, for different spacing ratios, and, additionally, the dependence of the composite

resistance on the fiber spacing ratio a/p is given here for the incremental values of A. The

fracture resistance increases with extension of the bridging zone, while the higher resistance

is typical for lower values of the parameter A. The resistance curves obtained here differ

from the curves given by Budiansky and Amazigo, 1989; the most significant difference of

our results as compared with the data from this reference is in the spread of our curves with

respect to the values of A. The relationship used by Budiansky and Amazigo for the force

on the fiber and the local displacement are similar to one used here, but the measure of the
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bridging zone length is different in our case.We were not able to convert the length scale

usedbyBudianskyandAmazigo, 1989,to our case.

The sensitivity of the resistance process to the fibers spacing ratio a/p is quite

significant. There are optimal values of the a/p ratio for the corresponding values of the

pullout parameter A, when the fiber reinforcement is most effective. The tendencies of the

resistance curves show that higher resistance values may be obtained with an increase of the

bridging zone. However, the applicability of the small scale model becomes questionable

for a large bridging zone. The leading stress intensity factors computed using the small scale

approach are too small, and, therefore, the contribution from the higher order terms in the

Williams expansion may no longer be neglected.

4. CONCLUSIONS

A closed form exact solution was obtained for a single link model characterizing an

initiation of the bridging zone development.

An additional toughening, or anti-toughening (depending on a/p ratio) aspect was

observed, that is, constraint on the rotation of the matrix in the bridging zone due to the

limited fiber flexibility.

An implicit exact solution was formed for an extended bridging zone of arbitrary

length. The solutions presented here take into account the discrete distribution of the

fibers.

The higher values of the parameter A, corresponding to a reduced fiber pullout

resistance, reduce fracture resistance build-up by transforming the load onto the leading

crack tip. On the other hand, in the case of high values of A, the tension on the trailing fiber,

that is, on the fiber holding the main crack, is reduced. Thus, as a result, lower fiber pullout

resistance will produce a long and stable bridging zone. In contrast, high fiber pullout

resistance, that is, lower values of A, will concentrate the load on a small region in the

vicinity of the main crack, maintaining high tension on the fiber at the main crack tip and,

thus, creating a higher possibility of failure of this fiber, so the bridging zone will have a

tendency to propagate as a whole.

There is an optimal combination of fiber pullout resistance and fiber spacing when the

highest fracture resistance may be achieved for the same length of the bridging zone.
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Following the data given in Figure 10b, the optimal fibers spacing ratio varies from

0.37(A= 3.5) to 0.8(A= 0.5).
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APPENDIX

Coefficients of the algebraic equation (2.24) are found by solving

equations (A5), which is obtained as follows. Introduce notations

a system of linear

and

Gki = [p (k+l)

Ja+pk

i
x

J N-Ix(x-a-pk) (pk+p-x) _ (x-a-pj) (x-pj-p)

j=0,j_k

dx (AI)

Hki =
a+pk x i

i
j--O

(x-a-pj) (x-pj-p)

Form a matrix

dx. (A2)

Aki =

and an array

N-1

AHki + _Gmi

m=k

, k,i = 0,1,2, .. .,N-I (A3)

N-I

Dk=-AHkN- _GmN

m=k

then equations (2.22) becomes

(A4)

N-I

AkiCi Dk

i=0

, k = 0,1,2,...,N-I. (A5)

The array (A4) emphasizes the fact that C N is known, and it is equal to one.

The coefficients C i of the algebraic equation (2.24) can be found by solving the system

(AS), and then constants d i are determined by employing a simple numerical procedure for

solution of a nonlinear equation with roots located on a specified interval.
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The integrals (A1) and (A2) are evaluated by using Gaus-Chebyshev quadrature. This

numerical procedure is accurate up to the order of 4M, where M is a number of nodes on

the integration interval. The distribution of the nodes coincides with roots of Chebyshev

polynomials of first kind. Thus, using Hermite's formulae for Chebyshev polynomials, we

have

with

and

J-

M x
"/I

Hki = M _ s

J N-1s=l x s (Xs-Pk-p) (Xs-a- p(k+2) ) ]'[ (Xs-a-pj) (Xs-pj-p)
j---O

i_k, j_k+l

(A6)

a 2s-i
Xs= pk + _(cos-2--_ + I), (A7)

Gki

M x i

s
N-1

iXsjn__o  s-a-,j  x
j.k

-PJ "-P) s

(A8)

with

_. 2s-iXs= a + pk + _cos--_ + I). (A9)

Square roots in (A6) and (A8) have to be taken with consideration of the branch cut. The

choice of the branch is based on the condition, that for x >pN the result should be positive.
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Topographical map of K(b) versus a/b and LAMBDA

0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00
0.95 m_L_,.__ _ ,, ,,i 0.95

0.85 • .

0.35 '1, 0.35

0.05 i 0.05
0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

Figure 3.--Stress intensity at the leading crack tip, x = b, for the case of the single link model and the corresponding
topographical map. The data are given as a function of a/b and A ; the values of the stress intensity factor are
normalized by K
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Topographical map of the force on the fiber
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Figure 4.--Net force acting on the fiber for the case of single link model versus the ratio a/b and parameter A and the
corresponding topographical map. The data are normalized by the force acting on the link prior to microcracking,

Equation (3.1).
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Topographical map of K(O) versus a/b and LAMBDA
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Figure 5. Stress intensity at the main crack tip, x = 0, for the case of the single link model and the corresponding
topographical map. The data are given as a function of a/b and A; the values of the stress intensity factor are
normalized by K".
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Figure 6.---Stress intensity at the trailing tip of the microcrack, x = a, for the case of the single link model, and the
corresponding topographical map. The data are given as a function of a/b and A; the values of the stress intensity
factor are normalized by K ==
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Figure 7.--Net traction on the first fiber (trailing end) versus the length of the bridging zone in terms of number of microcracks.
For N = 0, only a portion of the net force acting on the fiber cross-section (assumed circular) is accounted for.
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Figure 9.--Fracture parameters within the bridging zone N = 18, N is a number of microcracks in the bridging zone.
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