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Abstract

Several variants are presented of a linear-in-parameters least squares formulation for determin-

ing the transfer function of a stable linear system at specified frequencies given a finite set of
Fourier series coefficients calculated from transient nonstationary input-output data. The basis

of the technique is Shinbrot's classical method of moment functionals using complex Fourier

based modulating functions to convert a differential equation model on a finite time interval

into an algebraic equation which depends linearly on frequency-related parameters.
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1. INTRODUCTION

Methods for determining the transfer function of a stable linear system from input-output

data include correlation and spectral analyses, as well as the direct sinusoidal measurements.

Each of these "nonparametric" identification techniques require either a statistical stationarity

assumption on the data, or a periodic steady state condition to be established, before initiating

calculations of the transfer function at pertinent frequencies. Excellent summaries of these

methods, as well as the analysis of noise effects and finite data lengths, can be found in

Astrom [1], Ljung [2], Soderstrom and Stoica [3], and Unbehauen and Rao [4]. Notwith-

standing noise considerations, long data lengths may be required in order to achieve good

accuracy due to the stationarity or steady state assumption. By contrast, a method is proposed

here that utilizes the frequency content in short data lengths in order to set up a least squares

estimation of the transfer function at selected frequencies. Since short data lengths are used

there is no assumption of steady state operation or stationarity of the data, though there must

be present sufficient energy content in the data at the specified frequencies in order to avoid

nondegeneracy in the least square estimate. The basis of the technique is the classical Shin-

brot [5] method of moment functionals, also known as the modulating function technique,

using complex Fourier based modulating functions. A forerunner of this approach can be

found in Pearson and Lee [6] which utilized real valued Fourier based modulating functions,

i.e., commensurable sinusoids, for the parameter estimation of linear differential systems.

Therein also can be found a discussion of the background of this method with a listing of

references. However, this paper appears to represent the first use of modulating functions in

the context of the "nonparametric" system identification problem. Several variants of a

deterministic least squares estimation of frequency-related parameters that underlie the transfer
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function will be developed below.

2. Least Squares Formulations

Consider a stable linear system with input u (t) and output y (t) modeled on a finite time

interval by the differential operator equation:

a (p)y (t)=B (p)u (t)+e (t) (1)

where (A (p),B (p)) are polynomials in the differential operator p =d/dt of degree less than or

equal to an a priori integer n, and e (t) represents the effect of modeling errors. The problem

considered here is to estimate the transfer function G (j CO)=B (j co)/A (j co) at a finite set of fre-

quencies {kco0, k=l,2'' M}, where coo is a user selected "resolving" frequency and M a

chosen integer, given the input-output data [u(t),y(t)] over a finite set of time intervals

{[t i,ti+T], i=1, • • N }.1 These time intervals axe each chosen of length T=2x/co 0 and need not

necessarily be disjoint. However, a certain degree of independence in the data collected over

the different [0,T] time intervals is necessary in order to avoid degeneracies in the least

squares estimate to be discussed below. Understandably these degeneracies are more likely to

be avoided in normal operating records if the intervals axe disjoint. In addition to the upper

bound on the system order n, the DC value of the transfer function is assumed given or can

be measured from the step response, i.e., G (0)=B (O)/A (0) is presumed known a priori. If

this is not the case, then the estimated transfer function can be scaled by the parameter G (0).

The Shinbrot method of moment functionals is a technique for converting a differential

equation on a finite time interval into an algebraic equation by the use of "modulating func-

1 If the system bandwidth COB is known, then choosing (M,CO0) such that M CO0"COB will cover

the bandwidth at the knots k coo, k = 1,2 • • M.
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tions". As introduced by Shinbrot [5], ¢(t) is a modulating function of order n relative to a

finite time interval 0<_t_<T if it is sufficiently smooth and satisfies the end point conditions:

¢(i)(O)=_(i)(T)--O, i=O,1 .. n-1 (2)

where _(i)(t)=pic_(t). Clearly, modulating functions can be constructed in many different

ways. z Here a specific set of complex valued Fourier based modulating functions is defined in

a way that is conducive to solving the problem at hand, viz., let

_rn (t)=e jr,,_t (1-e j o_ )n, 0<_t _<T=2_/¢0 0 (3a)

m=0,1 • .M

define a set of modulating functions of order n with respect to the time interval [0,T].

Equivalently by the binomial expansion, each such function is representable by

n

Om (t)= ]_ b k e j 0,,+k)_. (3b)
k=0

where b k is defined in relation to the binomial coefficient by

bk = (_l)k _1" (4)

The first representation (3a) makes evident the fact that each _m (t) is indeed a modulat-

ing function of order n, i.e., (2) is satisfied, 3 while the second representation (3b) implies that

calculating linear functionals defined by each _,,, (t) on a set of functions specified over [0,T]

will entail calculating the Fourier series coefficients of these functions at the frequencies ko) 0,

k=m,m+l • • m+n, re=O,1 • • M. In turn, these coefficients can be calculated efficiently by

DFT/FFT methods which provides an important motivating factor for this analysis. This will

2 See discussion in Pearson and Lee [6].

3 Notice that any modulating function of a fixed order is automatically a modulating function of

any lower order relative to the same time interval. This property facilitates the formulation for any

system of order less than or equal to the upper bound n.



4-

be discussed further below. The important property of the functions defined in (3) is con-

tained in the following 4

Modulation Property. Let P (p) be a differential operator of order at most n, i.e., a

polynomial in p =d/dt of degree .<.n, and z (t) any sufficiently smooth function defined

on [0,T ]. Then the modulation of P (p)z (t) with Om (t) over [0,T ] satisfies

T m+n

St_m(t )P (p )z (t )dt = _ bk_mp (-jk coo)Z_k (5)
0 k=m

where Z k is the k th harmonic Fourier series coefficient of z (t), i.e.,

T

Z k = _z (t)e -jk°°t dt. (6)
0

Note that owing to the end point constraints (2) satisfied by each Om (t) function, none of the

boundary point derivatives z(i)(o) or z(i)(T) appear in (5). This is crucial to the ensuing

analysis and, in fact, represents a primary reason for employing the modulating function tech-

nique.

2.1. Formulation 1

A direct application of the above property to the problem posed involves rewriting the

differential operator model (1) in the equation error form followed by the modulation with

_,n (t); thus, 5

4 Proof of this property is given in the Appendix in order to proceed directly with the develop-

ment.

5 The process of going from the model (1) to equation (7) can be viewed as a projection from a

space of functions on [0,T ] down into a finite dimensional space spanned by the modulating functions.
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T T

.i'<l,,,,<,:>[a<,,,>y<,:>-,<,,>u<,>]<,,=.i'<i,,,,<,,e<,><".
o o

In view of (5) the preceding equation is equivalent to

.+n [A ].+n_., bk_ m (-jk oo)Y_k -B (-jk coo)U_ k = _., bk_ mE_k .
k=m k=m

Define the real and imaginary parts of the polynomials (A (jk o0),B (jk too)) as follows:

(7)

(8)

A (jk _0)=_k +j [3k, B (jk o_0)---'yk+j 8k

and collect these together to form the 4×1 "parameter" vector:

(9)

IklOk = fig (10)
"rk "

k

Also, define as follows the 2×4 data matrix _k (i) in terms of the real and imaginary parts of

the k th harmonic Fourier series coefficients of the input-output data corresponding to the time

interval [ti,ti+T], i=1,2 • .N:

lYe(i) Y_(i) -U_(i ) -U_,(i)l

]

Wk (i)= [-Y_(i) Y_(i) U_(i ) -U_(i ) J"

The notation for the entries in (11) is explained by

(11)

T T

Y_(i) = _y(t+ti)cosko3ot dt, Y_(i) = fy(t+ti)sinkcoot dt (12)
o o

and similarly for (U[,(i),U[,(i)). Then the real and imaginary parts of the equation error (8)

can be collected into the following real valued 2xl vector equation which serves as the start-

ing point for a least squares estimation:

m +n

]_ bk-m _k (i)0 k = era (i)
k=m

(13)

m=0,1 • • M, i=1,2 • • N.
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The equation error vector in (13) is related to the Fourier coefficients of the original equation

error by

£m(i) = Z bk-m
k=m [E_(i)J"

Values of the transfer function G(jkcoo)=B (jkcoo)/A (jkcoo) are seen from (9) and (10) to

be related to the parameter vector Ok by the real and imaginary part relations:

ak k- k8, ak8k-- kTk

ReG(jkcoo)= ot2+_ 2 , ImG(jkCOo)= 0_2+_k 2 (14)

or equivalently by the magnitude-phase relations:

_t_+Sk22 tan_18 k/G(jkcok) = - tan -1-. (15)la Ukco0 2 -  Z+13kz , v,

Starting from a presumed knowledge of the DC value G(0), which implies that

00=[A (0),0,B (0),0]' is known, equation (13) can be rewritten in the standard regression equa-

tion format to estimate the parameters Oh, k=l,2." M+n given the data over a sufficient

number of [ti,ti+T], intervals, i=1,2 -" N. A consideration of this equation reveals the fol-

lowing:

1) The frequency range covered by the parameters in (13) is (M+n)coo- Hence, if it

is desired that the transfer function estimate cover a frequency range about 25%

greater than the system bandwidth coB at a resolution co0, a choice in (/14,co0) such that

(M+n)coo = 1.25coB (16)

reflects this objective.

2) Counting unknowns in (10) and (13), the total number is 4(M+n). Since each

equation in (13) is of dimension 2, counting equations suggests that the total number

N of [ti,ti+T] intervals should satisfy: 2(M+I)N>4(M+n), i.e., N>2(M+n)/(M+I).
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However, the equations in (13) are partially decoupled with respect to the index m.

Therefore, it seems best to estimate (01, • " On) at the first stage, which corresponds to

m=0. This means that there are 4n unknowns for the first stage requiring that N

satisfy N>_2n. Thereafter, the number of unknowns is just 4 for each stage

corresponding to m =1,2 • • M, which implies N>2 assuming that the preceding esti-

mates are used in each succeeding stage. This kind of "bootstrapping" of the least

squares estimation facilitates keeping the number of unknowns to a modest level at

each stage.

3) The two row vectors comprising _k(i) in (11) are seen to be mutually orthogonal

for each k and i suggesting a maximal degree of independence for these equations in

utilizing the information content in the data. This is a direct result of the Fourier

nature of the underlying formulation.

Discussion: The above development shows that it is possible to formulate a linear-in-the

parameters least squares estimation problem for parameters (10) that underlie (via (14) or

(15)) the transfer function G(jko o) at each k th harmonic frequency. The input-output data

can be time-limited and transient, but must have sufficient energy content at the specified fre-

quencies to avoid degeneracies in the least squares solution. Apart from being highly non-

linear, the relations (14) and (15) involve the difference between parameter related quantities,

e.g., 0_kyk--13k_Sk, whose values may be large for large k. This aspect of the formulation por-

tends a potential source of error magnification which is alleviated by the formulation of the

next section.
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2.2. Formulation 2

Given that [u(t),y(t)] satisfies the model (1) on a [0,T] time interval, it follows that

[u (t),y (t)] also satisfies the model

A (-p)A (p)y (t)=A (-p)B (p)u (t)+A (-p)e (t). (17)

Choosing a set of modulating functions of order 2n to accommodate the upper bound on the

highest degree differential operator in (17) and modulating this equation with the mth member

of this set, the following projected equation error results which is analogous to (8):

m+2n r I m+2n

__, b_--m [A (jk too)A (-jk too)Y_ k -A (jk too)B (-jk too)U_k |= Y_ Ok-m A (jk too)E-k (18)
k=m a k=m

where bk is defined by, cf. (4):

Noting that A (jk too)A (-jk too) is real while A (jk Coo)B (-jk to0) is complex, define real quanti-

ties (ak,Otk ,_k) by the relations:

ak =A (jk too)A (-jk too), txk +j f5k =A (jk too)B (-jk to0) (19)

and collect these into the 3×1 parameter vector 0 k defined by

Ok = 0t k

k

(20)

Also, define the 2x3 data matrix Xltk(i) by

t.[Y_(i) -U_(i )-U_(i)-U_(i )U_(i) ]_k (i)= IY['(i) . (21)

where the notation for the entries in (21) is the same as defined in (12). Then the real and

imaginary parts of the projected equation error (18) can be represented by the following real

2xl vector equation:
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m +2n_

bk_m gtk (i )Ok =Em (i ) (22)
k=m

m---0,1 • • M, i=1,2 • ' N.

Equation (22) can be rewritten into the standard regression equation format for setting up

the least squares estimate of the parameters (O1, " " OM+_) based on the data over [ti,ti+T],

i=1,2 • • N. Again, presumed knowledge of the DC value implies that 0--0=A (0)[A (0),B (0),0]'

is known or, if not, the resulting transfer function estimate can be scaled by the parameter

G (0). Here the estimates of the transfer function are related to the parameters by the real and

imaginary part equations (as found from (19) and (20)):

0tk _k

ReG (jk t.Oo)=--, ImG (jk O_o)=--- (23)
a k ak

or equivalently by the magnitude-phase relations:

2 2

Otk+_k /G (jk co0) = -tan-1 [_k. (24)

Consideration of the least squares formulation in this case leads to the following:

1) The frequency range covered by the parameters in (22) is (M+2n)o_0; hence, the

guideline (analogous to (16)) for choosing the pair (M,o_0) in this case is

(M+2n)co o = 1.25C0B. (25)

2) Counting unknowns in (20) and (22), the total number is 3(M+2n) which would

imply that the total number N of [ti,ti+T] time intervals should satisfy:

2N(M+I)>3(M+2n). However, the partially decoupled nature of the equation (22)

with respect to the m index suggests bootstrapping the solution from the first stage.

Thus, for the initial stage (m =0), N needs to satisfy N>3n. In the succeeding stages,

N needs to satisfy N>2 (since there are 3 unknowns and 2N equations at each such
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stage); this assumesthat the precedingestimatesare used at each succeedingstage

(m=1,2 • - M).

Discussion: Comparing (23) and (24) with (14) and (15) reveals that the second formulation

avoids the potential error magnification problem of differencing large estimated quantities in

calculating the transfer function at high frequencies. However, the second formulation

requires estimating 6n unknowns at the first stage, i.e., the m--0 stage, verses 4n unknowns

for the first stage of the first formulation.

2.3. Formulation 2-Dual

The dual to the formulation of the preceding section is to observe that a given pair

[u (t ),y (t )] satisfying the model (1) on a [0,T] time interval also implies that it satisfies (cf.

(17))

B (-p)A (p)y (t)=B (-p)B (p)u (t)+B (-p)e (t). (26)

Again choosing a set of modulating functions of order 2n, a development similar to that of

the previous section leads to the real 2×1 vector equation

m+2n

Y_ _-rn _k (i)0k = _m (i) (27)
k =m

m=0,1 • "M,

where the data matrix qt k (i) is defined by

i=1,2 • • N

[U_(i) -Y_(i) Y_(i)

_k(i) = [U_(i) -Y_:(i) -Yf(i)

and the real 3xl parameter vector ()k is defined by

(28)
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with the entries in (29) defined by

ik]()k = (Ik (29)

b k =B (jk O_o)B (-jk COo), _k+j [3k = A (jk too)B (-jk too).

Relations between the transfer function and the parameters in this case are found to be

(30)

otkbk -[3kbk

ReG(jkc°o)=ak+_ k2 2' ImG (Jk C°o)= otk2+ _k2

for the real and imaginary parts, or for the magnitude-phase:

(31)

b2 /G (jk t.00) = tan -l_k (32)-

Comparing (21) and (28) verifies the duality of the two formulations by virtue of the

interchange of input and output. Note that each formulation has the same total number of

unknowns - in general. However, the dual formulation has the potential advantage of reduc-

ing the total number of unknowns in the event of a priori information on a lower degree

numerator polynomial than denominator polynomial in the transfer function. For example, an

"'all pole" model means that bk=(B (0)) 2 is known for all k, i.e., a total of 2(M+n ) unknowns

verses 3(M+2n) for the previous case. The formulation leading to (27) can easily be

modified to reflect this consideration.

3. Conclusions

Three formulations of a linear-in-the parameters least squares estimation have been

presented for determining the transfer function of a linear system at specified frequencies

given transient nonstationary input-output data. While some comparisons have been noted in

the discussions following each formulation, a clear indication of the pitfalls and advantages of
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each will have to await a thorough simulation study including the effects of noise.

study is currently underway.

Such a
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5. Appendix

To verify the modulation property (5) it is sufficient to consider the differential operator

p (p)=pi for a fixed i _<_n. The result for a general n th degree polynomial P (p) then follows

by superposition. Thus, for sufficiently smooth z(t) on [0,T] and Ore(t) defined in (3), the

left side of (5) in this case is

T T

_Om (t )p i z (t )dt = Iz (t )pi t_m (t )d t (33)
0 0

where integration-by-parts has been used i times taking into account the boundary conditions

(2) possessed by each Om (t) function. Substituting the representation (3b) into the fight side

of (33) and changing the index of summation verifies (5) for P (p)=p i as purported.


