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ABSTRACT

In this thesis, the effects of a variety of faults on a neural network is quantified via
simulation. The neural network consists of a single-layered clustering network and a three-
layered classification network. The percentage of vectors mistagged by the clustering net-
work, the percentage of vectors misclassified by the classification network, the time taken
for the network to stabilize, and the output values are all measured. The results show that
both transient and permanent faults have a significant impact on the performance of the
measured network. The corresponding mistag and misclassification percentages are typically
within 5% to 10% of each other. The average mistag percentage and the average
misclassification percentage are both about 25%. After releaming, the percentage of
misclassifications is reduced to 9%. In addition, transient faults are found to cause the net-
work to be increasingly unstable as the duration of a transient is increased. The impact of
link faults is relatively insignificant in comparison with node faults (1% versus 19%
misclassified after releaming). There is a linear increase in the mistag and misclassification
percentages with decreasing hardware redundancy. In addition, the mistag and

misclassification percentages linearly decrease with increasing network size.
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CHAPTER 1.

INTRODUCTION

Artificial Neural Networks (ANNs) are based on simplified biological neural models.
Each node in an ANN mimics the function of a biological neuron. ANNs have been exten-
sively studied and have been used reasonably successfully in areas such as speech and pat-
tern recognition. Research in neural networks began with the work of McCulloch, Pitts,
Hebb, Rosenblatt, Widrow and others some 40 years ago [1]. Today, interest has re-
emerged with the development of new network topologies, learning algorithms and analog

VLSI techniques [2, 3].

A typical neural network consists of massively interconnected processing elements
known as artificial neurons. Weights are associated with each interconnection in the net-
work. The simplest element, sums N weighted inputs and passes the sum through a non-
linear function such as a sigmoid. The processing elements may also contain small local
memories which store the weights associated with the interconnections. The leaming pro-
cess corresponds to searching for a set of optimal link-weights which minimizes the error in

the output function.



The claim is often made that neural networks are highly robust and fault tolerant. This
property is usually attributed to the fact that these networks have massive interconnections
and also to the manner in which learning occurs in these networks. These two factors are
jointly expected to provide considerable redundancy in both information and hardware. The
networks are thus expected to be highly adaptive to failure situations. This belief, however,
has not been systematically investigated. For example, although the loss of data may not
seem significant [4], total or partial major component failure may have an adverse impact

on the system. This is particularly true if the network is expected to perform in real time.

The two neural network models studied in this thesis are: Kohonen’s Feature Map [5]
and the multilayered perceptron network (6]. Both networks have been used in a variety of
applications. Kohonen’s Feature Map has been used for speech and pattern recogni-
tion [7,8], and a neural network chip based on it has been fabricated [9]. The multilayered
perceptron model is one of the most extensively studied neural network in the literature. It
has been used to implement medical expert systems [10,11], pattern recognition sys-
tems [12,13], and an adaptive closed-loop controller [14]. A VLSI implementation of the
multilayered perceptron model is also currently being developed [14]. Thus, with these net-
works going to VLSI chip implementations, the fault characteristics of each must be investi-

gated.

This thesis reports on the results of a set of experiments conducted to quantify the
effect of a variety of faults on a neural network consisting of a single-layered clustering net-
work and a three-layered classification network. The network was used as a target for

analyzing the impact of faults on system behavior, via simulation. The percentage of vectors

{



mistagged by the clustering network, the percentage of misclassification by the classification
network, the time taken for the network to stabilize, and the output values were all meas-
ured after 600 learning cycles (the average leaming duration). The network was allowed to
relearn for an additional 600 cycles, and the benefits of relearning were quantified. It was
considered inefficient to allow the relearning process to continue beyond 600 cycles since it

would then be better to initiate a fresh start.

The results show that both transient and permanent faults have a significant impact on
the performance of the network. The corresponding mistag and misclassification percen-
tages are typically within 5% to 10% of each other. This is attributed to the short relearning
duration in the experiment. In addition, transient faults are found to cause the network to be

increasingly unstable as the duration of the transient is increased.

The average mistag percentage and the average misclassification percentage are both
about 25%. After relearning, the percentage of misclassifications is reduced to 9%. The im-
pact of the link faults is relatively insignificant in comparison with node faults (1% versus
19% misclassified after relearning). This is because the massive interconnections provide

considerable information redundancy.

A study of hardware redundancy shows a linear increase in the mistag or
misclassification percentages with decreasing hardware redundancy. Thus, the penalty per
unit decrease in the hardware redundancy is constant. A study of hardware size shows that
the mistag and misclassification percentages linearly decrease as the minimal hardware size

is increased. Thus, large networks result in lower mistag and misclassification percentages



than small networks. Node faults are found to cause about three times the percentage of

mistags or misclassifications as compared to link faults.

The next chapter discusses related research and the motivation for this thesis. In
Chapter 3, a neural network implementation of the diagnostic system is discussed. Chapter 4
defines the fault models used to inject specific fault types into the simulated network.
Chapter 5 defines the appropriate performance measures for the network. The overall exper-
imental approach and the measurements taken are discussed in Chapter 6. Chapters 7, 8 and
9 discuss the experimental results. Chapter 10 is the concluding chapter which highlights

the major results of this work and makes suggestions for future research.



CHAPTER 2.

RELATED RESEARCH

The issue of reliability in neural networks has not been fully investigated. One area
that has been addressed is the impact of noisy environments on the recall capabilities of
neural associative memories. In [5], a neural network implemented as a content associative
memory is shown to be able to retrieve the complete image, given fragments of the original.
In [15], it is shown that neural network pattern recognition is tolerant of faults in the input
information. Another area that has been addressed is the impact of low output values in a
multilayered perceptron model. Low output values arise because input patterns cannot be
confidently assigned to a unique class. In [10], the problem of low output values is dealt

with by lowering the threshold.

In [16], the stuck-at-1 and stuck-at-0 link-fault models were used to study the fault
tolerance of a neural associative memory. The authors measured the recall capabilities of the

network with an increasing number of link failures. It “vas shown that a 16-node network



was able to function effectively with 20% link failures. In [17], the fault tolerance of a char-
acter recognition system, implemented as a multilayered perceptron network, was investigat-
ed. The impact of data faults was studied by measuring the percentage of characters errone-
ously recognized as a function of the number of training cycles for three different Hamming
distances.! The results indicated that as the Hamming distance was increased, the steady-
state error percentage also increased. It was also shown that the parameters of the leaming
algorithm did not affect the classification error. The hardware fault tolerance was studied by
measuring the percentage of erroneous recognitions as a function of the number of broken
links. For example, a network trained for 500 cycles could tolerate up to 20% link failures.
The results also showed that the minimum number of links required for the network to func-
tion effectively decreased as the network was trained for a longer period. With 1600 cycles,

the same network could tolerate about 60% link failures.

In the above research, the impact of faults was quantified by the recall capability and
the classification accuracy of the measured network. The authors investigated the impact of
catastrophic failures, i.e., multiple link failures. In addition, the fault types were limited to
link and input faults. Traditional fault tolerant design, however, assumes single point
failures in a system. To date, there is no systematic study which investigates the impact of
single faults in a neural network. It is also unclear how the network would behave when
node faults also occur. This is important since link redundancy can easily be an order of

magnitude higher than node redundancy. Further, issues such as the impact of faults on the

!The authors measured data fault tolerance by the maximum number of different bits (Hamming
distance) between the input and the training patterns.



learning duration, the effect of hardware redundancy and the effect of hardware size must be

studied to address the issue of fault tolerance of neural networks.

In this thesis, the effects of a variety of single fault events, both transient and per-
manent, on two different network models are studied. The impact of faults is quantified by
the learning duration, the accuracy of classification and the output values of the network.

The effects of hardware redundancy and information size are also investigated.



CHAPTER 3.

TARGET NEURAL NETWORK SYSTEM

For this thesis, a neural network implementation of an on-line failure diagnostic sys-
tem was developed. The implementation was based on Pau’s automated failure diagnostic
model [18]. The model consists of a leaming phase and a recognition phase. In the leam-
ing phase, an N-attribute vector which describes the system behavior is defined. For exam-
ple, in aircraft failure diagnosis, some of the attributes would include stress and strain fac-
tors, number of flying hours, load factors, service information and overhaul information. A
total of P failure observations are made and the set of P N-dimensional vectors constitutes
the training vectors for the system. Statistical clustering is then used to reduce the training
set to an optimal number of classes. These classes (denoted by the cluster centroids)

represent the principal identifiable failure modes of the system.

When a failure occurs, the recognition phase is invoked. The new failure vector is pro-
vided as input to the diagnostic system and a nearest neighbor rule is used to determine the
most probable failure mode. The new vector is assigned to the cluster that yields the

minimum Euclidean distance between the vector and the cluster centroid.



A neural network implementation of the above diagnostic system consists of two sub-
networks: a clustering network and a classification network. In the learmning phase, two pro-
cedures are performed: the clustering of the set of P training vectors and the training of the
classification network. The clustering network reduces the set of P vectors to an optimal
number of clusters. Each of the clusters represents a most probable failure mode. A tag
which identifies the appropriate cluster is added to each training vector. For example, if an
input vector with four attributes, such as (0.23, 0.33, 0.54, 0.83), belongs to cluster 1, then
the corresponding tagged vector is (0.23, 0.33, 0.54, 0.83, 1). The set of P tagged vectors is

used to train the classification network.

The classification network is trained to classify the set of P failure vectors into the
desired clusters as stipulated by the added tags. The learning objective is to obtain a set of
optimal link-weights so that the classification network can classify each of the P vectors to
its nearest cluster. When a failure occurs, the trained classification network assigns the
failure vector to the most probable failure mode, i.e., to the cluster which has the closest
Euclidean distance to the failure vector. The next two sections provide an overview of the

detailed functions of the two subnetworks.

3.1. Clustering Network

The clustering network used in this thesis is based on Kohonen’s Feature Map [5].
Figure 1 shows a typical structure of the network. There are N input nodes which represent
the N attributes in the failure vector and an array of K output nodes (in the figure, K=16).
Each input node is linked to all K output nodes. The link-weights for each output node

correspond to the coordinates of the cluster centroid. We start the clustering process by
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Output Layer

Links to each

...................

\i}/ output node
W YW Input Layer

Figure 1. Kohonen’s Feature Map with sixteen output nodes.

assigning random link-weights. These weights are then iteratively modified according to the
Kohonen Feature Map Algorithm [5], which is a neural network implementation of the k-
means clustering algorithm ([2]. Once the link-weights are stable, only one output node is
active for a given input vector. This output node represents the cluster which is nearest to
the input vector, i.e., the Euclidean distance between the input vector and the specific cluster

centroid is the smallest.
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A minimal clustering network is defined as one where the number of output nodes
matches the number of optimal clusters in the vector set. This type of network will be ex-
tremely useful in our experiments. A sketch of the algorithm and the clustering process ap-

pear in Appendix A.

3.2. Classification Network

The classification network uses the three-layer perceptron model [6]. Figure 2 shows

a typical structure of the network. It consists of an input layer, two hidden layers and an

Input layer Hidden Hidden Output layer
layer layer
1 2

Figure 2. A three-layered perceptron model.
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output layer.? There are N nodes in the input layer, which in our case, denote the N attri-
butes in a failure observation. There are K output nodes, each represents a cluster centroid,
which in turn denotes a principal identifiable failure mode. The number of nodes in the hid-
den layers depends on the number of clusters in the input vector spacc—:3 [2]. Each node, in
each of the layers, is linked to every node in the next layer. Thus, the nodes in the first hid-
den layer are linked to the nodes in the second hidden layer, and the nodes in the second

hidden layer are linked to the output nodes. A weight is associated with each of the links.

The classification network takes an N-attribute failure vector and assigns it to a nearest
cluster. In order to perform the classification, the network is trained such that, upon presen-
tation of an input vector, only the output unit that represents the cluster nearest to the input
vector is activated. For example, in a system with four attributes and six clusters, if an in-
put vector (0.23, 0.44, 0.78, 0.65) belonging to cluster 3 is presented to the classification

network, then ideally, the output pattern should be (0, 0, 1, 0, 0, 0).

The leaming process determines a set of optimal link-weights to perform the
classification. The tagged vectors from the clustering network are used as the training set.
Each vector in the training set is presented to the classification network and the correspond-
ing output pattern is determined. The tag of each input vector is then used to determine the
corresponding desired output pattemns. For example, if the tagged input vector is (0.23, 0.44,

0.78, 0.65, 3), then the desired output pattern is (0, 0, 1, 0, O, 0). The learning process

2By -onvention, the three layers refer to the two hidden layers and the output layer.

3A three-layered perceptron model can form any arbitrary hyperspace which can partition the
input vector space into distinct classes. The number of nodes in the output layer equals the number of
clusters in the input space. The worst-case number of nodes in the second hidden layer is equal to the
number of disconnected clusters in the input space. There should be three times as many nodes in the
second hidden layer as in the first layer [2).
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minimizes the difference between the actual and the desired output pattern. The back-
propagation learning algorithm with the generalized delta learning rule [6] is used to train
the network. This algorithm minimizes the difference between the current output pattern and
the desired output pattern by iteratively modifying the link-weights. The minimization usu-
ally leads to some optimal output values close to one or zero. For instance, the above exam-
ple might produce an output pattern such as (0.01, 0.07, 0.96, 0.02, 0.11, 0.07). Appendix

B provides a more detailed account of the learning algorithm.

As stated earlier, the number of nodes in the classification network depends on the
number of optimal clusters in the training set. As with the minimal clustering network, we
define a minimal classification network as one which has the minimum number of nodes
and yet, yields no misclassifications. For each training set used in this study, a correspond-
ing minimal network was determined. In order to initially determine the size of the minimal
network, Lippmann’s method [2] was used. The network was then trained with the specific
training set. If the network was minimal, the removal of any node in the network would
yield misclassifications. Thus, by decreasing the number of nodes until misclassification oc-

curs, the minimal network size required for the specific training set was determined.
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CHAPTER 4.

FAULT MODELS

This chapter discusses the types of faults injected into the diagnostic system. A net-
work implementation, in which each node is a simple nonlinear element (with a sigmoid
function) was assumed. Further, every node was assumed to have a small local memory
(512 k-bytes) which stored the incoming link-weights. A special purpose simulator, FANS,
which incorporates automatic fault injection and analysis was developed for the purpose of
investigating these networks. The details of FANS, the acronym for a Fault Analysis Tool

for Neural Nets, are discussed in Appendix C.

Both transient and permanent faults were injected into the interconnection links and
nodes. Transient faults were modeled by limiting the duration of the fault. Permanent faults
were modeled by removing the links or nodes throughout the duration of the simulation. In
addition, Byzantine faults were also injected into the processing nodes. A Byzantine node
fault was modeled by forcing a node to send erroneous information to some nodes, but
correct information to others. In keeping with common practice, only one fault was assumed

to occur at any one time. Figure 3 summarizes the different fault types which were injected.
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Figure 3. Categories of faults used in this experimental study.

4.1. Interconnection Link Faults

The interconnection links pass activation values from one node to another. The impact
of faults on a specific link is such that no activation values can pass through. This fault is

modeled by removing the targeted link. The fault can be transient or permanent.

4.2. Node Faults

Node faults are further categorized into input faults, memory faults, output faults and
full-node faults. Node faults can be transient or permanent. In addition, a node output fault

can also be Byzantine. A Byzantine fault at the node output models all cases of a Byzantine
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node because, by definition, a Byzantine node is one which is unreliable and sends errone-

ous outputs to only certain nodes [19].

4.2.1. Input faults

Input faults (faults occurring at the node inputs) are usually caused by external noise
or glitches. This situation is modeled by a small random perturbation at the selected node
input. Input faults can occur at the input of any node in the network and are not restricted to

the nodes in the input layer. Both transient and permanent input faults were modeled.

4.2.2. Memory faults

A memory fault causes the weight stored in the memory to become unreliable. The
fault is modeled by assigning a random value to a targeted link-weight in the network.

Both transient and permanent faults were modeled.

4.2.3. Output fauits

A node is defined as a nonlinear element with a sigmoid output function. Thus, the
output faults in this thesis are typical perturbations in nonlinear circuit elements. Three
types of node output fault models are used: the offset error, the response delay and the gain
error. The offset error is modeled by the addition of a user-defined positive or negative con-
stant to the output value. The node output response delay is modeled by adding a time de-
lay At to the output function. Thus, an output ®(z) is replaced by ®(¢t—-At). The gain error
is modeled by multiplying the output value by a scaling constant. Output faults can be tran-

sient, permanent, or Byzantine.
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4.2.4. Full-node faults

A full-node fault refers to a targeted node failing completely (i.e., no response occurs).
It is simply modeled by removing the selected node from the network. This fault can be ei-

ther transient or permanent.
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CHAPTER 5.

MEASUREMENTS

Based on the fault models described in the last chapter, the following measurements
were made to evaluate the impact of faults in the target network: the time T taken to
achieve stability, the value ¢ of the output node with the highest activation value, the
difference & between the two highest output nodes, the percentage vy of vectors mistagged by
the clustering network, and the percentage B of the input vectors misclassified by the

classification network. The following sections discuss these measurements in detail.

5.1. Time Taken to Achieve Stability

The amount of time, in simulation cycles, required for the link-weights to converge is
denoted by 1. In our experiment, one simulation cycle, on both the clustering network and

the classification network, consists of a forward and backward propagation.
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5.2. Highest Output Value

The value of the highest output node in the classification network is denoted by ¢.
Recall that, ideally, for every input vector, the classification network will have a single out-
put node at value "one"; the rest will be equal to zero. The error minimization process,
however, often results in output values being close to one or zero. A value close to one indi-
cates that the input vector can be assigned unambiguously to a specific cluster. Thus, ¢ can
be interpreted as the degree of confidence with which an input vector can be assigned to a

specific cluster.

5.3. Difference Between the Two Highest Output Values

The difference between the two highest output nodes is denoted by 8. If two nodes
have close output values, the corresponding input vector cannot be confidently assigned to a
single cluster. For example, if the values at the output layer of a classification network with
four output nodes are:

(node_1, node_2, node_3, node_4) = (0.9, 0.2, 0.1, 0.05),
then, 8=0.70. If the values at the output nodes happen to be
(node_1, node_2, node_3, node_4) = (0.5, 0.6, 0.1, 0.05),
then 8=0.10. In the latter case, it is not clear whether the vector belongs to cluster 1 or clus-

ter 2.
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5.4. Percentage of Mistagged Vectors

The impact of faults in the clustering network is quantified by the percentage y of mis-
tagged vectors. A vector is said to be mistagged if the assigned tag does not represent the
cluster which is nearest to the vector (as measured by the distance between the cluster cen-

troid and the vector).

5.5. Percentage of Misclassifications

The impact of faults in the classification network is quantified by the percentage B of
misclassifications. The classification network is said to misclassify a vector if either of the
following two conditions holds: an input vector is assigned to an incorrect cluster or the
difference & between the two highest output values is less than a user-specified threshold 6.
An input vector is assigned to an incorrect cluster if the distance between the specific cluster
centroid and the input vector is not the minimum. The second condition requires that the

input vector be confidently assignable to a unique cluster.
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CHAPTER 6.

EXPERIMENTAL APPROACH

Three major categories of experiments were conducted on the target neural network. In
Experiment 1, the impact of faults on the clustering network was investigated. Experiment 2
investigated the impact of faults on the classification network. Experiment 3 investigated the
impact of faults, due to propagation, from the clustering network to the classification net-
work. Three definitions are used in the following discussions. First, the hardware size
refers to the number of nodes in the specified network. Second, the information size refers
to the number of optimal clusters into which a training set of P failure vectors can be
classified. Third, the hardware redundancy refers to the difference between the hardware
size and the information size. Thus, a network with a high degree of hardware redundancy

has a large hardware size and a small information size.

The three categories of experiments study the clustering network and the classification
network, focusing on the effects of hardware redundancy and hardware size. The impact of a
fault is also affected by the leaming algorithm used. In this study, we ignore the effects of

the learmning algorithm.
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To study the effect of hardware redundancy, we start with a network which is much
larger than the minimal. Recall that a minimal clustering network is one which has the same
number of output nodes as the number of optimal clusters in the vector set. A minimal
classification network is one which has a minimum number of nodes and yields no errors
during classification. For each injected fault, both the percentage of mistagged vectors in
the clustering network and the percentage of misclassifications in the classification were
measured. The information size was then increased until it approached the hardware size.
As the information size was increased, the amount of hardware redundancy decreased (since
the number of clusters in the vector set increased). The impact of hardware redundancy was
studied by plotting the average mistag and misclassification percentages as functions of in-

formation size.

In order to study the impact of hardware size, we conducted fault injections on
minimal networks of increasing size. In a neural network, such as the three-layered percep-
tron model, we would expect that larger networks will have considerably more redundancy
than smaller networks.* Again, for each injected fault, the percentage of mistagged vectors
in the clustering network and the percentage of misclassifications in the classification net-
work were measured. The mistag and misclassification percentages were plotted against in-
creasing network size. The time taken for the network to stabilize and the steady state out-

put values were also recorded.

°If we increase the number of nodes in a network by X, the number of links increases by K
imes X, where K is greater than one and is dependent on the number of incoming links in each
node.
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The input data for the experiments were obtained from an IBM mainframe system.
The attributes consisted of ten resource usage parameters such as the CPU usage, the
number of I/O operations per second, the number of disk accesses per second, etc. The size

P of the training set was chosen to be 200. This number was selected to provide a statisti-

cally significant number of points in each cluster.’ Four different sets of training vectors
were used in our experiments. These are referred to in the subsequent discussion as the ex-
perimental training sets. The number of clusters in each set was six, ten, thirteen and seven-
teen, respectively. It will be seen that the results thus obtained, using these four experimen-
tal training sets, are sufficient to illustrate trends in mistag and misclassification percentages.

The following three sections describe each of the three experiments in detail.

6.1. Experiment 1

In Experiment 1, the impact of faults on the clustering network was investigated. Fig-
ure 4 shows the sequence of events during each run of this experiment. At time ¢, the clus-
tering process was initiated. Between times ¢o and ¢, the clustering process as defined in
Section 3.1 was performed. Thus, at time ¢1, an optimal set of link-weights, i.e., the optimal
cluster centroids, was determined. During the interval (¢, , f2), the training vectors were
tagged. A fault was injected into a randomly selected location in the network at time ¢4, and
the impact of the fault on the tagging process was evaluated. Faults were injected during the
tagging process (as opposed to during clustering) because the network is considered to be

stable during this period. The impact of faults during the clustering process is not an

SStatistical cluster analysis was used to first determine the number of optimal clusters in each of
the vector sets. Each set of vectors contained about two hundred observations; there were a sufficient
number of vectors in all the clusters.



24

Measurements

( v
0 Ly, 124
i Ll 1

Clustering T Tagging

Fault injection into clustering network

Figure 4. Sequence of events for Experiment 1.

interesting case because the effect of these faults is alleviated when the link-weights are

iteratively modified.

The effect of the faults was measured by comparing the tagged vectors obtained from
a fault-free network with those obtained from a faulty network, and by calculating the per-
centage of vectors which were mistagged. The time for the network to stabilize ( #1—t¢) and
the steady-state output values were also measured. Two hundred vectors were input during

the clustering process and the measurements defined in Chapter 5 were recorded.

For each injected fault, the sequence depicted in Figure 4 was repeated. Twenty injec-
tions® were made for each fault type. Since there were 17 fault types, 340 (17x20) injections
were performed for each set of input vectors. Given the four experimental training sets, in
all, 2720 (2x4x340) injections were performed to investigate both the impacts of hardware
redundancy and hardware size. It will be clear later that these injections are sufficient to

show the major trends in the results. The next two subsections describe the experimental

SIn our experiment, we found that an average of twenty repetitions gave a representative result.
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procedures for studying the effects of varying the amount of hardware redundancy and the

hardware size, respectively.

6.1.1. Impact of hardware redundancy

The objective of this experiment was to study the effect of decreasing the hardware
redundancy in the clustering network. The decrease was achieved by fixing the size of the
hardware and increasing the size of the information until the two approached each other, i.e,
we fixed the size of the network and decreased the amount of redundancy. For example,
with a network of K output nodes and a set of vectors with K optimal clusters, there is no
node redundancy. However, if we use a set of vectors with L ( K > L) optimal clusters, then
there are (K-L) output nodes which provide the network with a certain degree of node

redundancy.

For each network and the corresponding vector set, we performed the clustering pro-
cess, fault injection, tagging and recorded the percentage of mistagged vectors. The percen-
tage of mistagged vectors was plotted as a function of information size. A network with
twenty output nodes’ was used as the target for fault injections. The experiment was repeat-
ed with the four experimental training sets (with six, ten, thirteen and seventeen optimal
clusters) in order to obtain the trend in mistag percentage as the amount of hardware redun-

dancy was decreased.

"In the clustering network, the number of output nodes matches the number of clusters in the
vector set. Recall that four sets of vectors with six, ten, thirteen and seventeen clusters, respectively,
were used. The network has to accommodate the set with the largest number of clusters, i.e., the set
with seventeen clusters. Recall also that the clustering network is modeled according to Kohonen’s
Feature Map, which, as stated in Section 3.2, has P output nodes arranged in a rectangle of size K by
L (where K x L = P). Therefore, the smallest network which can accommodate seventeen clusters is
one which has twenty nodes (arranged in a rectangle of size five nodes by four nodes).
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6.1.2. Impact of hardware size

In this experiment, we investigated the impact of faults as the size of the minimal
clustering network was increased. Again, the four experimental training sets were used in
this experiment. For each vector set, a corresponding minimal clustering network was used
as the target for the fault injections. The corresponding sizes of the clustering network were
six, ten, thirteen and seventeen, respectively. The percentage of vectors mistagged as a
result of the injected faults was measured and plotted as a function of increasing hardware

size,

6.2. Experiment 2

In this experiment, the impact of faults in the classification network was investigated.
Figure 5 shows the sequence of events during each run of the experiment. As before, in the
interval (to, ¢2), the vectors were clustered and tagged. The set of tagged vectors was
presented to the classification network in the interval (¢5, t3) for the training process. The
training process was completed at time ¢t3 when a set of optimal link-weights for the
classification network was obtained. A fault was then injected at time ¢, just before the net-

work started to classify the new inputs. During the interval (¢3, t4), the impact of faults on

Tagging Measurements Measurements
t L1yt t tg * t
o v ¢ : Y
Clustering ~ Leaming _Classification  'Releaming Classification

Fault injection into classification network

Figure 5. Sequence of events for Experiment 2.
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the classification process was measured. In the interval (t4, ts5), we attempted to retrain the
faulty network by reapplying the set of two hundred training vectors. The number of
misclassifications was again measured between times ¢s and t¢ to determine the improve-

ment, if any, after the relearning process.

As in Experiment 1, twenty injections were made for each fault type and 340 injec-
tions were made for each training set (20 injections of 17 fault types). In all, 2720
(2x4x340) injections were made to investigate the effects of hardware redundancy and
hardware size. The four experimental training sets in Experiment 1 were also used. The
percentage of misclassifications, the leaming duration (t3—¢2), the relearning duration (¢5—t4)
and the steady state output values were measured The next two subsections provide a de-
tailed description of the two procedures used to investigate the effect of hardware redundan-

cy and hardware size, respectively.

6.2.1. Impact of hardware redundancy

In this experiment, the effect of decreasing hardware redundancy in the classification
network was studied. The size of the classification network was fixed and the size of the in-
formation was varied. The percentage of misclassifications was then plotted against increas-

ing information size.

The size of the network was fixed at ninety nodes: ten input nodes, thirty nodes in the
first hidden layer, thirty three nodes in the second hidden layer and seventeen nodes in the
output layer. This was the minimal network for the largest experimental training set (17 op-
timal clusters). The number of nodes in each layer was determined using Lippmann’s

method and verified via simulation. Again, the four experimental training sets, with six, ten,
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thirteen and seventeen clusters, respectively, were used. As the information size increased
from six to seventeen, the amount of hardware redundancy in the ninety node network was
decreased so as to determine the trend in the percentage of misclassifications as the

hardware redundancy decreases.

6.2.2. Impact of hardware size

This experiment investigated the impact of faults as the size of the minimal
classification network was increased. We injected faults into four minimal classification net-
works and measured the percentages of misclassifications. The percentages were plotted
against increasing hardware size to illustrate the effect of increasing hardware size. The
four minimal network configurations, shown in Table 1, corresponding to the four experi-

mental training sets, one for each vector set, were used as target networks.

Table 1. Sizes of the minimal classification networks.

Classification Network
Input | Hidden | Hidden | Output | Total

No. of clusters

training set layer | layer 1 | layer2 layer | nodes
6 [ 10 8 10 6 34
10 [ 10 10 20 10 50
13 10 18 29 13 70

17 10 30 33 17 90
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6.3. Experiment 3

This experiment investigated the effect of fault propagation between the two networks.
In particular, we investigated the effect of a fault occurring in the clustering network during
the tagging process. A fault was first injected into the clustering network and the percentage
of mistagged vectors was measured. Then, the faulty set of tagged vectors was used to train
the classification network and the percentage of misclassifications was then measured. The
experiment was performed with increasing sizes of the minimal networks to determine the
impact of hardware size. However, unlike Experiments 1 and 2, the impact of hardware
redundancy is not studied because the focus of this experiment is on the worst case impact

of fault propagation.

Figure 6 shows the sequence of events for a single run of this experiment. During
times zo and ¢1, the clustering network was used to cluster a set of training vectors. When
the network has stabilized, a fault was injected and the vectors were then tagged with the
result from the faulty network. The resulting set of training vectors were then used to train

the classification network (between times z; and ¢3). When the classification network has

Tagging Measurements
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Fault injection into clustering network

Figure 6. Sequence of events for Experiment 3.
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stabilized, the accuracy of the classification was measured (between times ¢3 and t4). As in
Experiments 1 and 2, the leaming duration (¢3—t2), the output values, the percentage of mis-
tagged vectors, and the percentage of misclassifications were measured. Each experiment
consisted of 340 fault injections and the experiment was repeated with the four experimental

training sets. In all, 1360 (4x340) fault injections were performed in this experiment.
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CHAPTER 7.

ANALYSIS OF THE CLUSTERING NETWORK

This chapter reports the results obtained from Experiment 1 in which the impact of
faults in the clustering network was studied. Section 7.1 investigates the impact of faults,
focusing on the mistag percentages for the clustering network. Section 7.2 investigates the
effect of hardware redundancy redundancy on the mistag percentages. Section 7.3 examines

the trend in the mistag percentage with increasing hardware size.

7.1. Impact of Faults on the Clustering Network

Recall that in this experiment, faults were injected during the tagging phase. Table 2
shows the mistag percentages for all 17 fault types using a ten-node network (the results for

the four clustering networks were all similar).

On the average, 25% of the training vectors were mistagged. Since the network is
minimal, the results presented may be interpreted as the worst case, i.e., the mistag percent
will only decrease, as the number of nodes is increased. Permanent node-input faults (noise
and glitches at the node input) result in the largest mistag percentage (37%). The reason for

this high percentage is the single-layered structure of the network. The components of each
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Table 2. Impact of faults on the clustering network.

Clustering Network
Faults Percentage of erroneous tag
Link faults: Transient 12%
Permanent 10%
Node input: Transient 27%
Permanent 37%
Node memory: Transient 23%
Permanent 19%
Node offset: Transient 32%
Permanent 27%
Byzantine 26%
Node response delay:
Transient 27%
Permanent 22%
Byzantine 26%
Node gain: Transient 22%
Permanent 24%
Byzantine 21%
Full-node faults: Transient 32%
Permanent 29%
Average 25%

input vector are linked directly to the inputs of each output node. Thus, when a node input
is perturbed, the clustering network "sees" a new input vector, and the possibility exists that

the network may assign this new vector to another cluster.
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The table also shows that permanent link faults resulted in only 10% of the input vec-
tors being mistagged. The reason for this low percentage (cf., a broken link) is due mainly
to the considerable link redundancy in the network. For example, if the link between the ith
input and the j* output is broken, the information ﬁom the i* input can still be passed to

other output nodes via the other outgoing links of the i input node.

The importance of determining the mistag percentage lies in the fact that if training
vectors are assigned incorrect tags, the classification network will not be trained correctly.
Thus, a possibility exists that the failure diagnostic system will produce an incorrect

classification of a new failure vector.

7.2. Impact of Hardware Redundancy

In this section, we examine the effect of hardware redundancy in the clustering net-
work. A network with twenty output nodes, together with the four experimental training sets
(with six, ten, thirteen and seventeen optimal clusters, respectively), was used to study the

impact of decreasing hardware redundancy.

Figure 7 plots the percentage of mistagged vectors versus the number of clusters in the
training set. The average percentages for both link and node faults are used in the figure.
Two observations can be drawn from this figure. First, link faults have a lower impact than
node faults. The maximum mistag percentage for link faults is 7.5% versus 26% for node
faults. The minimum percentage for link faults is 2.5% versus 16% for node faults. This is

clearly due to the considerable amount of link redundancy in the network.

Second, the mistag percentage increases as the number of optimal clusters in the train-

ing set increases. The rate of increase is smaller for link faults as opposed to node faults.
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Figure 7. Effect of redundancy in the clustering network.

20

The average rate of increase for link faults was 0.56 (%/cluster) and the corresponding rate

for node faults was 2.6 (%/cluster). The reason that the impact of link faults is relatively

less than node faults is due to the higher degree of redundancy of the interconnection links.

In the target clustering network, each node has ten incoming links. If a node fails, ten links

will be affected and ten nodes at the other end of the link will receive incorrect information.

However, if a single link fails, only one node will receive incorrect information.

Although the absolute value of the mistag percent increases with the information size,

the ratio of the mistag percent to the information size is more or less constant for all infor-

mation sizes. The linear relationship between the mistag percentage and the amount of
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hardware redundancy indicates that the penalty per unit decrease in hardware redundancy is

constant.

7.3. Impact of Hardware Size

This experiment studied the trend in the mistag percentage as the size of minimal clus-
tering networks increased. Four minimal networks corresponding to the four experimental
training sets were used. Figure 8 plots the average percentage of mistagged vectors versus

the number of nodes in the minimal clustering network.

The figure shows that the impact of link faults on the mistag percent is significantly

less than that of node faults. The maximum mistag percent for link faults is 19% versus
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36% for node faults. The minimum mistag percent for link faults is 10% versus 29% for

node faults. The reason is again due to the high degree of link redundancy in the network.

Figure 8 shows a decreasing trend in the mistag percentage for both link and node
faults, as the hardware size increases. The average rates of decrease of mistag percentage for
link and node faults are 0.84 and 1.35 (%/node), respectively. We may explain the decreas-
ing trend as follows: If there are P input vectors and K output nodes, then, on the average,
each node represents P/K vectors. Thus, a faulty node affects an average of P/K input vec-
tors. If the network size K is increased, the corresponding value of P/K decreases. For ex-
ample, a node failure in a twenty-node network affects only 5% of the vectors. However, a

similar failure in a five-node network affects 20% of the vectors.

The rates of decrease of mistag percent for both link and node faults are also approxi-
mately constant, i.e., increase in mistag percent per unit decrease in the hardware size is
constant. Although the absolute mistag percent for a larger network is small, the relative ra-

tio of the network size to the hardware size is the same for all networks.
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CHAPTER 8.

ANALYSIS OF THE CLASSIFICATION NETWORK

This experiment investigated the impact of faults in the classification network. Section
8.1 evaluates the percentage of misclassifications in a faulty network. Section 8.2 examines
the impact of faults on the releaming duration. Sections 8.3 and 8.4 focus on the effects of

hardware redundancy and hardware size, respectively, on the misclassification percentage.

8.1. Impact of Faults on Misclassification

In this experiment, faults were injected during the recognition phase and the resulting
misclassifications obtained from a three-layered classification network were measured. This
section presents the results for a network consisting of ten input nodes and ten output nodes,
with ten nodes in the first hidden layer and twenty nodes in the second. The results for the
other three networks and the corresponding experimental training set are similar. Note that a
misclassification is said to occur if a vector is assigned to an incorrect cluster (input
misclassification) or if the difference d is less than the threshold 6 (output misclassification).

The next two subsections discuss input and output misclassifications.
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8.1.1. Input misclassification

Table 3 summarizes for each fault type, the percentage of input vectors misclassified
before and after the relearning phase. Results show a clear decrease in misclassification after
relearning. On the average, 24% of the input vectors were misclassified before relearning

while only 11% of the vectors were misclassified after relearning.

Table 3. Percentage of input misclassifications in the classification network.

Classification Network
Percent of misclassifications | Percent of misclassifications
Faults . .
before relearning after relearning

Link faults:  Transient 7% 2%

Permanent 6% 3%
Node input:  Transient 18% 12%

Permanent 2% 12%
Node memory: Transient 17% 9%

Permanent 14% 4%
Node offset: Transient 27% 9%

Permanent 26% 11%

Byzantine 28% 15%
Node response delay:

Transient 24% 14%

Permanent 24% 12%

Byzantine 29% 15%
Node gain: Transient 20% 12%

Permanent 19% 10%

Byzantine 21% 12%
Full-node faults:

Transient 32% 16%

Permanent 35% 21%
Average ' 24% 11%
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It may be argued that, for some applications, the network behavior before the releam-
ing phase can be ignored. Thus, once a fault is detected, the network outputs just prior to
the fault detection may be discarded. If we consider only the post-relearning phase, Table 3
shows that both permanent and transient full-node faults cause the highest percentage of
misclassifications. For permanent full-node faults, 21% of the inputs were misclassified
after the releaming phase and for transient full-node faults, 16% of the inputs were
misclassified. The reason for the high failure percentage for full-node faults is that the
hardware redundancy (in comparison with the information or link redundancy) is reduced.
Since minimal networks were used, a single node fault reduced the number of nodes to

below that required for the specific experimental training set.

Link faults have a relatively low impact on misclassifications. Only 3% of the input
vectors were misclassified after the relearning phase. This behavior is similar to that of the
clustering network. Clearly, if a link (incoming or outgoing) from a node fails, the informa-

tion can still be transmitted via other links.

Node memory faults, node input faults, node offset faults and node gain faults all have
moderate impact on misclassification. For example, a transient node input fault causes 18%
misclassification before and 12% after releamning. These faults, unlike full-node faults, do
not cause reduction in hardware redundancy. The effect is only a perturbation in the inter-
connection link-weights for node memory faults, or the node output values for node input,

offset and gain faults. Therefore, the impact is less severe than that of a full-node fault (21%
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misclassifications). However, the faulty output value caused by a node fault is transmitted to

more than one node. Hence, the impact is more severe than that caused by a link fault.

Intuitively, one might expect transient faults to have a significantly lower impact than
permanent faults since the duration of the fault is shorter. However, the results in Table 3
indicate that some transient faults have higher misclassification percentages than permanent
faults. A fault, transient or permanent, affects the link-weights of the network or the infor-
mation flowing through the network. If the link-weights are disturbed, the network performs
the classification with respect to a new set of cluster centroids. If the information is per-
turbed, the network "sees" a new vector, and this new vector may be assigned to another
cluster. Thus, the cause of the misclassification can be attributed to cluster centroids being
shifted or the information being distorted. It is usually not possible to determine which of
these causes will predominate. For example, a permanent fault could disturb the centroid
slightly or perturb the input slightly such that, only a few vectors are misclassified. Howev-
er, a transient fault could disturb the centroid or the information drastically such that all the
vectors in a specific cluster are misclassified. Therefore, a transient can have more of an
effect than permanent faults. Another reason for this is due to the fact that the limit on the
releaming duration was set to 600 cycles (chosen to be equal to the average leamning dura-
tion). A longer relearning duration may allow the effects of the transient to die off. Howev-

er, this is clearly inefficient since it would be better to issue a restart.
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8.1.2. Output misclassification

This subsection presents the results conceming output misclassification. In this experi-
ment, the threshéld 0 was initially chosen to be 0.8. This value provides a high degree of
confidence in assigning the vector to the specific output node. Recall that the difference )
between the two highest output values indicates the degree of confidence of assigning a vec-

tor to the specific cluster.

Table 4 shows, for each fault type, the percentage of vectors with 6<0.8. It can be
seen that permanent full-node faults have the greatest potential of causing output
misclassification (19% of the vectors cannot be confidently classified into a unique cluster
after the releamning phase). Permanent link faults have the least impact; only 1% of the vec-

tors were misclassified.

A comparison between Table 3 and Table 4 shows that about 90% of the
misclassifications were due to the difference 8 being less than 0.8. For example, after
releaming, the average percentage of vectors misclassified was 11%, but 9% were due to
8<0.8. Figure 9 shows the distribution of & for this experiment.$ It shows two modes, one
centered around 0.9 and the other at 0.15. The low mode is not significant since only 1% of
the misclassifications have 8<0.2. In the second mode, 8% of the misclassifications have &

between 0.6 and 0.7 and the remaining 92% have d greater than 0.8.

$In one set of experiments, seventeen trials were conducted. During each trial, twenty runs of
the experimental sequence described in Section 6.2 were carried out. Since each run uses two
hundred vectors, we have 68000 values for 0.
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Table 4. Percentage of misclassifications due to output misclassification.

Classification Network

Percent of misclassifications

Percent of misclassifications

Faults before relearning after releamning
Link faults:  Transient 6% 2%
Permanent 3% 1%
Node input:  Transient 12% 12%
Permanent 17% 9%
Node memory: Transient 10% 9%
Permanent 12% 2%
Node offset:  Transient 20% 9%
Permanent 21% T%
Byzantine 18% 9%
Node response delay:
Transient 17% 10%
Permanent 19% 9%
Byzantine 19% 11%
Node gain: Transient 12% 10%
Permanent 19% 13%
Byzantine 15% 12%
Full-node faults:
Transient 27% 14%
Permanent 25% 19%
Average 26% 9%
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It may be argued that even if the difference & is less than the threshold of 0.8, the out-
put can still be used if  is sufficiently large (for example, if 8=0.6). This can be achieved
by redefining the threshold [10]. This approach is somewhat optimistic and does not take
into account issues such as the time taken for threshold redefinition and the electrical impact
of low output values on the rest of the system. Assuming threshold redefinition is possible
at little cost, the results in Figure 9 indicate a decrease in the percentage of

misclassifications from 9% to 0.9% when the threshold is decreased from 0.8 to 0.6.
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Figure 9. Distribution of the difference between the two largest output values.



8.2, Impact of Faults on the Relearning Duration

Figures 10 and 11 show the impact of a selected set of transient link and node faults

on the relearmning duration. The results excluded from Figures 10 and 11 are shown in Ap-

pendix D. The numerical values presented in the following, however, include the results of

both Figures 10, 11 and the appendix.

The figures plot the number of simulation cycles required to stabilize the link-weights,

versus the duration of the transient. On the average, as the duration of a transient increases,

the trend is for an increase in the number of releaming cycles necessary to obtain stable

link-weights. For both transient link faults and transient memory faults (random link-weight
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perturbation), the network becomes increasingly unstable as the duration of a transient in-
creases (Figure 11). In general (considering all transient faults), the number of relearning
cycles required after a transient is highly unpredictable, varying from a low of O (with a pro-
bability of 0.05) to a high of more than 600 cycles (with a probability of 0.23). On the
average, 24% of the experiments failed to obtain a set of stable link-weights within 600 cy-
cles during the relearning phase (21% for link faults and 27% for node output faults). We
define a network which is unable to obtain a set of stable link-weights within 600 cycles to
be unstable. This choice was made so as to be slightly greater than the average learmning

duration of about 550 cycles.
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The main reason for the instability due to the transients lies in the manner in which
these networks perform the optimization, i.e., error minimization. Transients sometimes
drastically perturb the network and throw the minimization onto a totally different path lead-
ing to instability. However, a transient may also throw the minimization onto a path leading
rapidly to a minimum. Results also indicate that 22% of the cases have transients of long

durations but required relatively few relearning cycles. On the average, the network required

about 50 relearning cycles.

Figure 12 shows the impact of permanent faults on the relearming duration. In this

case, for a given set of input vectors, a fault was injected into a randomly selected location
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Figure 12. Impact of permanent link faults and full-node
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(node or link) and the time to stabilize was measured. The figure plots the number of simu-

lation cycles needed to stabilize the output for each of the twenty runs of two trials:® one for
permanent link faults and the other for permanent full-node faults. The figure shows that
permanent full-node faults and permanent link faults do not have a significant impact on the
releaming duration. The relearning duration is more or less constant at about 35 cycles, ex-
cept for two instances (one each for the link and node faults) where the network was un-

stable.

A comparison of the results between permanent and transient faults shows that the
relearning phase for permanent faults ranges between 35 10 cycles, which is lower in com-
parison with a range of 45 $20 cycles for transient node faults. Thus, the releaming dura-
tion after a permanent fault is far more predictable than the releaming duration after a tran-
sient fault. The difference in behavior between the transients and permanent faults is most
likely due to the fact that, for a permanent fault, the system has to cope with only a single
disturbance. For a transient, however, it has to cope with two relatively close disturbances

(one when the fault is injected and the other when the transient dies off).

In Section 6.2, we have defined a trial to consist of twenty runs of a certain experiment
sequence with the injection of one type of fault.



48

8.3. Impact of Hardware Redundancy

In this section, we discuss the trend in misclassification as the hardware redundancy
decreases in a fixed-size network. A network with 90 nodes was used as the target network.
This is a minimal network for the experimental training set with 17 optimal clusters. Figure
13 shows the average percentage of misclassifications for link and node faults as the infor-
mation size increases from six to seventeen.

The results are similar to those found in Section 7.2. A detailed analysis here would

be repetitive. In summary, we found that link faults have a lower impact than node faults.

The misclassification percentage for link faults ranges from 1.1% to 6.2%. For node faults,
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Figure 13. Effect of redundancy in the classification network.
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the misclassification percentage ranges from 5.3% to 20.5%. This is clearly due to the high
degree of link redundancy in the network. The rates of increase of the misclassification per-
centage with increasing information size for link faults and node faults were quite constant
at 0.34 and 1.1 (%/cluster), respectively. Thus, the penalty for decreasing the amount of

hardware redundancy is more or less constant.

8.4. Impact of Hardware Size

In this section, the impact of hardware size on misclassifications was investigated.
Figure 14 plots the percentage of misclassifications versus the number of nodes in the four

minimal classification networks (corresponding to the four experimental training sets).

The results obtained here are similar to those in Section 7.3. From the figure, the
misclassification percentage decreases as the size of the network increases. For link faults,
the percentages range from 2.7% to 9.5%, and for node faults, the percentages range from
12.7% to 24.4%. This result again indicates that link faults have a lower impact than node
faults because of the high link redundancy. The rates of decrease of the misclassification
percentage with increasing hardware size were found to be 0.15 (%/node) for link faults and
0.24 (%/node) for node faults. Thus, larger networks were found to have less impact on
faults. However, the constant rates of decrease indicate that the improvement in

misclassification percentage is constant.
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CHAPTER 9.

ANALYSIS OF FAULT PROPAGATION

In Experiment 3, faults were injected into the clustering network, and the impact of
faults on both the clustering network itself and on the classification network was investigat-
ed. First, faults were injected into the clustering network, and the percentage of vectors
which were mistagged was measured. Second, the tagged vectors from the faulty clustering
network were used to train the classification network, and the percentage of
misclassifications was subsequently measured. Table 5 shows these percentages for each

type of faults injected.

The average percentage of misclassifications was 17%. This is, however, lower than
the average percentage of incorrectly tagged vectors (25%). Intuitively, one would expect
the two percentages to be similar. In reality, a decrease of 8% in the percentage of
misclassifications was observed. Although these results appear to suggest that a self-

correction process exists between the two networks, the following results indicate otherwise.



Table 5. Impact of fault propagation between the clustering and
the classification network.

Clustering Network and Classification Network

Faults Percent of erroneous | Percent of misclassifications
au tags in classification network
Link faults:  Transient 10% 7%
Permanent 12% 10%
Node input:  Transient 27% 18%
Permanent 37% 25%
Node memory: Transient 23% 17%
Permanent 19% 16%
Node offset: Transient 32% 24%
Permanent 27% 21%
Byzantine 26% 17%
Node response delay:
Transient 27% 18%
Permanent 22% 19%
Byzantine 26% 21%
Node gain: Transient 22% 14%
Permanent 24% 20%
Byzantine 21% 13%
Full-node fault:
Transient 32% 24%
Permanent 29% 21%
Average 25% 17%

52
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Four minimal clustering and classification networks were studied to observe the effect
of increasing hardware size. Table 6 reports the average percentages of mistag and
misclassified vectors obtained from the four experiments. Not all the results suggest the ex-
istence of a self-correction process between the two networks. For the network with 60 and
107 nodes, the misclassification percentage is lower than the mistag percentage. However,
the other two cases indicate the opposite relationship. Although the individual mistag per-
centages and the misclassification percentages for the clustering and classification network,
respectively, are consistent with the results presented in the previous chapters, these four ex-
periments alone, were not able to show a significant trend in the impact of fault propagation

between the two networks.

Table 6. Impact of fault propagation on different sized networks.

Clustering Network and Classification Network
No. of || Average percent of Average percent of misclassifications

nodes erroneous tags in classification network
60 25% 17%
75 23% 25%
92 19% 24%

107 20% 18%
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CHAPTER 10.

CONCLUSIONS

In this thesis, simulation experiments were conducted to quantify the effect of a
variety of faults on a neural network. The target network consisted of a single-layered clus-
tering network and a three-layered classification network. The percentage of vectors mis-
tagged by the clustering network, the percentage of vectors misclassified by the
classification network, the time taken for the network to stabilize, and the output values

were all measured.

The results showed that both transient and permanent faults have a significant impact
on the performance of the network. The corresponding mistag and misclassification percen-
tages were typically within 5% to 10% of each other. In addition, transient faults were
found to cause the network to be increasingly unstable as the duration of a transient was in-
creased. This is because a network affected by a transient has to cope with two disturbances,

one during the onset of the fault and the second, during the period whea the fault dies off.

The average mistag percentage and the average misclassification percentage were both

about 25%. After relearning, the percentage of misclassifications was reduced to 9%. The
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impact of the link faults was relatively insignificant in comparison with node faults (1%
versus 19% misclassified after releaming). This is because of the considerable amount of in-

formation redundancy provided by the massive interconnections.

A study of the impact of hardware redundancy showed a linear increase in the mistag
and misclassification percentages with decreasing hardware redundancy. The penalty per
unit decrease in the hardware redundancy remained constant. In comparison with link
faults, node faults resulted in three times the mistag and misclassification percentages. A
study of the impact of hardware size showed that the mistag and misclassification percen-
tages linearly decreased as the minimal hardware size was increased. Thus, large networks
resulted in lower mistag and misclassification percentages than small networks. Node faults
were again found to cause about three times the percentage of mistags or misclassifications

as compared to link faults.

In this thesis, the fault characteristics of the neural network are assumed to be in-
dependent of the learning algorithm. However, this is not necessarily true. The leamning al-
gorithm and the network paradigm are important factors contributing to the fault tolerance
of neural networks. Future research should investigate various learning algorithms and net-
work structures to determine if the above results are generally true. In addition, with neural
networks being implemented as VLSI chips, it is also important to study the networks from
the electrical point of view. Current simulators could be extended to simulate nodes and
links as physical components such as amplifiers and metal interconnects on VLSI ANN im-

plementations.
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APPENDIX A.

KOHONEN’S FEATURE MAP

The clustering network is a single-layered network, with a plane of nodes connected as
shown in Figure 15. This is a simplified model of Kohonen's Feature Map [5]. The follow-

ing is a brief account of the algorithm used in this clustering network.

Each of the nodes in the network represents a cluster centroid. The incoming link-
weights to each node represent the coordinates of the cluster centroid. The function of each
node computes the Euclidean distance between the input vector and the cluster centroid, i.e.,

between the link-weight and the input vector.

During the clustering phase, the set of training vectors is repeatedly presented to the
network. For each presentation, the output node with the smallest Euclidean distance is
chosen to be the active node. This is equivalent to assigning the input vector to the closest
cluster. Weights to this node are adjusted in a fashion similar to that in a statistical cluster-
ing algorithm such as the k-means algorithm [20]. The weights are adjusted to accommo-
date the new input vector. This is similar to recalculating the cluster centroid after every

iteration in the k-means clustering algorithm.
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Figure 15. The clustering network implemented as Kohonen’s Feature Map.

The clustering algorithm consists of five steps:

Step 1: Construct a neural network of size (K, N) where K denotes the number of clusters
and N represents the number of attributes in a vector. Let w;; denote the weight of
the interconnection link between output node i and the input node j. Initialize the
weights wj; to small random values. This is similar to the choosing of a starting

point in a clustering algorithm [20].

Step 2: Present a new vector x; to the input nodes (i denotes the ith observation vector).
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Step 3: Compute the distance d; between the input vector and all the output nodes.
K-1 )
dj= Y, (xi—wi(t))
i=0

Step 4: Select the output node j* with the minimum d; and modify the link weights by
wij (e +D)=w;; (o) (xi~wii(2) for j € NE (1)
NE;(¢) is a Euclidean distance neighborhood around node j* which decreases with
time. The gain term 0<o(#)<1 decreases with time. The gain term increases the

rate of change of the weights to achieve faster convergence.
Step 5: Goto Step (2)

The network adaptively changes the centroids in Step (4) until an optimal or local
value is found. In this experiment, we use this network to cluster sets of two hundred train-
ing vectors. Once the clustering is completed (link-weights are stablized), each vector is
tagged with a number denoting the cluster to which it belongs. For example, the tagged
vector (0.24, 0.87, 0.65, 0.77 1) denotes that the vector (0.24, 0.87, 0.65, 0.77) belongs to
cluster 1. These tagged vectors are then used during the training phase on the classification

network.
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APPENDIX B.

THREE-LAYERED PERCEPTRON MODEL

The classification network is a three-layered perceptron network [6]. It consists of an
input layer, two hidden layers and an output layer. The number of nodes in the input layer
equals the number of attributes in the training vector. The number of output nodes equals
the number of clusters present in the training set. The number of nodes in each hidden layer

depends on the training set.

In general, the worst-case number of nodes in the second hidden layer is equal to the
number of disconnected clusters in the vector space [2]. The number of nodes in the first
hidden layer is about three times that of the second hidden layer. In our experiment,
Lippmann’s method was used to initially determine the size of the network. A considerable
amount of simulation was then conducted to obtain the configuration which minimizes the

number of nodes.

The classification network is trained using the back-propagation algorithm along with
the generalized delta rule (6]. The network is trained so that the output node representing

the desired cluster produce a value of one when an input vector belonging to that cluster is
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Figure 16. A three-layered perceptron model.

presented. The rest of the output nodes should produce a value of zero. For example, in a
system with four attributes and six clusters, the output node would be ©,01,0,0, 0) if the
input vector belonged to cluster 3. However, the minimization process leads to some output
that is close to one or zero. Hence the above-mentioned output vector might look like (0.07,

0.1, 0.95, 0.1, 0.05, 0.11).
The back-propagation training algorithm using the generalized delta rule has five steps:
Step 1: [Initialize the weights to small random values.

Step 2. Present input x; and specify the desired output d; which is given by the tag to each

vector. The desired output node is set to 1 and the rest are set to 0.
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Step 3: Using a sigmoid function, calculate the actual output y; .

Step 4: Recursively change the link-weights between the nodes of the successive layers
(this is the back-propagation step). The weights are adjusted by the following
wij (e +1)=wy; (N8 jx; +o)(wij(£)-wij(t 1)
If the node i is an output node, then
8;=y;j(1=y;}d;-y;)
If the node j is a hidden node, then

8j=x;- ( l—x; )ZS,,W,-J- ’
k

where k is all nodes above layer j and x; denotes an input to a node not at the
input layer.
The momentum O<o()<1 is used for faster convergence. As usual, it decreases
with time.

Step 5: Repeat Step (2)

This method is analogous to the discriminant analysis approach in multivariate statis-
tics. Specifically, in classical discriminant analysis classifiers, a discriminant matrix can be
obtained such that every x; is mapped into an optimal cluster. [21] has shown that the
back-propagation training algorithm produces a matrix, which is equivalent to the discrim-

inant analysis matrix, that transforms x; to a specific cluster.
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APPENDIX C.

FANS: A FAULT ANALYSIS TOOL FOR NEURAL NETS

C.1. Introduction

Computer simulation is the most common method used to implement and study
artificial neural networks. Although analog VLSI (Very Large Scale Integration) technology
has been used to fabricate some artificial neural networks, the size of these networks have
been too small to realize any practical applications. Hence, neural network simulators
remain a major tool for investigating these networks. As physical device implementation of
artificial neural networks increases in number with the advancement of analog VLSI tech-
niques, it is essential to study the impact of physical limitations and hardware faults in neur-
al networks. Thus, a simulation environment for neural network simulation, as well as for

fault injection, is necessary in the study and design of artificial neural networks.

This appendix describes the features, operations and design of FANS (the acronym for

a Fault Analysis tool for Neural Networks). The simulator is designed to operate under the
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UNIX!© operating system and is written in the C programming language. Currently, it is
customized to simulate the multilayered perceptron network [6] and Kohonen’s Feature
Map [5). The fault models available are discussed in Chapter 4. The simulator can be easi-
ly enhanced to simulate other network and fault models. Performance measures such as the
network training duration, the accuracy of a classifier and the output levels are automatically

monitored.

A major objective of FANS is to provide the user with flexibility in specifying and
studying the impact of faults in neural networks. The user must specify the network struc-
ture, the learning process and the fault injection process. The user does not need to inter-
vene until the simulation is completed and the measurements are taken. The user
specifications, along with the necessary training vectors, serve as the input to the simulator.
Measurements include network parameters, such as link-weights and node activation levels,
and FANS is able to display them off-line via graphs. This is particularly useful in studying

the real-time behavior of the link-weights and the node values.

This appendix is organized as follows. Section C.2 provides an overview of related
neural network simulators. Section C.3 presents an overview of the simulator structure.
Section C.4 is the user’s guide and Section C.5 presents two examples which use FANS;

one simulating a three-layered perceptron network and the other, a Kohonen'’s Feature Map.

OUNIX is a trademark of AT&T Bell Laboratories.



C.2. Related Research

The recent surge of interest in neural networks has spurred the development of many
simulators. These simulators come in a wide spectrum of capabilities and performance. For
example, MacBrain, which is a neural network simulator on the Macintosh personal com-
puter, provides users with excellent graphics to display network topologies and simulations.
However, most of the simulators designed for personal computers have specific functions.
For example, BrainMaker, developed by California Scientific Software, supports up only
five types of processing nodes. These simulators are suitable for the novice who wants to

see what a neural network computational model has to offer.

A more complex simulator is the Rochester connectionist simulator [22] developed
by Goddard, Lynne and Mintz. The tool is designed to aid in specification, construction
and simulation of connectionist networks. It provides graphics display via X-windows and
allows a great degree of flexibility in network design simulation. However, no fault injec-

tion capabilities are provided.

The emphasis of the neural network simulators designed thus far has been solely on
fault-free simulations. Studies on the hardware limitations and failure characteristics of
neural networks are also important, given that a number of neural networks of increasing
complexity are being fabricated [3]. Thus, a neural network simulation environment with
fault analysis capabilities appears essential. In particular, a simulator which allows the user

to inject a variety of faults i.to the network is needed.
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C.3. Overview

Neural network simulation consists of two phases: the learning phase and the opera-
tional phase. The leaming phase for Kohonen'’s Feature Map corresponds to the clustering
process, whereas for the three-layered perceptron model, it corresponds to the training pro-
cess. The operational phase in Kohonen’s Feature Map refers to the tagging process, and
for the three-layered perceptron network, the operational phase refers to the classification of

new input vectors.

To use FANS, the user provides a specification file, which indicates the network archi-
tecture, the fault models, the learning parameters, the operation parameters and the output
format. After the specifications have been made, no user intervention is required until the
simulation is completed. The simulator outputs the input pattern, the output pattern, the
highest value of the output node and the percentage of mistags or misclassifications. In ad-
dition, the user can also sample network values, such as link-weights and node output

values, at preset intervals to investigate the real-time network behavior.

Figure 17 shows the structure of the neural network simulator. There are four parts:
(1) the user specification file, (2) the network simulator, (3) the fault injector and (4) the
output module. The simulator reads the specification file and constructs the network accord-
ingly. The learning phase and the operation phase are then executed in succession. The user

can use the fault injector to inject faults into the network during any of the two phases.
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Figure 17. Block diagram of the simulator.
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C.3.1. User specification file

The user specification file consists of the network specification, the output
specification and the fault specification. The network specification is needed to construct the
network and perform the learning process. The user is required to indicate the name of the
network, the type of network model, the number of nodes in each layer of the network, the

learning duration and the training patterns.

The output specification indicates the type of information to output. There are two
types of output: (1) sampled network values and (2) a summary table. To sample network
values, the user specifies the sampling interval and the parameters to be sampled. The
simulator will then output the specified network values and the sampling time, to a specified
file output file. Currently, there is only one kind of summary table. This table outputs the
clustering or classification results for each vector in the input set. For the purpose of this

thesis, the output table also includes the percentage of mistagged or misclassified vectors.

The fault specification indicates the number of faults to be injected, the location of the
faults and their fault types (as specified in Chapter 4 of this thesis). The faults can occur
during the leaming or the operational phase. Each fault specification has a unique identifier.
The learning phase and the operational phase invoke the fault injector by calling the specific
fault specification identifier. This allows the user to define several fault models and inject

them as required.
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C.3.2. Network simulator

As shown in Figure 17, the network simulator consists of four modules: (1) the net-
work constructor, (2) the network simulator, (3) the fault injector and (4) the output module.
The network constructor interprets instructions from the network specification given by the
user. It creates the specified number of nodes and interconnects them according to the
chosen network model. By default, the link-weights are initialized to small random numbers
and the node values to zeros. If a load file is specified, the network constructor will initial-
ize the link-weights and nodes to the values stipulated in the file. This allows the user to re-

store a previous network status.

After the network is constructed, the learning phase is initiated. The simulator will
perform the forward and backward propagation for the number of cycles specified by the
training duration. The simulator sequentially processes each node in the network, from the
first node in the input layer to the last node in the output layer. The link-weights of each
node are iteratively modified according to the appropriate network paradigm. The change in
each link-weight during subsequent iterations is used to determine if the network has stabil-
ized. The simulator is currently set so that the leaming process terminates if each link-
weight is within 1% of its previous value. A user specified maximum number of simulation

cycles is used to limit the learning process if the link-weights do not stabilize.

During the operational phase, the network receives new input pattemns and produces
the required output patterns. As with the learning phase, the fault injector will be invoked if
a fault specification is included. The user can also compare the output patterns produced by

a faulty network with that produced by a fault-free network. To do this, an answer file
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which specifies the output patterns from a fault-free network is provided by the user.!! The
simulator compares the output pattemns with those in the answer file and computes the

number of matches.

C.3.3. Fault injector

The fault models provided by FANS are described in Chapter 4. The fault injector can
be invoked during the either the learning phase or the operational phase of the simulation.
During each cycle, the simulator checks the fault injector flag. If the flag is on, the fault in-

jector is invoked.

The fault injector keeps a list of the faults to be injected. For transient faults, a counter
is used to monitor the transient duration. The flag above will remain set and faults will be
injected until the counter has expired. For permanent faults, the flag remains set so that dur-
ing every simulation cycle, the faulty components are perturbed by a user-specified constant.
For example, to simulate a node offset fault, the fault injector adds the output value of the
faulty node to the constant offset indicated by the user. For a node memory fault, the
specified link-weight is perturbed by a random amount. However, for permanent link faults
and permanent full-node faults, the physical component is removed from the network. This
is simply implemented in the program by removing the pointer to the link or the node struc-

ture.

In our experiment, the output patterns are obtained from the fault-free network and stored in
the answer file. Next, a new simulation is performed, whereby a fault is injected, with the same input
vectors. The output produced is compared with the corresponding output patterns in the answer file.
The percentage of mistags or misclassifications is measured by the number of mismatch between the
faulty output patterns and those in the answer file.
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C.3.4. Output module

There are three kinds of output available: (1) network status file, (2) summary table
and (3) sampled outputs. A network status file contains all network parameters such as
link-weights, node values, node function and network architecture. It is generated at the end

of the simulation and may be used at a later time to restore the network status.

The summary table has been customized for the purposes of this thesis. The percen-
tages of mistags and misclassifications are reported for a clustering network and a
classification network, respectively. The table also lists the desired and actual output pat-

tems and the corresponding highest output value.

The third type of output consists of sampled network values. Each file lists the sam-
pling time and the corresponding network value. This file can be used as an input to the
makefile called makegr to plot the values on a PostScript printer. This makefile uses grap to
convert the input data into a pic file, which is later fed to the ditroff text processor and a

PostScript generator to produce a graph on the laser printer [23].

C.3.5. Running FANS

The executable file for the simulator sim can be found in the examples directory of
FANS. The user can also obtain the executable file by calling make in the directory
FANS/src. The makefile compiles all the source codes and produces the executable file sim.
The simulator can be invoked by typing the command sim, followed by the name of the user
specification file, in C-Shell. For example, the command sim examplel will invoke the

simulator to simulate the network specified in the file examplel.
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C.4. User’s Guide

The neural network simulator developed in this thesis runs and injects faults with
minimal intervention from the user. The user only has to provide a specifications program in
order to use the customized features of the simulator. It consists of three types of

specifications: one for network, output and fault injection.

Although the user is able to use the simulator by writing C programs and calling the
functions provided, this is a time-consuming process. The user specification commands al-
low the user to use the functions provided without writing C programs . Although the simu-
lator is customized to two network paradigms, the modular structure makes it easy for the
user to enhance the simulator for other networks. This section describes the commands
used in the user specification file. An example is presented to illustrate the usage of each of

the commands.

C.4.1. Network declaration

Syntax: network <identification number>
<network name (max 50 alphanumeric characters)>
Example: network 12

Three-layered perceptron leaming network

The network command marks the beginning of the user specification file. The com-
mand is immediately followed by a number, which is a unique identification number for the
network. The next line consists of the name of the network. The user can provide a short

and meaningful phrase describing the purpose of the simulation.
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C.4.2. Model specification

Syntax: model = <network model index>

Example: model = backprop

The model command specifies the network model to be used. Since the simulator is
customized to the multilayered perceptron model with the back-propagation learning algo-
rithm and the Kohonen’s Feature Map, the descriptors backprop and kohonen are used to

identify them, respectively.

C.4.3. Input nodes

Syntax: input = <number of input nodes>

Example: input = 10

The command input declares the number of input nodes in the network. In the above
example, the user requests ten input nodes. The number of input nodes in a network must be
greater than one. All input nodes have, by default, a sigmoidal activation function and an

identity node function.

C.4.4. Hidden nodes

Syntax: hidden = <number of layers> <number of nodes in each layer>

Example: hidden=2 10 15
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The command hidden specifies the number of hidden layers and the number of nodes
in each of those layers. In the above example, the network has two hidden layers, with ten
nodes in the first and fifteen nodes in the second. The network can have an arbitrary number
of hidden layers. The node activation function is sigmoidal and the node function is chosen
according to the model specification. For example, if the model = kohonen, the node com-

putes the Euclidean distance between the inputs and the link-weights.

C.4.5. Output nodes

Syntax: output = <number of output nodes>

Example: output = 10

The command output specifies the number of output nodes in the network. In the
above example, the network has ten output nodes. The node activation function is sigmoidal

and the node function depends on the selected network model.

C.4.6. Load network values

Syntax: load = <name of file containing network parameters>

Example; load = demo.save

The command load instructs the simulator to initialize the network parameters such as
the link-weights and the node activation levels from the values given in the specified file.
This command overrides the default initializing process, which sets all the node values to

zero and all the link-weights to a small random value.
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C.4.7. Picking a node

Syntax: node <num> = <node type> <node layer> <node identifier>

Example: node2=104

In the simulator, a node is identified by three parameters: a node type, a layer number
and a node number. Input nodes, hidden nodes and output nodes are identified by the con-
stants one, two and three, respectively. In the example above, the user picks the fourth input
node in the zeroth input layer. In this simulator, only one input layer and one output layer is
supported. Thus, the layer number is always zero for node types one and three. The node
number is an identifier given by the user. This command is used together with the command

outspec and profile 10 select a node to monitor or to inject faults, respectively.

C.4.8. Picking a link

Syntax; link <aum> = <source node layer> <source node layer> <source node
identifier> <dest node type> <dest node layer> <dest node num>

Example: link1=104214

In the simulator, a link is identified by two pairs of triplet. The first triplet represents
the node origin of the link and the second triplet represents the destination node of the link.
In the example above, the specified link is between the fourth input node and the fourth
node in the second hidden layer. The link number is an identifier given to this link by the
user. This command is used together with the command outspec and profile 10 select a link

to monitor and to inject faults, respectively.
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C.4.9. Output specifications

Syntax: outspec <identifier>
outfile = <name of output file>
grain = <sampling interval>
Picked link or node
outspecend
Example: outspec 3
outfile = mydemo.out
grain =10
link1 =114212
link2 =214312

outspecend

The set of commands above selects a link or a node to be monitored. The simulator
samples the link-weights or the node activation levels and records the values in an output
file specified by the command outfile. If no filename is given, the default is net.out. The
command grain specifies the sampling interval in a number of simulation cycles. In the ex-
ample above, the user wants to sample two link-weights every tenth simulation cycle and
record the values in the file mydemo.out. Each outspec command allows the user to monitor

either links or nodes.
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C.4.10. Learning specifications

Syntax: learn
inputfile = <filename of input vectors>
teachfile = <filename of desired output patterns>
duration = <duration of learning in simulation cycles>
fault = <fault specification identifier>
outspec
Body of output specifications
outspecend

learnend

Example: learn
inputfile = demo.input
teachfile = demo.teachfile
duration = 500
faut =4
outspec

outfile = mydemo.out

grain =10
nodel! =105
node2 =301
outspecend

learnend
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The set of commands above allows the user to specify the learning process. The com-
mand inputfile specifies the name of the file containing the training patterns. The command
teachfile specifies the name of the file containing the desired output patterns. This com-
mand is used only when the user selects backprop as the network model. The command
duration sets the number of simulation cycles for the learning process. The command fault
indicates the index of the fault specifications if a fault is to be injected during the leaming

duration.

The user can also specify certain network links or nodes to be monitored during the
learning process. In the example above, the user trains the network with the input patterns in
demo.input and the desired output pattem in demo.teachfile. The learning duration is 500
simulation cycles and the fault specification number four is used for the fault injection pro-
cess. In addition, the user also wants to monitor the activation levels of two nodes in the

network every tenth cycle.
C.4.11. Fault injector specifications

Syntax: fault <identifier>
<name of the fault injection process>
inject = <number of faults>
profile <identifier>
location = <faulty component> <number of locations>
Component specifications
duration = <duration type> <number of cycles>

mode = <nature of fault>



type = <fault type> <parameters>
profilend
outspec
Body of specification
outspecend
faultend
Example: fault 4
Transient link faults
inject =1
profile 1
location = rannode
duration = permanent
mode = constant

type = complete

profilend

outspec
outfile = mydemo.out
grain =10

linkl =103212
outspecend

faultend

78
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The set of commands above is used to describe an injected fault. The fault
specification block begins with the command fault and an identifier. This identifier is used
in the learning phase or the operation phase to inject faults. A character string of 50 charac-
ters is provided to the user to describe the process. The command inject specifies the
number of faults to be injected. For each fault, there is a profile description of the fault. In
the profile description block, the location, duration, perturbation, mode and fault type are

specified.

The command location specifies the location of the fault. It is followed by a descriptor
which represents the location type. There are four descriptors available: (1) rannode indi-
cates a randomly selected faulty node, (2) ranlink indicates randomly selected faulty link,
(3) link indicates that the links specified in the next lines will be the targeted faulty com-
ponents and (4) node indicates that the nodes given in the next lines are the faulty nodes.

The number of faulty locations is specified if the descriptor link or node is used.

The command duration specifies whether the fault is transient or permanent. The
descriptors transient and permanent are used. If the fault is transient, the transient duration,
in number of simulatibn cycles, follows the descriptor. The command mode indicates if the
perturbation is constant or Byzantine. The descriptors constant and byzantine are used to
describe the mode. Finally, the fault type is specified by the command type. The descriptor
complete indicates that the component fails completely and produces no response. The
descriptors offset, delay and gain are used to specify node offset, node response delay and
node gain faults, as described in Chapter 4. The descriptor random indicates that the pertur-

bation is random noise. In the example above, the user injects a node fault into a randomly
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selected node. The fault is permanent and the fault type is a full-node fault. The user also

specifies a link-weight to be sampled every 10 simulation cycles.

C.4.12. Operation phase

Syntax: operation
testfile = <file containing input patterns>
ansfile = <file containing desired output patterns>
fault = <fault specification index>
threshold = <lowest acceptable output value>
outspec <identifier>
Body of output specifications
outspecend
operationend
Example; operation

testfile = mydemo.test

threshold = 0.8

fault =3

outspec 1
node1=300
node2=301

outspecend

outspec 2

link1=100201
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outspecend

operationend

The set of commands above specifies the usage of a trained network. The commands
operation and operationend bracket the block of codes for execution specifications. The user
has to supply the file containing the input patterns with the command testfile. If the user has
the desired output patterns corresponding to the input patterns, the command ansfile could
be used to specify the file name. The simulator will then compare the actual and desired
output patterns and compute the percentage of matches. As in the learning process, the user
can inject faults during the execution phase. The command fault associates the operation
phase with the specified fault injection specifications. For the purpose of this thesis, the
threshold command is used to specify the lowest acceptable output value. This is used in the
thesis to study the impact of low output values of the multilayered perceptron network. The
user is also able to monitor certain network values by using the outspec command. In the
example above, the threshold is 0.8. Network values can also be monitored using the

outspec command to sample network parameters during the operation phase.

C.4.13. Save network status

Syntax: save = <filename>

Example: save = mydemo.save
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The command save allows to the user to save the current network values in the
specified file. If no filename is provided, the simulator will provide a default name of

netr.save.

C.4.14. Summary tables

Syntax; summary = <type identification number>

Example: summary = 1

The simulator is customized to study the impact of faults on neural networks. One
summary report is currently available. It is identified by the constant / in the simulator. It
presents the actual and the desired output patterns, the highest output value and the total
number of matches between the actual and desired output patterns. Section C.5 shows two
examples of the table. The user can easily enhance the simulator with other output tables

and summary reports.

C.4.15. Running FANS

Syntax: sim <specification filename>

Example: sim example 1

The simulator can be executed by calling sim in C-shell, followed by the name of the
specification file. The executable file sim can be found in the directory examples of FANS.

An executable can also be generated by using the Makefile in the directory FANS/src.
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C.5. Sample Specification Files

This section describes two sample specification files: the first simulates a three-layered
perceptron network, and the second simulates Kohonen's Feature Map. These are two of the
specification files used in the experiments described in this thesis. They can be executed by
the commands sim examplel and sim example2 respectively. More examples, along with

the training vectors can be found in the examples directory of the simulator.

C.5.1. Three-layered perceptron network

Figure 18 shows the specification file to simulate a three-layered perceptron network.
The network has ten input nodes, twenty output nodes and two hidden layers, with five
nodes in the first and fifteen nodes in the second hidden layer. The input patterns are given
in the file clust.dat and the desired output patterns in the file clust.teach.20. The maximum

learning duration is set to 600 simulation cycles.

During the operation phase, the input vectors are taken from the file clust.dat. Fault is
injected at the start of the operation phase and faulr 1 is the fault specification file. In the
example, the fault injector will inject a single link fault at a randomly chosen link. The fault

is a permanently broken link.

In order to measure the classification accuracy of the network, the command ansfile is
used to specify that the file clust.teach.20 contains the desired output patterns. Since the
user requested summary output format, the actual output pattemns and the desired output pat-

terns from ansfile are listed.
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% more examplel
network 1
Back propagation network
model = backprop
input = 10
hidden = 2 5 15
output = 20
learn
inputfile = clust.dat
teachfile = clust.teach.?20
duration = 600
learnend
operation
fault = ]
testfile = clust.dat
ansfile = clust.teach.20

threshold = 0.8
operationend
summary = 1
save = clust.save.20.1
networkend
fault 1
Fault testing for classifier
inject = 1
profile 1
location = ranlink 1
duration = permanent
mode = constant
type = complete
profilend
faultend
end.

%

Figure 18. Specification file for the three-layered network.

Figure 19 shows a portion of the script file with the output table. The simulation is in-
itiated by the command sim examplel. The output lists the observation number, the output
node with the highest value, the corresponding ‘ault-free output node and the node output
value. The percentage of mistag or misclassification is computed and printed at the end of

the table. Misclassifications can be identified by comparing the desired and actual columns.
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For example, observations 5, 6 and 7 are misclassifications because the desired output node
is number 11 but the actual active output node is 1. The threshold of the output value is set
at 0.8 and is used as part of a decision factor for misclassification, as discussed in Chapter
5. After the operation phase is completed, the network parameters are saved in the file

clust.save.20.1 for future use.

C.5.2 Kohonen’s Feature Map

Figure 20 shows the user specification file to simulate Kohonen’s Feature Map. The
network has ten input nodes and seven output nodes. Since Kohonen’s Feature Map is a
single-layered network, hidden layers are not specified. The leaming process is unsupervised
and thus, the user specifies only the input pattems. The leaming duration is limited to 500
simulation cycles. The user also specifies that the network status be restored according to

the values in the file example2.save.

During the operation phase, the input pattems are taken from the file dataset] in the
directory testcase. A fault is injected at the start of the operation phase. The faulty com-
ponent is a randomly selected node and the fault is transient, with a duration of 40 cycles.
The perturbation is Byzantine and the fault type is a full-node fault. The output patterns and
the activation levels will be displayed in an output table, since the command summary = I

is specified.

Figure 21 shows a portion of the script file and the output table. The simulation is ini-
tiated by the command sim example2. The output table is similar to that in the previous ex-

ample.



% sim examplel &
%

Output for back propagation network

EESaEBEm TR ===

Classification results

No. Desired Actual Output Activation
1 5 5 0.921302
2 S 5 0.859132
3 5 5 0.859342
4 14 1 0.891788
5 11 1 0.720834
6 11 1 0.775482
7 11 1 0.775501
8 11 11 0.820430
192 4 4 0.992499
193 16 16 0.996142
194 6 6 0.990695
195 7 7 0.942462
196 2 5 0.921201
197 12 S 0.862375
198 8 8 0.927681
199 18 S 0.806878
200 4 4 0.992499

Threshold = 0.800000

Number of test patterns = 200

Misclassification % = 29.500000

Figure 19. Output for the three-layered network.




% more example2

network

1
Kohonen self organising network
model = kohonen

input = 10
output = 7

learn
inputfile = testcase/datasetl
duration = 500
learnend
operation
fault = 1
testfile = testcase/datasetl
operationend

summary = 1
load = examplel.save

networkend

fault 1

Fault testing for clusterer
inject = 1
profile 1
location = rannode 1
duration = transient 40

mode = byzantine
type = complete
profilend
faultend
end.
%

Figure 20. Specification for Kohonen’s Feature Map.
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% sim example2 &
%

Output for kohonen self organising network

Clustering results
No. Desired

@ d U WN
Wwoouwwww

192
193
194
195
196
197
198
199
200

Wwwwwwwwww:

Actual

WWwoasHswwwn

WwWwwwwwwww:

Qutput Activation

13.

989765

9.623331
7.521379

l6.
10.
13.

624250
557803
041821

9.010196

16.

21.
44,

731127

263313
500603

9.466000

le.
20
13
36.
13.
27.

487846

.921387
.697389

723930
194621
134039

Number of test patterns = 200

Mistag %

= 22.500000

Figure 21. Output for Kohonen’s Feature Map.
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APPENDIX D.

IMPACT OF FAULTS ON THE RELEARNING DURATION

The following figures show the number of releaming cycles for the classification net-

work when the specific faults were injected.

e

-

[Z- B I o T o)

600 -
175 3 o Transient node gain fault
150
125
100 - : : .
75 - S 5
50 - :.o.,.. O

25 4 O o

e

]
0 3 6 9 12 15 18 21 24 27 30 33 36
Duration of fault (simulation cycles)

Figure 22. Impact of transient node gain fault on relearning duration.
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Figure 23. Impact of Byzantine faults on releaming duration.
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Figure 24. Impact of permanent node faults on the relearning duration.
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Figure 25. Impact of permanent node delay and node gain faults
on the releaming duration.



(2]

(3]

(4]

(6]

(7]

(10]

(11]

(12]

(13]

92

REFERENCES

J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research.
Cambridge, MA: MIT Press, 1988.

R. P. Lippmann, ‘‘An introduction to computing with neural nets,”” IEEE ASSP
Magazine, pp. 4 - 22, April 1987.

M. W. Roth, “Neural network technology and its applications,”’ Journal of
Knowledge Engineering, vol. 2, pp. 46 - 62, March 1989.

M. F. Tenerio and C. S. Hughes, ‘‘Real time noisy image segmentation using
artificial neural networks,'’ Proceedings IEEE International Conference on Neural
Networks, vol. 4, pp. 357 - 364, 1987.

T. Kohonen, Self Organising and Associative Memory. Berlin: Springer-Verlag,
1988.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,”” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Cambridge: MIT Press, pp. 318 -
362, 1986.

T. Kohonen, ‘“The Neural Phonetic Typewriter,”’ [EEE Computer, vol. 21, pp. 11 -
22, March 1988.

N. M. Nasrabadi and Y. Feng, ‘‘Vector Quantization of Images Based Upon the
Kohonen Self-Organizing Feature Maps,’” Proceedings IEEE International
Conference on Neural Networks, vol. 1, pp. 101 - 108, 1988.

J. Mann, R. P. Lippmann, B. Berger, and J. Raffel, ‘‘A Self-Organizing Neural Net
Chip,”” Proceedings IEEE Custom Integrated Circuits Conference, pp. 10.3.1 -
10.3.5, 1988.

K. Saito and R. Nakano, ‘‘Medical diagnostic expert system based on PDP model,”’
Proceedings IEEE International Conference on Neural Networks, vol. 1, pp. 255 -
262, 1988.

D. G. Bounds, P. J. Lloyds, B. Mathew, and G. Waddell, ‘*A Multilayer Perceptron
Network for Diagnosis of Low Back Pain,”’ Proceedings IEEE International
Conference on Neural Networks, vol. 2, pp. 481 - 490, 1988.

A. Rajavelu, M. T. Musavi, and M. V. Shirvaikar, ‘‘A Neural Network Approach to
Character Recognition,’’ Neural Networks, vol. 2, pp. 387 - 393, October 1989.

H. Yang and C. C. Guest, ‘‘Performance of Backpropagation for Rotation Invariant
Pattern Recognition,”” Proceedings International Conference on Neural Networks,
vol. 4, pp. 365 - 370, June 1987.



(14]

(15]

(16]

(17]

93

R. K. Elsley, ‘‘A Learning Architecture for Control Based on Back-propagation
Neural Networks,’” Proceedings IEEE International Conference on Neural
Networks, vol. 2, pp. 587 - 594, 1988.

H. Weschsler and G. L. Zimmerman, ‘‘Fault tolerant recognition using DAM’s,
Proceedings IEEE International Conference on Neural Networks, vol. 2, pp. 719 -
726, 1987.

J. A. G. Nijhuis and L. Saanenburg, ‘‘Fault tolerance of neural associative
memories,”’ /EE Proceedings, vol. 136, pp. 389 - 394, September 1989.

Jos Nijhuis, Bemd Hofflinger, Andre van Schaik, and Lambert Spaanenburg,
““Limits to the Fault-Tolerance of a Feedforward Neural Network with Learning,”
Proceedings International Symposium on Fault-Tolerance Computing, pp. 228 -
235, 1990.

L. F. Pau, Failure Diagnosis and Performance Monitoring. New York: Marcel
Dekker, 1981.

M. Pease, R. Shostak, and L. Lamport, ‘‘Reaching agreement in the presence of
faults,”” J. ACM, vol. 27:2, pp. 228 - 234, April 1980.

H. Spath, Cluster Analysis Algorithms. West Sussex: Ellis Horwood, 1979.

P. Gallinari, S. Thiria, and F. F. Soulie, ‘‘Multilayer perceptrons and data analysis,”
Proceedings IEEE International Conference on Neural Networks, vol. 1, pp. 391 -
399, 1989.

N. H. Goddard, K. J. Lynne, and T. Mintz, ‘‘Rochester connectionist simulator,”’
Technical Report 233, University of Rochester, Rochester, New York, 1988.

J. F. Ossanna, NROFF/TROFF User's Manual. Murray Hill, New Jersey: Bell
Laboratories, 1976.












