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ABSTRACT

Finite-Volume Application of High Order ENO Schemes
to Multi-Dimensional Boundary-Value Problems

Jay Casper
Department of Mathematics

Old Dominion University

Norfolk, Virginia

In recent years, a class of numerical schemes for solving hyperbolic partial differential
equations has been developed which generalizes the first-order method of Godunov to arbi-
trary order of accuracy. High-order accuracy is obtained, wherever the solution is smooth,
by an essentially non-oscillatory (ENO) piecewise polynomial reconstruction procedure,
which yields high-order pointwise information from the cell averages of the solution at
a given point in time. When applied to piecewise smooth initial data, this reconstruc-
tion enables a flux computation that provides a time update of the solution which is of

high-order accuracy, wherever the function is smooth, and avoids a Gibbs phenomenon at
discontinuities.

The application of these schemes to areas of scientific and industrial interest obvi-
ously requires compressible flow solutions in more than one spatial dimension. The multi-
dimensional ENO schemes proposed thus far in the literature are of finite-difference type,
combining an adaptive high-order ENO interpolation procedure with a split-flux approach.
Due to the design of these schemes, it is not clear, at present, how to apply them at bound-
aries, e.g. solid walls. Moreover, as with any finite-difference scheme in which stencils are
not pre-determined, curvature and discontinuity of the computational grid can pose fun-

damental problems.
In this paper, we consider the finite-volume approach in developing multi-dimensional,

high-order accurate ENO schemes. In particular, a two-dimensional extension is proposed
for the Euler equations of gas dynamics. This requires a spatial reconstruction operator
that attains formal high order of accuracy in two dimensions by taking account of cross

gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of
a two-dimensional primitive function is employed in order to extract high-order pointwise
values on cell interfaces. These points are appropriately chosen so that correspondingly

high-order flux integrals are obtained through each interface by quadrature, at each point
having calculated a flux contribution in an upwind fashion. The solution-in-the-small of
Riemann's IVP that is required for this pointwise flux computation is achieved using Roe's

approximate Riemann solver. Issues to be considered in this two-dimensional extension
include the implementation of boundary conditions and application to general curvilinear
coordinates.

Results of numerical experiments are presented for qualitative and quantitative exami-
nation. These results contain the first successful application of ENO schemes to boundary-

value problems with solid walls.
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I. INTRODUCTION

We wish to design high-order accurate essentially non-oscillatory (ENO) schemes for

the numerical approximation of weak solutions of hyperbolic systems of conservation laws

ut + f(u)ffi-}-g(u)v = 0, (la)

subject to given initial conditions

u(z,u,0) = u°(z,y) • (lb)

The function u = (ul,u',...,u'*) r is a state vector and the fluxes f(u) and g(u) are

vector-valued differentiable functions of m components. We assume that the system (la)

is hyperbolic in the sense that the m × m Jacobian matrices

a/ B(u) = agA(,,) =

are such that any linear combination of A and B has m real eigenvalues {>,k(u)} and a

complete set of m right eigenvectors {r_(u)} and left eigenvectors {l_(u) }, which we assume

to satisfy the orthonormal relation Ii • r j = 6_.



We assume that the initial-value problem (1) is well-posed in the sense that the solution

u depends continuously on the initial data, and that this solution is generically piecewise

smooth, with at most a finite number of discontinuities. Appealing to well-known theoret-

ical results, we know that a weak solution of the IVP (1) must satisfy (la) in the sense of

distribution theory. Furthermore, this is equivalent to requiring that u obey the integral

form of (la), where the limits of integration can reflect any smoothly bounded domain in

the x-y plane and any time interval (tl,t2). Seeking such a solution, let

Xi_l/2 <: X < XI+I/2 , Yj-I/2 <: Y <_ Yi+1/2 , -co < i,j < co ,

denote a rectangular partition of the x-y plane, with x_ and yj denoting the centroids

of their respective intervals. With a semi-discrete formulation in mind, we note that, for

every every rectangle (x,-1/2, x_+1/2) × (Yi-1/2,Yi+,/2), a weak solution of (la) must satisfy

o_ [ - )" t + - , (2a)_,i(t) - 04i

where a4i is the area of the rectangle and

I [",+.. [,,,+,/. ,.(x,:/,t)dxd,j (2b)_,i(t) = 04--',,-,_, ",,-,,,

is the cell average of u over the control volume at time t. The fluxes f and j are given by

["+'_" fC"C_,+v,,y, t) ) dy ; (2c)_,+l/,,iCt) = ",;-,/,

gi,i+l/,(g) = [z,+,/, g( ll(X, Yi+l12 , t) ) dx . (2d)

._ z¢_1/2

We now treat (2a) as a system of ordinary differential equations for the purpose of

time discretization, using a _method-of-lines _ approach. Along any t = constant line, the

right-hand side of (2a) is strictly a spatial operation in the unknown u, and we rewrite

this equation, for fixed t, in the abstract operator-product form

O_

_._(t) = ( L ,,(t)),_, Ca)

thus effectively _separating" the spatial and temporal operations for computing solutions

of (1).

In [8,9],Runge-Kutta methods are presented for the time discretizationof ordinary

differentialequations which are of high-order accuracy and TVD, in the sense that the

temporal operator itselfdoes not increasethe totalvariationof the solution.We willemploy

these Runge-Kutta methods in order to achieve our desired accuracy in time. The use of
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the formulation (2a), rather than the finite-difference approach of [8,9], makes for a more

immediate application of its numerical approximation to the solutions of boundary-value

problems involving solid walls or non-trivial geometries.

2. Two-DIMENSIONAL ENO SCHEMES

Given {_"}, cell averages of a piecewise smooth solution u(x,y,t") of (1), we desire a

high-order accurate numerical solution operator Eh which will update these averages to
time t"+1 = t" + at. Specifically, we require that Eh be rth-order accurate in the sense of

local truncation error, i.e. when applied to the exact solution, Eh satisfies

Eh _" -- _.+I = O(h,+1) (4)

in a pointwise sense, wherever u is sufficiently smooth, with Az, Ay, and At all assumed to

be O (h). Furthermore, we desire that our numerical update scheme avoid the development

of spurious O(1) oscillations near discontinuities in u. In order to achieve this property we

require our operator to be essentially non-oscillatory (ENO). Such an operator satisfies,

in the one-dimensional scalar case,

TV(Eha) = TV(u) + O(h*+V), (5)

for some p > 0, where TV represents total variation in z. For details concerning the initial

development of ENO schemes, the reader is referred to [5] and the references therein.

Employing the formulation (3) for the numerical update of the (fi"), we discretize the

temporal operation by using a Runge-Kutta method, which we write in the form

l-1

fi_.} = _--_ [a,_fi_7 } + [3_AtC£u(')),i] , l=l,2,...,p, (6)
m=0

= , -' __--Uij

The order of accuracy achieved by this time discretization, as well as its TVD property,

is determined by the values of the integer p and the coefficients a and _. ( See [8,9] for

details. )

Now, if we assume that the scheme (6) achieves our desired rth-order accuracy in

time, then clearly, this scheme satisfies (4) if we can evaluate ( L u(t) )_i, the exact spatial

operation on the right-hand side of (2a). However, the calculation of the fluxes (2c-d)

needed for this evaluation requires that we know the solution u(x,y, t), pointwise, at a
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given time t,whereas the information we have at any time t isthat of the cellaverages

(2b). And clearly,since

%(t)= ,,(x,,yi,t) + O(h'),

wherever u is smooth, there is an inherent limit on the order of accuracy if we use the

cell averages themselves in the flux calculation. Therefore, we replace the operator £ with

a discrete spatial operator L which acts upon the (_(t)} and approximates the pointwise

operation of £ to high order. To this end, we see that if

L _(t) = f. u(t) + O(h'), (7a)

wherever u is smooth, then, upon replacement of/_ in (5), the local truncation error of

our fully discrete scheme will satisfy (4), as required.

We define L explicitly by

[ _i+l/2,j(t) -- JTi-l/,,,(t) + _i,'+112(t) -- _i,j-ll2(t) l '
1 (7b)

(L _(t)),i - _ t J

where ] and _ are to be designed as high-order numerical approximations to )" and _ in

(2c-d). We require that the numerical flux functions Y,

7,+1/2,_(t)= ?(a,_k+l,j_..+l(t),..., e.+k,_+..Ct)), l <k,m<r,

(7c)

_i,j+l/2(t) = _(__,+ld_,+l(t),...,_,+,,j+,,(t)), l<l,n<r,

be Lipschitz continuous functions of their arguments and consistent with the true fluxes

f(u), g(u) in the sense

?(_,...,_)= f(_), _(_,...,_)= g(_). (Td)

The firstand most important step in the high-order approximations of .f, _ is the

method by which we obtain high-order accurate pointwise information of the solution

u(=,y,t) from the given set of cellaverages {_(t)}. Let R _ be a spatialoperator which

reconstructs this set of cellaverages and yieldsa two-dimensional, piecewise polynomial

R 2(x, y ; _(t)) of degree r-1 which approximates u(x, y, t) with a truncation error of O(h'),

wherever u is sufficiently smooth. We write this relationship in the form

R2(x,y;_(t)) = u(z,y,t) + e(z,y)h'. (8)

In general, the "reconstruction" operator R 2 which we have developed is a "natural" two-

dimensional extension of the one-dimensional "reconstruction by primitive" presented in



[5]. The reconstruction procedure involves polynomial interpolation in combination with

an aclaptive stencil algorithm which, in tandem, achieve high-order accuracy in smooth

regions while avoiding O(1) oscillations near steep gradients. This operator is detailed in

Section 3.

In order to include the more general case, where f(u) cannot be integrated in closed

form in (2c), we will approximate this integration by Gaussian quadrature. In order

to express the error made by this approximation, let q(x) be a C (2g) function whose

integration on [a, b] we approximate by the "classical" Gaussian quadrature, i.e. relative

to the unit weight function on the interval [-1,1]. It can be shown (e.g. [10]) that the

error made by this approximation with a K-point quadrature is given by

q(x) dx _ _ c_ q(xk) - (2K)!
k=l

for some _ in (a, b), with PK being the polynomial of degree K in the orthogonal basis

that spans the space of polynomials of degree not exceeding K. This quadrature is exact

when q(x) is a polynomial of degree less than or equal to 2K - 1. The roots of PK(x) =

(x- xl)(x- x2)... (x- xK) are real and distinct, making it clear that the above truncation

error is O(h2g+l) • Relating this error to the (r-1)-st degree polynomial reconstruction

(8), we see that for r <_ 2K, this truncation error is at worst O(h "+1) when r-1 is odd,

and O(h r+2) when r-1 is even. Therefore, using the "larger" error, for fixed x and t, and

sufficiently smooth f, the approximation of the flux integral (2c) by Gaussian quadrature

satisfies

: fl/y+,/, f( t/,(Xi+l/2 , 1/, t) ) d1/

I/y_ l/u

K

__ Aj_j.j _ ck f( u(x,+,/, , Yk , t) ) Jr- 3(xi+1/2 , }7) _r+l

2 k=l

(9a)

for some W in (y_-i12,1/_+i12).

Let vh(x,1/,t) denote the piecewise polynomial approximation to u which isdetermined

by the reconstruction operator R 2 in (8) and thereforesatisfies

,h(x,1/,t) = + (9b)

for fixed t, wherever u is sufficiently smooth. Since f is assumed differentiable in u, it is

therefore Lipschitz continuous in u, and thus, for fixed t,

f(u(x,!/,t)) = f(vh(x,1/,t)) 4- d(x,1/)h',

w



where d(x,y) = O(e(x,y) ). Finally, we substitute (9c) into the quadrature in (ga), and

we see that

Ay_ K
]i+l/,,j(t) = T _ ck[f(vaCX,+l/,, Y_, t)) + d(x,+t/,, Yk) h'] (9d)

k--1

+ s(X_+l/2,7) h'+x •

Therefore, if we define our _abstract" numerical flux ],+l/2,j(t) in (7b) by

Ay i K
Yi+l/2,y(t) = -_- _ c. f( _h(X,+l/2, _Jk, t) ), (10a)

k=l

then the error made by the approximate flux difference j_+l/2 ,j (t) - ]__l/_,j(t) in the

definition (7b) is given by

-  ,-1/2,jCt) = ],+,/2,iCt)-
K

Ayj _ ck [ d(x,+l/= , Yk) - d(x,-1/2 , y_) ] h"
-_- T k=l

+ - sCZ,_l/2, h'+l . (lOb)

Clearly, if d and s are Lipschitz continuous on [Z_-l/2, x_+1/2] for each y, then the error

relation in 10(b) satisfies

^ tf,+l/2,j( ) - ?i-1/2,i(t) = Y,+x/2,i(t) - ?,-1/2,_(t) -t- O(h'+2) . (lOc)

Moreover, a symmetrical argument can be used to show

_,,_+l/2(t) - _,,_-l/2(t) = _,,_+l/2(t) - _,,__,/2(t) + OCh'+_) , (10d)

where
Az_ K

_i,j+x/2(t) -- 2 _ c_g(vhCz_, yj+l/2,t) ) . (10e)
k=l

Noting that the area aq is OCh 2) , we see that upon substitution of the numerical fluxes

(10a) and (10e) which satisfy the error relations (10c) and (10d) into (7b), we have thus

designed the spatial operator L that satisfies (Ta), and therefore, when substituted for /_

in (6), yields a numerical solution operator Eh which is 7"th- order accurate in the sense of

local truncation error. We note here that the desired truncation errors given by (10c-d)

are achieved only if the functions representing the errors due to the quadrature (ga) and

the solution approximation (8) are Lipschitz continuous on [Z_-l/2, x_+i/2] x [yj-1/2, yj+l/2] •

We now wish to modify the "abstract" numerical fluxes (10a) and (10e) such that

(4) still holds in regions where the solution is smooth and, in addition, these fluxes will

6



account for possible discontinuities in u. This modification is largely due to the nature

of the reconstruction step, at which the pointwise behavior of u(=, y, t) is approximated

in a piecewise polynomial fashion within each cell. (See Section 3.) In particular, the

piecewise polynomial generated by the reconstruction operator can be discontinuous at

cell interfaces, due to an adaptive interpolation procedure. The relative size of these local

"jumps" is on the level of the interpolation error in smooth regions and is O(1) near

discontinuities in u. Therefore, in order to resolve these discontinuities, the flux integrands

in (2c-d) are approximated by

f(uCz ,y,t)) _ fRmlR2(x_0,y;_(t)),R2(=+0,y;_(t))], (11a)

gCu(z.y.t)) _ gRm[R2(z.Y-O;_(t)).R'(z.Y+O;_(t))]' (11b)

where fRm[ul, u2] denotes the flux across z = 0 of the solution to the Riemann problem

whose initial states are u, and u2. We use the notation q(z + 0), q(z - 0) to denote

the limiting values of q at z from the right and left, respectively. When the solution u

is sufficiently smooth, the "jumps" in the discontinuities in the approximate solution at

cell interfaces will be O(h') in which case our previous conclusions concerning high-order

truncation error are not altered by the modification (11).

In fully-discrete form, we write our scheme as the Runge-Kutta method

1-1

= El- , (12a)",,,_,_j + 3t,_At( L )_i], l:1,2,...,p
yrt:O

where

and

.c,.,.,) ,c-,.) ] (12b)1 _(,,,.) - ]'_-_)/2 + yd.j+l/'_ - s_.,j-'n/2
(L _("*) )_i - o_i _+,l_,i ,i

]_("') Ay i g
+1/2,._ -- 2 _ c, fRm[ R2(,_,+1/2 __ 0, Yk ; _,(m)) , R2(X,+1/2 -t- 0, Yk ; _,(m)) ], (12C)

k----1

- 2 (12d)
k=!

Assuming the error functions d(x, y) and s(=, y) in (10b) to be globally Lipschitz con-

tinuous, the numerical solution operator Eh defined by (12) is formally rth-order accurate

in the sense of local truncation error as given by (4). Furthermore, if these error functions



remain Lipschitz continuous for N time steps,where N = t/At = O(1/h), we assume

the cumulative error to be O(hr). Thus, at the end of such a computation, we have a set

{_}, approximations to the cellaverages of u at time tN which satisfy

_Jv _ _Jv = O(h"). (13a)

If we desire our high-order accurate output in pointwise form, we simply perform one final

reconstruction which, by (8) and (13a), will yield

") = u(x,u,t") + OCh'). (13b)

In addition to the accuracy properties (13), we desire that if u should develop disconti-

nuities, then the scheme (12) will avoid O(1) spurious oscillations, and we will design the

reconstruction operator R _ to do so.

In Section 7, we present results which support the claim of cumulative error represented

by (13). We will also extend the scheme (12) to general curvilinear co-ordinates and

perform numerical experiments which apply this scheme to boundary-value problems.

Some of these results are shown in Section 7, and are representative of the first successful

attempt to employ high-order ENO schemes to two-dimensional problems with solid walls.

3. RECONSTRUCTION

Before proceeding to a discussion of the implementation of the scheme (12) in solving

boundary-value problems, we turn now to describe more fully the high-order spatial recon-

struction operator R 2 which is crucial to the scheme's accuracy. For the purpose of clarity,

we discuss the finer points of this procedure within the framework a scalar function defined

on a rectangular computational mesh. Furthermore, as there are many ways to approach

the development of this high-order reconstruction, for simplicity, we choose to describe the

implementation of R 2 as a composition of two applications of a one-dimensional operator

R, where the latter is the "reconstruction-by-primitive" operator in [5].

In preparation, we find it necessary to briefly review the notion of essentially non-

oscillatory interpolation. Let w(x) be a piecewise smooth function in x whose values are

known to us only at the discrete points {x_}. We introduce Q,(x;w), an nth-degree

piecewise polynomial function of x that interpolates w at the points (x_}, i.e.

Qn(xi;w) = wCx, ) , (14a)

QnCx;w) -- q.,iCx;w) , xi <_ x < xi+l , (14b)



where q.,_ is the (unique) nth-degree polynomial that interpolates w(x) at n+l successive

points {xi} which include xi and xi+l. We are therefore free to chose the other n-1 points,

and we do so subject to the condition that w(z) be "smoothest" on the chosen stencil in

some asymptotic sense.

It can be argued that information relevant to the smoothness of w can be extracted

from a table of divided differences of w. Employing the standard notation, the k th divided

difference of w can be defined recursively by

w[xi] = w(x_);

_[_i,...,_i+_] = _[_i+l,...,_+_]- _[xi,...,_;+_-x]
xi+ k - x i

In particular, it can be argued that the magnitude of a k th divided difference, provides

an asymptotic measure of the smoothness of tv in (xj, zj+k), in the following sense. Suppose

that w is smooth in the interval (Xo,Xk) but is discontinuous in (zl, xk+l). Then for h

sufficiently small, we expect

Iw[x0,... ,x_]l < 1_[xx,... ,_+_] I,

and hence these divided differences can serve as a tool to compare the relative smoothness

of tv in various stencils. Since we always assume any stencil we choose to be contiguous,

we can assign a particular stencil by determining its left-most index, which we denote by

j(i). We choose j(i) with the following hierarchical algorithm.

Let jk(i) denote the left-most index of a chosen "smoothest" (k+l)-point stencil which

includes the interval (x_, X_+l) • Denote this stencil

{ xj_(q,... ,zi_(0+_ }, k -- 1,2,...,n (15a)

Since any stencil must include {z_, x_+l}, our recursive algorithm begins (k = 1) by setting

.]'1(/) : i, (15b)

In order to choose j_+l(i), k = 1,..., n-l, we consider as candidates the two stencils

{x_a,)-l,...,_c,)+_ } or {_c,),"',_c')+_+l}, (lsc)

which are obtained by adding a point to the left or right, respectively, of the previously

determined stencil. We select the one in which w is relatively smoother, i.e. the one in

which the (k+ 1)-th order divided difference is smaller in magnitude, thus

I j_(i)- 1, if [w[zj_Cq_l,...,xi_(O+_]l < Iw[_;_l,),...,_a,)+_+ffi]l, (15d);_+l(i)
t jk ( i) , otherwise.

9



Finally, we set jCi) : j.(i).

For h sufficiently small, the algorithm (15) will always be able to determine an (n+l)-

poLnt stencil of smoothness between any two discontinuities. Therefore if each qn,_(x ; w)

in (14b) is constructed with the aid of this adaptive--stencil type of interpolation, then

wherever w(x) is smooth, Q(x ; to) will satisfy

rv ( Qn(x; w) ) < rv Cto(_) ) -[- O(h"+l) , (16)

i.e. Q,,(x ; w) is essentially non-oscillatory. Henceforth, we will assume that Q,_(x ; w) is

an ENO interpolating polynomial of degree n whose construction involves the adaptive-

stencil algorithm (15).

We now describe our reconstruction operator. We are initially given a discrete set of

cell averages {'_i}, cell averages of a piecewise smooth function w(x, y),

1 f,:':;:" fclJ_:" , (17a)
- -- w(x,y) dydz
fv_j- Ax_Ayj

where Ax_Ayj = aq = (z_+1/2 - z_-1/2) (yj+l/2 - yj-i/2). For yj+l/2 < Y < yj-1/2, define

the primitive ]unction Wj (x) associated with to by

1

o Ayj "Y,-v, w(_,y) dyd_ . (17b)
f,,+,,,

Seeking a relationship between pointwise values of I_i(x ) and the discrete values (,_i},

we see immediately from the definitions (17a-b) that

Axi _i_ = _r_(x/+l]2) -- vYri(x/--1/2) '

and we can therefore establish such a relationship at the cell interfaces:

i

= (17c)
k=io

Now, if we interpret the notation ff_j(x) as the line average in y of w(z,y) for a fixed

x, then the definition (17b) clearly implies

d 171,(z)- 1 [_,+*/"_x AYj "¢i-t/, wCx, Y) dy - ff_i(z) (17d)

This suggests that if we approximate Wi(z ) by Q,(z ;W i), the ENO picewise polynomial

of degree r which interpolates l_'j- at the values given by (17c), we can then obtain an

approximation of tvi (x) by defining the first step in our reconstruction procedure as

n(x;,_) = d Q,(x;Wi) - ojCx) . (17e)
dx

10



Then v i (x) is a polynomial in z of degree r- 1 which satisfies

= + oCA '), (17f)

wherever wj (x) is sufficiently smooth in x.

If the procedure (17) is performed for all j, then we have a set of piecewise polynomials

{oj(x)}, each of which is a high-order approximation to each wj(x). Clearly, from the

definition (17d), the value of wj(x) in x is equivalent in form to a one-dimensional cell

average on the interval [yj+l/_,yj-1/2]. Therefore, for a fixed z, the remainder of our

reconstruction procedure becomes equivalent to the one-dimensional method in [5], applied

to the set {oi(x)}.

For fixed x, we now treat the set {oj(x)} as one-dimensional cell averages in y of a

piecewise smooth function v(x, y), which we wish to reconstruct to high-order pointwise

accuracy in y. Analogous to the method (17), we define another primitive function W(x, y)

associated with v(x, y) by

W(x,y) = v(x,y) dy , (18a)
0

whose pointwise values we know at cell interfaces

J

WCx, Yj+,12 ) = __, Ayk vkCx) . (18b)
k=jo

Fitting the point values (18b) of W(y) with a piecewise polynomial Qr(y ;W) of degree r

by ENO interpolation, we can obtain a high-order pointwise approximation to v(x, y) in

y by defining the second reconstruction step

d

R(y;V(x)) = -_yQ,.(y;W) - p(x,y), (18c)

where, for fixed x, p(x, y) is a polynomial in y of degree r- 1 that satisfies

p(x,y) = .(x,y) + o(ny'), (18d)

wherever v(x, y) is sufficiently smooth.

Noting the reconstruction definitions and the error relationships above, we can see that

the values obtained in (18c) are the high-order pointwise approximations to w(x, y) which

we desired from the initial cell averages {_1}, i.e.

R'Cx,y; 6) - ) = ,,,(x,y) + OCh'), (19)

We note here that the high-order relationship (19) cannot be achieved for r > 2 by simply

applying the operator R to two "overlapped" one--dimensional stencils.
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In addition to the high-order truncation error in regions of smoothness, we also note

that each of the one-dimensional reconstruction operators (17e) and (18c)is essentially

non--oscillatory, due to the nature of the interpolating polynomial Qr as given by (16). Fur-

thermore, we note that R 2 is "conservative", in the sense that the cell-averaging operator

defined by the right-hand side of (17a) is its left-hand inverse, i.e.

1 /=,+,/2 /,,+,/2 R2(x,y ; _v) dydx : _,j, (20)
Ax_Ayj ,z_-ll2 *vi-_12

which is necessary in order that our numerical scheme (12) remain conservative. This

property results directly from the various definitions in the reconstruction (17-18), and

the fact that Q, is an interpolating polynomial. It is the adaptive-stencil algorithm (15)

that enables this reconstruction (for sufficiently small h) to be high-order accurate on

any domain where w(x,y) is smooth, even if that region is near one in which w(x,y)

is discontinuous. Furthermore, algorithm (15) is ultimately responsible for the adequate

resolution of a discontinuity, near which the "jumps" in R2(x, y; _) at cell boundaries

become large relative to the mesh spacing.

We further note that the error coefficient e(x,y) in (8), due to this reconstruction,

becomes discontinuous at points where there is a change of orientation in the stencil of the

associated interpolation. This discontinuity may occurr at critical points of the function

and/or its derivatives. It is clear that when e(z, y) fails to be Lipschitz continuous at a

point, the truncation error of the approximate flux difference in (10c) is only O(h'+l). We

therefore expect the cumulative pointwise error due to N applications of the operator Eh

to be only O(h "-1) at such points, but to remain O(h') away from these points. Owing

to the essentially non-oscillatory nature of Eh, it is reasonable to expect the number of

points at which e(x, y) fails to be Lipschitz continuous to remain bounded as h ---, 0. In

this case, we see that the cumulative error of our numerical scheme is O(h _-1) in the Loo

norm and O(h _) in the L1 norm.

4. SYSTEMS OF CONSERVATION LAWS

In this section, we extend the scalar reconstruction procedure of Section 3 to solutions of

hyperbolic systems of conservation laws. To this end, we now reconsider the IVP (1), whose

solution u is a vector of m components, as are the fluxes f(u) and g(u). We now wish to

develop a vector reconstruction operator, denoted by R 2 , which will reconstruct a set {_j}

of vector-valued cell averages to high-order pointwise accuracy. Clearly, in this context,

fiij denotes a vector whose components are the cell averages of the scalar components of
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u. It would thereforeseem natural, purely from an approximation theory viewpoint, to

reconstruct the set {_j} by applying the scalarreconstruction R 2 in a component-wise

fashion. However, this approach isvalid only ifwe assume that u(x, y,t) remains freeof

discontinuitiesfor the duration of a desired calculation. But in the more general case,

when u(x, y,t) isa solution of a non-linearly coupled system of equations, such a solution

can admit the collisionofdiscontinuitiesof the same or of differentfamilies,as well as their

collisionwith boundaries, e.g.solidwalls.In the vicinityof such collisions,inthe solutionof

more than one dependent variable,a component-wise reconstructionmay develop spurious

oscillationsduring this briefencounter which do not dissipateas the discontinuitiesthen

distance themselves from one another, ifindeed they ever do. Numerical experiments to

demonstrate thispotentialproblem in one dimension can be found in [5].In the following,

we describe an algorithm to reconstruct the vector-valued solutionu from itscellaverages

which attempts to avoid this difficulty.

We begin by considering the constant coefficient case of (1): f(u) = A u, g(u) = B u,

where A and B are constant m × m matrices;

ut + A u, + Bu U = 0, (21a)

u(x,y,0) = u°(x,y). (21b)

We also assume, for now, that our reconstruction takes place within the context of a

Cartesian mesh. We note that the eigenvalues {At(A)} of A and {At(B)} of B are constant

as are the right eigenvectors {rk(A)}, {r_(B)} and left eigenvectors {/_(A)}, {/k(B)}. We

assume that these eigenvectors are suitably normalized so that

l'(A).rJ(A) = l'(B).ri(B) -- _ii. (22a)

If we define the k th characteristic variables wk(A) and wk(B) by the dot products

wt(A) = lk(A).u , wt(B) = lk(B).u , k-- 1,2,...,m, (22b)

then it follows from (22a) that

FI% _t

u = _ w_(A) rt(A) • = _, wt(B) rt(B). (22c)
k=l k=l

It is argued in [5] that, in the constant-coefficient case, it makes sense to use these

characteristic variables (22b) in the reconstruction procedure, rather than u itself. This

is due to the fact that, under the transformation (22b), the coupled system (21a) be-

comes an uncoupled set of equations, thereby rendering any discontinuity in a particular

characteristic variable "undetectable" by another. ( See [5] for details. )
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Therefore, in the case of a linearsystem (21a),we can describeour vector reconstruction

as follows.Given {6ij},cellaverages of a vector u,we begin by definingthe cellaverages

of the characteristicvariablesin the x-directionby

=k

= t (A) . , for j fixed, all i, (23a)

and then perform the scalar reconstruction given by (17e) on these averages. Using the

result (22c), we can define the first step of our linear vector reconstruction procedure by

f_t

R(x;_) = _ R(x;_vk(A))rk(A) - vj(x) , (23b)
k=l

the right-hand side of which is the vector-valued analogy of vj(x) in (17f). In analogy

with the two-step procedure in Section 3, the reconstruction (23b) is performed for all j.

For x fixed, we then proceed by approximating the "line-average" characteristic variables

in the y--direction by the dot product

@](B) = lk(B) . 91. (23c)

The scalar reconstruction (18c) is applied to the values (23c) and, for a fixed z, we have a

polynomial in y
Wt

R(y;0(x)) = _ R(y;_(B))rk(B), (23d)
k--1

which completes our reconstruction for the linear case and we write

R2(x,y ; 6) = R(y;R(x;_) )

k=l p=l

(23e)

We now wish to generalize the reconstruction procedure (23) to the case of a nonlinear

system. In the nonlinear case of (21a), the matrices A(u), B(u) are now functions of u, as

are the eigenvalues { Ak(A(u)) } ,{ Ak(B(u)) }, and the eigenvectors {rk(A(u)) }, {rk(B(u)) },

{lk(A(u))}, and {lt(B(u))}. Our extension will require the use of locally defined charac-

teristic variables, in the following manner. In order to reconstruct u(x,y) on the region

(x_-1/2, xi+l/2) x (Yi-I/2,Yi+l/2), we first derive a set of local average characteristic vari-

ables {_kj(_i)}, where n varies in the z-direction. We do this, for a fixed j, by computing

dot products of l_(A(_j)) with the cell averages {fi,,j} associated with intervals in the

"immediate vicinity" of (xi-x/2, x_+1/2), i.e.

=_ (_i) = l_(A(_ii)) " tini for n = i- q,.. ,i+ q, (24a)Wnj , •
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R2Cx, Y; _)'i = _ R
k=l

and satisfies

where q is the degree of the reconstruction polynomial. We then apply the scalar recon-

struction operator R to this set {w_j(_j)} of 2q+1 variables in which the left eigenvector

has been locally "frozen" at the $_;h location of the jth row of cells. This "local lineariza-

tion" allows us to apply locally the linear vector reconstruction described in (23). The

first step in our "nonlinear" vector reconstruction procedure then becomes

rtt

R(z;_) = _ R(x;_k(_j))rk(A(_q)) = vi(x) (24b)
k=l

Upon performing (24b) for all j, then, for z fixed, we define a set of local "line-average"

characteristic variables (w_(v/)} in the y-direction:

th_(vj) = lt(B(vj)) • _,, for n = j - q,...,j + q. (24c)

We complete our "nonlinear" reconstruction by applying the scalar operator R to the set

(f_(vi)) of local variables in (24c) which results in

FtL

R(y;v(x)) = _ R(y;Cz_(vi) )rk(B(vi)) . (24d)
k=l

Thus, our vector reconstruction operator R 2 is a composition of(24b) and (24d) and, for

a polynomial within a cell (i, j) , we write abstractly

y ; •
,--1

(24e)

R2(x,y;_(t)) = u(x,y,t) + O(h') , (24f)

wherever u is sufficiently smooth, and which we hope will avoid the oscillatory behavior

associated with colliding discontinuities.

5. CURVILINEAR CO-ORDINATES

We now wish to generalizethe spatialdomain of solutionsof the IVP (1).To thisend

let

= x(_,_), Y = Y(_,_) , (25a)

denote a smooth transformation from the physical x-y plane to the rectangular _-rt plane,

with Jacobian determinant J given by

J = x_ y, - y_ x, . (25b)
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Let C_i denote a discrete region in physical space which is mapped into a rectangle

(_-1/2, _+1/2) × (rli-x/2, rli+l/2) by the transformation (25a). Then for any such region, our

semi-discrete formulation for a weak solution of (la) remains identical in form to (2a) :

[ f/+l/2,j(t)- fi_l/2,$-(t)+ g/,j+I/2(t) --gi,j_I/2(t)]

a 1

_,,(t)- _i
(26a)

Under the transformation (25),we interpretthe cellaverage fi_i(t)at time t as

_,i(t) = 1__ [{,+,/2 [,i+,/2 u({,rht)J({,T1)d{ d_l , (26b)

where aq is the area of C_i • The fluxes f and _ are given by

[.i+,/2 _(.(_,+1/2, _, t) )dr ;_,+1/2,;(t) = ..;-,/2
(26c)

= [_'+'_ _(_(_, _+1/_, t))d_ , (26d)

where

P(_) = y./(_) - _. 9(-), _(_) = _ 9(-) - y_/(-), (2e_)

and f(u) and g(u) are the "known" flux vectors in (la).

Having defined the necessary terms of our finite-volume formulation in a curvilinear

co-ordinate system, we now wish to discretize our spatial and temporal operations. Again,

with our Runge-Kutta time discretization, the extension is straight forward. As for the

spatial operation, we note two basic modifications that must be made.

The first alteration involves the reconstruction operator. Having clearly and consis-

tently defined this procedure in terms of a rectangular mesh, we therefore would like to

be able to perform the reconstruction procedure in _-r} space. Given a cell average _i,

as defined by (26b), we see that the quantity a_1 _j can be interpreted as a "cell average"

of the function u(_,rl) J(_, r}) on the corresponding computational cell, having unit area.

Therefore if we choose, instead, to reconstruct the set {a_ i fiij) of cell averages which are

"scaled" by their respective areas, we transform the reconstruction procedure to rectangu-

lar co--ordinates, and can simply use the procedures outlined in Sections 3 and 4. In the

case of vector reconstruction (Section 4), the various eigenvalues and eigenvectors required

for this purpose are now the corresponding quantities of the matrices

_4 = y,A- z,B , I_ = zaB-yaA.

The polynomial p(_, r/) we construct by this approach will be a high-order approximation

to the function u(_,r/)g(_,r/), and therefore must be "re-scaled" by J(_,rl) in order to
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yield the pointwise valueswe need to approximate the fluxes (26c-d). Thus, we define our

curvilinear reconstruction operator _2 by

1 R2C_,v;a_), (27)
_'C_,v; _) - JC_,v)

with the vector analogy 1t 2 defined in an identical manner.

As for our second modification, we note that when we desire accuracy that is higher

than second-order, a piecewise linear interpretation of a two-dimensional grid will no

longer suffice. This is due to the fact that once we require more than one point in the

quadrature which will approximate the flux integrals (26c-d), we can no longer assume

that the quantities {xa,x,,y_,y,} are constant along a given cell boundary. We must

therefore assume that the mesh is "truly curvilinear" and account for any change in these

grid metrics at each point required in the quadrature. It should also be noted that the

curvature of cell boundaries also affects the lengths of cell interfaces, which become the

curvilinear analogy of Ay i , Azd in (12c-d). Our numerical flux can then be written

_Rm[_C_,+,/2 0 _ ; _(t)) _2C_,+1/_+ 0 v_. _(t)) ],?,+,/,,_(t)- I/"'71'+'/="_ _,, - , , , ,
2 ,,=, (28)

where _2 is given by (27), and IA_ I_+z/2 ,j represents the arclength of the of the boundary of

Cij along _ = _i+1/2 • The description of _ ,j+l/2(t) follows from symmetry. Now, assuming

that the transformation (25a) is sufficiently smooth, the numerical scheme resulting from

the curvilinear formulation (26) and the modifications mentioned above will be rth-order

accurate as defined by (4) in smooth regions and avoid oscillations near steep gradients.

We make one further generalization. It so happens that there are a lot of applications of

structured computational meshes for which a closed form transformation is not available.

For example, a set of grid points may be initially generated as a solution of a system of

differential equations, after which they may then be subjected to some smoothing operator,

e.g. Laplacian. In such a case we do not have a set of equations (25a) from which to

determine all the grid quantities necessary for the flux computation (28).

However, given such a set of points, we might consider the equivalent of a locally de-

fined set of transformation equations which are derived by polynomial approximation. By

this we mean that each _grid line _ through a set of points is approximated by polynomial

interpolation, and all the necessary mesh quantities are cMculated from these polyno-

mials. As the grid metrics {x a, x,, y_, y,} represent the components of outward normals

at cell boundaries, a simple calculus argument will enable us to compute these quanti-

ties at the desired quadrature points. Cell areas {aq} and the arclengths of cell faces

{I A,71,+,/_,_,I_1,,_+1/_}are also straight forward, once the four polynomials defining each
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control volume are determined. An approximate Jacobian determinant, which we will de-

note by jr, required for the curvilinear reconstruction procedure (27) is also obtainable

by the following reasoning. If the transformation (25a) existed then clearly we would have

the relationship

= [_,+,/, f'i+,/, J(_,rt) d_drt,
aii J(i- x12 "vti- 112

and therefore we may interpret a local area as a rectangular "cell average" of J. Thus,

having first determined approximations to the cell areas by polynomial interpolation of

the grid points, we apply our scalar reconstruction algorithm to this set and define J_ by

J'(_,rt) = RZ(_,,;a).

We note here that, without a known transformation (25a) from which to mathematically

determine "sufficient smoothness," we can no longer make the claim concerning formal

order of accuracy when this polynomial grid approximation is employed. We do, however,

"test" this approach by implementing it in a numerical experiment rather than applying

the exact grid quantities from the known transformation. The results of this test case are

reported in Section 7.

6. IMPLEMENTATION

Before proceeding to numerical test cases, we find it prudent to make a few remarks

concerning the implementation of some of the ideas in the preceding sections. As these

notions are presented in a general setting, their implementation in a given problem is

subject to individual interpretation and the suggestions made in this section are those

which are employed by the author in the calculations presented in the next section.

Our first topic concerns the first step in our scheme, namely the reconstruction pro-

cedure. Though it is not necessary from an approximation theory viewpoint, we will

implement the reconstruction in two separate stages, depending upon the orientation of

the cell boundary along which we desire to approximate u. For the evaluation of the

flux .?_+_/2 ,j(t) in (12c), the pointwise approximation of u at the Gauss points (y_} along

x= x_+1/2 is determined by

u(x,+,/, + 0,y_,t) _ R( y_ ; R( z,+l/, ± 0; _(t) ) ), (29a)

and for the evaluation of _i+l/,,j(t) in (12d), we employ the composite operation (29a) in

"reversed" form and achieve the required pointwise values by

uCx_,u_+,/, ±0,0 _ R(z,,; R(U_+,/, ±O;_(t))) . C29b)
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Also pertaining to the reconstruction, we have taken the position that a high-order

approximation must reflect available information. Therefore, near boundaries, we restrict

our interpolation stencil to remain within the computational domain. It was found during

numerical experimentation that problems could result from a high-order, one-sided inter-

polation procedure. In particular, if a solution developed a shock which reflected from a

solid wall, oscillatory behavior was noticed in the smooth region near the reflection point

between the shock and the wall. Attempting to eliminate such numerical noise, one might

suggest some sort of test for a "desirable reconstruction" which, when failed, will result in a

local reduction in the order of interpolation. Owing to the recursive nature of the Newton

interpolation procedure, such a test can be readily applied during the actual "building" of

the polynomial. One such test simply checks for "over-shoots" or "under-shoots." This

is equivalent to requiring the endpoint values of the polynomial p_ (x) which approximates

u(z) on [Xi-l12,z,+1/2]not to over-shoot a largeradjacent cellaverage, or to under-shoot

a smaller one. We can so restrictPi(x) by requiringthat itsatisfy

(_,+i- _ )(_+i- p,Cx,+i/2)) _>0

(_,- ___)(p_(x,__/2)- _-I) >_o.

(30)

(31)

IfeitherWe define any p_(x) which satisfies (30) to be a "desirable" reconstruction.

of (30-31) are not satisfied, then the degree of p_(x) is reduced. Clearly, this restriction

will never require any less than a locally linear reconstruction, as such a reconstruction is

always locally monotone.

As for the application of the boundary conditions themselves, such conditions as inflow

or outflow are handled in a standard manner. As it turns out, a wall condition is relatively

simple to handle. Because we actually approximate the solution on the boundary of each

cell, those point values {u,_} along a solid wall are treated with an appropriate boundary

condition and the numerical flux f,_ on the wall is simply

(32)L = f (WC(u.)),

with WC(.) denoting that a wall condition has been applied.

7. NUMERICAL EXPERIMENTS

In the following, we present a few examples of numerically computed solutions using

the scheme (12) as well as its extension to curvilinear co-ordinates. We have performed

experiments on scalar equations in order to test for the computational order of accuracy,
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and for our problems containing solid walls we solve the two-dimensional Euler equations

of gas dynamics.

In the tests involving the measurement of accuracy, we use r_ to denote the "compu-

tational order of accuracy. _ This value is calculated by assuming a linear accumulation of

error as given by (13). Also, in all of our results, when referring to a CFL coefficient, we

imply its use in the "conventional" explicit time-step restriction, which in the scalar case

is given by
AxAy

At = CFL
(I.f'Cu)l ÷ 19'Cu)l '

and is easily extended to a hyperbolic system.

EXAMPLE 1. In order to test our high-order ENO scheme (12) for its accuracy, we

solve the two-dimensional linear advection equation

ut+uffi+u v = O, t>O, C33a)

with initial data

= 1 1 (33b)

The solution of (33) is 2-periodic in z and y for all time. By restricting our computational

domain to -1 _< x, y <_ 1, we thereby make the boundaries 2-periodic also, effectively

removing them from consideration. We note here that even though we are solving a

linear equation, the high-order scheme (12) applied to (33a) is still non-linear, due to the

adaptive stencil algorithm of the reconstruction operator R 2 .

The exact solution of (33) can be easily calculated one-dimensionally in terms of the

variable _=x+y, and can be written

= 1 1uCz, y,t) i cos _r (x + Y-- 2t) -I- i • (34)

However, because we computationally solve (33) on a cartesian grid, our application is

truly two-dimensional. We further emphasize the two-dimensionality of the numerical

solution by discretizing the computational domain so that Az _ AF.

Since the solution (34) is smooth for all time, we apply our scheme for one period in

time, i.e. t = 2.0, at a CFL of 2/3. The number of iterations required to do this on a

given grid is high enough to expect a significant accumulation of error. We have performed

this test on five consecutively refined meshes for the scheme (12) with orders of accuracy

r = 1,2, 3,4. Though good results were obtained in all four cases, we are particularly

interested in the "higher-order" cases r = 3 and r = 4. These errors, along with their

corresponding computational orders of accuracy "r_," are presented in Table 1, and are
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calculated with respect to the Loo and Ll norms. The exact and computational solutions

were compared by cell-centeredpointwise output. We see "one lessorder" of accuracy in

the Loo norm for r= 4. We thereforeexpect that there are points in the solutionwhere the

reconstruction stencilisdiscontinuous, as referred to in the closingparagraph of Section

3. However, the third-order error for thisparticularproblem isuniform.

EXAMPLE 2.

equation

again with initial data

We now test a nonlinear equation, namely the two-dimensional Burgers

1 U2 _ 1 U2ut+(_ J:+(i )v = O, t>O, (35a)

1 1uO:,v,o) = (35b)

We solve the IVP (35) on the same domain as the previous example, and again apply

periodic boundary conditions. In this case, due to the non-linearity of equation (35a),

gradients immediately begin to steepen upon the first time step, until a shock eventually

forms at t = 2In. We therefore apply the scheme using a CFL of 3/4, up to t = 0.15,

when the solution remains smooth. Table 2 illustrates the accumulated errors for this

test case for r = 3 and r = 4. The exact solution is computed by using Newton-Raphson

iterations to solve the characteristic relation

1=

In this case, we do notice the "drop" in the order of accuracy with respect to the Loo norm,

in the third-order case. The solution was then computed to and past the point of shock

formation, with no visible oscillatory behavior near the discontinuity.

EXAMPLE 3. Our next numerical experiment involves the solution of the two-

dimensional Euler equations of gas dynamics in a cartesian frame of reference, which we

write in conservative form

Ut + F(U), + G(V)v = O, (36a)

where

[=1 I ] [ ]V = pv F(U) = pu'+P G(U) = puv' puv ' pv 2 + P

pE (pE ÷ P)u (pE + P)v

(36b)
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Here p, P, and E are the density, pressure, and total specific energy, respectively, and u

and v are the cartesian components of the velocity vector I7. We close the system (36a)

of four equations with the polytropic equation of state :

1 V 2P = (O'-I)p(E-_ ), (36c)

where ff is the ratio of specific heats.

We take our test case from [11]. A simple two-dimensional inlet with a step is installed

onto a uniform cartesian grid, and the problem begins with a uniform Mach 3 flow directed

towards the step, from left to right. As the length scales of the inlet's configuration are

identical to those in [11], we omit this description and and refer the interested reader to the

cited reference. Scaling the time variable by the height of the inlet's entrance, the solution

reaches a steady state at approximately t -- 12.0. However, the structure of this steady

state is relatively uninteresting, and therefore we compute the solution in a time accurate

manner up to t = 4.0, when the flow-field contains a complicated shock structure.

At the problem's outset, we assume that the inlet is filled with air which we model as

an ideal gas, with -7 = 1.4, with normalized initial free-stream conditions

Poo = 1.4, Poo = 1.0, uoo = 3.0, voo = O. (37)

We implement the scheme (37) with a CFL of 0.8 on a 120 × 40 grid. For the flux

computation in (12c-d), we approximate the required "Riemann fluxes" by the method

developed by Roe [7], combined with an appropriate entropy correction (See e.g. [4].)

The inflow boundary condition is specified by (12) and held fixed. Because the outflow is

supersonic, the exit boundary condition has no effect on the flow, and therefore we assume

all gradients to vanish at this boundary. At the walls, we apply the tangency condition

¢.¢,, = o, (38)

where h_ is the unit vector normal to the wall. The nature of this solution is such that

the corner of the step is the center of a rarefaction fan, and hence is a singular point of the

flow. We therefore apply a special treatment at this corner, as described in [11], in order

to avoid large numerical errors generated in the neighborhood of this point which would

hinder our qualitative comparison.

Because second--order schemes are the current %tate of the art," we present second-

and fourth-order accurate solutions at t = 4.0 in Figures la through ld, choosing density

and Mach number as the variables of comparison. Both variables are plotted using thirty

equally spaced contours. Sharper discontinuities are the most notable improvement in the

fourth-order case, perhaps most notably the slip line emanating from the triple point near
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the top wall. The Mach stem in thisarea isalsomore correct in itslength and itsposition

upstream. The weak shock from the comer of the step is also more pronounced in the

fourth-order case,as isthe other weaker sliplineformed as thisshock intersectsthe shock

reflectingfrom the top of the step. This weaker sliplineisvirtuallyundetectable in the

the second-order accurate solution on thiscomputational mesh.

EXAMPLE 4. Again, we solve the two-dimensional Euler equations of gas dynamics,

this time as the solution pertains to the reflection of a moving shock wave from an inclined

wall. The self-similar nature of such a solution lends itself to a rigorous analysis which is

well documented in the literature (e.g. [6]), and we therefore omit any general discussion

of this phenomenon. These oblique shock reflections have been the subject of extensive

experimental and computational research and the interested reader is referred to [1,2,12]

and the references therein.

Our problem begins with a plane shock, whose Mach number we denote by Ms, which is

moving into still air towards a wall inclined by an angle 0_ to the direction of the shock's

motion as shown in Figure 2a. The flow orientation is chosen to facilitate comparison

with existing experimental interferograms. The problem becomes truly two-dimensional

when the shock encounters the wall and forms a reflection whose structure can be quite

complex. Analysis shows that the resulting similarity solution can be entirely determined

by the parameters Ms and 0_.

We examine two cases, both of which are double Mach reflections. The wall angle 0_

is 40 degrees in both cases, and the shock Mach numbers we examine are 2.87 and 3.72.

This type of reflection exhibits a complex structure containing shock diffractions and slip

lines, and is particularly demanding of any computational algorithm. For this reason, these

computations are most commonly performed with the use of a self-similar transformation

which effectively removes the time dependence of the solution. The resulting equations

that are then solved resemble the steady Euler equations with the addition of source terms.

However, because we wish to examine the temporal as well as the spatial accuracy of our

scheme, we choose to compute our solutions in a time-accurate manner.

In addition to the demanding nature of the solution itself, such computations axe also

made difficult by geometric concerns, largely due to the presence of a sharp corner. Though

there is no way to rid ourselves of the corner itself, we attempt to mitigate its presence

by using a curvilineax grid transformation. A portion of our particular mesh is shown

in Figure 2b, and is generated by a Schwarz-Chrisoffel transformation. We could use

this transformation to derive all of the necessary grid quantities referred to in Section 5.

However, we would like to test our scheme in its most general form. Therefore, given
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a collection of points generated by this transformation, we calculate our all of our mesh

variables from the approximate grid lines we generate by polynomial interpolation.

The equations we solve are the time-dependent Euler equations of gas dynamics in

general curvilinear co-ordinates, which we write

U, + FCU)_ + G(U)_ : 0, (39a)

where

= y,F-x,G, G = xeG-y_F, (39b)

and F and G are the cartesian flux vectors in (36b). Our initial conditions are the two

constant states U0 and U1 which determine the desired plane shock, oriented as in Figure

2a. We normalize these conditions with respect to the still-air initial state U0. These

conditions then are

Po = 1.0, Po = 1.0, uo = Vo = 0. (40)

Using these conditions and the shock Mach number Ms, we can then determine the state

U1 by means of the Rankine-Hugoniot jump condition. These initial states are then con-

servatively interpolated onto the computational mesh.

Provided we ensure that the entire reflection remains within the limits of the grid, the

boundary conditions are relatively simple. The initial conditions U0 ,U1 are applied on the

left and right boundaries, while the only concern at the far-field is adequately accounting

for the movement of the plane shock. On the wall, the tangency condition (38) is imposed.

We apply our scheme in its curvilinear version to the two test cases for 400 time steps

using a CFL of 0.8 on a 180 × 40 grid. Our purpose is not only to compare our numerical

solutions by their order of accuracy, but also to compare each of them with experimental

results, which we obtain from [3].

Figure 3a is an inteferogram resulting from an experiment designed to photographically

exhibit the density structure for the case Ms = 2.87. (The alphabetical labeling of this

picture is not relevant to our presentation.) Density contour plots for the second- and

fourth-order numerical solutions are compared in Figures 3b and 3c. Overall, crisper

discontinuities are observed in the fourth-order solution. The shock structure itself is also

more correct in Figure 3c, in that the more perpendicular orientation of the incident Mach

stem with respect to the wall is more in line with the experimental observation. The

"toeing out" of this Mach stem in Figure 3b appears to be due the poorer resolution of

the contact discontinuity emanating from the primary triple point.

In Figure 3d, we plot the fourth-order density solution on the wall in order to make a

comparison with experimental measurements. The x-axis is scaled by the distance L from
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the incident Mach stem on the wall to the corner, the Mach stem location being z = 0,

and the the comer at z = 1. Overall agreement with the experimental data is as good if

not better than the similar comparison in [3] in which the numerical solution was achieved

in a self-similar fashion and on a much finer grid.

In Figures 4a through 4d, we have the analogous results for the case Ms = 3.72. In

Figure 4b, the resolution of the contact discontinuity is much worse than in Figure 3b,

causing a serious error in the formation of the incident Mach stem. There is no such

problem, however, in the fourth-order case (Figure 4c) where the resolution of the contact

discontinuity is excellent. Finally, the density wall plot in Figure 4d appears to be an

improvement over the similar result in [3].

8. CONCLUDING REMARKS

The usefulness of shock-capturing schemes which are of formal high-order accuracy

in more than one spatial dimension appears certain. For instance, the results in EXAM-

PLE 3 suggest that these types of schemes might provide better results than are currently

available in scientific areas where the resolution of weak waves is crucial, e.0. acoustics.

EXAMPLE 4 illustrates the effect higher--order accuracy can have in the more accurate

resolution of unsteady compressible flow solutions which develop complicated shock struc-

tures. Furthermore, when compressible flow solutions are also required to be viscous,

these schemes can play a major role in the computation of such flows, in which there are

regions containing many smooth local extrema. In addition, when such flows also develop

shocks, e.g. shock-turbulence interactions, the need for these newly-developed schemes is

undeniable.
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Grid

8x12

16 x 24

32 x 48

64 x96

128 x 192

TABLE 1

Solution Error for IVP (8)

t = 2.0 CFL= -23

L_ error

r = 3 r_ r -- 4 r_

1.559 E-I

2.331 E-2

3.002 E-3

3.749 E-4

4.666 E-5

8.764 E-2

2.74 1.021 E-2 3.10

2.97 1.239 E-3 3.04

3.00 1.390 E-4 3.16

3.01 1.544 E-5 3.17

r=3

L1 error

re

3.890 E-1

5.678 E-2 2.78

7.627 E-3 2.97

9.130 E-4 2.99

1.142 E-4 3.00

r=4

2.078 E-1

1.605 E-2

1.764 E-3

1.237 E-4

8.658 E-6

rc

3.69

3.20

3.82

3.84

Grid

8x12

16 x 24

32 x 48

64x96

128 x 192

TABLE 2

Solution Error for IVP (10)

3
t = 0.15 CFL= i

r=3

L_ error

r_ r=4

3.765 E-2

9.549 E-3

2.111 E-3

4.264 E-4

8.988 E-5

r_

2.632 F_,-2

1.98 4.373 E-3 2.59

2.18 4.192 E-4 3.38

2.31 4.374 E-4 3.26

2.25 4.361 E-6 3.33

L1 error

r = 3 rc r = 4 r_

4.938 E-2

8.661 E-3

1.237 E-3

1.844 E-4

2.783 E-5

3.010 E-2

2.51 3.834 E-3

2.81 3.245 E-4

2.75 2.497 E-5

2.73 1.968 F_,-6

2.97

3.56

3.70

3.67
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Fig. 2a Initial conditions for EXAMPLE 4
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