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Parallelization of Implicit Finite Difference Schemes in Computational Fluid Dynamics
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Abstract

Implicit finite difference schemes are often the preferred numerical schemes in com-

putational fluid dynamics, requiring less stringent stability bounds than the explicit
schemes. Each iteration in an implicit scheme, however, involves global data depen-

dencies in the form of second and higher order recurrences. Efficient parallel imple-

mentations of such iterative methods, therefore, are considerably more difficult and

non-intuitive. In this paper, we consider the paraUelization of the implicit schemes that

are used for solving the Euler and the thin layer Navier-Stokes equations and that re-

quire inversions of large linear systems in the form of block tri-diagonal and/or block

penta-diagonal matrices. We focus our attention on three-dimensional cases and present
schemes that minimize the total execution time. We describe partitioning and schedul-

ing schemes for alleviating the effects of the global data dependencies. An analysis of
the communication and the computation aspects of these methods is presented. The

effect of the boundary conditions on the parallel schemes is also discussed. The ARC-3D

code, developed at NASA Ames, is used as an example application. Performance of the

proposed methods is verified on the Victor multiprocessor system which is a message

passing architecture developed at the IBM, T. J. Watson Research Center.

*Researchsupportedby the NationalAeronauticsand Space Administrationunder NASA Contract
No. NAS1-18605 whileinresidenceatthe InstituteforComputer ApplicationsinScienceand Engineering

(ICASE),NASA LangleyResearchCenter,Hampton, VA 23665-5225.
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1 Introduction

Efficient parMlel implementation of a_y iterative method depends on the characteristics of both the

particular application problem to be solved and the architecture of the parMlel machine on which

it is to be solved. Using iterative methods to find the numerical solution of a partial differential

equation with boundary conditions generally involves more than just the repeated solutions of linear

systems of the form
Az=b. (1)

The elements of A and b must also be evaluated at every iteration. Depending on the equations

and the boundary conditions, these calculations can be a significant part of the solution cost. In

many cases the data dependencies of the iterative method and those in evaluating the elements of

A and b are considerably different. Therefore loa_l balancing and communication requirements vary

from one part of the iterative process to the next. Thus, evaluating the parMleUsm of an iterative

method by considering just the cost of solving Equation 1 is not necessarily a good indicator of the

parallelism of the corresponding iterative method for solving the partial differential equation.

In this paper we consider some of the issues involved in the efficient parallelization of iterative
schemes in the overall context of a computational fluid dynamics (CFD) application. In particular,

we examine a class of algorithms known as the implicit schemes for their parallelization properties

on message passing, MIMD mtdtiprocessor systems. We show here that, with appropriate rear-

rangement of computation and by using suitable partitioning strategy, one can extract high degree

of parMlelism from these schemes. The AKC-3D code, developed at NASA Ames, is used as a

model application. Experimental results are presented from the implementations on the Victor

multiprocessor system developed at IBM, T. J. Watson l_esearch Center.

The orgaJaization of the rest of the paper is as follows. In the next section, various iterative

methods, explicit and implicit, used in the CFD applications are surveyed and their important

properties are discussed. The three dimensional Euler and the thin-layer Navier-Stokes equations

for modeling the compressible flow of a gas over a solid body are described in Section 3. The

numerical methods used for solving these model equations are considered in the remainder of the

paper. The implicit schemes that are of interest are described in Section 4. In Section 5, these

schemes are broadly classified into three categories and the parallel properties of each class is

analyzed. The sMient points of the AKC-3D code and the implementation aspects are described in

Sections 6, 7 and 8. l_esults are presented in Section 9 and finally Section 10 concludes the paper.

2 Numerical Methods in CFD

Whether using finite-element, finite-difference, finite-volume or spectral methods, efficient methods

for solving the time dependent Euler or Navier-Stokes equations typicaUy involve two basic types of

time stepping schemes: the explicit and the implicit. The most easily parallelizable and relatively

inexpensive are the explicit schemes which can be performed simultaneously at every grid element,

often with higtLly localized spatial data dependencies. However, these explicit methods, with a

localized spatial domain of dependence, are characterized by a time step restriction imposed by

the Courant-Friedrichs-Lewy (CFL) condition. The implicit schemes, on the other hand, are not

restricted by the CFL condition and are often advantageous for stiff problems which contain several

time scales or for solving steady state problems using the time dependent equations as a device for

the iterative solution of the steady state equations. The time step of an implicit method may be



restricted by the need to maintain a desired level of accuracy or to maintain numerical stability. In

general, the reduction in the number of time steps for an implicit method must be weighed against

the increase in the cost of the implicit calculations. On uni-processor and vector architectures,

the implicit schemes have proven to be superior in many instances. For multiprocessor systems, in

addition to the above mentioned factors, the data dependencies must also be taken into account.

Because of the inherent global spatial data dependencies that generally require the solution of

large sparse linear systems, the implicit methods are less amenable to parallelization. In this

paper we show that by suitable rearrangement of the computation steps and by using appropriate

communication and data partitioning schemes, it is possible to retain the efficiency of the implicit

schemes on parallel systems as well.

Examples of explicit time stepping schemes are the Lax Wendroff methods such as MacCor-

mack's predictor/corrector scheme (MacCormack, [16],[17]), the linear multistep methods such as

leap frog and Adams-Bashforth, and the one step multistage schemes such as Kunge-Kutta (Jame-

son, Schmidt, Turkel, [12]). Note that, regardless of the explicit or implicit time stepping scheme

used, many of the other calculations involved in typical CFD codes, such as evaluating the residuals

or the pressure have data dependencies similar to the explicit schemes.

Implicit time stepping schemes appear in a variety different methods. These include the Ap-

proximate Factorization (AF) / Alternating Direction Implicit (ADI) methods (Br_dif, [5]; Beam,

Warming, [3]; Abarbanel, Dwoyer, Gottlieb, [1]) and the closely related Fractional Step methods

(¥anenko,[29]) and the LU implicit methods (Jameson, Turkel, [13]). In recent years, various Jacobi

and Gauss-Seidel type iterative methods have been applied to solve the flux-split equations, either

using the Newton linearization, (Chakravarthy,[7 D or the switched evolution/relaxation (SEK)

method, (Mulder and Van Leer,[27 D. Implicit methods are also used to precondition minimum

residual or conjugate gradient algorithms, for example, the Incomplete LU (Meijerink, Van der

Vorst, [18]) and the Strongly Implicit Procedure (Stone, [25]). Most of these methods have also

been used as smoothers for multigrid methods or in conjunction with explicit schemes. (See [4],

[9], [24], [26].) Finally, implicit calculations, in the form of residual averaging, are used in the

FLO codes, (Jameson, [11]), to stabilize and accelerate the convergence of an explicit Runge-Kutta

multigrid method.

3 Equations

We consider implicit finite difference schemes for the three dimensional Euler and thin-layer Navier-

Stokes equations which model the compressible flow of a gas over a solid body. The domain in

Cartesian coordinates, z, y and z is mapped onto a computational domain with a general curvilinear

coordinate transformation given by

The surface of the solid body is assumed to be on a plane given by ( = constant. In these coordi-

nates, the time-dependent thin-layer Navier-Stokes equations are

OQ i)E OF OG OS

Or- -}" _ + _ + _- -- Re-1 0--_- (2)



where Q is the vector of conserved quantities,

Q= pv

p'w
e

and p, pu, pv,
momentum and the total energy per unit volume. The vector fluxes are given by,

E- j -1

pw and e are, respectively, the density, the x, y, and z Cartesian components of

f -j -1

puV + 77..p
pvV + _vp , G= j-1

pwV + _?.p

v(e + p) - _tp

puW + Gp

pvW + (vP

pwW + Gp

+ v) - (,p

puU + _=p

pvU + _p ,

pwU + _,p

U(e + p) - 6p

with the contravariant velocities, U, V, and W, defined as:

_1 = 5+Gu+_l,v+Gw

V = rh+_?=u+rlvv+rhw

W = _,+Gu+C'vv+Gw

and J is the metric Jacobian.

For a perfect gas, the pressure, p, and speed of sound, a, are given by

p = (_- 1)(e- ½;(u2 + v, + w2))

"yp
a 2 _

P

where "/is the ratio of specific heats.
The thin-layer viscous term on the right hand side of the equation is given by

S__j -1

I 0#mlw¢ + (#/3)m2C.

where

m2 = Cxu¢ +eWe + Gw¢

m3 = + v*+ + p_-l(./_ 1)-,(a2)¢.

The parameters/z, Re and Pr are the dynamic viscosity, Reynolds number and Prandtl number,

respectively.



The metric terms can be obtained by chain rule from the definitions of_, _ and C. The curvilinear

derivatives in terms of the Cartesian derivatives are given by:

_, = J(zvx c - zcx,,)

v_, = J(xez_ - x_ze)

iv _ J(zex,, - z,,ze)

vx=.lC e c- z ye)

G, = J(_ez,_ - y,Tze)

_. = J(x,Ty _ - x_y,i)

G = J(xey,_- x,_ye)

rh = -x,._7_ - Y_'_lv- z,'lTx

and J is given by,

j-1 = xey, Tz_ + xcyezv + xvyCz _ - xey_z, 7 - x,lyez_: - x(y,_ze.

The equations presented above describe Navier-Stokes equations in three dimensions after ap-

plying the thin-layer approximation theory. The Euler equations, for inviscid flow, are obtained by
setting the viscous term on the right hand side of Equation 2 to zero.

4 Implicit Methods

A numerical solution of Equation 2 can be obtained by discretizing in both time and space. We first
describe the time discretizations which lead to the implicit schemes. A single step time discretization
of Equation 2 can be written as

Qn+l _ Qn 0En+I 0Fn+l 0Gn+I

- t- + + + 8¢
OE '_ OF" cOG"

= -(l--a)(-_-+-_-q- 0"--_-'--

Here, Qn is the state of the system at time step _n, and, for example,

0S,,+1

Re-1 0_ )

E" = E(Q").

A Taylor's series expansion of the vector flux terms and the thin layer viscous flux term can be

used to linearize the (n + 1) terms giving

E "+_ = S" + A"(Q _+_ - Q")

f n+z .._ f n + Bn(Q '_+_ _ Q'*)

gn+l ,_ g n + C-(Qn+I _ Qn)

Sn+_ _ Sn + Mn(Q,,+z _ Qn).

A, B, C and M, the 5 )<5 matrices, are the flux Jacobians, given by os OF 0(7 OS respectively,b_, b-_, _Q, and b'_Q,
and AQ'* = Q'_+_ - Qn. These linearized implicit equations can be written in the "delta form" as:

_--B" 8 n (3)
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oF- 0c- 0s-.

The choice of the parameter a in the above equations determines the implicit scheme. When

a is equal to one, this is a first-order backward Euler scheme, a = 1/2 is a second-order Crank-

Nicolson, or trapezoidal scheme, and a = 0 is forward Euler, an explicit scheme. In the limit, as

At approaches infinity, and if a = 1, this becomes a linearized Newton's method.

We write Equation 3 more simply as:

(I + aAtN)AQ =-AtR (4)

and the explicit terms on the right hand side are given by

OE '_ OF'* OG'* Re_ 10S '_
R= o--if-

The space discretization is performed on a uniform grid in the generalized coordinate system.

Using second order central space differencing of the five coupled equations with lexicographic or-

dering of the grid points, Equation 4 results in a large (5 x 5) block banded linear system. For

three dimensional problems, the bandwidth is proportional to the number of grid points in a plane.

Therefore, the direct solution of the above system is impractical.
Without changing the accuracy of the scheme, the bandwidth of the linear system can be

reduced by factoring I + aAtN. The factored system can then be solved with a direct inversion

of each of the factors. For example, in the Approximate Factorization (AF) methods, such as the

Beam-Warming scheme, the linear operator is written as the product of three factors, one for each

coordinate direction. Thus, I + aAtN is factored as

Central finite differencing of each factor, yields a block tri-diagonal matrix, where the off-diagonal

5 × 5 blocks are dense. An alternative to the three way factorization is an LU factorization. Here,

I ÷ aA_N is factored so that Equation 4 becomes:

LUAQ n =-AtR

where L contains only backward-differenced and U contains only forward-differenced discretizations

of the spatial derivatives. Ordering the grid points accordingly, L and U become lower and upper

triangular matrices. The bandwidth of these matrices is as large as that of the unfactored system,

but now the inversion can be accomplished in just two sequential sweeps over the grid points.
Iterative methods can also be used to solve the unfactored system. Various relaxation or splitting

methods can be obtained by approximating data at off-diagonals by old data (at time t'_). Jacobi,

Gauss-Seidel and SSOl_ methods can be used, in their many three dimensional forms. For example,

the simplest is a point Jacobi method, where values at each point are updated using old values at all

surrounding grid points. A more elaborate method is a red/black(checkerboard)-line Gauss-Seidel,

obtained by performing tridiagonal solves on all 'red' lines in a plane, using the old data at the



'black' points, followed by tridiagonal solves on all black lines, using the new values at the red

points. This could be done first in the _- _ plane, then in the 7?- ( plane, and then in the ( -
plane.

No matter which method, direct or iterative, it is the data dependencies which determine the

available parallelism. In the next section, all of these methods are grouped into three distinct data

dependence categories.

5 Parallelization of Implicit Methods

The schemes described above, although all are implicit, exhibit different degrees of parallelism.

In general, the extent to which any of these methods is parallelizable can often be predicted by

examining the nature of the inter-grid data dependencies in going from one time step to the next.

We find it convenient to classify the methods into three categories based on the dependencies: the

parallel-by-point schemes, the parallel-by-line schemes, and the parallel-by-plane schemes. These

categories in effect characterize the granularity of the available parallelism and, quantitatively, the

degree of the extractable parallelism. As a consequence, the implementation techniques for all the

schemes within a category and their expected performance are similar.

Parallel-by-point

Multistage methods

(e.g., R.unge-Kutta)
Lax-Wendroff methods

(e.g., MacCormack)
Multistep methods

(e.g., leap frog)
Point Jacobi

Parallel-by-line

ADI/AF methods

(e.g., Beam-Warming)

Fractional step methods

Red/black-line Gauss-Seidel

Line Jacobi

Parallel-by-plane

Implicit LU

ILU and SIP

Point/line Gauss-Seidel

SSOR

Figure 1: A classification of implicit methods based on available parallelism.

In the following, we describe the main properties of the three categories using a three-dimensional

n x n x n grid as an example. Note that the properties are unaffected even if the grid is non-

uniform and even if it has unequal number of grid points in each of the three dimensions.

The 'parallel-by-point' schemes are the simplest. To advance to the next time step, computa-

tions can be done at each grid point independently of the computations at the other grid points.

Depending on the discretization stencil used, values from the previous time step at one or more

neighboring grid points are needed in the computations at any grid point. The time-explicit schemes

are all examples of 'parallel-by-point' schemes. A few of the time-implicit schemes also fit in this

category, for example, point Jacobi on the unfactored equations. The 'parallel-by-point' schemes

are extensively analyzed in the literature for partitioning and for minimizing the communication

overhead. (See, for example, Keed et al., [23].) On an n x n × n grid, up to n 3 proces-



sors can be used without introducing any computational sequentiality. Any processor assignment

scheme which allocates approximately the same number of points to each processor gives a good

first approximation to balancing the computation load. On distributed memory architectures, a

static three dimensional block partitioning of the grid is usually sufficient to minimize the com-

munication overhead, provided the interprocessor communication network provides at least a three

dimensional connectivity. In practice, two dimensional partitioning schemes also suffice in reducing

the communication costs close to a minimum. Improved load balancing of the computation and

minimization of the communication overhead is usually achieved by an analysis of the effect of the

data dependencies at the boundaries.

parallel-by-point parallel-by-line parallel-by-plane

Figure 2: Types of parallelism.

CParallel-by-line' schemes are a little more difficult. To advance to the next time step, the

computation at each grid point is coupled to other grid points in a fixed coordinate direction, but

can be done independently of the computations at grid points on all other lines in that coordinate

direction. In other words, in the Cparallel-by-line' schemes the dependencies are such that all the

grid points on a line must be updated together. The computations on different lines, however, may

proceed without any dependence or communication delays. The quasi-one-dimensional algorithms

such as ADI, AF and fractional step algorithms are in this category, as well as some of the line

relaxation methods listed in Figure 1. For an _ x n x n grid, there are r_2 grid lines in

each of the three dimensions and hence, as long as there are r_2 or less processors, the optima]

sequential algorithms can usually be modified to give a good parallel algorithm. With more than

n 2 processors, the solution process must usually be _blocked out'. That is, each processor performs

as many independent (parallel) computations on local data as possible before combining information

with other processors. Having reduced the number of coupled equations, the remaining equations

are solved by the same method by a subset of the processors. If more than one line is to be solved

simultaneously, the rest of the processor continue the reduction on other lines. A typical example

of this is when performing tridiagonal line solves. The sequentially optimal Thomas algorithm can

be replaced by a substructuring/cyclic reduction algorithm to extract more parallelism. Note that

7



the cyclicreductionalgorithmsrequiremore than twiceas many floatingpointoperationsper grid

point as the Thomas algorithm.Moreover,forthesealgorithmsthe dependenciesfan out requiring

richerinterprocessorconnectivityto reduce the communication overhead. The cyclicreduction

type algorithms,however,have the advantage thatmore oftheseoperationscan be done inparallel

(Heller, [8]; Ho and Johnsson, [101).

The third category of 'parallel-by-plane' involves dependencies that span two or more dimen-
sions and are more difficult to handle than the other two cases. LU factorization and Gauss-Seidel

methods are examples of these methods. Extracting parallelism from LU factorization and Gauss-

Seidel methods is possible, but is much more difficult, see (Naik,[19]). For a three dimensional

problem, these methods are vectorizable along j % k _- l = constant planes, but the vector length

varies. Similarly, the parallelization could be done in planes, at the cost of inefficient processor uti-

lization near the corners of the computational domain. Because of the nonlinearity of the equations,

the triangular LU factors are different at every point and at every time step. The parallelization

methods of Anderson and Saad [2], which involve preprocessing overhead which must be amortized

over many iterations to be worthwhile, are not useful in this context. Because of their improved

convergence properties and increased stability, these methods warrant further investigation.

For the remainder of this paper, we consider the parallelization of a 'parallel-by-line' scheme:

the Beam-Warming Approximate Factorization scheme. The AF methods have been extensively

studied. They can be made to be total variation diminishing (TVD), (Chakravarthy et al.,[6])

and the boundary conditions are well understood, (LeVeque,[15]). The ARC-3D code developed at

NASA Ames is based on this scheme. In the following, we first briefly described the key aspects

of ARC-3D, referring the reader for details to Pulliam and Steger, [22], and then discuss possible

parallel implementations. In Section 9 we describe our implementation on the Victor multiprocessor

system at IBM, Yorktown Heights.

6 ARC-3D

A widely distributed, general purpose implicit finite difference code is the AKC-3D code developed

at NASA Ames, (PuUiam and Steger, [21]). It is based on the Beam-Warming Approximate Fac-

torization scheme, described in Section 4. The numerical solution of the factored equation involves

inverting the three factors shown in Equation 5. Since each of the three factors represents a recur-

sive coupling of information along a particular spatial direction, the inversion of a factor has global

data dependencies, usually in the form of block tridiagonal matrices, in that direction.

Although the computation costs associated with Approximate Factorization scheme are consid-

erably less than direct solves, they are still expensive. A significant reduction (40%) in computation

can be achieved using the diagonalization of the blocks in the implicit operator, as developed by

Pulliam and Chaussee [20]. The flux Jacobians, _n, ]_n and C'* in Equation 5 can be diagonalized

as:

= h, = TfIi "T,; he = T  d"Tc.

For steady state calculations, a modified factored algorithm for the Euler equations, which is now

at most first order accurate in time, is given by

T_(I + AtO_h_)l([(I + AtO, TA,)P(I + AtcOcA¢)T(1AQ "_= R"

with N = T_IT, and P = T_IT¢. For the explicit form of the A's, T's, N and P, see (Pulliam and

Steger,[22]). A fourth order finite difference discretization of the implicit factors yields scalar penta-



diagonal and (5 x 5) block diagonal factors. Thus, the numerical solution using the diagonalization

technique consists of inverting seven factors, four of which are in (5 x 5) block diagonal form and

the other three, which correspond to the three spatial directions, are in scalar penta-diagonal form.

As in the block tri-diagonal case, the inversion of the scalar penta-diagonal matrices has global

dependencies in a particular spatial direction, but now the five variables at each grid point are

decoupled.

We consider here, two versions of ARC-3D code for examining the implementation and perfor-

mance issues in parallelizing some of the implicit schemes described and characterized in Sections 4

and 5. The first version corresponds to the standard way of computing the approximate factors

and is based on the solution of the block tri-diagonal matrices. We refer to this version of AKC-3D

as the block tri-diagonal version. The other version considered here is based on the diagonalization

technique described above. This version of AR.C-3D is referred to as the scalar penta-diagonal ver-

sion. In the following, we describe the computation steps and the corresponding data dependencies

in the two versions.

RHS

IMPLICIT

- setup
- forward solves

- back solves

TOTAL

penta-diagonal

+ x - V/-

290 356 37 3

235 410 26 6

66 99 6 0

30 30 0 0

331 539 32 6

block tridiagonal

+ X _ yf"

290 356 37 3

389 512 18 0

495 510 117 0

75 75 0 0

959 1097 135 0

Table 1: Floating point operations per grid point, non-viscous case.

The implementation of the Beam-Warming scheme in generalized coordinates involves a se-

quence of separate tasks. These tasks include an initialization part where the computations corre-

sponding to initial setup are made. This is followed by computations over each time step. Each

time step requires the solution of Equation 5 to find the correction, AQ n. The computation at

each time step is accomplished numerically by solving either a (5 × 5) block tridiagonal system

or by solving a scalar penta-diagonal system for each line, in each of the three spatial directions.

Thus, for an n × n × n grid, there are n 2 such systems to be solved for each direction. At the com-

putational level, however, four separate tasks are necessary for advancing a time step. First, the

discrete boundary conditions must be calculated at all boundaries. The inflow, outflow and solid

body boundary conditions must be set, and any symmetry or singular conditions related to the

computational domain must be enforced. Then the fluxes, numerical viscosity and the thin layer

9



viscousterms on the righthand sideof Equation 5 are evaluated,using the appropriatedifference

formulas.Next, in the block tri-diagonalversion,each of the three5 × 5 coefficientmatricesmust

be evaluatedat everygridpointinthe domain and then and only then can each factorbe inverted.

For the scalarpenta-diagonalversion,each ofthe fivescalarcoefficientsofthe penta-diagonalsys-

tem must be evaluatedat every gridpointfor each variablebeforethe penta-diagonalfactorcan

be inverted.Finally,the flowvariables,Q, must be updated:

Qn+l = Qn + AQ".

We referto thesefourtasksas BC, I_HS, IMPLICIT and UPDATE, respectively.

In general_a typicalapplicationinvolvesthousands oftime steps.This amortizesthe setup cost

over the many iterationsand hence the initializationcostisinsignificant.The work involvedin

UPDATE isno more than fiveindependent floatingpoint additionsat each gridpoint and hence

isalsonegligible.So we restrictout attentionto the threemajor tasks,BC, RHS and IMPLICIT.

The data dependencies of each of thesethreeoperationsare quitedifferent.In BC, only the

subdomaln consistingofboundary pointsare updated using valuesfrom only those interiorpoints

which are closeto theboundary points.The pressureon the solidbody isdetermined viathe normal

momentum equation,and because centraldifferencesof tangentialderivativesof the pressureare

used,scalartridiagonalinversionsmust be performed along the solidbody. RHS isexplicitand is

thereforecompletelydata parallel,but some ofthe calculationsmust be done at allgridpointswith

the finalcomputation at only the interiorpoints.Finally,IMPLICIT involveseitherthe inversion

of(5× 5) blocktri-diagonalsystemsor scalarpenta-diagonalsystems ineach ofthe threecoordinate
directions.

The number of floatingpoint operationsper grid point for KHS and IMPLICIT in the non-

viscouscase are shown in Table I forthe two versionsof ARC-3D. The number of floatingpoint

operationsper gridpointinBC are relativelysmall compared to thosein RHS and IMPLICIT and

forthat reason they are not shown. Clearly,for both versionsof ARC-3D, the costofIMPLICIT
isthe dominant cost.

7 Algorithms

To bringout the salientpointsforparallelimplementations,we now describethe threemain tasks

of AI_C-3D at the algorithmiclevel.First,the algorithmicaspectsofIMPLICIT are presentedin

some detailand then those forI_HS and BC are brieflydescribed.The task ofIMPLICIT consists

of solvinglinearsystems by invertingeitherblock tri-diagonalor scalarpenta-diagonalmatrices.

In the block tri-diagonalcase,foreach directionas many systems need to be solvedas there axe

linesofgridpointsinthat direction.In the scalarpenta-diagonalversion_foreach variableand for

each direction,the number of systems solvedisequal to the number oflinesofgridpointsin that

direction.In additionto invertingscalarpenta-diagonalmatrices_thisversionrequiresinversionof

block diagonal matrices.However, the inverseof each block isknown analytically,and the block

diagonal inversionscan be done without requiringinformationfrom any other grid point. The

algorithmsused forsolvingblocktri-diagonalsand scalarpenta-diagonalsaresimilarto thoseused

forinvertingscalartri-diagonals,which we describenext.

Sequentially,the most efficientalgorithm for invertinga tri-diagonalsystem is the Thomas

algorithm which isa specialcase of the Gaussian elimination.To solvea system of sizen, with

10



coefficients A, B and C and right hand side f, given by,

AjUj-1 _- Bj_j -}- Cjuj+I = fj

where u0 and un+l are known, the Thomas algorithm performs two sweeps over the unknowns ul

through un. In the forward sweep, coefficients Pj+I and qj+l, j = 1,-.., n, are computed, where

Pj+ = (Bj- AjP,)- cj
qj+l = (Bj- AjPj)-'(fj- Ajqj).

The unknowns uj, j = n,..., 1, are determined in the back sweep from

uj = q j+ 1 - Pj+I u j+l.

Note that the computation requires storage of all Pj+I and qj+l from the forward sweep for com-

puting the unknowns uj in the back sweep. Clearly, both phases of the Thomas algorithm have

recursive data dependencies and hence the algorithm, when used for solving a single system, is

sequential. However, when several independent such systems need to be solved as in the case of

IMPLICIT, the computations of these systems can be pipelined. Thus, the above algorithm can

be parallelized by assigning to each" processor parts of computations from several independent tri-

diagonal system solves. In such a scheme, if a processor is to compute unknowns ujp through uk_

from one of the systems, then it receives the coefficients Pip and qjp from a preceding processor

and then proceeds to compute the coefficients through Pkp and qkn and sends the final coefficients

Pkp and qkp to the succeeding processor. The same is repeated for all other systems assigned to

it. After completing all the forward sweeps, the back sweeps are performed. First the values of

ukp+l _re received for each system from the succeeding processor and back sweep is completed by

computing the unknowns ukp through z_jp. The computed value of ujp is sent to the preceding

processor and the process is repeated for all the systems assigned to that processor. This we refer

to as the pipelined version of the Thomas algorithm. Note that all the coefficients from all the

forward sweeps must be stored until the back sweeps are completed.

The tri-diagonals can also be computed using the substructuring or the cyclic reduction algo-

rithms (See, e.g., Ho and Johnsson [10]). However, these schemes are computationally expensive.

The cost of Thomas algorithm for scalar tri-diagonals is approximately 8 floating point operations,

whereas the cyclic reduction type algorithms require about 17 floating point operations per vari-

able. The Thomas algorithm is a sequential algorithm and if only one tri-diagonal system is to

be solved, then the available of parallelism is negligible. The cyclic reduction type algorithms, on

the other hand, are highly parallelizable. In the next section we describe partitioning schemes for

extracting parallelism from the Thomas algorithm in the context of ARC-3D and show that the

available parallelism is sufficient for the machine model assumed here.

For the block tri-diagonal case, each of the coefficients A and C is a dense 5 × 5 block, matrix

B is a 5 × 5 diagonal block, and uj and fj are vectors of length 5. The computed coefficients Pj

and qj are, respectively, dense 5 × 5 matrix and 5 × 1 vector. Thus, in addition to the cost of

computing the coefficients, the corresponding Thomas algorithm involves factoring a 5 × 5 matrix

and computing six matrix-vector products at each grid point. The scalar penta-diagonal case has

five scalar coefficients instead of three for each variable at each grid point. The corresponding

Thomas algorithm solves penta-diagonal systems in a similar fashion as the tri-diagonal system.

Note that the dependencies are in the form of the second order recurrences. For each variable, the

11



forward sweep computes three coefficients and the computation of _j in the back sweep involves

values at uj+1 and _j+2.

In RHS, the fourth order spatial discretization of the right hand sides leads to 13 point stencils at

the interior points, modified to smaller stencils near the boundary. These calculations are performed

at each grid point and they involve explicit data dependencies, i.e., they use known information.

Therefore, the computations for I_HS may be completed independently. The implementation is

similar to Jacobi relaxation and the computations may be performed in any order.

In BC, the inflow/outflow boundary points can also be updated independently, but the values

at boundary points along the solid body are coupled and must be updated using tridiagonal solves

in both the _ and _ directions. We use the scalar Thomas algorithm for these tridiagonal solves.

8 Parallel Implementation

Efficient parallel implementation requires extraction of maximum parallelism with negligible com-

muuication overhead. This entails partitioning of the data across processors and rearranging the

computations so that the load is evenly balanced and the communication overhead is kept to a

minimum. In practice achieving both the goals simultaneously is difficult. Furthermore, since the

data dependencies of BC, I_HS, and IMPLICIT are not the same, reaching this goal is even harder.

We describe here a class of partitioning schemes that are suitable for MIMD architectures where the

number of processors is small compared to the number of grid points. For the following discussion

assume that p processors are available and that the computational domain is an l x m x n grid.

: . :¢:_!:_:_:_!_$_:._:._._:._._._._

P5 P6

P8

1-D partitioning 2-D partitioning 3-D partitioning

Figure 3: Uni-partition schemes.

8.1 Uni-partitlon Schemes

We refer to a partitioning scheme as a uni-partition scheme when the domain of computation is

subdivided into p partitions and one partition is assigned to each processor. There are several

ways of partitioning the domain in this manner. The simplest and the most commonly used are

those where the domain is partitioned evenly, or almost evenly, along one, two, and three spatial

12



dimensions. If the computational domain has at least p grid points in one of the spatial directions

then partitioning the grid into p slices along that direction gives the 1-D uni-partition scheme. If

the number of grid points on a plane is at least equal to p, then the 2-D uni-partitioning scheme

is possible. Here the grid is partitioned along two spatial directions. Similarly, in the 3-D uni-

partitioning scheme, the domain is divided along all the three dimensions. See Figure 3.

The 3-D partitioning scheme has the smallest surface to volume ratio whereas the 1-D scheme

has the largest. Thus, for RHS, where the data dependencies are local, the 3-D partitioning scheme

reduces the volume of data communicated. However, in this scheme, some processors may have

to communicate with at least six other processors and possibly with up to 12 other processors.

This scheme is also unattractive if a three dimensional mesh cannot be mapped efficiently on the

underlying inter-processor communication network. Furthermore, the use of 13 point stencil in

RHS makes it necessary to maintain a buffer containing two rows or two columns worth of extra

information from the neighboring partitions at each surface of the partition that is adjacent to

another partition. This memory overhead increases as the number of grid points per processor

decreases. In the extreme case where one grid point is assigned to a processor, the information at

the surrounding 12 grid points may have to be buffered.

Sequential Delay Memory Kequired

o( 3/p)

2) o( 2/p)

3)

Figure 4: The pipelining delay and memory requirement tradeoff.

For the IMPLICIT part, the 1-D partitioning scheme requires inter-processor communication

in only one of the three directions. Thus, for the 1-D partitioning scheme, the adverse effect of the

data dependencies is restricted along only one direction. The effect of data dependencies may be

further reduced by pipelining the forward and back sweeps of IMPLICIT, as observed in (Johnson,

Saad and Schultz,[14]). The larger the number of lines that can be pipelined, the lesser the effect of

sequential data dependencies present in the Thomas algorithm. If there is no pipelining, then each

of the line solves is done sequentially, irrespective of the number of processors used. However, if all

the line solves are pipelined, then the net effect is that the computation may be completed in time

equal to one line solve performed sequentially plus the time required to compute the remaining line

solves with perfect parallelism. This cost can be further reduced by starting the computations from

both sides simultaneously. This reduces the sequential cost of filling the pipe by half. In the 2-D

and 3-D partitioning schemes, the data dependencies of IMPLICIT are spread across processors

along two and three dimensions, respectively. This gives rise to data dependency delays in two and
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threedirections.Thus, ifno pipeliningof computations isperformed, then the 3-D partitioning

scheme isthe most adverselyaffectedand has very littleparallelism.With fullpipelining,the 2-D

and 3-D caseshave a delay oftwo and threesequentiallinesolves,respectively.Note from Table 1,

thatforthe type ofproblems consideredhere,the costofone sequentiallinesolvecan be very high

and may quicklydominate the totalparallelcost.This isparticularlytruewhen the number ofgrid

pointsassignedto each processorissmall.By assigninga sumcientlylargenumber of gridpoints

to each processor,one may reduce the effectof the sequentialpart in the pipelinedcomputation.

However, thereisa penalty to be paid in terms of memory. In order to be able to pipelinethe

computations, itisnecessaryto storethe intermediateresultsof allthe forward solvesthat are

pipelined.This entailsa memory overhead ofstoringan extra 5 × 5 matrix at each gridpoint for

the block tri-diagonalcase.In the penta-diagonalcasethe memory overhead iselevencoei_icients

per gridpointalong each direction.This givesriseto an interestingtradeoffbetween the memory

requirementand the benefitofpipeliningthe IMPLICIT computations. See Figure 4.

Under the uni-partitioningscheme, the substructuringor the cyclicreductiontype algorithms

may alsobe used in IMPLICIT. These algorithmshave higherdegreeof availableparallelism,but

thereisa penalty of almost doubling the computation cost. Thus, the 1-D and 2-D partitioning

schemes with substructuringgenerallyfairpoorlyas compared to the Thomas based IMPLICIT.

For 3-D partitioningschemes, the communications is globalin allthe three dimensions,making
theseschemes communication intensive.

In Table 2,some of the issuesdescribedabove arequantifiedforcomputing scalartri-diagonals

along allthe three dimensions ofan n x r_x n gridand usingp processors,neglectinglower order

terms. These complexitiesassume p _<n, though the complexitiesfor the 2-D Pipelinedand 3-D

Diagonal scheme remain validfor p <_ n2 and the 3-D complexity isvalidup to p <_ ns. The

multi-partitionschemes are describedinthe next section.The pipelinedmethods use the Thomas

algorithm with I-D, 2-D and 3-D partitioning.The arithmeticoperationscount givesthe total

parallelcomputation cost,includingthe dependency delays.The column _words copied'givesthe

amount of data that must copied intothe memory because of the partitioningscheme used. The

number of messages isthe minimum number ofmessages that must be encounteredin a sequence

from the beginningto the end of the computation. This sequence ofmessages representsminimum

communication delay in that partitioningscheme because of the message overhead. This number

takesintoaccount allthe messages sent by al]the processorsin parallel.The message sizeisin

terms ofthe number of words per message. For Thomas based algorithms,two words must be sent

per linein the forward sweep and one word in the back sweep. The message sizeforthe forward

sweep could be increasedto 2 words, reducingthe number of messages sentin the forward sweep

by a factorof 2. The substructurealgorithm uses1-D partitioning,with the Thomas algorithmin

the two directionswhich need no communication and the substructurealgorithmin the direction
which crossesprocessorboundaries.

There are two major drawbacks of the uni-partitioningschemes describedabove. First,load

balancingisdifficult.In practice,the problems to be solvedmay have gridsizesthat cannot be

evenly divided among the processors.Thus, ifthe granularityof the load distributionis to be

retainedat gridlevel,then some partitionsmay end up with a higher number of grid pointsto

compute than the others.Since the computations per gridpointare significant,the effectof this

load imbalance may be considerable.This isespeciallytrue when the number of processorsis

largeand the number ofgridpointsassignedtoa processorisrelativelysmall.For the partitioning

schemes describedabove,the problem iscompounded by the factthatthe loadimbalance may be of
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Table 2: Complexities of scalar tridiagonals in three dimensions; a s points, p processors.

the order of lines of grid points or even planes of grid points. This adversely affects the performance

irrespective of whether only a small number of processors or a large number of processors are used.

If non-standard partitions are used, then the load may be better balanced, but the communication

and programming costs may turn out to be unreasonable. The second drawback applies even when

the grid can be evenly divided among the processors. This is because of the uneven distribution

of the computational work at the grid points. The interior points which form the major bulk

of the computation have higher amounts of computational work associated with them than the

grid points on the boundary. With this unevenness, any grid-level partitioning scheme results in

a load imbalance. Furthermore, the data dependencies of BC, 1%HS, and IMPLICIT are totally

different and BC applies only to the boundary points, I_HS is applied over all the grid points,

and IMPLICIT is applied only to the interior points. This adds to the data dependence delays

even if the computational work is perfectly divided among the processors, since the processors with
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partitions that include the boundary grid points are required to work on BC and RHS while those

with only the interior points are not. One way to reduce the detrimental effects of load imbalance

is to assign multiple partitions to each processor. This is described in the next section.

8.2 Multi-partition Scheme

In a multi-partition scheme, the computational domain is divided into a number of sub-partitions

that is larger than the number of processors and each processor is assigned more than one such sub-

partition. An obvious advantage is that the granularity of each sub-partition may be made much

smaller than that in the uni-partition scheme. This gives better control over the computational

load distribution. Moreover, as we describe next, not only is it possible to better balance the overall

computational work, but also the load may be balanced at the task level so that the additional

data dependency delays are not introduced. In the following, we describe one such scheme that

we refer to as the diagonal partitioning scheme. A partitioning scheme similar to the 2-D version

presented below is described by Johnsson et al. for implementing ADI methods on multiprocessor

systems [14].

PlJP2 ; Ri

PI: P

o__ii_i_ _

[ !._.r'_'_i':':•

::: !!i!!!!!!'_?!:?i

P4 P3

Pl

2-D diagonal

partitioning

3-D diagonal

partitioning

Figure 5: Multi-partition schemes.

In the diagonal partitioning scheme, the domain is partitioned in a manner similar to that of

the 2-D or the 3-D uni-partitioning scheme described above. We refer to these as the P-D diagonal

and 3-D diagonal partitioning schemes, respectively. In the former case, the domain is subdivided

into p_ sub-partitions and in the later case it is subdivided into pS/_ sub-partitions. In the 2-D

diagonal partitioning scheme, each processor is assigned one sub-partition from each row and from

each column of sub-partitions. Similarly in the 3-D diagonal partitioning scheme, each processor is

assigned one sub-partition from each plane of sub-partitions. This arrangement results in assigning

sub-partitions to a processor that form diagonal chains in two or three dimensions. Note that, for

the 2-D diagonal partitioning scheme to be applicable, the computational grid should have at least

p grid points on each side of one of the 2-D planes and for the 3-D diagonal partitioning case the

computational grid should have at least p_/2 grid points along each of the three dimensions.

The above described diagonal partitioning and assignment schemes require each processor to
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computeall the three tasks: BC, RHS, and IMPLICIT. Because each processor is assigned one sub-

partition from each row and column of sub-partitions, the computation is much better balanced
even when the number of grid points along each dimension of the grid is not evenly divisible by p

or pl/2. An interesting aspect of the 2-D diagonal partitioning scheme is that any processor may

need to communicate with only two other processors even though there are four sub-partitions

surrounding each sub-partition. In the 3-D case, each processor needs to communicate with six

other neighbors.

The diagonal schemes, however, have significantly larger surface area that is adjacent to other

sub-partitions. This results in higher communication requirements. The communication and com-

putation requirements in the scalar tridiagonal case for the 2-D diagonal partitioning scheme are

shown in Table 2.
If the communication overhead is not substantial then the diagonal partitioning schemes have a

clear advantage over the 2-D and 3-D uni-partitioning schemes described earlier. This can be seen

by observing the maximum achievable speedups. For example, with the 3-D diagonal partitioning

scheme applied to an n × n x n grid and using n 2 processors, the maximum achievable speedup is

n 2. The same with the 2-D uni-partitioning scheme is 3n2/5 and with 3-D uni-partitioning scheme

it is n2/2.
Another variation of multi-partitioning scheme is the case where the domain is partitioned into

p2 sub-partitions as in the case of 2-D uni-partitioning scheme, but the partitions are switched

during the computation of IMPLICIT. Here, each processor is initially assigned p sub-partitions
all from the same row of sub-partitions. After completing the IMPLICIT in two of the directions

that lie in the plane of sub-partitions assigned to the processor, the processors transpose the sub-

partitions before working on the final dimension of IMPLICIT. With this scheme, there is no

communication during the IMPLICIT computation except for the transpose. The advantage is

that there are no data dependency delays. The costs associated with this scheme for the scalar

tri-diagonal case are shown in Table 2.

9 Implementation on Victor

We now describe some of the results from the implementations on the Victor multiprocessor system

developed at T. J. Watson l_esearch Center, Yorktown Heights. Victor is a message passing MIMD
architecture with Inmos TS00 transputer as the processing unit. Each node is associated with 4

MB DRAM and is connected to four other nodes forming a 2-dimensional grid interconnection.

Victor is a modular architecture that can be configured from 16 to 256 nodes (Wilcke et. al.,[28]).

All the implementations were made using the Inmos 3L parallel Fortran environment. The 3L-

supported thread routines were used to mimic an asynchronous communication environment for

overcoming some of the difficulties posed by the synchronous communication supported by the

transputer hardware.
For all the results presented here, we use the flow past a semi-infinite hemisphere-cylinder

body as a model problem. The computations were performed on a grid with 30 points in the

axial direction, 12 points circumferentially and 30 points in the normal direction. Figures 6 and 7

show the body and the associated grid in the curvilinear coordinates. All the computations were

performed with double precision arithmetic.
We have considered three different partitioning schemes for both the block tri-diagonal and the

scalar penta-diagonal versions. These are the 1-D and 2-D uni-partitioning schemes, and the 2-D
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Figure 6: The hemisphere-cylinder body.

diagonal partitioning scheme. In all the cases the partitioning of the computational domain was

along the axial and the normal directions only.

(1,1) (2,2) (3,3)(4,4)

BC .988 .501 .385 .317

RHS 30.1 8.42 4.26 2.44

IMPLICIT 199. 51.4 26.4 13.2

TOTAL 230. 60.3 31.0 15.9

Table 3: Timings forthe block tridiagonalversion,using I,4,9 and 16 processors(inseconds per
time step).

The resultsfrom the implementationsof the scalarpenta-diagonaland block tri-diagonalver-

sionsof ARC-3D using the 2-D uni-partitioningschemes are compared in Tables 3 through 6. In

allthe casesthe timings are given for each of the threetasks forfour differentprocessorconfig-

urations.These are a 1 processor(1,1),4 processors(2,2),9 processors(3,3),and 16 processors

(4,4).In Tables3 and 4 actualwallclocktimingsper time stepare given.The speedups over one

processortimingsare giveninTables5 and 6. Itcan seenthat_though the blocktridiagonalversion

ismore expensivethan the penta-diagonalversion,itismore efficientin extractingthe available

parallelism.

An interestingobservationisthe comparison of the performance of 9 processorswith that of
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Figure 7: A cross-section of the grid in curvilinear coordinates.

(1,1) (2,2) (3,3)(4,4)

BC .988 .560 .426 .438

I_HS 30.2 8.52 4.36 2.57

IMPLICIT 64.6 17.1 8.93 4.49

TOTAL 95.8 26.2 13.7 7.50

Table 4: Timings for the penta-diagonal version, using 1, 4, 9 and 16 processors (in seconds per

time step).

16 processors. For the problem size considered here and for the 2-D uni-partitioning schemes, the

interior points are evenly divisible among the 16 processors, but are not divisible equally among 9

processors. The effect of this load imbalance is clear from the Tables 5 and 6.

The relative performance of the three tasks BC, RHS, and IMPLICIT are also to be noted.

As expected, BC performs poorly, because most of the computation in BC is along the solid body

which is computed by only 4 processors in the case of 16 processor implementation and by only 3

processors in the case of 9 processor implementation. RHS, although easily parallelizable, performs

poorly as compared to IMPLICIT mainly because of the load imbalance. The partitions divide

the interior points evenly, but this is not true when the boundary points are also included. In

I_HS, computations are performed at the interior as well as at the boundary points which affects

its performance. IMPLICIT has only the interior points to compute and it performs very well.
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Even here there is a slight load imbalance that is not obvious. The load imbalance is caused by

the fact that the computations at the first point of a line solve are considerably less than those at

the rest of the interior points. However, the sequential effect of the pipelining of IMPLICIT masks
this imbalance.

The diagonal multi-partitioning schemes are much harder to implement than any of the uni-

partition schemes. The difficulty arises in efficiently managing the multiple sub-partitions assigned

to each processor. Since the number of sub-partitions assigned to a processor increases as the total

number of processors working on the problem increases, the overhead for large number of processors

can be very high, especially in the 2-D diagonal case where the relative gains are small.

(1,1) (2,2) (3,3)(4,4)

BC 1.00 1.97 2.57 3.12

RHS 1.00 3.57 7.07 12.3

IMPLICIT 1.00 3.87 7.54 15.1

TOTAL 1.00 3.81 7.42 14.5

Table 5: Speedups for the block tridiagonal version, using 1, 4, 9 and 16 processors.

Currently, we are in the process of completing this implementation and the results seen so far

are encouraging. For the 2-D diagonal version, the assignment scheme results in each processor

having to communicate with only two other processors. These neighboring processors remain

the same throughout the entire computation. Thus, if the processors can be arranged in a loop,

the 2-D diagonal version can be mapped onto these processors which results in nearest neighbor

communication for BC, KHS, and IMPLICIT. Mapping a loop onto a mesh is relatively easy.

However, to retain nearest neighbor communication only the loops with even number of processors

are permissible.

(1,1) (2,2) (3,3)(4,4)

BC 1.00 1.76 2.32 2.26

RHS 1.00 3.54 6.93 11.8

IMPLICIT 1.00 3.78 7.23 14.4

TOTAL 1.00 3.66 6.99 12.8

Table 6: Speedups for the penta-diagonal version, using 1, 4, 9 and 16 processors.

10 Conclusions

We have attempted to show, by analysis and experimentation, the extent to which CFD applications

based on implicit scheme can be parallelized. A specific example of an implicit scheme involving
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linesolvesin allthree coordinatedirectionswas considered.It isobserved that the affectof the

variousdata dependencies of the differentpartsof the algorithm adverselyaffectthe parallelism,

but thesecan be minimized with an appropriatepartitioningstrategy.
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