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ABSTRACT

The usual picture of spacetime consists of a continuous manifold, together

with a metric of Lorentzian signature which imposes a' causal structure on the

spacetime. We consider a model, first suggested by BombeUi et al., in which

spacetime consists of a discrete set of points taken at raJadom from a manifold,

with only the causal structure on this set remaining. This structure constitutes

a partially ordered set (or poser). Working from the poser alone, we show how

to construct a metric on the space which closely approximates the metric on

the original spacetime manifold, how to define the effective dimension of the

spacetime, and how such quantities may depend on the scale of measurement.

We discuss possible desirable features of the model.
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Spacetime is conventionally regarded as a pseudo-Riemannian manifold which provides

an arena for the interaction of fundamental particles and fields. Via general relativity, a

good low energy theory of gravity, we also have a picture of spacetime as a dynamical

object, distorting according to its energy content, and thus interacting with the matter

fields it contains. Unfortunately, such a picture has proved problematic to the incorporation

of quantum theory. Many problems arise from attempting to probe behaviour at very small

scales, scales at which it is generally believed that 'established' physics does not hold.

One obvious means of circumventing such difficulties is to assume that there does indeed

exist a physical cutoff, by making spaeetime discrete. There were some early attempts at

discretisation by Das a, who replaced the continuous manifold by a regular lattice of points

in spaeetime. However, this approach has the major disadvantage that the resulting models

were not Lorentz invariaxlt, and therefore are not suitable for incorporating gravity, which

has local Lorentz invarianee as a symmetry. A more fruitful area of study has been that

of Regge Calculus (see Regge2), but the aim of this is to approximate the manifold by a

discrete tesselation in order that properties of the manifold can be more readily calculated.

In other words, although discrete, the Regge tesselation is still special in that it carries

over certain structure (such as dimension, measure etc.) from its parent manifold. We, on

the other hand, are interested in calculating the actual properties of the discrete structure,

and relating these to the analogous continuous ones.

In this letter, we examine a class of discrete spaeetimes recently proposed by Bombelli

et al3: causal sets. We however adopt a complementary approach; we consider the causal

set as the fundamental object, and examine what physical properties one can derive directly

from it. As we will illustrate, the lack of continuity means that we need to take great care

in choosing quantities that really do measure something of physical interest. Also, not

surprisingly, the discreteness introduces phenomena akin to the 'uncertainties' of quantum

physics. We begin by reviewing causal sets, before setting up our definitions of structure

on the set. We show how to define timelike intervals, geodesics and dimension of the set,

as well as discussing measurement of spaeelike distance mad velocities. We will also report

on recent mathematical results paralleling this work. We conclude with some remarks on

the future of this line of study.

The fundamental feature of a spacetime manifold is the notion of time, or timelike

intervals; time is a preferred direction in the manifold. It is the causality properties of the

manifold which determine what sort of physical spacetime it is. The causal structure of a

manifold determines the metric structure up to a local conformal factor 4, so that given a

causal structure, we have a good idea what manifold we are dealing with. Causality is an

example of what is known mathematically as a partial order. A partial order on a set X
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is a relation < which satisfies transitivity, i.e.,

x<y , y<z _ z<z

and such that z < x is forbidden. The set X, together with the partial order <, is known

as a partially ordered set, or poser. Thus a spacetime, with the partial ordering defined by

causality, is an example of a poset. Partially ordered sets are studied in their own right by

mathematicians, although a general poset has far less structure than a spacetime manifold.

The motivation for studying the behaviour of spacetime as a poset is to examine the effects

of discreteness in a potentially calculable manner.

We must first discuss what we mean by a discretisation of spacetime. We have already

commented on the problem arising from taking a regular lattice as a model for a discrete

spacetime: such a lattice loses isotropy. One way of avoiding the phenomenon of a preferred

direction is to take as a model a collection of points distributed at random in the manifold;

so that in each finite region there are a finite number of points, and the average number

of points in a region is proportional to the volume of that region. The causal relation

imposes a partial order on this discrete set of points, so we have a random partial order as

the basis of a model of spacetime. Such a model has been considered by Bombelli et al.3,

who named it a causal set. In any random model of this type, it is to be expected that

small scale phenomena will depend on local (random) effects, while large-scale phenomena

will depend only on the "average case" behaviour, which is essentially the behaviour of

the manifold we had to start with. Such attributes would be in keeping with a picture

of spacetime incorporating quantum behaviour. There are thus two major problems to

be considered with this model. One is the task of trying to build a quantum theory on

top of this spacetime framework, and the other, more basic, problem is to discover the

extent to which we really do recover ordinary physics (i.e., our continuum manifold) on

the large scale. In this paper, we take a step towards a resolution of the second of these

questions. We will present various physical properties one can derive from a poset, as well

as reporting on recent mathematical results concerning their applicability.

Bombelli et al.3 proposed the idea of first recovering the manifold (approximately),

with its associated volume measure, from the partial order and then deriving the Lorentzian

metric and other properties from the manifold. The problem of recovering the manifold led

them to consider the question of which (small) partial orders could be embedded in a given

spacetime manifold. We wish to suggest that it is more natural to concentrate on the poset

itself as the more fundamental object, and to derive basic physical properties of spacetime

from the poset. Implicit in this is the assumption that the poser does indeed correspond

with some physical manifold, which is guaranteed if we consider the discretisation already
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mentioned. We first derive a timelike distance directly from the partial order. Given this

distance, we can then, roughly, determine the manifold. Of course, since our model is

inherently random, we cannot expect to recover the metric exactly. What we can do is to

specify a function of the causal structure which is a good approximation of the timelike

distance.

We first give a few definitions in order to set up our nomenclature and conventions.

We will then define analogues of geodesics for discrete spacetimes, and thence the metric;

we prove that this has the required properties for a Lorentzian metric. We then show how

to derive an effective dimension for the set and discuss how this varies according to scale.

We conclude with a few remarks about the relevance of the work.

As a first step, let us be more precise about the random nature of the model we are

considering. We begin with a spacetime manifold M, with an associated causal structure

(x < y for events x and y if y is in the future light-cone of x), and a metric and volume

measure on the manifold. We will also take as fixed a parameter p, the denJity. We

now take a Poisson distribution with density p of points in M: that is, we take a set

X(- X(M)) of points at random in M, so that the number of points of X in each subset

of M which has volume A, say, is a Poisson random variable with mean pA. This defines

the discretisation of M. The causal structure on M then induces a partial order < on X,

whereby xl < x2 if, considered as points in M, xl is to the past of x2. This defines our

causal set or poset.

For N a subset of M, we will write the random set N n X as X(N). We shall be

particularly interested in the Alexandrov sets, which form a basis for the topology on our

manifold 4. These are the sets of the form [x,y] - {z : x < z < y}, i.e., all events lying

between x and y, (for x and y events in X). Note that each Alexandrov set has finite

volume, so, with probability 1, there are only finitely many points in each X([x, y]). Note

also that the set of points in M which are null with respect to an event x has measure

zero, so almost surely there is no pair (x, y) of points chosen for X such that y lies on the

null cone of x.

Having explained the discretisation process, we now show how to construct timelike

geodesics and distance. We start by defining a chain, C, in a partial order as a set of points

in X such that each pair of points from C is related by <. Translated into the language

of relativity, a chain in the causal structure of a spacetime manifold is a set of events such

that every pair of events are causally connected, in other words, for each x and Y , x is

either to the past or to the future of Y. If a chain C has a minimal element x (i.e., an

element x such that every element of C is above x) and a maximal element Y, we say that

C is a chain from x to y.
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Now, if X(211) is our random poset derived from a manifold M, and C is a chain

from x to y in X, then there are almost surely only a finite number of elements in the

chain, since otherwise there would be infinitely many points in the discrete Alexandrov set

X([z,y]). Thus C is a sequence z = zl < x2 < • ..z,_l < za = y of points in X. Now, if

there is another point z in one of the Alexandrov sets [xi, xi+l], then we can always form

a 'longer' chain by adding z to C. If there is no such point in any of the sets, then we say

that C is a mazirnal chain or path from z to y. Given such a path, C(= (zl,z2,... ,z,)),

we then define its length to be 8 - 1.

Another way of thinking about this is in terms of nearest neighbours. If x and y are

points of X with z < y but no other point of X in Ix,y], then we say that x and y are

neareat neighboura. A path can then be thought of as a sequence of steps from one point to

a nearest neighbour to its nearest neighbour and so on, with the length being the number

of such steps in the path. The maximal chain or path corresponds approximately to a

curve in/_I. However, whilst the length of a curve in M is given by the integral of proper

time elapsed along it, here in X(M) we merely count the points in C.

Clearly, however, for any given x and y, there can be many different paths between x

and y with varying lengths. For instance, we could choose a point z, almost on the future

light cone of x and the past light cone of y; such a point could be a nearest neighbour

of both x and y, leading to a path of length 2. On the other hand, we could take what

intuitively would correspond to the 'straight line' path between x and y which would have

considerably more points. This is exactly analogous to the paths between x and y in the

continuum case. There, we define a geodesic to be the path of maximal length between x

and y, and the distance to be that length. Here we do exactly the same: if • and y are

events in X with x < y, we define the distance d(x,y) from x to y to be the maximum

length of a path from • to yr. We then automatically have the triangle inequality, for

suppose we have three points z, y, z in X, with x < y < z. Then the longest path from

to z is certainly no shorter than the longest path from z to z via y. Thus we have the

appropriate form of the triangle inequality: d(,,z) > d(r.,y) + d(y,z).

Perhaps we should stress that our definition of distance as the height of a suitable

poser does not rely on the fact that our poser is derived from a manifold. However, if the

poser does arise in this way, we might hope that this 'distance' is somehow related to the

usual distance in the underlying manifold. (Of course, we cannot hope to read any similar

t Note that, unlike the continuum case, this maximal length path most likely will not

be unique; the distance however, is well defined. This is the first example of ambiguity in

the discrete case.



meaninginto the distance function for an arbitrary poset.) What we shall now show is that

the distance function d(x, Y) is a close approximation to the continuum distance (times a

fixed scale factor).

For convenience, we shall assume for the moment that our manifold M is n-dimensional

Minkowski spacetime _ln. Notice that, provided the scale on which spacetime is curving

is much greater than the typical M-distance between neighbouring points of X(M), this

should not affect the arguments, since we shall only be looking at pieces of M which are

almost isomorphic to 2_I,, anyway. Also for convenience, we may as well restrict ourselves to

a fixed Alexandrov set [x, y] of (finite) volume V in 2_ln. Recently Bollob_s and Brightwell 5

considered properties of random posets in the partially ordered measure space ([x, Y], <).

We highlight a special case of one of the main results (Theorem 12) which not only shows

the relationship between poset height and manifold distance, but also gives us an initial

handle on defining the dimension of our poset.

Let [x, V] be an Alexandrov set of volume V in M,. The length L of a longest chain

in X([x, y]) satist_es L(pV) -1/n --* mn in probability as pV --. oo, for some constant ran.

Observe that pV is the mean number of points in Ix,v], and that V a/n is proportional

to the manifold distance from x to y. Therefore, this result says that the distance between

x and y becomes proportional to the continuum distance in the limit that d(x,v) -_ oo.

This is rather encouraging, since one property we would require of our discretisation is

that the 'continuum limit' (p -_ oo) is indeed recovered. Unfortunately the methods of

ref. 5 do not tell us anything about the rate of convergence of L(pV) a/n to ran. Moreover,

we do not know the numerical values of ran. However we do know s that ms = 2 and that

21-1/" 21-1/"er(n + 1)1/" < 2.621.77 < <_ mn <
- r(1 + 1/n) n

for n an integer at least 3, which implies that m, _ 2 as n ---* oo.

The fact that we do not know mn precisely is not crucial, the main point is that,

for large distances, the parameter L of (X, <) is a good approximation to the manifold-

distance, up to some fixed factor _. Calculating it from (X, <) requires no knowledge of

the manifold from which we derived X, not even the dimension n. Thus this result proves

that the distance function we have defined is not only internally consistent, but actually

does correspond to the manifold distance in the continuum limit.

Once we have the distance function for timelike (x,y), and we accept that this is a

good approximation to the manifold-distance, we can recover most of the crude structure

of the manifold. Of course, from a continuum point of view, once we have the causal

structure we can recover the full metric up to a conformal factor, but since we are remaining



with the discrete structure precisely to fix that conformal factor, we must show that we

can recover this structure. In particular, we should certainly be able to determine the

dimension of the original manifold. One particularly straightforward way of going about

this would be to count the number N of points of X in an Alexandrov set [x,y], where

L = d(z,y) is moderately large. If M is approximately isomorphic to Mn, then we should

have N _ (L/mr,)", and, since mn is known to be about 2, we should in practice have no

difficulty in distinguishing M, from Mn+l.

Let us now consider a slightly more subtle approach, which eliminates the potentially

awkward dependence on rnn. Given a (large) Alexandrov set [z,y], with say N points of

X in it, find a point z in [x,V] such that the minimum of the number of points of X in

[x,z] and the number of points in [z,y] is as large as possible. Denote this number by N1.

If the original manifold was M,, then the best choice for z will usually be near the point

of the manifold half-way between z and Y. Therefore we can expect that N1 _- 2-"N,

for large N. An approximation to n is thus given by log2(N/N_). Unfortunately this will

not normally give an integer value even if our manifold is just Minkowski space, so this is

best interpreted as a measurement of the dimension rather than as a definition. (See the

definition of the dimension of a box-space in reference 5, which is a continuous version of

the same idea.)

One advantage of the above method is that it does give sensible answers in the case

when the dimension is somehow dependent on the "scale", i.e., the size of the original

Alexandrov set [z,y]. For instance, if the spacetime manifold consists of nl "global"

dimensions and a further n2 - nl "compact" dimensions, then measuring the dimension

using a large Alexandrov set will almost always give an answer close to rtl, whereas if the

Alexandrov set [z, Y] is small compared with the scale of the compact dimensions, then a

measurement of dimension using Ix, !1] would give an answer of approximately n2, at least

provided that [a:, !i] still contains many points from X. Measurements using Alexandrov

sets of various intermediate sizes should, of course, indicate dimensions between nl and

n2.

Meyer 6 has succeeded in capturing the dimension in a shghtly different way, by com-

paring the number of points in an Alexandrov set to the number of covering pairs in that

set. (A covering pair in a poser is a pair (x,V) of elements with x < y but no z between

the two.) This seems to us to be rather less satisfactory, since the number of covering pairs

has no obvious interpretation in terms of the original manifold.

The approach to dimension suggested by Bombelli et al.3, making use of the finite

subposets of X, is as follows. For each n, one takes a finite poser Y,_ which can be embedded

in Mn (and therefore in higher dimensional manifolds), but not in M,,-1 (and therefore
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not in lower dimensional manifolds). Then the dimension of (X, <) is defined to be the

largest n such that Y,, occurs as an induced subposet. Suitable posets were discovered

by Brightwell and Winkler T. The principal advantage of this approach is that it gives an

integer value for the dimension. One possible drawback is that, although )_ cannot occur

in Mn-1, it might occur in another (n- 1)-dimensional manifold with high curvature.

Also, if our space does have compact dimensions, it may actually not be appropriate to

force the dimension to an integer value. Whatever approach we use, what we are doing is

taking a fixed (not too large) Alexandrov set [x,y], and using the structure of X([x,y]) to

give us a measurement of the dimension. If the "real" dimension depends on the size of

[a:,y], we may well prefer the measured dimension to vary "smoothly" as we change the

size of our sample Alexandrov sets.

Another aspect of the manifold structure that we might at first expect to be able to

recover is the spacelike distance function. However, it seems that there is no convenient

way of abstracting a definition of the distance between two spacelike points x and y so as

to approximate the manifold distance between x and y. Let us give some idea of why this

is so, before going on to see what we can do instead.

Let x and y be two spacelike points in X(Mn), where n _> 3, and let I denote the

manifold-distance between a_and y. Perhaps the most obvious way of defining the distance

between z and Y in X(Mn) is to take the minimum, over all pairs (w,z) with w _<x,y _< z,

of d(w, z). We shall show that this definition spectacularly fails to approximate I. Let P_

(P+) be the intersection of the past (future) light-cones of x and y: an (n - 2)-dimensional

manifold. For every point p on P_, there is a point pt on P+ such that d(p,p I) is equal

to I (divided by the speed of light). (In fact p' is at the intersection of the plane defined

by x,y,p with P+.) Furthermore, ifp and q are points of P which are far apart, then the

volume of [p, p'] n [q, q'] is very small. Now, if w is a point of X just below a point p of the

manifold on P, and z is a point of X just above the corresponding point p,, then d(w, z)

is probably about i¢1. But, recall that X(M) was a Poisson distribution of points in M,

therefore, with probability e-pV[w,z], the set [w, z] will contain no points of X other than

a_ and y, and so d(w, z) will be equal to 2. Moreover, we can take infinitely many pairs

(w_, z_), such that d(w,,z_) is approximately the manifold-distance between x and y, and

such that any two distinct [wi, zi] contain no point of X in common, other than z and

y. The events "d(wl,zi) = 2" are then independent, and each has probability bounded

away from 0 independently of i. Hence almost surely one of the events occurs, and so the

minimum of the d(wi, zi) is almost surely 2.

There are various ways to get around this problem, but none are particularly natural.

In our opinion, it is more appropriate to return to the question of how one actually measures



distance. One caneither usestandard rods and clocks, or standard clocks and light beams.

It is the latter approach which is clearly more adaptable to our (causal) setup. That is, as

a standard inertial observer, we measure times and distances by sending out light rays and

measuring the time elapsed before they are returned. This means that we need to define

the distance between a point and a given geodesic.

We define a geodesic in X(M) to be a chain C such that, for every pair of points w

and z in C, the length of the section of C between w and z is equal to d(w, z). A point

z C X is related to C if there are points w and z on C with w < z < z.

Now, if C is a geodesic and z is related to C, let l(z) be the highest point on C

which is below z, and u(z) be the lowest point of C which is above z. Then we define

d(z, C) = d(l(x), u(x))/2. Evidently this is approximately equal to a fixed constant times

the manifold-distance between z and the point of C half-way between l(x) and u(x).

If we have two geodesics, there is now a natural way to define the speed of one

geodesic with respect to the other, however, our 'velocity' only has meaning in the sense

of an average distance travelled over a certain length of time. Clearly the smaller the time

interval, the less reliable this 'velocity': it seems that our model does not incorporate the

idea of an instantaneous velocity--at least not in any normal sense.

By this process, we have now set up the basic ingredients of special relativity for

the causal set. To summarise: we have taken the causal structure of a discrete poset

representing a spacetime, and we have shown how to define distance on that causal set. We

use a definition analogous to the continuum case, and show that our definition does indeed

correspond with the continuous metric in the continuum limit. We have also explored the

question of measurement of dimension for the set. In a manifold there is a clear definition

of dimension via the dimension of the tangent space at a point. However, the poset is

neither a vector space, nor is it locally equivalent to one. It is therefore quite important

that we have established that a working definition of dimension can be constructed. It is

also amusing that this definition depends upon the scale of measurement.

It may seem that these definitions are merely stating the obvious, however, that is

only because one is still thinking in terms of the poser as being embedded in an underlying

manifold. This is precisely the situation we were trying to avoid. We have been exploring

definitions which are expressible ortly in terms of the poset itself, without any reference to

an underlying manifold. The problem with abstracting spacelike distance is an excellent

example of a situation in which what is obvious for a manifold is quite incorrect for a

poset.

If one believes in a fundamentally discrete spacetime, then one must know what prop-

erties this discrete set has, and how to measure these properties. What we have done is
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shown how to measure the basic physical properties of a discrete spacetime, and the extent

to which they are measurable. It may or may not be possible to construct a dynamical

theory on top of this structure, but we hope that at least we have provided a starting

point.
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