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A White Paper and Summary of a Workshop entitled

DEVELOPMENT OF TESTING AND ANALYSIS METHODOLOGY TO ASSESS

THE LONG TERM DURABILITY OF POLYMERIC COMPOSITES

AT HIGH TEMPERATURES

by

Dr. W. Steven Johnson

Senior Scientist

Materials Division

NASA Langley Research Center

Hampton, Virginia

INTRODUCTION

Feasibility studies, supported by NASA, were conducted at Boeing

Commercial Aircraft Company and Douglas Aircraft Company to

determine if a High Speed civil Transport (HSCT) could be an

economical vehicle for the early 21st century time-frame. The

Boeing study focused on a Mach 2.3 design while the Douglas study

focused on a Mach 3.2 design. The design guidelines were for a

range of 5000-6500 nautical miles, a payload of 250-300 passengers,

a 60,000 hour life, and a standard fare. Both companies concluded

that the planes were viable concepts and that there would be a
market for such aircraft in the next decade. The studies further

showed that a Mach number higher than 2.3 could have economical

operational advantages. However, these higher Mach numbers might

require new materials and certification procedures. In order to

meet the desired weight, range, and speed in an economical fashion,

polymeric matrix composites (PMC) may have to be widely used. The

average surface temperature of the structure on the Mach 2.3 design

is approximately 330°F while the average surface temperature on the

Mach 3.2 design is approximately 550°F. The 330°F temperature is

within the operational range of many of today's PMCs. However, the

550°F temperature is above the certified operational temperature of

today's polymer matrix composites. Thus, polymeric matrix materials

must be developed which can operate at higher temperatures if a Mach

3.2 design is to use PMCs. For either design, the ability of the

composite material to endure 60,000 flight hours in an operational

environment, maintaining structural integrity, must be ascertained.

A workshop was held at the NASA Langley Research Center on March

14-15, 1990, to help assess the state-of-the-art in evaluating the

long term durability of PMCs and to recommend future activities.

Forty engineers and scientists with experience in the areas of



design and evaluation of PMCs at elevated temperatures were invited
to participate. A collection of the workshop presentations and list
of attendees is available from the author. The purpose of this
White Paper is to briefly summarize the workshop presentations, the
findings of the workshop sessions, and to outline the future plans
of the Materials Division of NASA Langley.

WORKSHOPSUMMARY

PRESENTATIONS

The presentations were divided into four sessions: Background,
Structures, Testing and Analysis, and Material Development and
Evaluations. Each session will be reviewed separately.

Backqround

Paul Hergenrother of NASA Langley gave a review of the current state

of high temperature polymers. Paul stated that currently no polymer

system, suitable as a composite matrix, will maintain chemical

stability for 60,000 hours at temperatures above 525°F even under a

no load environment. New high temperature polymer systems are

currently being developed and certified. However, Paul thinks that

the development of a polymer system that will be chemically stable

above 600°F is not very likely. Regardless of the type of polymer

developed, a composite matrix development program should include the

following elements: (I) polymer screening to select candidates; (2)
polymer optimization to obtain best overall combination of

properties; (3) polymer scale-up; (4) prepreg development; (5)

composite fabrication development; (6) thermal-mechanical testing

including fatigue and creep of quality composites; (7)

time/temperature/stress/humidity/etc, testing; and finally (8)

prototype fabrication and testing. A program of this dimension must

be done and will cost tens of millions of dollars and require

approximately ten years to complete. Paul outlined several possible

directions to develop suitable new polymers, such as a PMR-15 plus a

thermoplastic blend.

Jim Haskins of San Diego State (formally with General Dynamics/

Convair Division) reviewed a large 1970's NASA sponsored program

entitled "Time-Temperature-Stress Capabilities of Composite

Materials for Advanced Supersonic Technology Application" (NASA

Contractor Report 178272, May 1987). This was a long term (50,000

hrs) testing program involving a variety of then available potential

high temperature composites. Test conditions included both a

real-time service environment, and thermal and environmental aging.

All of the polymeric based composites suffered from significant

thermal oxidation resulting in a loss of mechanical properties. All

of these systems had use temperatures, as established by the long

term tests, that were considerably less than initially expected. The

long term degradation of the matrix material was more significant in

specimens tested with compressive loads. Many problems occurred



during the course of the test program including equipment failures
(pumps, recorders, valves, etc.), demise of composite systems (i.e.
material no longer available), personnel changes, batch to batch
variation of the materials, power failures, etc. Long term testing
can be very taxing on men and equipment.

Sam Dastin of Grumman described an Air Force sponsored program
entitled "Environmental Sensitivity of Advanced Composites"

(AFWAL-TR-80-3076 Vol. i, August 1979). The first objective of this

program was to define a realistic environmental and loading spectra

for an Air Force aircraft. The environment and loading spectra of

the B-I horizontal stabilizer was selected. The stabilizer design

was a Gr/Ep substructure, 6 to 32 plies thick, with operating

temperatures up to 260°F. They developed a Baseline and a Worst

Case flight profile and conducted long term tests to 6 aircraft

lifetimes. They found that residual tension strength was not

affected by fatigue or enVironment but compression properties were

reduced. They reported no significant synergistic effects of

fatigue loading and environment.

Joe Storr of the Wright Research and Development Center reviewed a

new USAF program to investigate Ultra High Temperature Organic

Matrix composites. The program will encompass materials and

component testing at 600-800°F. The funding and duration of the

program will be over 3 years. The program is scheduled to start

Fall 1990 with Kevin Boyd, WRDC/FIBEC, as the technical monitor.

Structures

Cliff Kam of Douglas presented an overview on the Douglas HSCT,

specifically concentrating on the material durability and damage

tolerance requirements. He suggested that creep may have to be

included in the design and this would be a new consideration for

airframe designers. He further suggested that creep strain be

limited to 0.001 for one application of limit design load. He

emphasized the need to do real time coupon, element, and structural

testing. This testing could take i0 to 18 years, depending on the

number of hours per day tests were conducted. Douglas is currently

considering a wide variety of materials for their Mach 3.2 design,

including aluminum matrix composites, high temperature aluminums,

titaniums, and PMCs.

Glenn Grimes of Lockheed outlined a detailed "Building Block"

approach for structural development. This approach builds from

testing coupons, structural elements, and full scale structural

components for certification. This building block approach was

reiterated and endorsed by others from industry that were present.

Glenn summarized by saying that a linear elastic composite material

with predictable wearout and aging characteristics at 450°F could be

accommodated into design with the current methodology. Linear/

nonlinear elastic composite materials would need new design

methodology development, which may take ten years. Composite

materials with pronounced viscoelastic behavior would require more

difficult methodology development and may take over ten years.
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Charlie Saff of McDonnell Aircraft Company gave an overview of
structural certification. Charlie echoed many of the thoughts of

Glenn Grimes, as to the building block approach and difficulties of

designing and certifying viscoelastic structures. Further

difficulties are expected with material oxidation and

thermomechanical loads.

Robin Whitehead of Northrop shared some of his thoughts on

durability of composite structures. Once again the building block

approach was recommended. Robin reviewed an USAF sponsored program

for designing a composite fighter wing/fuselage that saw a maximum

service temperature of 250°F. The composite laminate was cycled

under a variety of temperature and load profiles, accelerated and

real-time. Outstanding composite durability was demonstrated under

extreme fatigue loading and environmental conditions. He concluded

that no fatigue tests were needed for an all-composite structure and

that static strength tests were adequate to identify structural

hot spots. Robin described a materials use envelope in three areas

as a function of moisture content, temperature and design strain:

Reversible region - Essentially linear-elastic, no significant

durability effects, all test schemes equivalent, and all failure

modes have equivalent durability response; Transition region -

Nonlinear/time-dependent effects, durability failures can occur,

distinct differences between accelerated test schemes, real time

testing may be needed, and testing certification requirements

unacceptable; TG exceeded -Material essentially useless. In

closing, Robin recommended for HSCT design to used material in the

"reversible region" by making a smart material selection and using

realistic design strain levels in fiber dominated lay-ups.

Testing and Analysis

Doug Ward of GE Aircraft Engine Division offered a detailed overview

of some of the environmental tests used for screening and analyzing

new materials. Examples were given for a PMR-15 matrix composite

which showed severe matrix cracking under thermal cycling. William

Wallis and Bob Boscham of Lockheed also suggested testing approaches

for new resin systems. Bjorn Backman of Boeing Commercial also gave

a review of desired materials properties and testing techniques.

The critical specimens appeared to be hot-wet open hole compression

and compression after impact. Bjorn pointed out that fiber waviness

will become a more critical issue under compressive loading at

higher temperatures because of the decrease in matrix properties.

Kyle Owen of General Dynamics/Fort Worth Division presented IRAD

results for certification of some F-16 PMC components. General

Dynamics is also using the building block approach for design. Their

testing considerations for environmental characterization included

thermal spiking, thermal cycling and time at temperature.

Wolfgang Knauss of Cal Tech spoke on the analytical relationships

between material properties, such as free volume and creep, specific

volume and temperature, and how to relate some of these properties

to composite behavior. Hal Brinson of the University of Texas at
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San Antonio also gave some approaches to lifetime predictions using
a time-temperature-stress superposition (TTSSP) methodology. Hal
presented various examples of creep and stress rupture predictions
which showed that the current TTSSP methodology was adequate for
predicting time dependent memory deformations.

Material Development and Evaluation

Mark Rogalski of Boeing described an approach for evaluating new PMC

materials by trying to isolate the effects of moisture, thermal

cycles, loads, and UV. This approach would aid in development of a

lifetime predictive model. He stated that Boeing feels that the

best speed for environmental/economic viability is Mach 2 to 2.5.

Rudy Gonzalez of Northrop B-2 Division reviewed an evaluation study

of new processible polyimides. Most of the emphasis of the

evaluation was on thermo-oxidative stability. They developed a

high temperature organic matrix resin that demonstrated

thermo-oxidative stability at 700°F for i00 hrs. This i00 hrs is

far short of the 60,000 hrs needed for the HSCT.

Sam Boszar of Pratt & Whitney showed some results from thermal

oxidative stability tests on PMR-15. He also looked at some effects

of erosion by road dust that could be sucked into an engine.

Several non-destructive evaluation techniques were discussed. A
dielectric monitor was identified as a desirable NDE tool because of

its sensitivity to oxidation, cracks, and chemistry. Ray Adsit of

Rohr Industries also presented thermal exposure data on PMR-15,

pointing out micro-damage and its adverse effect on several

mechanical properties. Ken Bowles of NASA-Lewis presented the

effect of different reinforcements on the thermo-oxidative stability

of PMR-15.

Bob Buyny, Hexcel Corporation, compared the durability of PMR-15 and

toughened BMI composites subjected to combined aging and thermal

cycling. T300/HXI539 (a toughened BMI) exhibited one fourth the

thermo-oxidative stability of C3000/PMR-15 at 500°F: however, the

lifetime of the toughened BMI was 90% of the C3000/PMR-15 because

the BMI experienced only minor surface cracking.

Summary of Key Observations

The workshop presentations may be summarized by the following key

observations:

o Polymer chemists are not very optimistic about developing

a resin matrix material that can exceed 600°F for 60,000 hrs.

o Previous long term durability testing programs were very expensive

and extremely taxing to both personnel and equipment.



o The composite design community feels as if time-dependent/
non-linear material properties should be avoided by smart material
selection and/or lessening design requirements, otherwise a very
difficult, long-term, and expensive methodology development program
will be needed.

o Compression after impact and open hole compression tests are the

critical tests for ranking materials in the current airframe design

community.

o All airframe companies employ a building block approach for

composite structural design and material certification.

o Thermal-oxidative stability appears to be the key test used to

evaluate the high temperature capability of resin matrix composites.

WORKSHOP SESSIONS

The attendees divided into three working groups. Each working

group was assigned the task of answering one of the following

questions:

Working Group i:

o What fundamental properties are important for materials

evaluation and how should they be determined?

Working Group 2:

o How does one assess long term durability and develop

appropriate accelerated test techniques?

Working Group 3:

o How does one assess the time dependent effects of a polymeric

matrix composite used at high temperatures? What role does

thermal aging play and how can it be modeled?

Each working session met for approximately two hours then reported

their findings to the whole workshop. These findings are

summarized in the following sections.

Working Group 1

Question: What fundamental properties are important for materials

evaluation and how should they be determined?

This group was Chaired by Glenn Grimes of Lockheed, Rod Martin of

Analytical Services and Materials (NASA Langley) served as the

recorder, and five others were in attendance.



The discussion of the fundamental properties important for materials
evaluation was split into two sections, static properties and time
dependent properties. The static properties after short term
temperature exposure at several elevated temperatures need to be
determined. The static properties assessment should also include
material aging to determine the response to time at temperature.
The time dependent properties related to creep and fatigue testing
issues must be evaluated in both real time and accelerated tests.

A list of mechanical property tests which are typically used for
design was drawn up. Tests on the list fell into two categories,
tests at the laminate level (e.g. quasi-isotropic) and tests at the
lamina level. At the laminate level, the tests considered important
for determination of strength included compression after impact
(CAI), plain and open hole compression, tension, shear, bolt hole
bearing, and interlaminar fracture toughness. Stiffness data should
be obtained from plain compression, tension, and bearing tests. At
the lamina level, strength and stiffness data should be obtained
from 0° compression and tension, 90° compression and tension, and
±45° tension tests. All these tests should be conducted statically
at elevated temperatures. Selected tests were chosen as the key
properties to determine the effects of aging on strength and
stiffness. These were CAI, plain and open hole compression and
tension, and bearing. The effects of aging should be characterized
by determining the weight loss, microcracking, stiffness
degradation, and chemical changes (FTIR, Infrared spectroscopy). The
aging tests should be conducted at a temperature slightly above the
operational temperature to evaluate accelerated aging. Checks to
ensure the failure mechanisms were not altered must also be
conducted.

From the above tests, selected ones were chosen for the initial
screening of the material. These tests were chosen to be the most
critical ones. If the material does not meet the necessary
requirements of these tests then it should not be considered a
candidate material. It was decided that screening of each material
should include short time tests and aging tests which take no longer
than 6 months (approximately 4,000 hours) and should be done only at
the coupon level. The tests chosen were short time and aged strength
data from CAI, plain and open hole compression, 0° compression, and
±45° tension, and stiffness data from CAI, plain compression, 0 °

compression, and _45 ° tension. The short time tests should be done

at several temperatures and the aging tests at one temperature (e.g.
operational temperature) at several times. It was considered

possible to reduce the number of tests (e.g. omit plain compression)

in the data base as experience is gained in identifying the most
critical tests.

For the time dependent properties, creep and fatigue tests with

environmental exposures are required. Particular mechanical

properties required were not discussed. The tests should be

conducted under actual flight load and environmental profiles. The

possible use of load and temperature enhancement should be

considered to accelerate the tests. All tests should be conducted

at the coupon or element level to avoid costly large scale testing.



If no fatigue failure is obtained in'the planned test period, a
residual strength and a safety factor may be determined or the
temperatures and loads may be increased to cause fatigue failure.
The physical and mechanical properties and failure modes from
accelerated and real time testing should be compared.

Recommendations: It was the group's suggestion that NASA should

immediately select two promising materials currently available and

begin the static and aging tests. It was acknowledged that the

material may not be available in the future, but the methodologies

developed would be. This recommendation assumes that the test

techniques and results are material independent, this may not be the
case.

Working Group 2

Question: How does one assess long term durability and develop

appropriate accelerated test techniques?

This group was chaired by Sam Dastin of Grumman, Ben Hillberry

National Research Council at NASA Langley served as the recorder.

Fifteen attendees participated in this work session.

As had been emphasized in the presentations, the sensitivity of

polymeric composites to a variety of load and environmental

conditions, particularly in long term applications associated with

durability, will require a large number of analytical and

experimental programs to characterize the material behavior.

Because of this complexity and the associated costs involved,

careful planning and coordination of the development program will be

essential. The experiences of several group members who had

previously participated in similar large composite material

development programs provided valuable input related to the overall

management and economics of a future program.

In the context of this workshop, durability was defined as: a

component satisfying the design life, or multiple thereof, when

subjected to the load and environment of its intended use. For the

HSCT application, required life was defined as two times design

life, i00000 - 120000 hours. Expected peak temperature would be

450 degrees F, unless otherwise specified. Several major issues

were identified and discussed by the group. This discussion is
summarized below:

A. Analytical Modeling

Because of the large number of variables involved and material

degradation in long term applications, understanding the mechanics

of the material behavior and developing appropriate analytical

models will be key to the success of developing and implementing

high temperature polymer composites. Experimental work (test

samples, techniques, environments etc.) should be focused on

providing information which will assist in developing and/or

verifying these analytical models. A building block approach should

be used which will assist in understanding the coupling/decoupling

effects of the various load and environmental parameters.



B. Materials
It is important to have pedigree materials which are well documented
and verified (by the supplier). This will insure that test results
are not influenced by poor material or improper processing.

C. Test Specimens
Test specimens should be of a proven design and properly prepared so t
as not to affect results. Factors to consider include: size,
thickness, edge effects, tension/compression. Recommended test
specimen sizes and geometries need to be established early in the
program.

D. Testing Techniques and Equipment
Because of long term degradation enhanced by load, high temperature
and environmental conditions these materials are not easy to test
and will require new anddifficult test techniques. Accuracy and
reliability of measurement equipment and methods are critical to
obtaining valid data and will require special attention. A review of
available control and monitoring equipment for testing at these
temperatures and moisture levels for 60000 to 120000 hours is
needed.

ASTM and SACMAcould assist in developing test standards to help
insure valid test results. They could also assist in conducting
round robin test programs.

E. Mission Profile
Mission profiles need to be defined early in the development program
to provide a common basis for comparison of test results. These
definitions should consider anticipated use, time to next cycle,
mean and worse case conditions, ratio of supersonic to subsonic
flights, and environment. Different profiles will be needed for
primary structure, secondary structure, tension dominated,
compression dominated, and reversed tension-compression loading
conditions.

F. Economical Testing Techniques
Because of the magnitude and anticipated costs, economical testing
techniques should be considered to provide more cost effective
results. The following factors should be considered: multiple
specimen testing, preliminary sensitivity studies, experimental
design methods, reserve or extra specimens, avoid duplication of
effort, one supplier of given material, one laboratory make all
specimens for a given material, pool data from different
laboratories, and run between laboratories round robin test
programs.

G. Accelerated Testing
The development and validation of appropriate accelerated testing
techniques should be accomplished early in the program to reduce
costs for further testing. The development and validation of
analytical models will be key to the development of accelerated
testing techniques. Load truncation methods should be considered.



H. Full-Scale Structure
Full-scale structures testing should be done only for FAA approval.

I. Worldwide Technology
It is important that the program leaders and researchers be fully
aware of what other countries are doing in the development of highs
temperature PMCs.

Recommendations: NASA should immediately fund a program to develop a

series of specimen types which can be used to provide valid,

meaningful data. The specimen design should be based on analysis and

experimental verification. The purpose of these specimens will be

to provide data that will assist in identifying and characterizing

load and environmental behavior to be used in modeling. The program

should begin with a thorough review of the literature for test

specimens and appropriate analytical methods.

Workinq Group 3

Question: How does one assess the time dependent effects of a

polymeric matrix composite used at high temperatures? What role

does thermal aging play and how can it be modeled?

This session was chaired by Hal Brinson of the University of Texas

at San Antonio. Tom Gates of NASA Langley served as the recorder.
This session had eleven attendees.

The group agreed that a definition of time-dependent behavior should

include such effects as aging, environment and memory. The minimum

test standards necessary to establish time-dependent behavior of

polymer matrix composites were determined to be:

o Establish glass transition temperature (Tg) as a function
of time, moisture and fuel;

o Arrive at a means for time-temperature acceleration

characterization of laminas by testing for transverse

and off-axis properties. Produce short term data up to 600

hours and develop a master curve. Extrapolate to 6000 hours

and experimentally verify prediction. Predict laminate

results in tension and compression.

o Material aging must be assessed as a function of temperature

and moisture to determine thermal stability.

o Failure and fracture of the material should be assessed in two

ways: (i) Lamina transverse creep to rupture tests and (2)

DCB fracture tests, da/dt, GI, and GII.

o The neat resin should be evaluated for research purposes to

understand rate-dependent effects.

o Failure surfaces should be examined to determine how the

failure mechanisms relate to stress and environment.

The above set of tests should be used to establish upper use limits

for a given material system.

Recommendation: NASA should support efforts to establish time-

dependent analytical models to predic£ response at 60,000 hours.
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PLANNEDFUTUREACTIONS OF NASA LANGLEY

NASA's prime objective in the High Speed Research Program is to spur
the technology development necessary for a commercial supersonic
transport to be built in the United States. The objective of the
Materials Division at NASA Langley is to promote the development,
evaluation, and understanding of candidate HSR materials; and ithe
development of mechanics-based methodology necessary to predict the
deformation, strength, and life of such materials. Although the
Materials Division at Langley is actively working in the advanced
metallic materials and in metal matrix composites, the focus of this'
workshop and thus this future plan of action will focus on polymeric _
composites for high temperature applications.

In-House Activities

Mechanics of Materials Branch

The Mechanics of Materials Branch (MeMB) will focus on research that

will eventually lead to a lifetime prediction methodology for

polymeric matrix composites used at elevated temperatures. As a

direct result of the workshop, several technical issues were

identified and MeMB is establishing a research program to work the

critical areas. This program will consist of using the most

promising high temperature PMCs available today as model materials

and start a combined experimental and analytical research programs.

One aspect of the program will focus on the time dependent behavior.

Constituent models will be developed to predict the effects of

thermal aging, load, temperature and time on the composites' time

dependent mechanical behavior. Another related research effort will

address the thermal-mechanical fatigue behavior of the PMCs. This

will define the roles that the thermal and the mechanical stresses

in the constituents play in the damage initiation, accumulation and

final fracture of the composite. Variables such as cyclic

frequency, temperature levels, and hold times will be studied. These

two programs will provide the bases for the development of an

accelerated testing methodology.

Another effort of MeMB, based on the workshop suggestions, will

focus on generating real-time long term durability data on the best

candidate PMC, commercially available in the near future. These

tests will consist of panels subjected to realistic load-temperature

profiles. Two material thicknesses and load-temperature profiles

representing fuselage and wing structure will be evaluated. After

predetermined time increments, panels will be removed from testing,

cut into several specimen geometries and tested to determine which

material properties are sensitive to the long-term real time testing

(eg. open hole compression, tensile strength, interlaminar

toughness, etc.). These data will also serve to evaluate

accelerated test procedures.

Polymeric Material Branch

In the Polymeric Materials Branch (PMB), work directed towards the

development of adhesives and composites for use on high speed
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commercial transports involves several different area. Development
and evaluation of new high temperature polymers has always been the
charter of PMB, so this effort is not a new start but rather a
program focus. New polymers are synthesized and characterized in
neat resin forms as films and moldings and also as adhesives and
composite matrices. The synthetic work primarily concerns
polyimides, poly(arylene ethers) and blends of thermoplastics having
high glass transition temperatures and reactive thermoplastics with
thermally stable thermosetting materials. The characterization work
includes the determination of various mechanical properties on neat
resin, adhesive and composite specimens at elevated temperatures
after thermal aging exposure. In addition, specimens are being
tested after cyclic temperature exposure. In the more applied area,
studies are being conducted to identify the most efficient ways of
fabricating adhesive panels and composites to obtain the maximum
mechanical properties. As part of this study, the molecular weight
of various polymers have been controlled to lower their melt
viscosity and thereby improve their compressive moldability. Many
of these polymers are also end-capped to provide good melt
stability. New ways to prepare adhesive tape and prepreg via slurry
and powder impregnation are under study. For example, powder coated
polyimide towpreg has been woven into fabric that was used to
fabricate high quality composites exhibiting good mechanical
properties. Some PMB polymers have shown very promising
performance. As examples, a polyimide exhibited no loss in adhesive
properties at 232°C after aging at 232°C in air for 47,000 hours. A
semi-crystalline polyimide composite retained 80% of room
temperature flexual strength after aging for !00 hours at 316°C in
air and testing at 232°C. A thermoplastic polyimide toughened
PMR-15 provided composites with significantly higher toughness than
PMR-15 and equivalent elevated temperature mechanical properties.
Future work is anticipated to show significant advancement in the
development of structural resins for high speed commercial transport
applications.

Contracted Activities

A significantly funded materials and structures element has been

included in the Phase II HSR Program but not in Phase I. Therefore,

contracted materials related research will be minimal until 1993.

However, NASA is currently forming an industry team (Boeing,

Douglas, etc.) that will cooperatively screen and evaluate candidate

materials and share data. Tests will be conducted using common

specimen geometries and testing techniques. This team activity

should greatly spur the material development and screening

activities, such that when money becomes available in 1993, we will

know which material systems to focus upon.
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