Provided by NASA Technical Reports Server

Metadata, citation and similar papers at core.ac.uk

MULTI-LAYER NEURAL NETWORKS FOR ROBOT CONTROL
Farzad Pourboghrat

Department of Electrical Engineering
Southern Illinois University
Carbondale, 1L 62901-6603

Abstract

Two neural learning controller designs for manigtﬁeators are considered. The first
design is based on a neural inve ics system. second is the combination of the
first one with a neural adaptive state feedback system. Both types of controllers enable the
manipulator to perform any given task very well after a period of training, and to do other
untrained tasks satisfactorily. The second design also enables the manipulator to
compensate for unpredictable perturbations.

1. Introduction

The design of advanced control systems for robot manipulators has been a very active
area of research in recent years. Inadequacy of current control strategies suggests that
there is a need for a newer and faster control architecture which will account for both
learning and control of robotic manipulators.

In classical systems theory, input-output descriptions are based on some assumed or
predetermined mathematical structures, normally a set of linear differential equations.
Replacement of these predetermined structures by learned associative memory mappings of
stimulus-response leads to more general, normally non-linear, representations of the
connections between inputs and outputs. This procedure can be implemented by neural
networks [1]. The best example of a system with such an architecture is the human brain,
which performs many complex functions superbly.

In the problem of motor control, obtaining an input function u(t) to generate a desired
motion ¥t) is directly related to finding the inverse-dynamics of the controlled system. Let

the operator G denote the dynamics relation of the system, where G(u)=y. Then the
inverse-dynamics of the system is the operator £=6"1 such that By)=u. Knowing the
inverse-dynamics relation £=671, for a given desired motion trajectory yq, the required

input uq can be found from ug=E(yq). This is because the motion corresponding to ug is

equal to y=G(ug)= G(Elyg) =66 ya)-yq.

It has been shown that multi-layer neural networks with sigmoidal functions are able to
map any measurable function to another with an arbitrary degree of accuracy, provided that
there are enough units in their hidden layers. Therefore, such networks can be used for
approximating the model of the inverse of the dynamics of a system [2-10]. In this paper the
development of neuromorphic learning controllers is considered. First, a recurrent neural
network learning controller C is designed. The design has a neural inverse-dynamics block
£ and a PD-type feedback block #. Next, the learning controller C is modified, where its
PD-type feedback block is replaced by a neural adaptive state feedback block #, which is to
optimally compensate for unpredictable perturbations. The architectures of these learning
controllers are similar to those in [10], which are inspired by the model of the cerebellum

given by Kawato [5-6]. :

343

https://core.ac.uk/display/42821916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Robot Dynamics

The dynamics of a robot manipulator can be represented by an operator G which
corresponds to a set of n coupled nonlinear differential equations, given by

M(@q" +N(g.q) + g =u (la)
or Glu)=q (1b)

where q, 4, and q" are n-dimensional vectors of the positions, velocities, and accelerations of
the joints, respectively, where "prime” denotes the time-derivative. M(q) is the nxn inertia
matrix of the arm, which is symmetric and positive definite. N(g,q') is the n-dimensional
vector of coriolis, centrifugal, and frictional forces. Q(q) is the n-dimensional vector
representing the torques due to gravitational forces, and u is the n-dimensional vector of the
generalized input torques applied to the robot.

3. Learning Controller Design

There are a variety of algorithms which can be used for multi-layer neural networks to
learn the mapping between two patterns [1]. However, the state of the art learning
algorithms are most effective when the input-output patterns are fixed. This condition, in
general, is not satisfied when the objective error function is not identical to the error function
at the neural network's output layer. To satisfy this condition we observe the following.

Lemma 1

Consider a stable system given by the operator &, as in Figure 1, where its output q is
desired to follow a reference function .. Let the high gain feedback block given by the linear

operator 3} be such that the closed-loop (I+6H)1G is stable and that M >>1. Then for
bounded input v the output error e=q-q is bounded and is given by e={(IM‘IGISVMC‘I(ov),
where dv=r-v. Moreover, the feedback signal Su=H(e)~4v.

___.a

H
Figure |

Proof

From Figure 1, by some block manipulation, it is easy to see that 04(1160'16](&),
where 8v=r-v. Now letvbebounded. Then, since r exists, 5v is also bounded. But since the
closed-loap system (1+GH)-1G is stable, the error signal e=gr-q is also bounded. Now since
Bt o1, we get eH'l(sv). On the other hand, since ¥ is linear, we have
Su={(1+GH) 1GH)(5v). But again, since M >>1, itis easy to see that Su=M(e)=8v. O

344

4. Neural Inverse-Dynamics Model for Learning Control

The learning controller €, shown in Figure 2, has only one neural network block Ew

approximate the inverse-dynamics model. There is also a feedback block 3, of the PD-type,
which is used for both the neural learning and the error compensation, and is given by

3(e)- Su=Kpe +Kge'. (2)

Neural Learning Controller [

® o4—{)

s

)

Network's Architecture
The neural block E used here is essentially a recurrent multi-layer neural network. The
input-output relation of the neural network Eis given by

x'=A1gx)+By e @3
v =01 g(x)

where 8 =[g1.qrLq 1. 1]T ¢ #3041y . RN, and v¢ RD are respectively the vectors of the
network's input, states, and outputs. Aj, By, and Cj are respectively the matrices of the
network's state recurrence, input, and output connection weights, and g is the sigmoidal

function given by g(x)=tanh(x). The unity inputin vector ¢ is added to allow for the automatic
adjustment of the bias term.

Network's Learning Rule
The learning algorithm used for the network is a modification of the delta rule[1], and is

given by [11]
a'y5= o 8ul vgx) Oy ny; 4
b'y,1k = By BuT vg(x) Cf 2y ix
C 15 = 1 Sy E0x;)
'y, =A1VEX) Ny 55 + 15 80x;)
2'1,ik =A1VE(X) 1 ik + Ti 8y

345

where [; is the ith column of the identity matrix, 8u is the feedback torque which is also the

network's output error, vg(x)=3g(x)/dx is the Jacobian matrix, and *1, By, and &) are the
learning rate constants which are small positive numbers. The initial values of matrices
A1, By, and C| are selected randomly between -0.2 and 0.2, and N1,35{0=24 ;3 (0)=0.

The objective of the learning controller € is to force the gystem's output error to zero
through repeated trials of the desired task. During trials, when the reference input is
repeatedly applied to the system, the system's output error is used to adjust the controller

parameters, which are the connection weights of the neural network block £. Therefore, the

feedforward block £ is modified in such a way to force the feedback torque to vanish, which
indirectly decreases the robot's output error. When the error becomes small, learning has

been accomplished and the neural network block £ is said to have acquired the model of the
inverse-dynamics of the robot. But for this, the corresponding learning algorithm must be
convergent, or, the dynamics of the learning system mustbe asymptotically stable.

Result |

Consider the robotic manipulator given by the operator G, as in equation (1), Let the
neural learning controller C given by equations (2) and (3) be applied to the system, as shown
in Figure 2. Let the feedback block 3 be such that the closed-loop system (I+G3)"1G is stable

and that M >>1. Then the neural learning controller C, together with the learning rule (4)
is asymptotically stable. That is, the proposed learning controller forces the manipulator's
trajectory q, q', to follow the desired trajectory g, q'y, after a sufficiently long period of time.

Proof
Let 1) ;;=3x/3a j; and 2y ;3 =3x/3b ;). then from equation (3), we get[11]

x = Jot[Ay g(x) +By e]dt
N1, = Jot 3/3ay 55 [A1g00+By 6] d = [ot [A1 g(xiny ;+1; g(x)] d
21k = Jot 3y 1x [A1g(x)+By eldT = [[A1vE(x)Z ikHiegld.

Differentiating the above two relationships, we get

N'1ij = A19E(X) Ny 55 + 1; 80x) (5)
3'1ik = A1VEX) 2y i + [8-

Now, without loss of generality, we asume that there exists an input function r{t) to the
manipulator such that g-=G(r). Let a performance function for the learning process of the
neural inverse-dynamics network be defined by

J1(0 = 0.5 [(O-w(DIT [r{)-v()] = 0.5 8r2 . (6)

Since J1(t) is positive definite and monotonically increasing, for asymptotic stability, J'1(t)

346

must be negative definite. But, the time derivative of J|(t} is given by

J'1() = 8rT &8r) At ™
=- 8T [(X(8r)fday j;)a'y 5 + ((Briaby 1) b'y sk + (HErMdey p5) €155
=- 8rT [C] vg(x) ny352'15 + C1 V80K 213 b1,k + Tp 80Xj) C'1p5)

On the other hand, since M >>1, from Lemma 1 we have Su=8r. Therefore we have

J'1()=- 8uT [Cy vg(¥) ny55a'155+ C1 v8(0) 2y ik b'1ik] - S g06G) €15 - @)

However, fora'y ;;, b’y ji, and ¢’y p; given by equation (4), we get
J'1(0 =- g [8uT Cp vg(x) 1y ;512 - By [8uT Cy vg(x) 2y 1312 - 81 [8up glo;)] 2 ©)

which is a negative definite scalar function, except when we have Su=0 where the learning is

complete. Therefore, from the second method of Liapunov, the learning controller Cwith the
weight adjustments given by equation (4), is asymptotically stable (i.e., it is convergent).
That is, the connection weight matrices Ay, By, and Cj in the neural inverse-dynamics block

£ will be adjusted until Jj(0=0, that is when Su=u-v=0 or equivalently when Sr=r-v=0.

However, since the feedback operator is linear, 8u=er+Kde'=0 implies that e=e'=(0, since e
and e' are linearly independent. Therefore, g=g, and q'=q'y as time t approaches infinity
(i.e., the manipulator's trajectory q, q' follow the desired trajectory gr. q'r). o
The neural network E part of the controller € is able to acquire the model of the
inverse-dynamics of the manipulator after a sufficiently long period of training. After this,

the robot with the inverse-dynamics block E alone (i.e., without the error feedback block 30),
is able to perform the trained tasks very well. In addition, the robot is able to perform some

new tasks satisfactorily. However, without the feedback block H, the robot is not quite able to

compensate for unpredictable perturbations. Itis easily seen, however, that leaving block . 8
in the controller loop after the period of training greatly improves the ability of the controller
to compensate for perturbations. This is the motivation for the next design.

5. Neural Adaptive State Feedback Model for Learning Control

The learning controller C in this section contains both a feedforward and a feedback

neural network block. The feedback neural block # in this design has substituted for the
PD-type error feedback block, as in Figure 3.

The neural adaptive state feedback block H is intended as an optimal state feedback

controller, and contains two sub-networks. One is the dynamics identifier D, which realizes
the dynamics model of the system's perturbation about the nominal operating point. The

other is the state feedback ¥, which generates an optimal state feedback for disturbance
compensation. The overall feedback network ¥ learns to generate the optimal state feedback

347

torques to eliminate perturbations. From the Linear Quadratic Control Theory, this network
is equivalent to an optimal state feedback which continuously identifies the parameters of the
perturbation dynamics of the manipulator, and from these, produces the optimum
compensating torques.

Learning Controller

k' itec

The input to neural block # is a 2n-vector of the angular position velocity errorse and e'.

The outputs of the network are the n compensating torque signals 8u.
The input-output relationship for the dynamics identifier network Dis given by

y' =A28() +Bav (10)
g =C28@)

where v= [SuT,1]T e ROH, g e RM, a6 T o'TIT : R20 5re respectively the input, state, and
the output of the network. Ao, B, and G are respectively the matrices of the network's state
recurrence, input, and output connection weights.

The input-output relationship for the state feedback network ¥ is given by

z' =Agg(z) +Bge (11)
bv = C3 g(2)

where e{eT, e'T,1]T ¢ R20+] 7 ¢ RL, 57 RD are respectively the input, state, and the output
of the network, and A3, Bg, C3 are respectively the matrices of the network's state
recurrence, input, and output connection weights, As shown in Figure 3, there are some

internal feedback blocks X and L within the neural adaptive state feedback block # which are
used primarily to provide a performance function for the networks' learning algorithm.

348
h

~—

Thatis
du=38v+p (12)
p=X@=Kpe+Eq ¢’
@=0+)
A=LO=Lpé+Lq £

where o7, TIT, oxfoT,o'TIT, ADTATIT, efeT. e TiT=f(e-0)T(e-o"TIT, X is 2
linear high gain feedback operator, and L is a linear feedback gain block.

In the feedback block 3, the neural dynamics identifier I approximates the input-output
relationship of the dynamics of perturbations by forcing its outputs to follow the system
errors e and €. The neural state feedback ¥, on the other hand, approximates the
input-output relationship of an optimal state error feedback system by forcing its output to

follow the input of the neural dynamics identifier D. This, in effect, adjusts block ¥ to
approximate the inverse Ir 1 of the neural dynamics identifier D.

Networks' Learning Rules
The learning algorithm used for the neural dynamics identifier network D is similar to

that of inverse-dynamics network E, i.e., the time derivative of the connection weight
matrices A, Bo, and Cp are given by[11]

a'ysi= g £1 vgly) Conyyy | (13)
b'aik =y £T VEK) C2 2

¢ 2pj = ¥2 £, 8

1’9 3 =A2VEW) ng; + 1i)

201k =A298() 2ok + 1i vy

where £=[£7,£T]T is the network's output error, Vg(y)=3g(y¥dy is the Jacobian matrix, and
o9, Bo, and ¥, are small positive learning rate constants. The initial values of matrices A9,

Bo, and Cy are selected randomly between -0.2 and 0.2, and 1 3(0)=29 ik(0=0.

The learning scheme for the neural state feedback network block ¥ is similar; i.e., the
time derivative of the connection weight matrices A3, B3, Cg, are given by

a'yj = o3 pT v8(z) C3 Ny (14)
b3k = B3 1T VE(z) C3 23k

¢ 3j = ¥3 p €(%;)

n's3 i = A3 vg(2) N34 T I g(z)

2'3ik=A3V8(Z) 235 + ik

349

where u=5u-3v is the network's output error, vg(z)=3g(z)/3z is the Jacobian matrix, and «3,
B3, and ¥4 are small positive learning rate constants. The initial values of matrices Ag, Ba,

and Cg are selected randomly between -0.2 and 0.2, and 'Is,ij(o)= Zs,ik(0)=0'

From Result 1, the inverse-dynamics neural network E with its learning rule is able to

realize the model of the inverse-dynamics G L of the robotand to generate the required robot
torque corresponding to the desired trajectory g- and q'y. From the Linear Quadratic Control

Theory, in order to generate the compensating torque corresponding to the dynamics
perturbations about the nominal trajectory of the robot, the adaptive state feedback neural

network 3 must identify the dynamics relation of the perturbations and correspondingly
generate the optimal feedback according to some performance criterion. But for this the
corresponding learning algorithm must be convergent (i.e., the dynamics of the learning
system must be asymptotically stable).

Result 2

Consider the robotic manipulator given by the operator &, as in equation (1). Assume that
the neural learning controller C, given by equations (3) and (10-12), is applied to the system,
as shown in Figure 3. Let the feedback operator L be a unity gain. Also let the high gain
feedback block X be such that the closed-loop system (I+6&X) 16 is stable and that M »>>1,
Then the neural learning controller €, together with the learning rules (4) and (13-14) is

asymptotically stable. Thatis, the learning controller Cforces the manipulator's trajectory q
and q' to follow the desired trajectory qr and q'y after a sufficiently long time.

Proof
From Result 1, since L is a unity gain, X is such that (I+6X)"1G is stable, and m >>1,
the learning process for the neural inverse-dynamics network E is asymptotically stable.

Now let n, ;;=3yfday ;. &y ;3 =3g7dby ik, N3,ij=92/dad,ij, and 3 ;;=32/db3,ik. Then, similar to
the proof of Result |, from the neural network's dynamics equations (10-11), we get

n'2,ij = A2VEE) g 5 + I; £5) (15)
2'2,ik = A2VEE) o1k + Ii vy

'35 = A3VE(@) ng 5 + I 8(z;)

'3k = A3VE(E) 235k + I vy

Now considering the convergence of the feedback block 3, leta performance function for
the learning process of the dynamics identifier sub-network Dbe defined by

JoA) =05 £(t)T (1) (16)

where ;-[aT,e'T]T and £=e-¢. Since J(t) is positive definite and monotonically increasing,
for asymptotic stability, J'2(t) must be negative definite. Using the chain rule, we get

350

I =£T e Bt (1n
--£T[C vg) Nojja'2ij + C2 V80 Lok b2k + Tp 8F) ¢'2pj):

However, for the weight adjustments given by equation (13), we have
Tt =- op[£7 G vg(5) ngi12- o[£ C2 980) Lp,1x)2 - ¥2 L £, €531 (18)

which is a negative definite scalar function, except when £=0 where learning is complete.
Similarly, let the learning performance function for neural block ¥ be defined by

Jo0 = 05 20T 2(0 (19)

where 2 = 8r-8v is the output error of the network, 8r=r-v, and r is such that G(r)=gr.
Again, since Ja(t) is positive definite and monotonically increasing, for asymptotic stability,
J'a(t) must be negative definite. Similar to the earlier case, by the chain rule, we have

I =T ¥Rt | (20)
=- 2T [C3 V() N335 @'355 + C3 VR 23, '3k + Ip 8lz)) '35

On the other hand, since h(l >>1, from Lemma | we have 3u=8r and hence p=Z.
Therefore, for the weight adjustments given by equation (14), we get

J'3(0 =- g [uT C3 v(z) n 512 - B3l 1T C3 ve(@) 23] % - ¥3 [1y 8023012 1)

which is a negative definite scalar function, except when p=0 where learning is complete.
Therefore from the second method of Liapunov, this learning system is asymptotically stable.
This means that the connection weights in the networks will be adjusted until Jo(t)=0 and
Jo(t)=0, or equivalently £=e-6=0, £'=e’-c'=0, and p=8u-8v=0. However, these imply that
e=e'=0, and that the dynamics identifier sub-network Dacquires the model of the dynamics of
the perturbation system. Also, the optimal state feedback sub-network ¥ becomes identical

to the inverse D! of the dynamics identifier sub-network D, which generates the
compensating torque corresponding to the trajectory perturbation e and e'. Therefore, q=qr

and q'=q'y as time t approaches infinity (i.e., the manipulator's trajectory q,q' follow the
desired trajectory qr.q'y). O
6. Gonclusion

In this paper, two neural learning controller designs have been considered. They mimic
the functions of the cerebellum for the learning and control of voluntary movements and they

have parallel processing capabilities which make them fast and adaptable. The designs
have several promising attributes that make them very feasible solutions to current problems

351

in Robotics. Most importantly, such controllers are able to approximate the model of the
inverse-dynamics of the robot, during the training period. This allows the robot to learn
repetitive motions almost perfectly. But even above that, it can perform tasks that it has not
been trained to do yet, and to perform them well. In addition, the second design has a good
adaptation capability which allows the controller to compensate for unexpected disturbances.

Another advantage of these designs is that they do not require knowledge of the system
parameters, and they are robust with respect to parameter variation and disturbances under
a variety of tasks. Finally, the parallel processing property of thess architectures makes
them highly suitable for the integration of a multitude of sensory information into the motion
controller networks.

1. References

(11 Rumelhart, D.E., McClelland, J.L., and the PDP Research Group, Paralle] Distributed
Processing, Volume 1, MIT Press, 1987.

[2) Raibert, M.H., "A Model for Sensorimotor Control and Learning,” Biol. Cybern. 29,
1978.

[3]1 Eckmiller, R., “Neural Network Mechanisms for Generation and Learning of Motor

ms," ICNN, 1987.

[4] Psaltis, D., Sideris, A., and Yamamura, A., "Neural Controllers,” 1st IEEE ICNN,
1987.

[5] Rawato, M., Uno, Y., Isobe, M. and Suzuki, R., "A Hierarchical Model for Yoluntary
Movement and Its Application to Robotics," ICNN, 1987.

(6] Kawato, M., Furukawa, K., and Suzuki, R.., *A Hierarchical Neural Network Model for
Control and Learning of Voluntary Movement ," Biol. Cybern., 57, 1987.

[7] Pourboghrat, F., "Neuronal Gontroller for Robotic Manipulators,” IASTED Int. Symp.
Robotics Autom., 1988.

[8] Pourboghrat, F. and M.R. Sayeh, *Neural Network Learning Controller for
Manipulators,” INNS Conf. in Boston, MA, Sept. 1988,

[8] Pourboghrat, F. and M.R. Sayeh, “Neural Network Models for the Learning Control of
Dynamical Systems with Application to Robotics," Springer-Verlag i
Control and Information Sciences (to appear). Also in Int. Conf. Advances in Comm. &
Cont. Spst., Oct. 1988,

[10] Pourboghrat, F., "Neural Learning Controllers for Manipulators,” IEEE Trans. Syst.
Man Cybernetics (submitted).

[11] Pourboghrat, F., "A Learning Algorithm for Temporal Pattern Recognition,” IEEE
Trans. Syst. Man Cybernetics (submitted).

352

