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Abstract

Two neural learning controllerdesigns for manipulators are considered. The fast
designisbased on a neural reverse-dynamicssystem. The second isthecombinationofthe
firstone with a neural adaptivestatefeedbacksystem. Both typesofcontrollersenable the
manipulator toperfom any given taskverywell aftera periodoftraining_and todo other
untrained tasks satisfactorily.The second design also enables the manipulator to

compensate forunpredictableperturbations.

1. Introduction

The design ofadvanced controlsystems forrobotmanipulators has been a very active
area of research in recentyears. Inadequacy ofcurrent controlstrategiessuggests that
there is a need for a newer and fastercontrolarchitecturewhich will account forboth

learning and controlofroboticmanipulators.
In classical systems theory, input-outlnzt descriptions are based on some assumed or

predetermined mathematical structures, normally a set of linear differential equations.
Replacement of these predetermined structures by learned associative memory mappings of
stimulus-response leads to more general, normally non-Unear, representations of the
connections between inputs and outputs. This procedure can be implemented by neural
networks [1]. The best example of a system with such an architecture is the human brain,
which performs many complex functions superbly.

In the problem of motor control, obtaining an input function u(t) to generate a desired
motion y(t)isdirectlyrelated to findingthe inverse-dynamics ofthe controlledsystem. Let

the operator 6 denote the dynamics relation of the system, where _u)=y. Then the

inverse-dynamicsof the system is the operatorE--_-! such that E(y)=u. Knowing the

inverse-dynamicsrelationE--_-I, for a given desiredmotion trajectoryYd, the required

input _I can be found from Ud=_yd). This isbecause the motion correspondingtoud is

equaltoy=G(Ud)=Ca(E(yd))=G(_-l(yd))=yd.

Ithas been shown thatmulti-layerneural networkswith sigmoidalfunctionsareableto
map any measurable functiontoanotherwith an arbitrarydegreeofaccuracy,providedthat
there are enough unitsin theirhidden layers.Therefore,such networks can be used for
approximating themodel oftheinverseofthe dynamics ofa system [2-10].In thispaper the
development ofneuromorphic learningcontrollersisconsidered.First,a recurrentneural

network learningcontrollerC isdesigned. The design has a neuralinverse-dynamicsblock

and a PD-type feedbackblock_. Next,the learningcontroller8 ismodified,where its

PD-type feedbackblockisreplacedby a neural adaptivestatefeedbackblockg, which is to
optimallycompensate forunpredictableperturbations.The architecturesoftheselearning
controllersare similartothosein [I0_which are inspiredby the model ofthe cerebellum

givenby Kawato [5-6].
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2. Robot Dynamics

The dynamics of a robotmanipulator can be representedby an
correspondstoa setofn couplednonlineardifferentialequations,givenby

operator6 which

M(q)q"+ N(q,q')+ Q(q)= u (la)
or _u)-- q (Ib)

where q,q',and q" are n-dimensionalvectorsofthepositions,velocities,and accelerationsof
thejoints,respectively,where "prime" denotesthe time-derivative.M(q) is thenxn inertia
matrix ofthe arm, which issymmetric and positivedefinite.N(q,q')is then-dimensional
vectorof coriolis,centrifugal,and frictionalforces. Q(q) is the n-dimensional vector
representingthetorquesdue togravitationalforces,and u isthen-dimensionalvectorofthe
generalizedinputtorquesappliedtotherobot.

3. Learning Controller Design

There are a varietyofalgorithmswhich can be used formulti-layerneural networks to

learn the mapping between two patterns[I]. However, the stateof the art learning
algorithmsare most effectivewhen the input-outputpatternsare fixed.This condition,in
general,isnotsatisfiedwhen theobjectiveerrorfunctionisnotidenticaltotheerrorfunction

attheneuralnetwork'soutputlayer.To satisfythisconditionwe observethefollowing.

Lemma 1

Consider a stablesystem givenby the operator_, as in Figure I,where itsoutputq is
desiredtofollowa referencefunction_.. Letthehigh gain feedbackblockgivenby thelinear

operatorH be such that the closed-loop(I-_)-IG isstableand that _H_ >>I.Then for

bounded inputv theoutputerrore=qr-q isbounded and isgivenby e=[(I-tG_-16](Sv_-l(sv),

where 8v=r-v.Moreover,thefeedbacksignal8u---_e)_Sv.

Proof

From Figure

l

I I
Figure I

1, by some block manipulation, it is easy to see that effi[(I-_-16](Sv),

where 8v=r-v. Now let v be bounded. Then, since r exists, 8v is also bounded. But since the

closed-loopsystem (I+6_-16 isstable,the errorsignale=qr-q isalsobounded. Now since

>>I, we get e_'l(sv). On the other hand, since _ is linear,we have

8u=[(I+_i_)-Ica_R'](Sv).Butagain, since_H_>>I, itiseasytoseethat8u=_(e)_Sv. O
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4. Neural Inverse-Dynamics Model for Learning Control

The learning controller ¢, shown in Figure 2, has only one neural network block _; to

approximate the inverse-dynamics model. There is also a feedback block _ of the PD-type,
which is used for both the neural learning and the error compensation, and is given by

_(e)=8u=KM +Xde'.
NeuralLearningController C

(2)

qr

(Jr

Figure2
Network'sArchitecture

The neural blockEused here isessentiallya recurrentmulti-layerneuralnetwork. The

input-outputrelationoftheneuralnetwork Eis givenby

x'=A 1g(x)+B1e (3)

v =Clg(x)

where o = [¢kT,q 'rT,q" r T, I] T __3n+ I, x c _N, and v c _n are respecti_ly the recurs of the

network's input, states, and outputs. A 1, B1, and C1 are respectively the matrices of the

netwurk's state recurrence, input, and output connection weights, and g is the sigmoidal

function given by g(x)=tanh(x). The unity input in vector o is added to allow for the automatic
adjustment of the bias term.

Network'sLearning Rule
The learningalgorithmused forthenetwork isa modificationofthedeltarule[I],and is

given by [11]

a'ljj= (xI 8uT vg(x) C 1 t]l,ij

b'l,ik= [_IBuT yg(x) C 1 _l,ik

c'1_j= _I _up g(xj)

_l'l,ij=AI vg(x)_ l,ij+ lig(x|)

_'l,ik=AI vg(x)_l_k + liek

(4)
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where liisthe ithcolumn oftheidentitymatrix,_u isthe feedbacktorquewhich isalsothe

network'soutputerror,_g(x)=ag(x)/axisthe Jacobianmatrix, and <xI,El,and _flare the

learningrateconstantswhich are small positivenumbers. The initialvaluesof matrices

AI, BI,and C1 areselectedrandomly between -0.2and 0.2,and rIl,ij(0)=_l,ik(0)=0.

The objectiveof thelearning controller{3isto forcethe system'soutput errorto zero
through repeatedtrialsof the desiredtask. During trials,when the referenceinput is
repeatedlyappliedtothe system,the system'soutputerror isused toadjustthe controller

parameters,which are theconnectionweightsoftheneuralnetwork block_ Therefore,the

feedforwardblockE ismodifiedinsuch a way toforcethefeedbacktorquetovanish,which

indirectlydecreasestherobot'soutputerror. When the errorbecomes small,learninghas

been accomplishedand theneural networkblockI;issaidtohave acquiredthemodel ofthe

inverse-dynamicsofthe robot.But forthis,the correspondinglearningalgorithmmust be
convergent,or,thedynamics ofthelearningsystem mustbe asymptoticallystable.

Result1

Consider the roboticmanipulator given by the operatorfi,as in equation(I). Let the

neurallearningcontrollerI_givenby equations(2)and (3)be appliedtothesystem,as shown

in Figure2. Letthe feedbackblockI_be such thattheclosed-loopsystem (I+t_-IG isstable

and that_I_ >>I. Then theneurallearningcontroller8,togetherwith thelearningrule(4)

isasymptoticallystable.That is,the proposedlearningcontrollerforcesthemanipulator's
trajectoryq,q',tofollowthedesiredtrajectoryqr,q'r,aftera sufficientlylongperiodoftime.

Proof

Let rIl,ij=_x/_al,ij and _l,ik---_d_l,ik, then from equation (3), we get [1 I]

x = _0t [A 1 g(x) +B 1 e] da"

q l,ij = J0 t a/aal,ij [Alg(x)+B1 o] d-t" = J0 t [A 1vg(x)r I1,ij+Ii g(xj)] d't"

_l,ik = _0t &r'_°l,ik [Alg(x)+Bl 8] d't" = _0t [A 1vg(x)_l,ik+I i ek] d't'.

Differentiatingtheabovetwo relationships,we get

rl'l,tJ = AlVg(x) ql,ij + Ii g(xj)

_,'l,,k = AlVg(x) _l,ik + It ek"

Now, without lossofgenerality,we asume thatthereexistsan input functionr(t)tothe

manipulator such thator---_r).Let a performance functionforthe learningprocessofthe

neuralinverse-dynamicsnetwork be definedby

Jl(0 = 0.5 [r(t)-v(t)]T [r(t)-v(0] = 0.5 Sr2 . (6)

Since Jl(t)ispositivedefiniteand monotonicallyincreasing,forasymptoticstability,J'I(0
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mustbe negativedefinite.But,thetimederivativeofJl(t)isgivenby

j,l(t)=8rTa(Sr)/at

=- 8rT [(_(Sr)/_al,ii)a'1,ii+ (_Sr)/_bl,ik)b'l,ik+ (_(Sr)/SCl_i)c'l_]

=- 8rT [Cl vg(x)ql,iia'l,ii+ Cl vg(x)_l,ikb°1,ik+ Ip g(xi)C'l_|].

(?)

On theotherhand, since_>>I, from [,emma Iwe have 8u=Sr. Thereforewe have

J'l(t)=- BuT[C1 vg(x)_ll,ija'l,i|+ C1 vg(x)_l,ikb'l_k]-8upg(xi)C'l_i• (8)

However, fora'l,ij,b'IAk,and C'l_igivenby equation(4),we get

J'l(t)=- <xI[SuT C 1 vg(x)_ 1,ij]2-l_l[BuT C1 vg(x)_l,ik]2- 61[Sueg(xi)]2 (9)

which isa negativedefinitescalarfunction,exceptwhen we have 8u-0 where thelearningis

complete.Therefore,from thesecond method ofLiapunov,thelearningcontrollerCwith the
weight adjustments given by equation(4), isasymptoticallystable(i.e.,itisconvergent).
That is,theconnectionweight matricesA I,B I,and C 1intheneural inverse-dynamicsblock

I_will be adjusted untilJl(t)=0,that is when 8u=u-v=0 or equivalentlywhen /_r=r-v=0.

However, sincethe feedbackoperatorislinear,8u=Kpe+Kde'=0 impliesthate=e'=0,sincee

and e'are linearlyindependent. Therefore,q=_, and q'=q°ras time tapproaches infinity

(i.e.,themanipulator'strajectoryq,q'followthedesiredtrajectoryqr,q'r). O

The neural network I_ part of the controllerC is able to acquire the model of the

inverse-dynamicsofthe manipulator aftera suf6cientlylong periodoftraining.Afterthis,

therobotwith the inverse-dynamicsblockI_alone(i.e.,withoutthe errorfeedbackblock_),
isabletoperform the trainedtasksverywell. In addition,therobotisabletoperform some

new taskssatisfactorily.However, withoutthefeedbackblock_, therobotisnotquiteableto

compensate forunpredictableperturbations.Itiseasilyseen,however,thatleavingblock
inthe controllerloopafterthe periodoftraininggreatlyimproves the abilityofthecontroller
tocompensate forperturbations.This isthemotivationforthenextdesign.

5, Neural Adaptive State Feedback Model for Learning Control

The learning controllerC in thissectioncontainsboth a feedforwardand a feedback

neural network block. The feedbackneural block_ in thisdesign has substitutedforthe

PD-typeerrorfeedbackblock,as in Figure3.

The neural adaptivestatefeedbackblock _ is intended as an optimal statefeedback

controller,and containstwo sub-networks.One isthedynamics identifierI),which realizes

the dynamics model ofthe s_s_m's perturbationabout the nominal operatingpoint The

other is the statefeedback_',which generates an optimal statefeedbackfordisturbance

compensation. The o_rall feedbacknetwork I[learnstogeneratetheoptimalstatefeedback
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torquestoeliminateperturbations.From theLinear QuadraticControlTheory,thisnetwork
isequivalenttoan optimalstatefeedbackwhich continuouslyidentifiestheimrameters ofthe
perturbationdynamics of the manipulator, and from these, produces the optimum
compensating torques.

Le_rnin(jController C

qr a q

+

Figure 3

FeedbackNetwnrk's Architecture

The inputtoneuralblock_ isa 2n-vectoroftheangular positionvelocityerrorse and e'.

The outputsofthenetwork arethen compensating torquesignals8u.

The input-outputrelationshipforthedynamics identifiernetwork D isgivenby

y' = + v (10)

where v - [SuTl]T e_n+l, ye _.M, __=[oT,o.T]Tc _.2nare respectivelytheinput,state,and

theoutputofthenetwork. A 2,B2,and C 2 are respectivelythematricesofthenetwork'sstate

recurrence,input,and outputconnectionweights.

The input-outputrelationshipforthestatefeedbacknetwork $"isgivenby

z' =A3g(z) + B3e (11)

Sv= C 3 g(z)

where e--[eT,e'T,l]T _ _,.2n+l,z c_.L,8v¢ _n are respectivelytheinput,state,and theoutput

of the network, and A 3, _, 03 are respectivelythe matrices of the network's state

recurrence,input,and outputconnectionweights. As shown in Figure 3,thereare some

internalfeedbackblocks_Cand Lwithin theneural adaptivestatefeedbackblock_which are
used primarily to providea performance functionforthe networks' learning algorithm.
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That is

8u = Sv+

__=o__+_

>,=_=np_+Lda'

(12)

where _=[q_T,q>.T]T,2.=[oT, o'T]T, __-_[)_T,)cT]T, __=[E,T,E,'T]T=[(e-o)T,(e'-o')T] T, % is a

linearhigh gain feedbackoperator,and Lisa linearfeedbackgainblock.

In thefeedbackblock_, theneural dynamics identifierI)approximatesthe input-output

relationshipof the dynamics of perturbationsby forcingitsoutputsto followthe system

errors e and e'. The neural statefeedback F, on the other hand, approximates the

input-outputrelationshipof an optimalstateerror feedbacksystem by forcingitsoutputto

followthe input of the neural dynamics identi6erI). This, in effect,adjustsblock I:"to

approximate theinverseIT1oftheneural dynamics identifierD.

Networks' Learnf__ Rules

The learning algorithm used for the neural dynamics identifier network D is similar to

that of inwn_-dynamics network _ i.e., the time derivative of the connection weight
matricesA2, B2,and C 2 are givenby[ll]

a'2,ij ,, oc2 aT vg(y) 02 q2,ij

b'2,_-_ _T vg(y) C2t,2_

q'2,ij=A2Vg(Y) q2,1|+ lig(Yi)

_'2,ik=A2vg(Y) _2_k+ livk

(13)

where ___[_T,aT]T isthenetwork'soutputerror,vg(y)=Sg(y)/WistheJacobianmatrix, and

°c2,_2,and _2are small positivelearningrateconstants.The initialvaluesofmatrices A 2,

B2,and C 2 are selectedrandomly between -0.2and 0.2,and _2,ij(0)=_2_k(0)=0.

The learningscheme forthe neural statefeedbacknetwork block_"issimilar;i.e.,the
timederivativeoftheconnectionweight matricesA 3,B3,C3,are givenby

a'3,ij= <x3 9 ,T vg(z)C3 _13,ij

b'_,_k=_3i_Tvg(z)c3 _a,_k

c'3,pj = _3 !_ g(zj)

_'3,ij= A3 vg(z)q3,ij+ lig(zi)

_'3,ik= A3 vg(z)_3,ik+ lie-k

(14)
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where j_=Su-Svisthenetwork'soutputerror,vg(z)=ag(z)/SzistheJacobian matrix,and o_3,

_3,and _3 are small positivelearningrateconstants.The initialvaluesofmatricesA 3,B3,

and C3 are selectedrandomly between -0.2and 0.2,and _3,ij(0)=_,ik(0)=0.

From Result I,theinverse-dynamicsneural network _ with itslearningrule isableto

realizethemodel ofthe inverse-dynamics_-Ioftherobotand togeneratethe requiredrobot
torquecorrespondingtothedesiredtrajectoryqrand q'r.From theLinear QuadraticControl

Theory, in order to generate the compensating torque corresponding to the dynamics
perturbationsabout thenominal trajectoryofthe robot the adaptivestatefeedbackneural

network _ must identifythe dynamics relationof the perturbationsand correspondingly
generatethe optimal feedbackaccordingtosome performance criterion.But for thisthe
correspondinglearningalgorithm must be convergent (i.e.,the dynamics ofthe learning
system must be asymptoticallystable).

Result2

Consider theroboticmanipulator givenby theoperatorG, as inequation(I).Assume that

the neural learningcontroller8,givenby equations(3)and (10-12),isappliedtothe system,

as shown in Figure 3. Let the feedbackoperatorLbe a unitygain. Also letthe high gain

feedbackblock_ be such thattheclosed-loopsystem (I+(_-IG isstableand that_ >>I.

Then the neural learningcontrollerC,togetherwith the learningrules (4)and (13-14)is

asymptoticallystable.That is,thelearningcontrollerC forcesthemanipulator'strajectoryq
and q'tofollowthedesiredtrajectoryqr and q'raftera sufficientlylongtime.

eroo___£
From ResultI,sinceLisa unitygain,I_issuch that(I+(;_(,)-IGISstable,and _I_ >>I,

thelearningprocessfortheneuralinverse-dynamicsnetwork Eis asymptoticallystable.

Now let_2,ij=Sy/Sa2,ij,_2_ik_,ik, _3,ij=87_Sa3,ij•and _3,ij--Sz/SbS,ik.Then, similarto

thel)roofofResultI,from theneural network'sdynamics equations(I0-II),we get

'2,ij= A2vg(y) _2,ij+ lig(Yj)

_'2,ik=A2vg(Y) _2,ik+ li_.

t1'3,ij= A3vg(z) _8,ij+ lig(zj)

_'3,ik= A3 vg(z)_,ik+ li_.

(15)

Now consideringthe convergenceofthe feedbackblock_, leta Performance functionfor

thelearningprocessofthedynamics identifiersub-network1)bedefinedby

J2(t)- 0.5__(t)T_t) (16)

where _.[_T,£.T]Tand _-e-o. SinceJ2(t)ispositivedefiniteand monotonicallyincreasing,

forasymptoticstability,J'2(t)mustbe negativedefinite.Using thechain rule,we get
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J'2(t)= _.T8__')/St (17)

=. __.T[C2 vg(y)_2_ija'2_ij÷ C2 vg(y)12,ikb'2_ik+ Ip g(yj)c'2jpj].

However, fortheweight adjustmentsgivenby equation(13),we have

j,2(t) =. <x2 [ £T C2 vg(y) _}2,ij] 2- P2[ __T C2 vg(y) _2,ik] 2. _2 [ _ g(Yj)] 2 (18)

which is a negative definite scalar function, exceptwhen __=0where l_g is complete.

Similarly,letthelearningperformance functionforneuralblock_"be definedby

J3(t)= 0.5_(t)T _(t) (19)

where i = 8r-_v isthe output errorof the network, 8r=r-v, and r is such that_r)=qr.

Again, sinceJ3(t)ispositivedefiniteand monotonicallyincreasing,forasymptoticstability,

J'3(t)mustbe negativedefinite.Similartotheearliercase,bythe chain rule,we have

J'3(t)=iTa(O

=- iT [C3 vg(z)_3,ija'3,ij+ 03 vg(z)13,ikb'3,ik+ li>g(zj)c'3,pj].

(2O)

On the other hand, since _ >>I, from Lemma 1 we have 8u=Sr and hence P=i.

Therefore,fortheweight adjustmentsgivenbyequation(14),we get

j,3(t) =_ o_3[ {_T03 vg(z) ,13,ij] 2- P3[ {_T 03 vg(z) _k] 2- _3[ 9_ g(zj )]2 (21)

which isa negativedefinitescalarfunction,exceptwhen p=0 where learning iscomplete.
Thereforefrom thesecond method ofLiapunov,thislearningsystem isasymptoticallystable.
This means thatthe connectionweights in the networks willbe adjusteduntilJ2(t)=0and

J3(t)=0,or equivalently_=e-o=0, £'=e'-_'=0,and p=Su-Sv=0. However, these imply that

e=e'--0,and thatthedynamics identifiersub-networkI)acquiresthemodel ofthedynamics of

theperturbationsY_lm. Also,theoptimalstatefeedbacksub-network_" becomes identical
to the inverse iT of the dynamics identifiersub-network I),which generates the
compensating torquecorrespondingtothe trajectoryperturbatione and e'. Therefore,q--qr

and q'=q'ras time t approaches infinity(i.e.,the manipulator'strajectoryq,q'followthe

desiredtrajectoryqr,q'r). []

6. Conclusion

In thispaper,two neural learningcontrollerdesignshave been considered.They mimic
thefunctionsofthecerebellumforthelearningand controlofvoluntarymovements and they

have parallelprocessingcapabilitieswhich make them fastand adaptable. The designs
have severalpromising attr_utesthatmake them veryfeasiblesolutionstocurrentproblems
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in Robotics.Most importantly,such controllersare abletoapproximate the model of the
inverse-dynamicsof the robot during the trainingperiod. This allows the robotto learn
repetitivemotions almost perfectly.But even abovethat itcan perform tasksthatithas not

been trainedtodo yet and toperform them well. In addition,thesecond designhas a good
adaptationcapabilitywhich allowsthecontrollertocompensate forunexpecteddisturbances.

Another advantage ofthesedesignsisthattheydo not requireknowledge of thesystem
parameters,and theyare robustwith respecttoparameter variationand disturbancesunder
a varietyoftasks. Finally,the parallelprocessingpropertyofthesem'chitecturesmakes
them highlysuitablefortheintogrationofa multitudeofsensoryinformationintothemotion
controllernetworks.
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