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Abstract

This paper presents the development of an O(log 2 N) parallel algorithm for the manipulator inertia matrix.
It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive

doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal
elements of the matrix. It results in O(log 2 N) levels of computation. Computation of the off-diagonal elements

involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position

and orientation transforms for the manipulator, is developed. The O(log 2 N) algorithm is presented in both

equation and graphic forms which clearly show the parallelism inherent in the algorithm.

1. Introduction

A major problem in effectively realizing advanced control schemes for robotic systems has been the dif-

ficulty of implementing the kinematic and dynamic equations required for coordination, in real time. This
problem is accentuated by the increasing structural and task complexities of the next generation of robots

under development for space applications. Coordination of multiple-chain systems, with compliant structures

operating in higher speeds regimes while making and breaking contact with the environment, places stringent

computational demands on the control system.

One approach that has been used in advanced dynamic control schemes to obtain better performance has

been to employ the inertia matrix to decouple the dynamics along the several axes of a robot manipulator.
This allows either linear or nonlinear control schemes to be more effectively applied [1,2,3]. Specific tasks in

which the inertia matrix has been applied in the control include surface tracking and object identification using

force control [4] and computation of collision effects [5].

Determination of the inertia matrix involves a considerable amount of computation (approximately equal

to that of Inverse Dynamics for a 6 degree-of-freedom manipulator). The most efficient serial algorithm for

computing the inertia matrix was first developed by Walker and Orin [6] and requires O(N 2) time on a single

processor system. Systolic architectures have been proposed in [7] which reduce the order of the computation to

O(N) using N processors. The composite rigid body method developed in [6] was used in [7]. Essentially, sets
of links at the end of the manipulator are considered to be fixed with respect to each other so that elementary

physics principles may be used to compute their composite mass, center of mass, and moment of inertia. Use
of the Newton-Euler dynamic equations on the reduced system results in efficient computation of the inertia

matrix components.

This paper presents the development of a parallel algorithm to compute the manipulator inertia matrix in

O(log 2 N) time. Recursive doubling [8], which may be applied to linear recurrence equations to reduce the
order of the computation, is used to compute the diagonal elements of the inertia matrix. Computation of

the off-diagonal elements involves solution of N sets of linear recurrence equations of size N, N - 1, etc. for

which recursive doubling is not easily applied. Calculation of position and orientation transforms across the

links of a varying-size composite rigid body at the base end of the manipulator is required. A new method

is developed to compute the off-diagonal elements in O(log 2 N) time, and it avoids redundant computation of

the position and orientation transforms.

Set notation is used to develop the equations for the algorithm in a form which explicitly shows the

parallelism available. The notation used was first developed in part in [9] where recursive doubling was used
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to compute the Jacobian.

Previously, recursive doubling was applied to solve Inverse Dynamics in O(log 2 N) time [10]. Prior to this,

Lathrop [11] had achieved similar results through a logarithmic recursion method which was derived through

a restructuring of the fundamental computational framework for the equations. Parallel computation of the

inertia matrix has also been considered in the context of computing robot forward dynamics [12]. Recursive

doubling was used to compute the diagonal elements and a modified row-sweeping algorithm was used to

compute the off-diagonal elements with a resulting algorithm which was of O(N). The work of this paper

differs from [12] in that here quantities are not transformed to base coordinates before applying recursive

doubling. Also, the new method for computing the off-diagonal elements results in a parallel algorithm which
is of O(log_ N). More recently, Fijany and Bejczy [13] have developed two parallel algorithms which achieve

the lower bound in the computation time of O(Iog 2 N) + O(1). However, when they mapped the algorithms

onto arrays of processors, they concluded that an O(N) parallel/pipeline algorithm will have a much improved
efficiency with only a slight reduction in speedup.

In the next section, a brief overview of the O(N) parallel algorithm is given. In the section following,

the O(log 2 N) parallel algorithm is developed. The entire parallel algorithm is then summarized in a table
in a form which shows much of the parallelism inherent in the algorithm. Finally, the work is summarized,

conclusions are made, and several areas in which the work may be extended are discussed.

2. O(N) Parallel Algorithm for the Inertia Matrix

An O(N) parallel algorithm, based upon the determination of the mass, center of mass, and moment of

inertia of a series of composite rigid bodies for an N-degree-of-freedom open-chain manipulator, has been

previously derived to compute the inertia matrix, H(q) [7]. It was based on the earlier work of Walker and
Orin [6] in which an efficient O(N 2) algorithm was developed for the inertia matrix to further realize efficient

dynamic simulation on a single processor. In addition to the O(N) algorithm, various systolic architectures

were also proposed in [7] to achieve a real-time response. A complete listing of the algorithm is shown in
Table 1.

Briefly, Inverse Dynamics is applied to the manipulator N times. Starting with joint N and working

toward joint 1, a unit acceleration is applied to a joint with all joint velocities and other joint accelerations

equal to zero. This simply divides the manipulator into two sets of composite rigid bodies with one degree

of freedom between them. The mass (Mi), center of mass (ci), and moment of inertia (Ei) for the composite

rigid body at the end of the manipulator (links i through N) are first computed recursively using basic physics
principles. Then for each composite rigid body, the forces and moments at joint i due to a unit acceleration

there (fi,i, hi,i) may be simply computed by applying the Newton-Euler equations of motion to the composite

body. The component of the force along (prismatic) or moment about (revolute) the joint axis (i) is the

diagonal component of the inertia matrix, Hi,i. The required force or moment needed to ensure zero velocity

and acceleration at joint j (for j < i) is simply the off-diagonal element of the inertia matrix, Hj,i. These

forces and moments (fj,i, nj,i) are recursively computed for the various joints of the lower composite rigid body
by simple resolution of the force and moment at joint i to the required points. Only the diagonal and upper

off-diagonal elements of the inertia matrix are computed since the inertia matrix is symmetric.

Noting Table 1, the computation of the composite rigid body parameters and the diagonal elements of
the inertia matrix is seen to require O(N) time. The computation of the off-diagonal elements involves N

recursions each of which may be computed in parallel, also giving O(N) time.

3. Development of an O(log 2 N) Parallel Algorithm for the Inertia Matrix

The concept of recursive doubling [8] may be used to develop an O(log 2 N) parallel algorithm to compute
the composite rigid body parameters and diagonal elements of the inertia matrix. It has been previously applied

to achieve O(log 2 N) parallel algorithms for Inverse Dynamics [10,11]. In order to understand the basic concept

and develop the notation used, computation of the composite rigid body masses for a manipulator of eight

degrees of freedom will first be considered in this section. A parallel algorithm of O(log 2 N) will be developed

for computing these masses, Mi. Then, the approach will be extended to computing all of the composite rigid

body parameters, resulting in an O(log2 N) parallel algorithm for computing the diagonal elements of the

3O8



Table 1: O(N) Parallel Algorithm for Computing the Inertia Matrix.

CONST

CN÷I _- 0

glV+a ---- 0

Zo = [0 0 1]z

1 revolu_ joint_i = 0 prismatic joint

BEGIN

{, Computation of composite rigid body parameters and diagonal dements of the inertia matrix ,}

FORi :--N TO I DO
BEGIN1

Mi :---- M_+l+mi

gi := iUi+lg,+l i+lUi + Mi+a [ (iUi+a ei+l + ip_+i-ci). (iUi+x ei+l + ip_+l-ci) 1

- (iUi,x ci+a + ip_+a- ci)(iUi+l ci+l + ip_+l- ei) T]

+i, + m, [(s" - el). (s" - cl) a - (s" - _,) (s" - _l)_]

Fi := _i (zo x Mi c,) + _ (M_zo)

Ni := #i(Eizo)

fij := Fi

n_,i := N_4-c_xF_

U,,, := #i (nd,i • z0) % Oi (fi,, • z0)

END1

{, Computation of off-diagonal elements of the inertia matrix ,}

FOR ALL i :----N TO I DO
FOR j:= i-1 TO 1 DO

BEGIN2

f._,, :-- JU_+1 fj+l,i

._ '_ni,i "-- "/Ui+l(nj+1,i+ Pj+I × fi+,,;)

H,., := _rj(ni.i • zo)+_', (fi.l" zo)

END2
END

inertia matrix.

Computation of the off-diagonal elements of the inertia matrix involves N independent recursions of varying
size for which recursive doubling is not easily applied. The last part of this section gives an O(log 2 N) algorithm

to compute these elements. It effectively uses the position and orientation transforms for the full N-link

manipulator, which are computed while obtaining the diagonal elements, to transform forces and moments

over a reduced, varying-size composite rigid body at the base end.
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Figure 1: Flow of Data and Computation for Determining M1 (Ml,s)

3.1 Parallel Algorithm for Mi

As shown in Table 1, a recursive algorithm for computing Mi is given by

M_+I = 0 (1)

Mi = Mi+l + rn_ for i = N,..., 1. (2)

Eq. (2) is an example of a linear recurrence relationship for which recursive doubling [8] may be applied.
Consider computation of M1, the composite rigid body mass for the entire manipulator. The mass across sets

of two links may first be computed, all in parallel. For eight links, the links are simply combined as follows:

{1), {2), {3}, {4}, {5), {6), {?), {8) ----* {1, 2}, {3, 4}, (5, 6}, {7, 8) (3)

which indicates that the size of the set, for which the mass has been computed, has doubled. Again, doubling
the number of links in a set gives

{1, 2), {3, 4}, {5, 6}, {7, S) _ {1, 2, 3, 4}, {5, 6, 7, 8}, (4)

indicating that the mass is now computed for sets of four links. The doubling effect may be recursively applied
(recursive doubling):

{1,2, 3, 4}, {5, 6, 7,8) ----, {1, 2, 3,4,5, 6, 7,8}, (5)

so that the total mass of all eight links, M1, is available after 3 steps (log s 8).

Fig. 1 shows the flow of the data and computation involved in the three steps for computing M1 (Ml,s).
In the figure, Mj,k represents the mass of links j through k. This implies the following mapping relationship:

Mi "'-" Mi,N (6)

and

m_ ---* Mi,i (7)
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to extend the previous notation used.

Equations may be developed for computing MI. The total number of levels of computation is given by

aT = log2 N. (8)

The total number of sets of links at each level whose composite mass is to be computed in parallel is given by

uT = 2aT-a (9)

where I is the level number. Also, the variable u is defined and used in Fig. 1 as the number of a set on s given

level.

At the first level (l = 1), links are combined in groups of two; st the second level (I - 2), links are combined

in groups of four, etc. Thus, the number of links in a set at each level, the width w, is a function of I and is

given by

w-2 i.

Each computational step in Fig. 1 then combines two sets of links into one:

{i-I- 1,...,j},{j+ 1,..-,/c}---_ {i+ 1,...,j,j+ 1,...,k}

(10)

(11)

where

i = w(u- 1), (12)

j = w(u-0.5), and (13)

k = w u. (14)

Using the above notation for indexing, the following set of equations formalizes the parallel computation

of M! (MI,s).

IT := log2N
FOR I := 1 TO IT DO

(o 1UT :'- 2IT-I
FOK ALL u := 1 TO UT DO

f i := w(u-1) '_ (15)

j :=
(k :=w. j

BEGIN

Mi+1,k := Mi+ij + M_+l,k
END

The above equations only determine the following set of composite rigid body masses:

{MI,S, Ms,s, MT,s, Ms,s) = {MI, Ms, MT, Ms}. (16)

To obtain the other composite rigid body masses needed, in general, multiple computations must be performed
on each set of links at each level. All necessary computational steps are shown in Fig. 2. Note that the masses

for subsets of links, from a link in the first half of a set to the last link in the set (Eq. (11)), must be computed.

In so doing, another parameter which gives the total number of computations for each set of links on level I

may be defined:

VT = 2 I-1. (17)

Here, v is also defined to be the computation number for set u for a given level I. Note that

UT * _)T -= 21T--! * 21--1 = 2IT_ 1 _. --N (18)
2
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Figure 2: Flow of Data and Computation for Determining Mi (Mi,N)

which is constant over all the levels.

3.2 Parallel Algorithm for the Diagonal Elements

The approach taken to compute the compmite rigid body masses, M_, may be extended to develop the

O(log 2 N) parallel algorithm for all of the composite rigid body parameters and to further compute the diagonal

elements of the inertia matrix. The algorithm is summarized in the first part of Table 2 and will be discussed
in the following paragraphs.

First consider the computation of the composite rigid body parameters: mass (M), center of mass (c),
and moment of inertia (E). At a given level l, the main body of the computation is to calculate these in

parallel, for any combination of u and v, across the sets of links from i + v to k. Note that the components

of c and E are determined with respect to the coordinate system of the base link of the set (i + v) so that
the orientation and position transforms from links i -F v to j + 1, i+_Uj+l and P_+u,j+l, are required in the
computations. Note also that transform of inertial quantities associated with the links, back to the base of the

manipulator, is not required here as has been the case in other work [12]. As in the general case for recursive
doubling [8], the transforms needed on level ! are computed on level I - 1. Also, in the equations, note that

Pi,i+l - iP_+l, Mi,i -= ml, c_,_ =_ s_, and Ei,i - I_ which are all initially given for each link i.

The ceiling function [ ] and conditions on the range of the indices j and k have been used so that the

equations are appropriate for any number of degrees of freedom, N. Note that the computation is required

only if the number of degrees of freedom N is greater than or equal to the number of the first link (j + 1) of
the second of the sets of links to be combined (Eq. (11)).

The composite rigid body parameters as well as the diagonal components of the inertia matrix may be

computed in O(log 2 N) time and this is graphically depicted as Stage A of the computation in Fig. 3. In the

figure, the numbers in the parentheses within a box give the associated links for which the computation is
made. A "zeroth" level of computation is also shown in which the position and orientation transforms across

each individual link are computed. Note that the angle for the first degree of freedom is not needed and that

_U_+I and _P_+I are computed for link i.
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Table 2:O(log2 N) Parallel Algorithm for Computing the Inertia Matrix.

BEGIN11

iT := Pos2 N]

FORI:= 1TOITDO
BEGIN12

UT := 2IT -I
v T := 21--1

FOR ALL u := 1 TO ur AND
FOR ALL _ := 1 TO _T WITH

END11

i := _(.-I)
:= w (. - O.S):--_u

IF (k > N) THEN (k := N)

IF (j + 1 <_N) THEN DO
BEGIN13

i+vuk+ 1 :=

Pi+_,k+l :=

Mi+u,k :=

Ci+,p,k :--'--

Ei+.,k :--

}
'+°Uj+I J+IUk+1

P_+.,i+; + _+'Uj+; P_+_,k+;

M_+_,_ + Mj+_,k

M_+.,k

i+'Uj+1 Ej+1,k i+IU_+, + E_+,j

+ Mj+l.k [('+'U_+I c$+1.k + p,+,..,+l - C,+,.k). ('+"U.i+l Cj+l,k + p,+,,j+l - c,+,.k) 1

"1i+_, .- ( U,+I c,+,,, + p,+.j+, - c,+.,k) ('+_U,+I c.,+,,, + p,+.,j - c,+.,./)

+ Mi+.j [(c,+,j - c,+,.k). (c,+,.$ - c,+,,k) 1

- (c,÷.,_-c,÷.,.)(_,_._- _,÷.,.)T]

END13
END12
FOR ALL i:= 1 TO N DO

BEGIN14

fi,i :=

END14

ni,i :=

Hi,i :=

., (.o__,,,,,_,,,,)+., (-,,,, %)

., (E,,,,%)+_,,,,_f,,,

,, (n,., . z0) + a, (f,., . z0)

3.3 Parallel Algorithm for the Off-Diagonal Elements

To obtain the off-diagonal elements of the inertia matrix, the force and moment at joint i due to a unit

acceleration there (f_,i and n_,,) should be resolved to the previous joints (fj,_ and nj,_) for j _< i. This involves

a total of N linear recurrences of size N, N - 1, etc. Several approaches to parallel computation of the off-

diagonal elements are first discussed in this section. Then an effcient approach, which uses the transforms

computed in Stage A for the diagonal elements and which achieves an O(log 2 N) time, is detailed.

First of all, computation of the off-diagonal terms may be computed in O(N) time if the parallel algorithm

given in Table I is employed. This results in a computation time of KIO(N)+K20(log2 N) for the entire inertia

matrix where the K1 coefficient is relatively small. This is similar to the modified row-sweeping algorithm
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Table 2 (continued)

BEGIN21
FOR ALLx:=I TONDO
BEGIN22

t_ := [log_ _1

FORI:=ITOI. DO
BEGIN23

i°=,}_T :_- 2 Iz-I

VT :--= 2 t-I

FOR ALL u := 1 TO .r AND
FOR ALL v := I TO vT WITH

{' }:= w . 5)

IFU+I<z<k) THENDO
BEGIN24

fi+u,s :=

ni+u,z :=

Hi+,,,. :=

END24
END23

END22
END21

'+"U._+If.,+l,.

_+'U..+I(nj+,,.+ pi+,,,._+1x fi+1,.)

_,,+. (n,+°,. • zo) + u,+. (f_+.,. •zo)

applied by Lee and Chang [12] when computing the inertia matrix for parallel forward dynamics computation.

The order of the computation may be further reduced if recursive doubling is applied to each of the re-

currences. Computation of the largest recurrence, which gives the elements of the last column of the inertia

matrix, can then be achieved in O(log 2 N) time. Since each of the recurrences may be computed in parallel, the
overall computation time for the off-diagonal elements is O(log 2 N). The major problem with this approach,

however, is that the position and orientation transforms (U's and p's) across the links of a varying-size com-

posite rigid body at the base end of the manipulator are computed independently. This results in redundant

computation both within this stage of computation and with Stage A for the diagonal elements.

The most efficient method for computing the off-diagonal elements is to use the transforms computed in

Stage A while yet completing the computation in O(log z N) time. But it should be understood that these

transforms were basically computed for a manipulator of size N only. However if the computational structure

of Stage A is considered in Stage B for the pff-diagonal elements, then the more efficient algorithm is achieved.

Noting Fig. 3, computation of the off-diagonal elements of column 6 is shown. Judicious elimination of many
of the computational blocks (shown with dashed boxes) results in effective use of the transforms available from

Stage A while still achieving O(log 2 N) time.

Note that the computation in the left part of Stage B is generally not needed. This is shown implemented

in the equations, in the last part of Table 2, through appropriate conditions on the indices j and k. Essentially,

the computation is not required unless the column number z falls within the range of the second of the sets

of links to be combined (Eq. (11)). In Fig. 3, the numbers in parentheses within a box give the indices for the
f's and n's which are calculated. Not explicitly shown in the figure is the flow of the position and orientation

transforms from Stage A to Stage B which are required for the computation of the off-diagonal terms.

The O(log_ N) parallel algorithm is shown in its entirety in Table 2. When compared with Table 1, it may
be noted that the total number of primitive operations has increased with the parallel algorithm. In general,
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Figure 3: Flow of Data and Computation for the Parallel Algorithm (N = 8).

the number of primitive operations increases as one attempts to decrease the order of the computation. In
fact if the total number of operations decreased when going from a serial algorithm to a parallel algorithm,

then the parallel algorithm should also be used on a serial processor since it becomes the most efficient serial

algorithm as well.

4. Summary and Conclusions

This paper has outlined the development of an O(log 2 N) parallel algorithm for computing the N x N inertia

matrix for a robot manipulator. A listing of the algorithm is given in Table 2, and its flow of computation and

data is shown in Fig. 3. In each case, the parallelism inherent in the algorithm is explicitly shown.

A recursive doubling technique [8] was used to achieve computational reduction over the O(N) parallel

algorithm listed in Table 1 in computing the diagonal elements of the inertia matrix. It avoids transformation
of inertial quantities, associated with each link, to base coordinates. An O(log_ N) algorithm, which uses
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the position and orientation transforms computed for the entire manipulator when determining the diagonal

elements, was then formulated to calculate the upper off-diagonal elements of the inertia matrix. Additional
computation to determine the transforms over a varying-size composite rigid body (fixed set of links) at the

base end of the manipulator is also avoided.

Investigations have also been made in associated work to determine the relationship between the order

of the computation and the number of processors required for implementation. As expected, as the order of

computation decreases, the total number of processors required increases.

Work is also under way to efficiently map the O(log 2 N) algorithm into a parallel architecture structure

while accounting for communications (I/O) overhead. The basic objective is to minimize the computational

latency while maximizing CPU utilization. Further, work is under way to increase concurrent task processing

on multiple processors by developing a new computational model which includes effective use of prediction

algorithms. Hopefully, the work of this paper will provide the foundation for parallel implementations of
the inertia matrix which will facilitate effective realizations of dynamic control schemes for space telerobotic

systems.
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