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INTRODUCTION

With an assumed governing system of partial differential equations
(PDFE's5), numerical simulations typically consist of applying a grid generator
and a PDE-sanlver. In each case, a communication link is established from the
gaonerated grid to the PDE-solver. This link occurs when the solver is written

in terms nf 3 grid which eovers the physical region. In the event that a3 so-

1at . an =hout develon large variations on a finer sczls than is provided by
the lorcal g-1d spacing, a communication link must alsc be established from the
PDE-anlyver Lo the g=1d generator. The grid is then driven by the soluticen to

me=r the rezalution reguirements and is called adaptive.

Whila the communiczation link from the grid to the solver is typiczlly &

mat .~ of transferring solution data to the grid and then expressing the PDZ's
with resypect t~ the grid, the link in the opposite direction is mcre subtle.
T fm it, we must use the solution data to determine the locations where the
freosre might beeoome large. In g formal analytical sense, the locations re-
quiving resolution can be obtalned by error estimates that are derived for the
Pl ~colver . Altornatively, the same locatinns can often be determined direct-
17 rom a basin knowledge of the problem undergoing simulation. From the di-
rec’. viswpcocint, we note that the solution is generally given as a vector cf
depsndent variables at each point in physical space and geometrically appears
as » anrface over the physiecal space. Rather than taking the solution surface
“Laaif, wWe use nur knowiedge about it to extract the quantities which will ex
rerience rapid variations. We then form ancther surface with those quantities
snd, 'o he desariptive, we call 1% a monitor surface since it must suitably
mani tor solutinn behavior. Rather than forming it with a direct vector of the
quantities, scalar combinations are empleyed tc achieve simplicity, The zinmp
15t situation occurs when a single scalar linear combination is used. By
#af nition, the locations that require resolution are then determined by large
gradients 2f tnis scalar. In a geometric spirit, the gradients are resolved
when the monitor surface is uniformly covered with grid points. Moreover, the
v21tion is more acourately represented by the grid when the bends in the
man‘tor surface are also resolved. Thnis can be achieved with curvature clus-
tering.

With the adapiive data suitably expressed in the form of an error esti-

mat - or a monitor surface, the next step is to develop grid generators that
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can use the data to cluster points in the desired locations. The manner in
which the clustering is performed must also be done automatically and reliahly
since human intervention is not assumed to be avallable for corrective ac-
tions. In broad terms, the clustering is achieved by the movement of grid
points and by changes in the number of grid points.

Most methods which alter the number of points tend to start with a fixed
global grid and proceed to locally add points as they are needed., Sometimes a
means to remcve points when they are not needed is alsc emplcoyed. As a conse-
quence of lscal joint additions and subtractions, the overall grid structure
becomes rather complicated in the sense of the accompanying data structures.
and internal houndary treatment between fine and coarse spzcing. In contrast,
methods which move the points of a curvilinear grid maintain a simple dat:
structure and have no such internal bsundaries. However, with a fixed number
of points, loczl resolution is achieved at the expense of depreciating the
resclution in other regions. In many cases the depreciation is quite minor
beczuse the other regions often have an overabundance of points that would not
3ignificantly contribute to the accuracy of the simulation., The limitation of
fixing th=z numder of pocints then only occurs when there are not enough pcints
to ressilvz sither the local phenomena or the other regions. As a consecuence,
a reasonable strztegy is to globally alter the number of points in each coor-
dinate direction while maintaining grid point movement as the primary adaptive
mechanism.

Cne simple way to make the global decision is to first determine the
number of points rzquired for a mildly varying solution and then to estimate
the number of extra points required for the severe variations. Along a coor-
dinate curve, the estimate is just the number of severe variations times the
number of polnts reguired for such variations. To adequately employ all
curves in a given coordinate direction, the estimate to be used is then the
maximum of the estimates for the curves. By adding it to the number required
for a mildly varying solution, the total number of points in a given direction
is obtained. With such strategies, the number of points can vary between the
reguirements of mild and arbitrarily severe solution behavior. The use of
points is then somewhat optimal in the sense that there are just enough to re-
sdfve everything to our satisfaction without a tremendous excess of modestly
contributing points.

To keep our discussion within simple bounds, we will only consider basic
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grid point movement schemes with the ilmplicit understanding that any of them
ran be applied as part of strategy where the number of points in each coordi-
nate direction can also be adaptively adjusted as indicated above. As such,
we will refer to the schemes as adaptive grids. This is consistent with the
notion of grids as discrete coordinate transformations as opposed to meshes
that can assume an unstructured format.

The general topic of grid generation has been the subject of a number of

snces. These occurred at NASA Langlev {11 in 1980, at Nasnville [Z2] in
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92, at Houston [3] in 198%, and at Landshut, West Germany [U] in 1985, Thsz

latter is the start of a two-year international ccnference sequence. The

[P

tspin alao has appeared in a conference on adzptive methods in Marylenc 51 in
123 and has assumed a role of growing importance in the AIAA Computaticnal
Tlnid Dynamics Conference sequence as well as in the international series on
Numer~i~al Methnds in Fluid Dynamics, published in the numbered seguence of
Lecture Notes in Physics by Springer-Verlag.

"n addition, there are general surveys by Thompson, Warsi and Mastin [5]
.n 1082 by Thompson (7] in 108L, by Eiseman {8] in 1985, and by Eiseman and
Frlshacher [3] in 1G87. More specialized surveys have also appeared in the
pont srences at NASA Langley and at Nasnville. Gn the topic of adaptive grid
generation, the previous reviews were given by Anderson {10] in 1983 and by
Thompson [11]) in 1935. The present review represents a fairly thorough cur-

rent aceount of this active and important subject.
WEIGHT FUNCTICONS

At the root of adaptive grids is the desire to generate good grids with
ooli3 that contain equal amounts of a specified weight function. When the
gen~ration process is performed in physical space, the error estimates or
grati=nts of the monitor surface are directly inserted into the weight funec-
tion along with other quantities such as monitor surface curvature or a baow -
groand distribution. When the process is performed on the monitor surface and
the consequent grid is projected down onto the physical region, the gradients
are automatically resolved by the use of surface arc lengths. With the weizht
fun~tions for surfaces, the emphasis is on geometric quantities that allcw us
t> ~luster points in a manner that improves the disérete representation of the

surface. These weights are applied against surface are lengths, areas, and
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volumes as opposed to the corresponding projected elements in physical space.
As a consequence, the main clustering quantities in the welghts are the vari-
ous forms of curvature. This includes normal and mean curvatures [or the
pasic geometry and geodesic curvature for boundaries.

Regardless of where the grid generation process is performed, the basic
formation and utilization of weight functions remain the same: only the at-

tracting quantities and the cellular elements are changed. In the most gen-

r
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Wweight is a positive scalar function that {ncorporates quanti-

o
hht]

tias for 2 ckground distribution, for arbitrarily attracting points, and for
improving the structure and smosthness of tne grid. The simplest anc most

commonly uysed form a linear combination. The generzl linear exgression is

b
N

given by
wos Tor oM oMy Ll s oM {1)

where the zbove quantities are represented with nonnegatlive functions M. that

»

nave nonnegative coeflicients cy to incicate the level of importance attached

tc tham. We now think of the functions M; as masses which then more strongly
attract paints when they are large. For the arbitrary attraction to z gradi

<r
—

ent, i s the magnitude of the gradient or some normalized version of the
magnitude. For a background distribution, it is a derivative of that distri-
bution. For an improvement in the structure or smoothness of the grid, it is
a rull of the grid towards orthogonality or towards conformal conditions. Al-
together, these masses represent a collection of attributes that compete with
pach nthear and with the first term of unity which represents uniform condi-
tinns. The uniformity is actually achieved if all the coefficients cy should
vanish. The uniformly distributed items are the elements on which the weight

is applied. By making any of the coefficients ¢, arbitrarily large, the assc-

i
riated attribute can be made to be dominant and to thereby dwarf the effect of

the uniformity term. In such a situation, the first term is viewed as only a
guarantee that the weight function is never zero. In some circumstances, tnis

term is dropped entirely.
EQUIDISTRIBUTION IN ONE DIMENSION

With the motivation to directly cluster points as the weight becomes

-~




large, the first consideration is to move the grid to get the cells to contain
equal amounts of weignt. This equally distributes the welght over the cells
of a grid and is called an equidistribution process. Upon accomplishment, the
equalization results in small cells to accommodate large weights and larger
cells to accommodate smaller weights. Since the basic principles involved can
be most simply displaved in one cimension and since most of the adaptive grid
generatinsn mathods have their roots establisned in that context, we shall

1eider one-dimensional devsalopments and then proceed to the higher di-

]
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The Differential Statement

In one dim2nsion, eguidistribution occurs when the spacing between points
{5 inversely proportional to the weight. Assuming a transformation from s
Aurvilinear coordinate £ to the are length s along a given curve, the rela-

tionship i3 given by the differential statement
wds = cdg {(2)

W“here ¢ is the proportionality constant. 1In the mapping, a uniform distribu-
tion in £ is transformed into a nonuniform distribution in s. The desired
sparcing is achieved because df is also viewed as a constant which then means
that the spacing ds must shrink or expand tc accommodate respectively large or

small weights.

The Local Integral Statement

In the finite sense of grids, the appropriate conditions come from local
intewrations that are taken between the successive grid points. For an index
i, the integration is from Ei to £1+1 and the corresponding 8; to s;,,. The

conaequent local integral statement is




where

- £, = tant
51*1 El constan

The sesond part 15 the requirement for a uniform distribution in § that now
aas assumed the form of a grid with constant spacing. In an intuitive sense,

ths total weight over each cell is simply required to be a constant.

The Direct Grid Statement

While a variety of schemes could be constructed by evaluating the l»ocal
intagrals in various manners (i.e., distinet quadrature rules), the most com
mon method is to assume a value of weight at the center anc to use it as a
~anetant over the interval. This approximation for the integral leads to the

exrlicit grid statement

widc§si+l - Si] = constant (4)
where typically
W = l(w + W ] (5)
il 2 Tiv i

The effect of the weight on the grid points is now more directly evident than
it was in the previous statements. Specifically, as Viﬂégis increased, s; and

3541 approach each other.

The Backward Global Integral Statement

For a direct uncoupled relationship between grid point locations, globai
rather than local integrals are considered. When the weight w is given as a
function of only the location s along the curve, a direct integration of Eq. 2

leads to the transformation



min - F(s)
Emax h Emin F(smax)
where (6)
S
F(s) = f wdx
S .
min

The derivation ccnsistzs of first determining the proportionality constant of

£q. 2 from the total integral as

(7)

and then using the integral up to the current location s to get Eaq. 6.
Within the context of application, a curve has been given as a function

of a parameter s znd then the new parameter § has also been expressed as a

or

sunction of 8. 1a the language of mappings, the functional relationships be-
some the map from zn interval of values s to the curve and the map from the
same interval to the interval for £. The latter map, however, 1s clearly
barkwards with respect to the straight composition of maps which is from § to
s and then to the curve. As a consequence, the map of Eq. 6 will be called
the backward global integral statement.

An implication from the backwardness is the need to invert the trans-
farmation in order to apply it. In terms of grids, the inversion is most
simply accomplished by a lpcal linear interpolation within a table of integral
vailues for the previous grid points a, < as < iees € ay on the interval
Spin = 8 s Shax’ With midpoint weights determined in the manner of Eq. 5, the
integral of Eq. 6 is approximated by the trapezoidal quadrature rule

k-1
F(ak) = 1251 w‘_H]/2(‘aiH - ai) (8)

for k = 2, 3, ...., N and by 0 when k = 1. When the previous points a; are

taken as the piecewise linear approximation to curve arc length, the spacing

..7..



increments are given by the Euclidian distance norm as

a, ., —a, = ||P - Pill (9)

i+1

where P P ey PN are the previous grid points on the curve. Returning

to the transformation of Eq. 6, uniform spacing in £ yields values of

(j=1)/I{N-1) on the left-hand side and thus the interpolation problem

F(aN) {10

3 Bkl
flsy)

for the internal points sj where 5 = 2, 3, ..., N-1. The bsundary points zare

already known and are S, = 2, and Sy = ay- For each j, the value on the
rignt-hand side of Eq. 10 is used in a search to find its position within the

anle of values fromw Eq. 8. The result is an index m = m{j) for which

cr

F(am) pS F(SJ) < F(am+1) 1)

with possible equality on the right if it is the last intervel m = N-1. Using

the fractional amount of entrance into the interval

F(sj) - F(am)
1) - F(am)

= (12)
3 F(am

+

the new values of sj are given by

-a) (13)

-pr_) (14)

In the event that the transformation of Eq. 6 is analytlcally defined,
the inversion can be more accurately executed by a variety of point iterative
methods. Moreover, if the curve is also analytically defined, then the grid
point locations can indeed be very accurately determined. However, in the

general adaptive context, such analytical data is usually not available and
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such high accuracy in the grid point locations is rarely critical. As a
consequence, the most widely applicatle inversion is the simple numerical ap-

proach that was just presented here.

The Forward Global Integral Statement

As an alternative, the inversion problem can be avoided altogether by the
eonstruction of a forward transformation in place of the previous backward
cne. The basic assumption is that the weight w must be considered purely as 2
function of the new curvilinear variabdie §. While the functicnal dependencs
can often be readily shifted by a change of variables, this viewpoint is im-
portant because w is seen to vary with respect to the number of grid points
rather than with respect to specific lccations on the curve. In cases where w
is explicitly defined as a function of g, a change to s becomes a real compu-
tational task that requires a global iteration to suitably converge.

To derive the forward global integral statement, Eq. 2 is divided by w

and is then integrated in the same manner as before. The result assumes the

form
3 Smin O
s - 5 TGl )
max in max
where (15)
I3
2 dr
a(e) = e
Emin

and where the proportionality constant in Eq. 2 1s given by

3 I
max min (16)

¢ TG

Using the midpoint values of Eq. 5, the integral in Eq. 15 is approximated as

in Eq. 8 by the trapezoidal quadrature rule which here appears as



i

1
Af ‘Z v an
i=1 13@

G(g,)
By displaying the constant increment Af in front of the summation, the fact

that £ represents a counter of points is accented. Since the simplest counter
is achieved by taking the index 1 itself, it is common practice to assume that
AE = 1. When the forward transformation of Eq. 15 is evaluated at the uniform

points Ei = i, the new locations are given by

~ _ G(j)
55 ° Smin [Smax smin)G(N)
where (18)
=y
63 = .Z W,
i=1 1J@
“or 3 =2, 3, ..y No For j =1, the sum G{1) vanishes and the result is s, =
Smin-

Fror the Farward character of directly producing new parametric locatisne
S5
tinn. If the curve is only defined by the previous grid points P1, P2' ey

each new grid point location Q; is directly obtained from another evalua-

Py» then the evaluation must be accomplished by interpolation. The simplest
and most commonly used approach is to find the interval in the previous para-
metric grid a; < a; < ... < gy that contains Sy and then to use local linear
interpolation. This proceeds by first searching to get the index m = m(j)

such that

am s SJ < am+‘| (193

with possible equality on the right if m = N-1. Using the fractional distance

into the interval

SN I (20)

the new locations on the curve are given by

_10..



Q -P +a -pr ) (21)

J J

In contrast to the backward case, the local linear interpolation here occurs
with respect to the previous parameter grid.

Altogether, we could reasonably get the impression that the forward
transformation is a much more efficlent approach than the backward transforma-
tion. This is certainly true when the weight function is explicitly defined
as z function of the grid point counter f. However, in the adaptive context,
the variations in the solution are present at distinct locations in the physi-
cal region regardless of the grid employed for a simulation. As a conse-
quence, the weights are really given as explicit functions of the spatial
length s. This occurs because the weights are formed from sslution proper-
ties. In the application of the forward transformation, the weights are then
only implicitly given as a function of § in the form w(s(£)). The result is
the requirement for an iteration. From a given weight function defined with
respect to s, the evaluations w; over an initial grid of points S4 imnediately
defines a functional relationship between the grid point counter £ = i and the
values w,. With this data, the forward transformation is then applied to pro-
duce new grid point values S§- A return is made to the weight evaiuations and
the process is repeated. It is stopped upon reaching the limit of a conver-

gence criterion,

The Differential Equation Statement

While the constant of proportionality in the differential statement of
Eq. 2 was explicitly evaluated in the global integral statements, it is re-
moved by differentiation in the differential equation statement only to re-
appear in the form of a second boundary condition. The first boundary condi-
tion was the initial value for the global Integrations as applied to the
simple first-order equations.

For notational simpiicity, a subscript by an independent variable will
represent differentiation with respect to the variable. From Eq. 2, a
f-differentiation of the proportionality constant vanishes and results in the

second-order differential equation

—11_



(wsE)E =0 (22)

Upon expansion and division by w, it assumes the form

x

£

s +—=s5_=20 (23)
e "W % 3
where the weight term has been isolated. Accenting this isolation, the equa-

tinn can be written as

s + 35 =0 (2t

W
PR (25)
W

Conversely, when any ecquation of the form in Eq. 24 is assumzd, the se-
condary equation, Eg. 25, may be emplcyed to get a weight function. The

result is given by
W o= c1ej adg (26)

where ¢, is the constant of integration. This weight is clearly equidistri-
puted since all of the steps leading to the pair Egs. 24-25 can be readily
done in the opposite direction. The important consequence here is that Eqg. 2%
can be viewed as a basic equidistribution law. This form is called the dif-
ferential equation statement since it is another statement which is equivalent
to the others. '

An inverse form may also be given and can be determined either directly
from the differential statement of Eq. 2,0r from a formal interchange of vari-
ables s and £ in Eq. 23. In the case of Eq. 2, an s-differentiation of gs/w
is seen to vanish. Upon simplification, the result is in the same form as in
Eq. 24 but with a sign change and an interchange of variables. It also as-

sumes the Poisson equation format for 1-D which is given by

%

s
Eas = W &g (27)

_.12_.



and which in higher dimensions has been extensively used for elliptic grid

generation as discussed by Thompson [12] from a general perspective.

The Direct Finite Difference Statement

While various finite difference schemes could be employed to solve the
previous statement in terms of a differential equation, a more immediate ap-
proanh 1S o use the direct grid statement of Eq. 4. This is an approximaticn
ta the differential equation (Egq. 22) that is readily available. By writing

% for i-1 and i and noting that the same constant appears on the right-

tn

g.-

nhand side, wa have

Sy TS T Mafs T 8y (2%)

which can be rewritten as

W, 1,5, - . 4 W, 1,08, * W, . = 29}
$4/571+ 1 (wl*J/2 wl‘]/zsl 14/231-1 0 (29
When combined with the boundary conditions
51 7 Smin .
{30)
SN = Smax

we have a simple tridiagonal matrix to invert to get the interior values S5,
830 v Sy-1- The corresponding grid points Qj along the given curve are
then determined in the same manner as in the global forward integral state-
ment. In addition, the need for iteration is also required since the welights
appear at unknown locations. Only the index i is known. This is discussed in

the paragraph containing Eqs. 19-21%.

Mean-Value Relaxation Statement

With a view towards direct extensions into higher dimensions, we are
motivated to ‘cast the tridiagonal finite difference-form of Eq. 29 into a
statement of point relaxation that contains an intuitively plausible basis for

such extensions. Without this view, there would be no compelling desire to
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consider point relaxation since it is substantially more efficient to use the
tridiagonal form in the sense of direct Gaussian elimination. In higher di-
mensions, by contrast, the efficiency can be retrieved by multigrid methods
[13] and by the use of parallel computing environments [14].

By solving for the center point 8y in Eq. 29, a form that is immediately
suitable for point relaxation arises and is given by

Mg T YidS- (31)

Yids " Yidp

i

In the Gauss-Seidel application; the values on the right-hand side use the
avszilable current information while the point Jacobi application ignores the
current informaticn in favor of the data from the previous sweep over the
field. With either method of relaxation, however, the formula in Eq. 31 does
not yield the desired intuitive basis since the evaluations of s are unaligned
with the evaluations of w. By adding Sy to each side of Eq. 31 and then di-
viding the result by 2, the apparent intuitive obstacle can be overcome. Upon

appropriately grouping terms, we arrive at

W, 1,8, 1, * W, S._1
iH/ *"/"; /" /
s, = ";1 " wl 2172 (22)
45 Tidn
where
3. +3,
s o i1 1
i/ 2
and (33)
ARt

SidnT T2

In the present form, we can now intuitively look at the weights over the in-
tervals on either side of s;. Assuming uniform weights over each side, the
weighting centers are at the midpoints as given by Eq. 33 and are in.corres-
pondence with the weight values there. In a physical sense, the formula is
readily interpreted as a center of mass formula for the interval from 841 to
Sie- 7
In the sense of pointwise movement, the center of mass form can be recast

to explicitly display the movement. This is accomplished by subtracting the

_1 u_



previous position gi from each side of Eq. 32. The result is given by

w d W d
- {4/ d,5-
3 -5 = —227 ) (3m)
1 1 W +] + 1
i+ i/
where
T s, 8
and (2%)

R e

are the maximum movement distances in positive and negative directions from
5. .
i
The subsequent mapping to the curve is accomplished locally. The local-

ness ocrurs because the move to a new S cannot exceed one-half of the dis-

tance from the old s; to its neighbors s and s;

{+1° If both neighbors are

i-1
oid locations, then the halfway restriction prevents an interchange of s; with
2lther sy, or S, when their respective moves are also considered: at best
they may simultaneously approach either midpoint of Eq. 33. When the current

values of S and s are immediately used upon availability, the halfway

i+
restriction is not required to prevent such an interchange. The important
fact here is that with either method of point relaxation, the center point
cannot move outside of the interval from Si-1 to S{+1 at any stage of
relaxation. This then means that the previous global search used in the
direct Gaussian elimination approach would be replaced by a local search
netween the two adjacent intervals. Beyond this stage, the mapping to the

curve proceeds with the same linear interpolation over the selected interval.

The Least Squares Statement

In contrast to the previous statements which evolved directly from the
original differential statement, the evolution will now be considered to start
from a global expression where the competition among the different locations
appears simultaneously. The basic action comes from the minimization of the

weighted sum of squares



N-1
e 1§1 Wisa(sgey T8y (36)

The competition among locations corresponds to the distinect terms in the sum.
By viewing the weighting coefficients as a sequence of positive constants, the
minimum is determined by setting

%%E = 2“j-1/2[sj-sj—1) - 2”j+1/2[sj+1—sj] = 0 (37
and is thus seen to give the earlier tridiagonal system of Egs. 29-30.

When the weighting coefficlents are considered to be evaluations of a
single continucusly defined weight function, the points of evaluation are seen
ts be only a function of the index. This means that the weight is only a
function of the curvilinear variable £ which 13 then evaluated at uniformly
spaced points. In practice, the points are typically chosen to be the index
itself.

As a matter of distinction, if the weight had solely been a function of
the position s, then the evaluations at each index j would have varied with
the current associated location Sj- The result for the minimization equations
would have been the inclusion of weight derivatives and a nonlinear dependence
upon 8. From an iterative point of view, the nonlinear effect would appear as
a requirement to reevaluate the weights and/or their derivatives when each 8y

assumes a new value.

The Constrained Least Squares Statement

As an alternative to the minimization with respect to the pointwise lo-
cations sJ, the previous sum of squares can also be minimized with respect to
the spacing between points. In an intuitive sense, the contributions from
each term will be separated from its neighbors and will more directly produce
the direct grid statement of Egs. 4-5. The added complication for this desir-
able separation is the constraint that the sum of all of the spacing incre-
ments equals the total length.

With the spacing between successive points being denoted by

Nivpz2 = 8441 7 84 (38)

_.16..



the previous sum of squares (Eq. 36) is expressed by

N-1
- 2
A 121 Mis172M01/2 (39)
and is subjected to the constraint
N-1
E hi+1/2 B smax B smin (ko)

]
For the minimization process, a Lagrange multiplier A is introduced to form

N
3 =h-
i

1
h
1

- s . )] : (41)

i+1/2 h (Smax min

[ e B )

from which wa proceed to vary each hi+1/2 in the same manner as before. The

minimum then occurs when

3B
TR S T TV B (82)
i+1/2

which is readily recognized as the direct grid statement of Eq. 4 and which

can be rewritten as

A
h. - (43)
i+1/2 2wi+1/2
to express each increment as a function of the single unknown A. By substi-
tuting the expression for each increment (Eq. 43) into the constraint (Eq. U40)

of 3B/3\ = 0, the Lagrange multiplier is found to be

2(s -s . )
A = Nf-nax min (uu)
1
1
! v
i=1 "i+1/2



Returning to Eq. 43, each {ncrement is now known. Upon also inserting Eq. 38

into Eq. 43, the k-th increment i{s then given by

i

W
k+1/2
S S T —Ei———I_—_ (smax smin) (45)

1=1 "is1/2

(98]

y forming partial sums starting from k = 1, the forward global integra:i
statement of Eq. 18 is now readily apparent.

The solution to the constrzined least squares problem alss has a direct
geometric interpretation that was observed by Steinberg and Roache [15]. With
the increments considered as the Cartesian coordinates of (N-1)-dimensional
Euclidean space, the basic sum of squares in Eq. 39 represents a hyper-ellip-
soid for each value of A. Clearly, each such Cartesian coordinate hi+1/2 is

bounded by

A
heiol 8V o (16)

i+1/2

where equality is achieved only along the hi+1/2-axis.

From this we see that the family of hyper-ellipsoids varies from the
origin when the "radius” /A is zero to arbitrarily large sizes as the radius
is increased. Above the origin, however, we have a hyper-plane of constraints
defined by Eq. 40. Geometrically, it passes through each axis at values of

s Since hyper-ellipsoids are curved convex surfaces, there then is

max ~ Smin:
only one hyper-ellipsoid that intersects the hyper-plane at a single point.
This also is a point of tangency. While lesser values of radius YA have no
intersection, higher values have infinitely many. But to minimize A, we are
only interested in the smallest value with an intersection. This is just the

single point where tangency occurs.

Variational Statements

The natural framework to continue the previous least squares statements

is provided by the variational statements. In distinction, these formulations
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are now considered from a continuum rather than a discrete point of view. The
general statement here 1s to find the extremum of an integral. When the inte-
gration is with respect to the curvilinear variable §, we shall consider the

integrand type

a
F, = [w(E)sE] S (47)

for a weight function dependence on § and the integrand type

Foo= [w(s)s ]® (48)

2 13

for a weight function dependence on s. When a = 1 for F, in Eq. b7, the inte-
gral becomes the continuum version of the least squares statement. Upon ap-

proximation with unit increments in g, the relationship becomes

N N-1

[ wgrszag =
1 S

"’1+1/2(si+1 - Si)z (49)

s
Hr~ i
—

and provides a2 direct connection with the previous discrete least squares de-
velopments.

Returning to the integral forms j Fidg, the extremum is found as before
ny setting first derivatives to zero. This is accomplished by using the Cal-

culus of Variations [16]. The result is the Euler equation

. -L 2 -0 (50)
g
By direct computation, it can be readily verified that the Euler equations re-
duce to a differential equidistribution statement for each choice of inte-
grand. In the case when the weight function depends upon the location 2, we
also note the appearance of a weight derivative. This was also observed when
Wwe examined the basic least squares statement.

As an alternative, we ﬁay change the differential in the integral by us-
ing dg¢ = Esds' ?e must then, however, also use SE = 1/53 in Fi- By the same
argument applied to the interchanged variables, the Euler equation is now

given by
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2 d 9

(= - s 33;)(F153) =0 (51)

By carrying out the algebraic manipulations for each given Fi' the differen-
tial equidistribution statement can be retrieved as earlier. The selection of

integration variable is then clearly seen to be a matter of convenience.

Evolutionary Statements

In the previous statements, equidistribution was expressed in various
spatial forms that produced a distribution either directly or by iteration.
The need for iteration arose in situations where the weight, being known as a
function of s, was instead used as a function of § = i rather than s. This
occurred in a natural fashion when the weights were needed at yet undetermined
positions sy: the only possibility was then to use the currently availabie
values in an iterative cycle. During the course of iteration, no considera-
tion was given to the potential control of the evolutionary iterative cycles.
In the present section, such an evolutionary control is examined.

In the most immediate manner, the evolutionary control can be stated by

the parabolic partial differential equation

Kst = (HSE)E (52)
where the non-negative function K = K(§) represents the rate of evolpation for
each point £ = {. This rate varies from an infinite speed when K vénishes to
a zero speed when K is infinite. As a consequence, the motion can be greatly
reduced or stopped in certain locations and can be gradually increased to
large values in other locations. From a physical point of view, the diffusion
of points into the equidistribution positions increases with 1/K.

In the case where K vanishes everywhere, the points then.instantly move
into the locations for the equidistribution of w. The case corresponds to the
earlier differential equation statement of Eq. 22 and its various forms in
Eqs. 23-27. The infinite speed represented by the instantaneous adjustment
comes from the elliptic nature of the consequent differential equation. In
practice, however, the elliptic type of differential equation would still have
to be solved numerically and, in the given situatioﬁ, would have to be done by

iteration. The instantaneous adjustment is then represented by the direct mo-
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tion into the converged positions. 1In the iterative cycle there is simply a
succession of finite speeds. This can be seen, for example, by the mean value
relaxation form in Eq. 34.

With a spatial grid, the parabolic partial differential equation of Eq.
52 assumes the form

dsi
K s ;) (53)

TP I s;) =Wy lsy 78y
where the grid point velocity at i is explicitly displayed. In an algorithm,
the positive numbers w;,,,, and w;_y 5 are first computed and then the s, is

moved accordingly. When the original s; lies between Si-1 and Sistr both the
i+1/2 term

1
: “i+1/2(31+1 —1/2[51 1

- si) and the i-1/2 term w, ) are posi-
tive. If the {+1/2 term exceeds the i-1/2 term, then s; must move in the

-

positive direction towards s; to simultaneously shrink [s - si] and ex-

i+ i+1

pand {s, - 31_1]. If the i+1/2 term is less then the i-1/2 term, then the

velncitv is in the negative direction towards s If both terms are equal,

i-1-
then the forces balance and thus there is no motion. When the original 54 for

orithmic step lies outside of the interval $i 4 < s X< Sist? the motion

ral

s dirented back towards the interval. For example, if the original s; ex-
ceeds S;,q, then both terms are negative and thus the velocity of eq. 53 is
also negative, sending s; towards or past s;,,. Moreover, when the ordering
of the points s, is monotonically decreasing rather than increasing as in the
discussion just given, the same conclusions result with only a change in
directions.

As a further observation of Eq. 53, it is noted that when the velocity 1is
zero, the tridiagonal system of Eq. 29 is obtained. That system is rapldly
approached when the diffusion rate 1/Ki is sufficiently large. In the evolu-
tion towards the earlier tridiagonal system, a temporal discretization must be
considered. The simplest is the single step from time tn to time tn+1 to-
gether with a backward temporal difference over the time step At = t ., - t,.
With the time indicated by a superscript, the parabolic partial differential
equation is approximated by the fully implicit system

n
i n n+1 n+1 n n+1 n+1
i} - . - 4

) ”1+1/2( iv1 3%y ) w1—1/2(51 51—1) (54)

which assumes the tridiagonal form
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n
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141723141 te12 " Yi-172 T BE

n
)sn+1 - Sn+1 - - El n
1 1-1/2%1-1 3t Oi (55)

n
i
Moreover, very large values will force an essentially diagonal form and there-

Upon inspection, strictly positive values of K. ensure diagonal dominance.

by cause the i-th point to essentially be frozen: that is, an essential re-
duction to s?+1 = s? . At the opposite extreme, a zerc value of K1 will give
the earlier tridiagonal form of Eq. 29. As from the earlier form, the same
manipulations will lead to a mean value relaxation statement. With a point-
wise update from only n-level information (point Jacobi relaxation), the

statement becomes

K0
e Sn . i sn . wn sn

n+1/2 iv1/727i+1/2 At Ti i-1/7271i-1/72
3, = (56)

i*1/2 n

K
W + . sn + W
i+1/2 At i i-1/2

and reduces to Eq. 32 when K? vanishes. In continuation, the least squares
statement of Eq. 36 extends into the form

N-1 sv+1 - sn

A- T {KAt i)z* n (nﬂ _ n+1)z}

1
Lo ST Yie12' 3501 T 5 (57

and reproduces the tridiagonal form when it is minimized with respect to var-
iations in s?+l. Here, of course, K1 = 0. The pattern of development here
clearly proceeds through the more general variational format.

Further accuracy in representing the parabolic partial differential
equation can also be developed in a similar manner. This would come from
writing the finite difference equation about the (n+1/2)-time level in a
Crank-Nicolsen form. The result would be second ordér rather than first order
in time provided that the weights are appropriately linearized about the time
level t,. The associated tridiagonal form would then have more complication

in the generation of its coefficients and source term, As a consequence, the

simpler first-order accurate form is the likely preferred form.
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THE SPECIFICATION OF COEFFICIENTS IN THE LINEAR WEIGHT

Fractions

When linear weights are employed for equidistribution, there is a dis-
tinct advantage in using the backward global integral statement as opposed to
some of the others. The advantage is the capability to more precisely specify
the level of importance of the various clustering quantities in the weight.
This comes from the linearity in both the integration and the weight. With
the general linear weight of Eq. 1, the integral of Eq. 6 becomes

m
F(s) = Hy(s) + 1 < (s) (58)
1=1
where
Hp(s) = s = Spiq
and
3
H (s) = | Md
s .
min
Upon evaluation at s = 38,.., the equation becomes a relationship between total

amounts. With the total length

L = Hy(Spay) = Spax = Smin (59)
and the total amount of each quantity

I, = Hi(smax) (60)
the total welght integral is given by

F(smax) = L + c1I1 LR chm (61)
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Since each term i3 positive and represents a part of the total weight, a divi-

sion by the total weight results in the fractional decomposition

1 - ro + f1 + L.l f (62)
where

f = __.__L'___) (53)

is the fractional contribution from the total length and

CiIi
{(hl)

i~ F(s )
max

is the fractional contribution from the total amount of the i-th quantity.
Since each quantity must have a specified level of importance c; and since a
direct specification would be somewhat ad hoc, a more precise strategy is to
specify the fractions of Eq. 64 and then solve for the consequent c;. With
these specifications, the decomposition of Egq. 62 produces a vaiue for the
fractional amount of length fO which then can be inserted into Eq. 63 to yield
the total weight integral in the form

F(s_ ) = L (65)

Upon substitution into Eg. 64, the weighting coefficients are then given in
terms of specified values as
Lf,

i

c, = ._ =
i [ £, fmJIi

(66)

When these coefficients are employed in the integral F(s) of Eq. 58, the cor-
responding backward global integral statement of Eq. 6 becomes
£~ & H, (s)

i Hi(smax)

min o
= ) r (67)

& 0

max Emin i
where fqo has now been reinstated. Upon observing the form of Eq. 67 together

with the argument leading up to it, the role of fO0 {s seen to be assumable by
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any of the other fractions appearing in Eq. 62: that latter expreasion merely
provides a partition of unity which determines any fraction when the other m
fractions are specified. The fraction so determined then plays the same role
as fo above. To guard against the possible indeterminate aiftuation should

max) by H1(Smax
for some very small positive number €. The development of the above fraction-

Hi(smax) vanish, a safe practice 13 to replace each Hi(s } + €

al specifications was originally derived by Dwyer [17] for cases up tom = 2
fractions and was then extended by Eiseman [8] to cover cases with any number

of fractions, m.

Level of Significance

When the consideration is shifted from the proportion of the weight
F(smax) to the proportion of the length L, the specified fractions above must
undergo an adjustment to account for multiple effects that occur at the same
location. The spirit of the adjustment can be readily examined in the case of
just one effect since it must then compete with the uniformity term that pro-
duced L. With m = 1, the first step is to assign a level a, above which M; is
considered to be significantly large and thus important enough to be counted.
The effect here is to remove the minor level activity in M1 that is typically
spread over large regions and to thereby emphasize only the local regions of
interest. The assignment of a, then defines the set of local regions as

1

{s: M1 > a1}. The Lebesque measure [18] of the set represents the length

over which M1 is significant. With

L1 = meas|s: M1 > u1} (68)
the length where M1 is unimportant is up to the order a, Just (L—Ll). By con-
trast, the total length where M1 is important is counted twice: once by L1
and once by c1I1 in correspondence with 1 and clM1 in w. As a consequence,
the total weight is partitioned in the form

F(s,, ) = (L-L) + (c1I +L1) (69)

1

and fractions are now defined by
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L -L

max
and
c. I +L
171 1
S IC.) A
max

With fo = 1-f,, the equations are solved as before to produce the weighting
coefficlient which now becomes
r‘L-L1

S B (72)
1 (1 f,‘)I1

The need for the protective ¢ in Eq. 67 can be dropped here since a vanishing
I, would mean that L, = L and hence it would then be reasonable to set ¢, =0
thereby removing the effect of M, altogether. On reflection of the above pro-
cess, one may also note a parallel resemblance to studies in the area of sta-
tistics where it is common practice to assume a level of significance [19] for

events.

Minimum and Maximum Spacing

When there i{s only one coefficient to be specified, its specification can
be translated into the more intuitive and geometric specification of a rela-
tionship between the actual minimum and maximum spacing. This is derived “~om
the direct grid statement of Eq. 4 by expressing it under both minimum and
maximum conditions. The result is given by

s = 3 ‘ 77
wmax(A )min “min(AS)max 7
When the general linear weight of Eq. 1 i3 written for a single coefficient (m

= 1) in the form
w =1+ cM {74)

and is inserted into the relationship of Eq. 73, that coefficient is then de-

vermined by
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where (75)

(As)max

(AS)min

R =

As a consequence, the ratio R of the actual maximum to minimum spacing can be
specified and will determine a valid coefficient ¢ provided that
M

R < M‘“a" (76)
min

This condition merely states that the global variation in specified spacing
cannot exceed the corresponding variation in the weight. The specification of
such ratios R is due to Nakahashi and Diewert [20]. Upon observing the above
development, it is also worth noting that the same argument can be applied to

the general linear weight when only one coefficient remains to be determined.
THE ATTRACTION TO A GIVEN GRID ON A CURVE

In a number of circumstances there is a need to have some adherence to a
specified distribution of points along a curve. These needs will typically
arise, for example, when an expanding grid is desired for far-field condi-
tions, when a nearly orthogonal grid is desired for enhanced grid structure,
and when a smooth temporal evolution is also desired. While cases such as the
expanding grid can be given by either specifying a weigﬁt function or a grid,
the structural and temporal pfoperties appear only in the form of a grid. The
usual grid for the structural aspects comes from the computation of orthogonal
trajectories [21]. They evolve from the adjacent and most current coordinate
curves to our given curve which here is assumed to be a part of a higher di-
mensional grid. The grid for the smoothness in temporal evolution comes from
the previous grid or grids in a time-like sequence of grids.

Rather than considering further situations in which it is desirable to
adhere to given grids, we shall next consider how to accomplish such adher-
ence. This will proceed first in a direct fashion by inverse equidistribu-

tion, then by diagonal dominance, and finally in several variational forms.
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Inverse Equidistribution

The most direct method of providing attraction to a given grid is to per-
form the equidistribution process in reverse. That is, we derive the weight
function from the given grid. The result is an approximation to the deriva-
tive of the desired distribution function had it been available in a smooth
continuum form rather than as a grid. Upon applying the weight in a direct
sense, the specified grid will be reproduced up to errors in the derivative
approximation and in the subsequent quadrature for the direct equidistribu-
tion. Assuming that such errors are sufficiently small, the weight derived
from the grid is then viewed as only an attracting mass to be inserted into
another weight function where it must then compete with other attracting
masses. In terms of the general linear weight of Eq. 1, the mass is one of
the functions Mi' As the corresponding coefficient ¢y increases, the result-
ing grid approaches the approximate reproduction of the specified grid.

The forces in a weight function, however, are applied to directly control
the spacing between the grid points rather than the actual positions of par-
ticular grid points. In the general situation, it is the local concentrations
of grid points which is achieved, not their actual positions. For any local
concentration, grid points are attracted from the entire curve to satisfy the
local spacing requirements. This local attraction will cause a shift to ap-
pear in all points. As a consequence, that shift will direectly appear in the
situation when the local attraction is balanced against an attraction to a
prescribed grid. While the spacing in the prescribed grid will be rendered in
a fair and competetive manner, the shift will lead to unacceptable results for
the actual positions. The problem here is that the attraction to a specified
grid is position-sensitive while the equidistribution‘process is position-in-
sensitive. The primary cause of the problem is that local constants of inte-
gration are being effectively introduced from each local cluster. The only
apparent remedy is then to employ an iterative scheme about the equidistribu-
tion process. At each stage, an equidistribution of the current weight would
produce results that in turn would lead to a new weight for the next cycle.
1n this framework, the inverse equidistribution strategy provides a distribu-
tion function that would enter the iterative procedure. Although such a pro-

cedure has not yet been developed, the process of 1nvefse equidistribution

has.
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To more closely examine the inverse equidistribution process, we shall

explicitly derive weights at the current grid points

8; <85 ¢ ... <8y (77)
for the purpose of providing pointwise movement towards a specified grid

51 = P1 < r2 < e < PN = SN (78)

From a continuum viewpoint, the inverse equidistribution is accomplished by

setting

1
v (79)
e

£ becomes the constancy of Sp and hence a linear
relationship between s and r that becomes an equality since Sy =TIy and Sy =

for then the constancy of ws

r
N
From a discrete constructive viewpoint, we invert the direct grid state-

ment of Eg. # to get

Yis172 T :_—17?— (80)
from the specified grid of Eq. 78. The unity in the numerator was chosen for
convenience: any other nonzero constant would produce the same result since
it would disappear in the ratio of integrals in Eq. 6. With Eq. 80, the
weights are established at ry,q,p, and must either be used there or be trans-
ferred to the current points Sp- The latter case may proceed either directly
or with an intermediate transfer to points ry- In the direct approach, the
derivative profile is obtained by an interpolation between half points ri+1/2
and an extrapolation to end points ry and ry.

The simplest profile is given by a piecewise-linear interpolation that is
extended by a horizontal extrapolation attached to either end. The piecewise

linear transfer of weights is accomplished by searching the points

r1 ( P1/2 ( e v o0 < PN_1/2 < PN (81)
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p=s

to find the Interval that contains s, for each k. If the interval 1s either
the leftmost or rightmost one, then the welght is respectively either Wi/ OF
WN—1/2 S determined by Eq. 80. Otherwise, we have Pm-1/2 s Sy < Fo+1/2 for

some m = m(k) and hence the weight

- % " Tmi/2

W, o= — (w -w ) (82)
m+172  Tm=1/2 m+1/2 m-1/2

k= Ym-172 T T

This weight can then be used as an attractive mass at the point Sy within the
linear weight of Eq. 1.

To employ it effectively, the values at s, must represent a fair sampling
or else the basic features of the weight could be lost or distorted. A poor
representation here is certainly likely to increase the quadrature error upon
application. Tnis circumstance can readily arise if there are too many points
Sy in any given interval from Eq. 81. There would then be regions where the
weight is represented too linearly. As a consequence, it is advisable to use
weights from Eq. 82 only when the current (Eq. 77) and the specified (Eq. 78)
grids are nearly interlaced. Even still the inaccuracy may be too large.

This would then suggest an application only when the ry and 8; are nearly
equal. ‘

Being somewhat forced to consider cases where the s; and ry are not too
far apart, a further option has arisen. When the backward global integral
statement of Eq. 6 is being employed, the curve together with the distribution
function is being represented at existing locations sy of Eq. 77. Upon in-
spection, those locations could readily be replaced by the locations associ-
ated with the specified grid for ry given by Eq. 78. With that replacement,
the quadrature of Eq. 8 produces a backward global transformation from Eq. 6
which precisely moves 3y into ry. Under such a replacement, other Qeighting
quantities together with the curve description must undergo a transfer to the
new positions r; and thus represents another source for some error. This
leads to the enrichment strategy whereby the points ry are merely included
along with the original s in the curve representation. In essentially the
same manner, the exact repfoduction of the given grid locations ry is pos-
gible. The derivation represents a modest extension. These developments

leading to weights that reproduce specified grids were Jjointly constructed
with this author and Michael Bockalle.
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Diagonal Dominance

In contrast to the Inverse equidistribution approach above, we may place
the attracting mechanism outside of the weight rather than in it. With this
objective in mind, we return to the direct finite difference statement of Eq.
29 and then add Di(si—ri) to the right-hand side. With the assumption that
the numbers D; are nonnegative, we obtain the diagonally dominant tridiagonal

system

Wiars2%ier T Wiayo ® Dy P M)t 8y 0y (83)
which as before is fully defined when boundary conditions such as those given
by Eq. 30 are assumed. As Di increases, the diagonal dominance is intensi-
fied. In the limit, the system approaches a simple diagonal form and this
causes each current grid point S§ of Eq. 77 to approach the corresponding spe-
cified grid point r; of Eq. 78.

By providing an index to Di' we have included the possibility to approach
the specified grid at a nonuniform rate: a uniform rate would come from set-
ting Di = D. As a consequence, we may also selectively approach only parts of
the specified grid by smoothly adjusting the values of Di from zero to local
maximums at the desired locations. The smoothness is viewed by considering a
function D of E to be smooth: the values at § = i being denoted by Dy.

Moreover, we may also consider a sequence of specified grids together
with a corresponding sequence of such functions. By adding the associated se-
quence of terms to the right-hand side of Eq. 29 and following the above rea-
soning for a single term, the simultaneous attraction to the sequence of grids
can be considered. The relative sizes for D(£) in each term give the relativé
importance of that term. In the application, there is then a balancing of {im
portance for the attraction to the separate grids. This is the same type of
balancing operation as in the previous case with inverse equidistribution
where each specified grid was represented by an. attracting mass within the
weight. |

To explictly examine the relationship between the equidistribution and
diagonal dominance approaches, we consider the case of attraction to one pre-
scribed grid of points ry as displayed in Eq. 78. In the diagonal dominant
approach, the attraction 1is represented by Eq. 83. Since the weights are
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functions of s rather than 1 and since the positions represented by 8; are
unknown, iteration is required. As in the earllier tridiagonal approach,
weights are evaluated from current values of position 8y and then the tridi-
agonal system is inverted to obtain new locations s; from which the process is
repeated. Now let the flxed location ry in Eq. 83 be given by the relative
location

+ (1 - ui) (84)

i T %35.1/2 Si-1/2

through a The half-point values are the same as in Eq. 33 and are deter-

e
mined from the current locations S; in the fterative cycle. By inserting the
local representation of Eq. 84 into the diagonally dominant tridiagonal fors

of Eq. 83 and regrouping terms we get the new adjusted weights

- 1
Yivi/2 T Yis12 0 2
_ 1
Yic1s2 T Y12t 2

aiDi
(55)
(1 - a,)D,

1771
for the original tridiagonal form of straight equidistribution as given in Eq.
29, While this yields a local equidistribution statement for each i, the
global form 1s somewhat altered. That is because the half-point weight eval-
vations from Eq. 85 will vary with the equation. 1In particular at i+1/2, the

application of Eq. 85 yields

- 1
Wier72 T Yisrz2 T2 %3P

and (86) .

1
=(1 ai+1)D

Yivr72 T Vv T3 1+1

respectively for equations about i and {+1. To employ the weights in any of
the quadrature forms presented, we need uniqueness and this leads to the re-

quirement that
1417
—Jp : (87)

which then determines the diagonal scaling up to a single multiplicative con-



atant. With this determination, we then immediately observe that any of the
bzsic forms for equidistribution can be applied within such an iterative cycle
of global updates. Because of the specialized choice for D1 in Eq. 87, it ts
clear that the diagonal dominance approach has some added and useful general-
ity. The freedom to choose the form of D means that the attraction to the ry

can be locally controlled.

The Variational Format

In correspondence with the previous forms of attraction to a prescribad
grid, there are variational statements both with the attraction in the welght
and with it outside of the weight. With it in the weight, we can simply use
reciprocal derivative of Eq. 79 in the integral of Eq. 49 that represents the
continuum version of the discrete least squares statement. This was the
starting point for Steinberg and Roache [15] who considered such specified
grids to be "reference grids" from which various metrical properties could be
extracted and then directly used to form weights.

With the attraction outside of the weight, the minimization of
[ [wsg + D(s-r)?]dg (88)

provides the same form as in Eq. 83 with the same function D(g) that controls
the attraction of s to a specified r. The r assumes the previous role of a
given grid and is thus a function of the spatial location s rather than the
eventual grid point counter §. This clearly penalizes the basic equidistribu-
tion in favor of attraction to r as D increases in size. 1In a simiiar spirit,
this statement can also be applied to derivatives. In particular, we have the
form

J [wsz + D(s —rs)z]dg (89)

£
that was considered by Bell and Shubin [22] to enforce temporal smoothness.
This was achieved by taking r to be the previous time level of s in the solu-
tion of a one-dimensional time-dependent PDE. In the application, the weight
was also smoothed: this being done by a spatial filter. With D as a con-

stant, the Euler Equation reduced to the form
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WSE + D(s—r')E = constant (90)

which then can be simply integrated. This can be contrasted with the more

complex integration that comes from Eq. 88.
EVOLUTIONARY FORCES

As in the discussion on the various forms for equidistribution in one
dimension, we are now in a pcsition to examine some of the forces which can be
applied to some zdvantage in the evolutionary setting. The forces will appear
both in the context of equidistributed weights and outside of such weights.
Within the waights, the locel application from a global determination will be
witnessed. Outside of the weights, the attraction to a specifled grid will be
examined, the minimum and maximum spacing controls will be displayed, and the
control of cell accentricity will be explored. The role of diagonal domi-

nance, here, is sean to arise again in a combined sense.

Globally Determined wWeights

In the earlier consideration of weight functions, the evaluations at
half-point locations were typically assumed to come from only the nearest
neighbors as given in Eg. 5 of the direct grid statement for equidistribu-
tion. Rather than using only that simple local average, we shall consider a
global determination for the local weights about the point £ = i for applica-
tion about the corresponding S;- For this purpose, suppose that we have es-
tablished some error indicator ey at each point. By using an average error

value such as

@ |

(1]
M~z

[y}

(91)

Z|—

1

the half-point weights about i can be written in the form
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where ¢ i3 a prescribed positive scaling constant and a {3 an attenuation con-
trol. The effect of a i3 to give more importance to the error deviatlons
whizh are closer to i. As a increases, the influence of the loczl error grows
while the more distant points are more attenuated. When the weights of Eq. 92
are inserted into the evolutionary equidistribution statement of Eq. 53, we

obtain the grid velocity equation.

) A— (93)

This equation represents a local equidistribution since the weights about i-1
and i+1 will produce generally distinct values at the respective half points
i-1/2 and i+1/2. The circumstance is just a parallel to the case with the
diagonally dominant attraction to a given grid as represented in Eq. 86.
With the evolutionary equidistribution of Eq. 93, we are very close to
the grid velocity model that was proposed by Rai and Anderson [23] on the
basis of physical intuition. They formed their model on the basis of an
analogy with gravitaticnal forces. That, for example, is where the attenua-
tion from an inverse power law in distance from i was conceived. 1In dis-
tinction from what is presented here, their model is obtained from Eq. 93 by

replacing both ( - si) and (s. - 8, ] with a single factor such as

3
i+1 i i-1
- 31—1) and by combining Ki/c into a single prescribed constant to

(5,
unif;rmly scale the right-hand side.

Returning to the choice of weights in Eq. 92, it should be noted that the
essential character is the attenuation with respect to distance from the loca-
tion of application. It is not the particular choice of functional form:
many other forms could be eﬁployed for the same purpose. The same comment
also applies to the implementation of the error indicator: the basic feature
is that it can change sign. While this would be undesirable in the nonevolu-

tionary context, it is beneficial here and provides and additional restoring
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force.

The Attraction to a Given Grid

With the understanding that a given grid such as that displayed in Eq. 78
comes from a given distribution function r(s), the basic evolutionary para-
bolic partial differential equation of Eq. 52 can be appropriately adjusted to
provide an attraction to the fixed r(s) and to the fixed grid of ry values,

Under the adjustment, it assumes the form
Kst = (WSS)E + D(s-r) (94)
where the attraction is represented by the scaled quantity s-r. When the sue-

cessive steps leading up to the fully discrete form in Eq. 55 are repeated,

another tridiagonal form is obtained and is given by

n
K.
G sn*l _ (wn N PO S Dn)sn+1 + 0 Sn+1
i+1/271i+1 i+1/2 i-1/72 At i°71 i-1/7271-1
ST
T TEe % TN (95)

In a combined sense, diagonal dominance is achieved from both the temporal as-
pect and the attraction to ry. The respective effects, however, are essen-
tially separated: as 3; converges, the influence of Ki decreases while that
from Di remains. The reason is because the Ki terms converge towards an exact
cancellation while the D1 terms generally do not. On comparison with the
earlier diagonally dominant attraction of Eq. 83, the evolutionary form pre-

sented in Eq. 95 represents a natural extension.

Minimum and Maximum Spacing

At this stage, the use of minimum and maximum spacing has been developed
only for a linear weight with only one constant to be determined. That deter-
mination appeared only in the form of a ratio between minimum and maximum
spacing and was given by Eq. 75. Neither the actual spacing nor the multiple
constant environment were considered. In contrast, such a consideration can

be readily developed in the temporal setting.
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To develop the required forces, the definition of the parabolic partial
differential equation is again extended by the inclusion of new terms on the

right-hand side. The generic extended form is given by

Ks, = (wsE + A)E +B (96)
where forces over the velocity can be inserted as terms in either A or B. 1In
general, A and B represent sums of the forces which do not readily fit into
the equidistribution of w with respect to s. While the position of A appears
to be somewhat close to that equidistribution, it gives us the oppbrtunity to
rationally create similar forces without considering the factor of some 4s as
would appear in the weight w. The location B allows for an even more direct
insertion of force as has already occurred in Eq. 94 when the (s-r) term ap-
peared. That term provided an attraction of s; to ry. In the overall cir-
cumstance, the various forces in w, A, and B all act in a concerted'fashion to
provide a grid with a multitude of desirable attributes.

One such attribute is the bound on minimum and maximum spacing. This is
accomplished with terms in the position of A in Eq. 96. The actual construc-
tion, however, is more readily accomplished in the finite difference form

which is given by

ds,

1
Kige - w1+1/2(31+1 31] ”1-1/2(31 + B (97)

uCTIRD I TP T

This represents the extended form of the earlier finite difference equation,

Eq. 53. 1In the case of maximum spacing, the term

S - 8
j*1 ija
Uy = o (8s) } (98)

is considered and, within A, ylelds the contribution

3 - 3 8, - 8,

i+1 iya _ i i-1ya
Q1+1/2 - Q1-1/2 - of( (As) ) ( (As) )% (99)
max max

The positive constants c and a are respectively for scaling and intensity.
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Here, we assume the monotonically increasing order for sy as displayed in Eq.
77. 1If the spacing (sy,y - Si) exceeds the specified (As)max, then the cor-
responding ratio appearing in Eq. 99 exceeds unity and is further amplified by
a whieh is usually about 4. As a consequence, the first term in Eq. 99 gives
the velocity of 8; a positive contribution. This is then a force to move 84
in the positive direction towards s;,,. Such a movement, of course, will shrink
the interval (s;,; - 8;) which had exceeded the specified value (As)max.
Likewise, had (si - 51_1) exceeded (As)max, then the second term in Eq. 99
would have caused force in the negative direction to push Sy towards 84-1 to
thereby shorten that interval. If the intervals on both sides of 8 exceed
(As)max, then the forces may balance each other, However, in a point itera-
tive sense, a translation in i will eventuzlly produce an unbalanced situation
that will successively be propagated to produce the desired result.

In a similar manner, the minimum possible spacing is enforced with a term

of the form

min ya \
Aj*'l/Z = C(;——_-—s—') (100)

where ¢ and a are the same sort of positive constants and (As)m is the spe-

in
cified lower bound on the spacing. As above, we get the contribution

(as) (as)

i in ya
Mrso = Moyyn = lg=37)" - (—=3)°
i+1/2 i-1/2 Sy Siq Siv1 84

(101)

to the velocity of s Because of the minus sign, the terms are now inter-

i-
changed. When (s;,, - 8;) falls below (As)min' the velocity contribution in
the second term becomes important and pushes 85 in the negative direction
towards s;_, and thus enlarges (S;,q - 8;). Hhen (sy - sj_y) falls below
(As)min' a significant contribution comes from the first term to push sy in
the positive direction towards s;,, in order to enlarge (s - s;_;). These
terms are due to Winkler, Mihalas, and Norman [24] and were called floors and

ceilings on the spacing.
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Eccentricity

A certain amount of smoothness in the gradations of the grid can be con-
trolled by a force which tries to equally distribute the ratios of eccentric-
Ity in adjacent spacings over the space of indices E = {. This equidistribu-
tion over € rather than s is represented by the function A in Egs. 96- 97 At

a point j, the spacing eccentricity is given by

S,y T S,
EJ. =S~‘J‘_‘s—‘] (102)
J J-1

and is not entirely suitable for immediate use because of the directional bias
represented by a separation of j-i and J*1 values between the denominator and

the numerator. Otherwise, it would have been a good control to provide smooth
gradations in spacing. Fortunately, the eccentricity ratio ¢ /e removes

J+1

the directional bias and provides the same control. That ratio tern is given

by

(s..., - s )2
lyj+1/2 T CTs - i+1 JL<J -8, ) (103)
Tjte J*1707 J-1

where ¢ is a positive scalihg constant. Upon equidistribution over the i, we

would get the geometric mean

€y = VEJ_1EJ+1 (10%)
to provide the growth rate. In such a situation, the distribution would be
determined solely from the end conditions which would also require an extra
point at each end. The extra points are needed for end-point spacings.

When the eccentricity ratio term of Eq. 103 is inserted into the parabol-

ic form of Eq. 97, the force on the velocity of 3y comes from the difference
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P 2 - 2
(sg.y - sy) _ (s - s;,)
(sjip = 85, s - si) sy - s flsy_y = 8;,]

(105)

Now suppose that i{n a point iterative process, s; were to miss this desired
equidistribution by getting too close to Si-1- Then the interval length (si -
51_1) in Eq. 105 would be too small. The effect would be to enlarge the first
term and shrink the second. That enlargement can be substantial since the
interval smallness then appears in a denominator. 1In fact, this is a control
by means of a singularity; namely, a pole. As a consequence, the first term
contributes a positive contribution to force S
the offending small interval (si = s;_4). Likewise, the second term provides

This is just the

towards s;,; thus enlarging

a& restoring force when the point S; 1s too close to Si+q-
opposite situation. The form of smoothness here was developed by Winkler,

Mihalas, and Norman [2&4].
METRIC NOTATION

In the discussion of the various adaptive methods in higher dimensions,
the fundsmental properties of each object can be more clearly and concisely
stated with the use of metric notation than without it. As a consequence, we
shall describe just enougn of it for our purposes. In two dimensions, we as-
sociate 1 with § and 2 with n. The differential element of arc length ds is

then given in a plane by
2 2 2
ds g11d£ + 2312d£dn + g22dn (106)

where

L £ £
812 7 Tg™My T XgX, T YV, (107)
L] = z 2
Byy = T °T X2+ y;

and p = (x,y)T is the position vector. This form of ds? can be readily veri-

fied by a chain rule expansion of dx? + dy2?. The matrix of elements 81J is
called the metric because it defines the distance measurements with respect to

the coordinates (§,n). In a straightforward manner, the determinant
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g = det(gij) (108)
is also seen to be the square of the Jacobian

J= X - Xy (109)

Eyn £

For grids, this gives the cell sizes in the physical (x,y)-space that corres-
pond with the fixed uniformly sized cells in the computational or logical
space (E,n). When the Jacobian is nonvanishing, the inverse of the metric
matrix (gij) can be computed and has elements that are typically written in
the superscripted format g'J. In continuation, the metric notation is equally
valid in higher dimensions. For surfaces in three dimensions, we merely ex-
tend Eq. 107 by including terms for z that come from the dot products between
combinations of the natural curvewise tangents r'g and rn where r = (x,y,2).
For volumes in three dimensions, we just associate 3 with a third variable g
and then repeat the above discussion where, of course, the expressions are
slightly longer but the meaning remains the same. For a more compact nota-
tion, we shall sometimes use 51, 52, 53 for €, n, ¢ and X,, X2, X3 for x, vy,
-. Further discussion can be found in virtually any text on differentisal

geometry. A development specifically aimed at grid generation can be found in

either of the monographs by Eiseman [25] and Warsi [26].
CURVE BY CURYE METHODS

With a basic understanding established, we next proceed to consider high-
er dihensions. The most direct extension into higher dimensions ia to apply
adaptivity on a curve by curve basis and to cycle through one or more coordi-
nate directions. The methods of this description are called "alternating
direction adaptive methods."” From a geometric viewpoint, these methods oper-
ate by specifying the diagonal part of the metric tensor since each such di-
agonal entry is inversely proportional to a specified weight. This funda-
mental geometric framework provides a unified setting for all such methods and
was presented by Eiseman [27]. The unity here derives from the fact that no
matter how the metric specification is accomplished, the result must be the
same up to the distinctive errors of approximation. The completeness in the

specification comes from the curvature of space. This is most readily seen in
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two dimensions where Gaussian curvature provides a single relationship between
all three metric coefficients g4, 85> and g10- That means that the coordi-
nates are analytically determined when g11 and gy, are specified as positive
functions that may even involve g,,. In other words, the two available de-
grees of freedom are employed. Likewise, in three dimensions, the three
available degrees of freedom are consumed. The typical specifications {nclude
gradient magnitudes, various forms for curvature (normal, geodesic, mean,
second derivatives), cell properties (eccentricity, aspect ratio, lengths,
area or volume), and the attraction to prescribed distributions (uniform,
arbitrary, orthogonal alignment, or previous locations). Such specifications
usually appear in a weight function. The most commonly utilized form is the
linear one given by Eq. 1. Altogether, there is only one weight function em-

ployed for each degree of freedom consumed.

Metric Specification

The main distinguishing feature from the previously examined isolated
curves is that the curves considered here appear as part of a higher dimen-
sional coordinate system. To appropriately account for this fact, a direc-
tional index must first be attached to the earlier equidistribution statements

for curves. In particular, the basic differential statement of Eq. 2 becomes
W ds, = c df, (110)

where i is now the coordinate directional index. For each given curve, ¢y is
a constant as earlier. However, as we go from curve to curve within the fam-
ily for a given direction, that constant becomes a function of the transverse
variables which govern this progression. As a consequence, the condition on

< is that it vanish under differentiation with respect to the curve variable

£+

Along the curve, the incremental distance measurement d51 is just a spe-
cial case of the measurement along arbitrary curves as indicated in Eq. 106
and its discussed extensions. Quite simply, with the exception of dgi, all of
the remaining differentlals dEk for k = { vanish. This leads to the form
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dsi = “811 dE1 (111)

Upon substitution into the equidistribution statement of Eq. 110, a cancella-

tion of dgi leads to the basic metric statement
¢i

which is the direct assertion that a prescribed weight Wi i{s equivalent to a
prescribed metric coefficient gyjy.

When the curve constant cy is isolated from the metric g1 and the weight
Wi by solving Eq. 112 for c;, a differentiation in 51 then removes that con—

stant and vields the partial differential equation

g, . oW,

2 i .
3, * W, 3, g 0 : (113)

agi ii

This corresponds to the earlier ordinary differential equation of Eq. 23. As
in the case of £q. 23, the data from the constant has been effectively trans-
ferred into boundary conditions. Upon substitution for 811 in Eq. 113, the
partial differential equation is readily observed to be second-order. To be
explicit on this matter, we consider the case of the first equation in two-
dimensional Euclidean space. There, the metric from Eq. 107 is just gy, =

x2 + yg and results in

2
g

£ 2 2
X X__ + + 2 | xZ + =0 114
g¥ee " Yeler T W (g v2) (i)
The equation for the n-direction has the same form and i3 obtained similarly.
Other forms cover curves on surfaces and higher spatial dimension. All of
these come from Eq. 113. In comparison with the earlier case of an isolated
curve, the equations here are for coordinate curves, and as a consequence,

reflect their embedding within the coordinating system.

The Historical Development of Pure Curve by Curve Methods

To examine the historical roots of alternating direction adaptivity, we
return to one dimension and then expand to higher dimensions and to multiple

directions. Some of the earlier studies in one dimension were developed by
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Winkler [28], Ablow and Schecter [29], and White [30,31]). Winkler [28] con-
sidered grid point movement directly in physical space in response to gra-
dients in the monitor surface. All attributes for clustering and most for
grid structure were given in the form of a linear weight. By contrast, White
{30,31] developed his grid directly on the solution curve and thereby effec-
tively used a weight of unity. When the arc length was expressed as an ex-
plicit function of physical space, he obtained the appropriate weight function
for arc length. In extrapolating from here, he called the weights monitor
functions. Although the term may be appropriately descriptive when everything
is combined under a single integral, it is otherwise deficient. A more basic
ronsolidation of the data and one that applies regardless of dimensionality is
the concept of monitor surface as discussed in the introduction., Ablow and
Schecter [29] preceded White and considered a linear weight with curvature
that was applied relative to the arc length of the solution curve.

In the next stage of development, Dwyer et al. [17,32-35] considered the
process of adapting the points along each coordinate curve in a fixed direc-
tion. In contrast to Winkler, White and Ablow and Schecter, he considered
weight functions that depended upon positions in physical space. This was
executed in a noniterative fashion by employing the backward global integral
statement of Eq. 6 along each coordinate curve in the physical region. Again,
linear weights were employed. In terms of Eq. 1, he considered up to two
masses consisting of magnitudes for first and second derivatives of the moni-
tor surface. These, however, provided only approximate gradient and curvature
data: the variations along transverse coordinate curves were ignored. An
advantage that evolved from the choice of linear spatlally dependent weights
was the capability to more rationally define the coefficients in the linear
weights. With the transformation established by the global integrals, Dwyer
[17) noted that the fractional contribution of each mass was merely a ratio of
that mass integral to the total mass integral. Each integral, of course, was
taken over the entire curve. Since each mass integral contains the assoclated
coefficients, he was able to specify the fractions and solve for the coeffi-
clents. This was done for up to two masses. The general case was discussed
earlier herein. As a consequence, each specified fraction resulted in a
weight coefficient that dynamically adjusted from curve to curve.

In progressing from a single direction to multiple directions both Ablow
[36] and Gnoffo [37] perfomred bidirectional studies. Ablow considered the
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arc length along the curves on a monitor surface and proceeded to solve the

equations

(113)

which come from Eq. 113 with constant weights and with z = z(x,y). He em-
ployed an ADI procedure for the solution. As a consequence, he automatically
clustered to high gradienta. In contrast, Gnoffo viewed the monitor surface
anly from physical space, and thus had to explicitly use gradient information.
Like Dwyer [33], he neglected transverse variations and considered derivative
magnitudes along the given coordinate curve in physical space. He did not,
however, consider derivatives beyond first-order. In the execution phase, the
weight was viewed as a function of the grid point index (equivalently g or n)
and the forward global integral statement of Eq. 15 was employed. That re-
quiraed iteration as discussed earlier. In the trapezoidal quadrature rule for
the integral, each increment in £ and n was unity and the result was a simple
sum of reciprncal weights as given by Eq. 18. This is in contrast to the non-
iterative statement where the quadrature is a sum of products between midpoint
weight values and the corresponding interval arc lengths from Eg. 8. As a
matter of terminology, he called this approach a spring analogy. Because of
the iterative nature, however, the spring constants are not really constants
since they must also change. At best, they may be viewed then as nonlinear
springs.

In a more general study, Eiseman [27] consolidated and extended the pre-
vious work and presented a mathematical foundation for all such curve by curve
methods. To be descriptive, these methods were then called alternating direc-
tion adaptive methods. The mathematical foundation waé mentioned earlier. In
brief terms, the known curvature of a region implies that metric speciflica-
tiona along each coordiante direction (Eq. 112) are enough to completely de-
termine the metric which in turn can be employed to generate the grid by line
integration. In the context of orthogonal grid generation, details on the
line integration for coordinate positions can be found in Warsi and Thompson
{38] and in Eiseman [21].

With the previous work separated between surface grids without weights

and planar grids with weights, the more unified approach i{s to simultaneously
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consider surfaces and weights. In the consolidated form, Eiseman [27] stated
a preference for generating grids on monitor surfaces while using weights for
the resolution of surface properties; albeit, the form applies equally well
to viewing the surface from the physical region below it. The stated prefer-
ence quite naturally derives from the fact that the accurate representation of
a surface is more readily apparent in the surface grid than in the correspond-
ing projected grid in the physical region. The reason is that the viewpoint
is the location of arc length measurement which is more naturally taken and
accurately controlled on the surface. In simple terms, it is reasonable to
generate the grid directly upon the very object that must be given a good
representation.

With the objective of providing a good representation for the monitor
surface, the geometric parameters for the surface must be used along with the
parameters which govern the grid quality in the sense of good structure. The
nasic surface properties are the bends or folds in the surface and are the
curface boundaries which may also be bent in some manner. The basic measure-
ment for surface bending in a given direction is the normal curvature. The
measurement for the boundaries is the geodesic curvature. Each curvature de-
tscts only the desired property. Using the normal curvature in the direction
~f the current coordinate curve, Eiseman [27] observed the desired clustering
effects for surface folds. In addition, the use of normal curvature was seen
to provide some alignment of coordinate curves with folds in the surface.
Moreover, the formulation used the general linear weight of Eq. 1 where normal
and geodesic curvatures are balanced with the unity for uniformity and a mass
for orthogonality attraction. The coefficient for geodesic curvature was pre-
sented in a form that decayed upon leaving boundaries so that bent interior
curves appearing from the iteration would not unnaturally cause clustering.

In the application, the backward global integral statement of Eq. 6 was em-
ployed along each curve.

The use of fractional specifications initiated by Dwyer [17] were also
extended. In a basic sense, it was noted that the resolution of a property
which appears over a fixed length could be depreciated by merely increasing
the total length (or other masses). Thus a methanism was required to appro-
priately adjust the clustering intensity to treat the local property in the
same manner, regardless of length. For normal curvatures we must somehow de-

tect the likely presence of local clustering reglons and the possible exces-
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sive consumption of surface arc length. This was done by first forming the
ratio R of the actual arc length of a coordinate curve on the surface to the
minimum possible length. The latter is computed in the form of a Euclidean
distance using the arc length of the projected curve and the change in alti-
tude between endpoints. Upon application, a factor of the form tanh[D(R-1)]
was applied to a constant fraction determined in the original manner. The
fraction is now seen as a maximum possible fraction that would be employed in
the most severe case within the family of all coordinate curves in a given
direction. The constant D then gives the rapidity for which the specified
maximum fraction is approached. More details are provided in Eiseman £a271].
The extension of fractional specifications to include any number of masses in
Eq. 1 and to consider what happens when distinct masses appear on the same
interval are all discussed in the review by Eiseman [8] and in some detail
here in the sections about Egs. 58-72.

In several subsequent studies, Nakahashi and Deiwert [20,39,40) added a
fow more items of interest to the development of alternating direction adap-
tivity, and in addition, presented some rather good examples of adaptive
simulation in aeronautics. The main contributed item is their incorporation
of an orthogonality control outside of the weights. Given the arc length
locations ry of Eq. 78 corresponding to an orthogonal alignment with the
previous curve, they added a term of the form Di(si - ri) to the right-hand
side of the tridiagonal system for the direct finite difference statement of
Eq. 29. They arrived at Egq. 83 where an increase in Di causes the diagonal
dominance to grow and thus forces s8; to approach ry. A variant is to balance
the orthogonal locations with the straight line continuations through the
previous curve. The purpose was to choose ry 30 that the continued transverse
curves would be smoother. In the applications, Di actually varied inversely
with respect to the distance from the previous curve at each 1. This streng-
thened the attraction for closely spaced curves.

In three dimensions, there 1s another similar arc length location ty and
another term Ei(s1 - ty). There Dy*E; is added.to the diagonal and Dyry +
Eity forms the right-hand side. In continuing the analogy with springs, they
attributed the orthogonality control to torsion springs rather than to diag-
onal dominance. Although this control might at first appear to make the
method distinctive, the fundamental fact still remains that a metric rela-

tionship i3 being specified along curves. In fact, as we 3aw in Eqs. 8u4-87,
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the diagonal dominance control can be interpreted as a mass for orthogonality
attraction as discussed in regard to the general linear weight of Eq. 1. When
D; is chosen as in Eq. 87, the quadrature, Eq. 8, of the backward global
‘integral statement can also be employed because unique half-point weights are
then determined.

Rather than a consistent use of linear weights, Nakahashi and Deiwert
[40] considered weights where some of the specified constants appeared nonlin-
early. This arose mainly because the minimum and maximum spacing could be
specified by means of a single algebraic formula over the curve. This was
distinct from their use of ratios as discussed in Eqs. 73-76. One constant
was an exponent and had to be determined by iteration. By contrast, Winkler,
Mihalas and Norman [24] gave upper and lower bounds upon the spacing within
the context of the general linear weight of Eq. 1 and did not require an
itarative determination of constants. This was possible because the spacing
was only required to become close to minimum and maximum spacing along the
curva rather than matching it precisely. The development is presented here

hout Egs. 97-101.

1y

It should be noted that the objective in setting bounds upon the spacing
as represented by Winkler, Mihalas and Norman [24,41] and by Nakahashi and
Deiwert [40] is essentially the same objective as specifying the fractional
amount of quantities as represented by Dwyer [17] and Eiseman {(8,27]. Both
prescriptions merely attempt to set limits upon the finite distribution of
points. In comparison, the spacing bounds are attractive because of their
direct attachment the the actual spacing while the specification of the
fractions are attractive because of their flexibility. With the fractions,
the constraints upon spacing can be more effectively balanced against the
other attributes which quite naturally enter into the same linear format.
Moreover, those other attributes can also be precisely separated at the same
time as the spacing requirements. This extensibility is not readily apparent
in the format of spacing bounds. To consider it. the form presented by
Winkler, Mihalas and Norman [24,41] would be prelerred because it fits nicely
into the context at the general parabolic evolution equation, Eq. 97.

Unlike the study of Eiseman [27], Nakahashi and Deiwert [20,39,40] did
not acknowledge any defect in the application of the method. The only in-
dication appears indirectly when they state that some corrective action is re-

quired when the orthogonally aligned arc length locations ry or ty fail to be
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monotonic. Although the action was simply executed, the real problem was
covered up. The real problem comes from the errors incurred in the numerous
piecewise linear approximations to curves and their parameterizations, Vari-
ous forms of the problem were illustrated by Eiseman {27] along with appro-
priate explicit corrective actions. In cases with rapid but not excessive

variations, such actions, however, are usually not required.

Curve bv Curve Adantation with Derivative Smoothness

Wnile the straight curve by curve adaptation yields good results in many
circumstances, there is a significant underlying limitation on the weights.
Namely, the weights cannot be too severe or else the procedure will collapse.
This has been observed and while corrective action can be inserted directly
into the process, such action is rather detailed and technical.

In a further study, Eiseman [42] found that a better course of action is
t5 redefine the directional sweeps by splitting them into two phases: the ac-
tive pnase and the passive phase. In the active phase we just have the origi-
nal curve by curve strategy in the current direction. This contains the fun-
damental adaptive forces. In the passive phase, a low pass fllter is applied
to remove any wiggles or abrupt changes in spacing caused by the active phase
but to leave intact the basic results of the intended action. This produces a
smooth grid in the sense of derivatlive continuity. As a consequence, continu-
ous numerical derivatives are available for numerical solution algorithms and
for the application of controls in successive sweeps. Such controls include
the use of orthogonality and curvature in the weights. As a practical matter,
it nas been observed that the splitting of sweeps into this predictor-correc-
tor format of active and passive phases has resulted in considerably'enhanced
atability and a much larger range of severity in the choice of Qeights.

The simplest form for the passive phase is glven by the direct action of
a Laplace fllter upon the grid point locations. While such action by itself
may not be appropriate for the generation of a noﬁsingular grid, it is cer-
tainly suitable for the stated purpose of establishing derivative continuity.
The distinction i3 that the filter is applied at most a few times in each di-
rectional sweep rather than being driven towards convergence as is the case
when the solution to a system of grid generation equations is sought. The

Laplace filter employed by Eiseman [42] was given by the simple Gauss-Seidel
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relaxation of

rn+1 -0 L [rn . rn+1 . D
i'J'k i"j'k 12 1*1Ij!k i-1 lj'k iyJ""gk

n+1 n n+1 n

etk Tt T Ty ke T 6Ty (116)

At the boundaries, this formula was restricted to provide filtering in only
tangential directions. 1In the application, a three-dimensional monitor sur-
face was dafined in four-dimensional Euclidean space by means of the vector
(x,y,2,u) where u is considered to be a function of (x,y,z). To obtain the
physical space projection, we merely replace u with a constant which is usual-
1y 0. 1In a test of the basic movement, u was taken to have a severe variation
across two intersecting ellipsoids that also intersected the boundaries of a
Cartesian box. From an initial surface grid with a Cartesian grid projection,
an equal arc length grid was rapidly generated on the surface, and according-
1y, a smooth gradient clustered grid resulted in the (x,y,z)-projection

(x,y,2,0).

The Conformal Measure of Smoothness: Basic Elliptic Grid Generation

While the passive phase of each sweep provided smoothness in the sense of
dertvative continuity, another measure of smoothness is provided by an at-
tractinn to ronformal econditions. This latter measure is more demanding and
is thus clearly stronger.

The conformal measure of smoothness is most readily observed in a véria'
tional setting (8]. In twn dimensions, we simply minimize the amount by which
the Cauchy-Riemann conditions fail to be satisfied when generally incompatible
poundary conditions are employed. At a point In the field, each of the
Cauchy-Riemann equations has a residual that in the general circumstance
deviatsas from zero. A measure of nonsatisfaction is clearly given by the sum
of squared residuals. For a mapping from (x,y) to (§,n), the smallest loss

over the whole field i3 then obtalned when the integral

;- J e = n)r e (g +n ) ]dxdy (17)

o] X y y X

fa minimized. Although the mapping direction in the formulation 13 opposite
ts that of an eventual application, there is a good reason: namely, that the
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control is relative to whole coordinate curves that are associated with con-
stant values of £ and n rather than to horizontal or vertical lines for con-
stant values of x and y. The coordinate curves in the physical space (x,y)
are generally not straight lines. More discussion of this cholce can be found
in a variety of sources [6-9,12].

When the integrand in Eq. 117 13 expanded and regrouped, we get

I, - [ [(E; + E;) + (n2 n;) + z(gynx - gxny)]dxdy (118)

where we can identify the newly grouped terms. From Eqgs. 107 and 109, we get

11 22 2
I, = j (g + g°° - j}dxdy » (119)

Since dxdy = Jdfdn, the integral simplifies to be

11 22
1= [ (&' + g")axay - 2 [ dedn (120)
where now the last term is a constant because the domain of curvilinear var-
iables (£,n) nas a constant area: typically, this i3 just a rectangle or some
collection of them. As a consequence, conformal smoothness is obtained when

the constant part of Eq. 120 is dropped and the remaining integral

11
1= [ (&' + g°%)axdy (121)
is minimized. In this form, the extension into three dimensions is clear: we
just add a term g33 to the integrand and integrate over volumes. As in Eq.
50, the Euler equations for the minimization of Is are obtained by applying

the general operator

[~

9
AN e (122)
{ 3Ej a(xi)ﬁj

to the integrand of Eq. 121 and setting the result equal to zero. For each

9
X

equation i, the repeated index j in the operator is assumed to be summed from
1 to the number of spatial dimensions. This is just a commonly employed sum-

mation convention. For Eq. 121, we get the Laplace system
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Vg = 0
(123)
¥2np = 0

that was considered by Winslow [43]. Alternatively, the same system could

have been derived by transforming the integral I, to curvilinear variables

51 = f and 52 = n and then employing the general operator
3 3 a3 .
3¢ Ix. (€ (124)
i ] i Xj

to> the adjusted integrand. This is just the parallel to Eq. 51. Using the
fact that the Laplace formulation of Eq. 123 is directly for the curvilinear
variables; Thompson, Thames and Mastin [UU] considered the Poisson generali-

zation

vig = P
(125)
Vn = Q

where the forcing terms P and Q provided separate and active controls on the
respective families of coordinate curves. Because of the general effective-
ness of this grid generation system, it became thoroughly developed and widely
used. The effectiveness arose primarily from the treatment of whole coordi-
nate curves relative to the conformal attraction inherent in Eq. 123. To ap-
ply the Pnisson system, Eq. 125, the dependent and independent variables must

be interchanged. The result is given by

11 12 22
X + 2 X + + P + x = 0
8 EE 8 £n & *m XE nQ (126)
L Sy P eyQ-0
£E g £n g ynn yE yn
In the general case, we have
ij .
g r + P.r = HN (127)
EiEJ 1 Ei

where r is the position vector in physical space, Pi is the i-direction forec-
ing function and H i3 the mean curvature should the application be for a

surface with unit normal N. In a Euclidean space, H vanishes and the right-
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hand side then also vanishes.

Upon examining Eq. 126, Middlecoff and Thomas [45] noticed that the forc-
ing functions would have to be appropriately scaled to account for potentially
disparate variations in the inverse metric elements gij. As a consequence,
they redefined the forcing terms to include a factor of gii for each direction

i. In terms of the general form of Eq. 12T, we getl

£ £ + 5ijwir£i] = HN (128)

v.o=g QP (12¢%)

and the 6ij in the sum on i and j is the Kronecker symbol that is unity when i
= j and vanishes otherwise. For more details on the general development of
this Poisson system, the reader is referred to the review articles by Thomp~
son, Warsi and Mastin [6], Thompson [7], Eiseman [8], and Eiseman and Erle-

bacher [9) as well as the text by Thomoson, Warsi and Mastin [46].

Curve by Curve Adaptation with Conformal Smoothness

Recognizing the basic need for smoothness, Anderson and Steinbrenner
(47,481 brought the process of equidistributing weights along coordinate
curves into the format of the Poisson system of Eq. 125. Their development

was motivated by the previous work of Middlecoff and Thomas [45] who employed
the formulation of Eq. 128 in the planar form
By, (rpe + or ) - 2 ,r g lr v ¥r ) -0 (130)

with

(131)
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for the purpose of converting boundary distributions into forcing fumctions
thereon. While Middlecoff and Thomas interpolated the forcing functions into
the field so that boundary distributions could be propagated into the interior
of the field, Anderson and Steinbrenner viewed each curve as if it were such a
boundary curve. In the boundary application, the assumption of orthogonality
and vanishing transverse curvature was employed to get the differential equa-

tion for an equidistributed weight. In particular, with g;, = rE-rn = 0 and

rnn - 0, the equidistribution statement of Eqs. 24-25 is obtalined from Eq. 130
as
SEE + d:sE = 0 (132)

where g is the curve arc length and

(133)

tlt
Tl

is the relationship bewteen the forcing function ¢ and the weight functlion w.
In the more general interior application, the same sort of equidistribution
statement was established without the previous assumptions. The main dis-
“inetion is the addition to ¢ of a term for orthogonality and terms for curva-
ture. These orthogonality and curvature terms represent the attraction to the
conformal measure of smoothness. Without forces, they yield the desired
smoothness. With forces a deviation is obtained.

In the general two-dimensional case represented by Eq. 130, our task is
to obtain a reduction into the form of Egs. 132-133 for each direction. To
atart, we shall rewrite Eq. 130 in a form where the basic constituent vectors
are the unit tangent vectors along coordinate curves and the unit normal vec-
tors perpendicular to coordinate.curves. From the metric coefficient defini-
tion in Eq. 107, the appropriate normalization factors for the natural tangent
directions r_ and rn are obtained directly. With T, and T, denoting the res-
pective unit tangents, we have

where sE = /311 and un = VBss are the respective arc length derivatives. For
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Eq. 130, second derlvatives are needed and can be obtained by derivatives of
Eq. 134. To get them, however, the unit tangents must be differentiated.
This is accomplished with the first of the Frenet formulas (cf. [U49]) which

are given by

(r1]s B k1n1

(v,), = kan,

(135)

for the two respective coordinate directions. The unit normal vectors and
curve curvatures are given by n1 and n2 and by k1 and k2. By using the chain
rule, the arc length differentiation in Eq. 135 is readily converted into dif-
ferention with respect to £ and n. With the result inserted into the deriva-

tives of Eq. 134, we arrive at

—3
{
9}
~
4
w
x
=]

43 £ 1 £ 11 (136)

Upon substitution of the first derivatives in Eq. 134 and the second deriva-

tives in Eq. 136, the grid generation equations of Eq. 130 become

811[(355 v ¢sg)‘1 * ssk1"1] T 285" (137)

* g22[[unn * Yun)rz * unk2n2] =0

where the terms have been grouped according to the tangent and normal direc-
tions. An immediate observation from the grouping is that the equidistribu-
tion process along coordinate curves i3 now separated by direction: namely,

that the representative form appears only in the coefficients of T and .

To isolate the forcing functions, only a dot product with the respective

normal vectors n1 and n2 is required. To remove ¥, a dot product with n2

yields

811(555 i ¢SE)T1'"2 PSPy TRy T 28, tny Byl Ky = 0 (138)

or



SEE + @sg = 0 (139)

where

1
d = ¢ + 81"(1'“2[3&‘(1“1 n2 28121“En-n2 + 822unk2] (1“0)

As a matter of interpretation, the deviation from an equidistribution of ¢ is
representad by the second term of Eq. 140. It contains an orthogonality part
due to g, and n1-n2 and curvature parts due to k, and k5 for the coordinate
curves in the two distinct directions. When the coordinates are orthogonal,
that deviation reduces to gzzunk2/311. On balance, the force towards an equi-
distribution of ¢ must overcome the forces of conformality that are repre-
sented by orthogonality and curvature. A similar development and balance oc-
curs for Y.

In the adaptive context, when the local force Is sufficiently strong, the
equidistribution force overpowers the smoothness conditions to become dominant
and, thereby, to provide the desired equidistribution of the weight along each
curve. The equidistribution is more localized than the previous derivative
continuous measure of smoothness. This occurs because the equidistribution i3
essentially cut off unless it is sufficiently strong. The value of such a
cutoff is that intense local clusters can be formed primarily from curves that
are not too far from the given locality. In contrast, the actual equidistri-
bution of welghts along curves adjusts all points along curves, and thus,
tends to globally propagate adjustments to intense local requirements. This
tendency can of course be limited with the explicit use of orthogonality and

curvature attraction.

The Variational Form of Curve by Curve Adaptation

In the prior section, the curve by curve controls were Injected into the
two-dimensional Poisson system of Eq. 125 in a somewhat ad hoc manner. This
was done by first casting the system into a form, Eq. 137, that explicitly
displayed the appropriate elements of equidistribution and then by making the
ad hoc judgment that those elements were dominant. The judgment occurred at
the stage represented by Eq. 140. While the same development could be con-
tinued into three dimensions, the added detail in getting to the stage of
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judgment, not to mention the judgment itself, is much more complex.

In order to simplify the judgment and to gain a higher degree of general-
ity, we shall develop a varlational formulation based upon the fundamental
statements of equidistribution and conformal smoothness. Upon observing the
integrand of the smoothness integral IS of Eq. 121, it i3 noted that the 1-th
coordinate direction is represented by the inverse metric term gii. In a geo-
metric sense, this represents the spacing between curves as we march along in
the i-direction. To control that spacing, we consider a weight function Wy
which would be completely effective if gii/wi were constant. For orthogonal
systems, the basic metric equidistribution statement of Eq. 112 is obtained
for /;; . On the overall basis where the various terms in the integrand must
compete with each other, we are led to the integral

" 22

- (51 . 52 Jdxdy (141)

The associated Euler equations derived from the operator of Eq. 122 are given

by

(142)

V’n = g

With the exception of the g12 terms, this matches the equations of Anderson
and Steinbrenner [47,48] that were discussed in the prior section. The g‘z
terms, here, represent the transverse variations of the weights for each
direction. As in the prior case, the inclusion within the Poisson format is
clearly quite simple. When Wi = Wy =W, the conformal forces are scaled by
1/w in the variational integral of Eq. 141. Given the conformal tendency to
maintain orthogonality, the uniform scaling of Ve along each coordinate in-
tuitively suggests an equidistribution of w with respect to volume elements.
This equidistribution was analytically verified by Anderson [50] who was moti-
vated by the diffusive form proposed by Winslow [51] rather than the above in—‘
tuition. The diffusive form comes from the use of w = 1/D in Eqs. 1#1-1%2.
With the prescribed diffusion function D, the equations proposed by Anderson
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[50] are obtained by setting LEE P 1/D in Eq. t42. Here, the logarithmic
derivative trades a reciprocal for a minus sign so that the form of the forc-
ing terms in Eq. 142 now appear with minus signs and a replacement of W and

by D.

Unlike the development of Anderson and Steinbrenner, the extension into

Yo

three dimensions is easily formulated and justified. From the integral

11 22 33
1= (5 + %— N %—-)dxdydz (143)
1 2 3
we get the Euler equations
{w,) (w,) (w,)
ST 1g+g12 1n+813 1t
W W W
1 1 1
(w.) (w,) (w,)
CEN 821 w2 £ . g22 w2 n o, 823 w2 g (144)
2 2 2
(w,) (W,) (w,)
. g} £ 2
Vi - gl w3g+83 w3n+833 WBC
3 3 3

as

vig, = g (145)

Upon returning to the basic statement of Eq. 112 and noting that the de-
rived equidistribution was for each /G; rather than w;, we are motivated to
replace each w; by its square and repeat the argument. Even more generally,
it is just as easy to consider a replacement by w? for any positive constant

"n. When the replacement is made, we can simply carry W’ through all of the

i
above steps in an undisturbed manner and then perform the final differentia-

tion at the end. Altogether, we obtain the general forcing terms

P - agld J (146)
that can be employed in Eq. 127 which also is equally valid on surfaces. As

originally mentioned, when a = 2, the equidistribution forces conform most di-

rectly to the basic metric equidistribuﬁion statement of Eq. 112. This might
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actually be the most intuitively plausible application when the linear weight
of Eq. 1 is employed. Then, at least, there is a more direct correlation to
the previous curve by curve studies that use llnear weights.

With the forcing terms of Eq. 146 in the elliptic operator from Eq. 127,
a concise evolutionary parabolic partial differential equation can be deduced.
In a basic sense, it is the natural extension of the one-dimensional form

presented earlier in Eq. 52 and is given by

or 1] g - ;
K3t - g [rE.E.+a - 4’”5,) HN (147)
i3 i i

where linear weights retain the original meaning when a = 2. The further ex-
tension in the spirit of Eq. 96 is also possible. For instance, the attrac-
tion to a fixed prescribed grid q can be inserted as a term within the format
of 8 in Eq. 96. As in Eq. 94, the grid r is attracted to the fixed q with the
term D(r - q). The evolutionary equation then becomes

(wi)g.

I _ idy : J - HN - -
Kt - g \rE:Ej—ra oy r'E‘.) HN - D(r - q) (148)

FINITE VOLUME METHODS

Finite volume methods are methods where the grid point motion is based
upon the volume elements between grid points. The basic format was first es-
tablished in one dimension with the mean-value relaxation statement of equi-
distribution. This led to the center of mas form of Eqs. 32-33 and the move-
ment form in Eqs. 34-35. The second format was correspondingly established In

the variational setting with Eq. 36.

Direct Mean—-Value Relaxation

For simplicity, only two dimensions will be considered since the funda-
mental pattern is established therein. A two-dimensional stencil centered
about a grid point Tij is displayed in Figure 1. The local motion of Ty comes
from the weighted volume elements which are defined by the indicated triangles
containing Ty as a vertex. In each quadrant k, a barycenter b, and a weight
Wi i{s obtained as the average of positions and values respectively over the
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triangle vertices. With the weight Wi considered to be uniformly distributed

over the corresponding triangle of area Ak, the contribution at the barycenter
bk is just kak’ From the weighted triangle areas, the direct extension of Eg.

32 is the center of mass for the four quadrants and is given by

Ii,j+1

Figure 1: Finite volume stencil in two dimensions
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to determine the new position for Tyy The actual movement i3 given by

new k
- E_3

Ty Fij

(150)

and is employad in a point iterative cycle, This represents the most direct
statement of mean-value relaxation. In the movement form of Eq. 150, the ef-
fective origin for the computation has been shifted to the stencil center rij'

Like the earlier Laplace system of Eq. 123, the mdtion represents an at-
traction to conformal conditions when each Wi is unity. In terms of the lin-
ear weight form of Eq. 1, the first term which is the number 1 is then the
representative of the conformal attraction relative to which the other forces
are applied. The analytical indicator for the conformal conditions comes from
the converse of the mean-value theorem which is simply presented by Epstein
[{52) on pages 146-148. While the analytical argument employs the area mean
value of functions over circular disks, the finite parallel given by Eq. 149
with Wy = 1 is only an approximate form employed within an iterative cycle.

The pointwise relaxation of the center of mass formula of Eq. 149 has
been considered by Diaz, Kikuchi and Taylor [53], Oden, Devloo and Strouboulis
[54], Schwartz and Connett [55], Connett, Agarwal, and Schwartz [56], Erle-
bacher and Eiseman [571, Eiseman (58], and Erlebacher [59]. 1In the studies by
Erlebacher and Eiseman, the more general application to unstructured meshes
was developed.

The relaxation formula for general connectivity triangular meshes 1s es-
sentially the same formula as given by Egs. 149-150. Adjustments, however,
must be made to accommodate any number of triangles in the determination of a
pointwise move. This requires a careful labeling system. In our discussion,
we shall assume a global pointwise index m for rp together with a local index
j to label the points PJ =vru(m,J)

index j is attached successively to the positions as we move about P in a

that are directly joined to ro- The local

circular manner. The range for j i3 taken to be from 1 to jp where jm+1 is
identified with 1 (i.e., a reduction modulo Jm). Under these index condi-

tions, the relaxation formula becomes
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J
. le "3 3%y
Ry (151)
jZT wmjAmj
where
1
mjsg(rm+Pj+PJ+1) (152)

In continuation, we next consider the minimization of the sum of squares

m
1 j§1 “mitmsl 1Fn ™ Pay 1 (153)

wn
1]
W~

m

to establish a variational perspective. The global sum i{s over all N points
which are to be moved. For simplicity, we shall assume Dirichlet data at the
boundaries so that only interior points are moved. The norm appearing in Eq.
123 is simply the Euclidean norm (square root of dot product). As a matter of
convenisnt notation, let

%)

]
rm - Xm1(0) * xmz(l

= X ,e + x__e (154)

To find the condition for minimization, we must set the first derivatives of S

to 0. For the k-th Cartesian direction, the general condition is given by

+ (P, -b ) - (¥ lek) + (PJ+1 - bmj] - (- l3ek]} = 0 (155)

Of the terms represented by dot products, the first is due to the derivative
of the m~th term in S while the second and third terms come respectively from
derivatives of the j-th and (j*+1)-th terms that appear with distinct global

indices in S. This occurs for each triangle J because r, appears as the cen-

m
ter in the m—-th term and as a surrounding term when the center is shifted to

P. or Pj*l’ Here, we are assuming that r_ iIs at least two connections away

J m
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from the boundary so that both Pj and PJ+1 are varied and accordingly have
corresponding sums in S. The basic coupling clearly comes from the barycen-
tric formula of Eq. 152 and gives rise to the factors of 1/3 in Eq. 155. Us-

ing the barycentric formula, the minimization condition of Eq. 155 reduces to

m

J
¥ -b.) e =0 (156)

wmjAmj(rm mj k

J=1

which is a componentwise equality for a vector equation. The vector equation
is obtained by just removing the dot product with e, in Eq. 156. The immedi-
ate consequence is the relaxation formula stated in Eq. 151. In summary, we
have just shown that the center of mass formula is the general field equation
for the variational problem stated in Eq. 153.

Both the variational statement and the consequent field equation can be
brought into the evolutionary context along with a mechanism for attraction to
a given grid q. As in the curve by curve case with Eq. 147, we have an under-
lying parabdlic partial differential equation for the Euler equation. As in
the one-dimensional evolutionary least squares statement of Eq. 57 and the as-
sociated mean-value expression in Eq. 56, we get an extension which also in-
corporates the attraction to the fixed q as expressed in Eq. 95. 1In a direct-

1y parallel manner to the previous development, the minimization of

N el
n, (.m m
R RN LA NI
(157)
In
- 2
J§1 wmjAmjllrm bmjll }
produces
K] ?j
—r +D w A D
a1z Bt @ % PROL VNG )
m K? m
T + Dm + le wmjnmj
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The field equation of Eq. 158, of course, will sepcialize to that of Eq. 149

in successive stages.

Full Mean-Value Relaxation

In the center of mass formula of Eq. 149, the control over the grid comes
from the specification of a single weighting quantity that is applied against
the triangular elemants of area. While this approach ylelds a control over
the elemental area distribution, it does not exercise all of the available
degrees of freedom for such control. Yet one more degree of freedom is avail-

bhie. The

™

ull utilization of all degrees of freedom was evident in the

%]

transition from the Laplace system of Eq. 123 to the Poisson system of Eq.
125. A similar transition is a reasonable expectation for the process of
mean-value relaxation.

The utilization of all degrees of freedom in mean-value relaxation was
develnped by Eiseman [60]. As in the Poisson system of Eq. 125 and in the al-
ternating direction methods of adaptivity, control was established with a co-
ordinate directional bias that provided the required separation into distinct
degrees of freedom. In the local stencil of Figure 1, the directional bias
was obtained by a projection of the movement vector onto the coordinate curve
through r.lJ in the appropriate direction. If w is the weight for the i-direc-
tion, then the projection is onto the curve from Fi 1,3 to r1+1'J. In the
implementation, the transverse coordinate curve from ri,j—1 to ri,j+1 was used
to divide the weights so that first and fourth quadrants would pull towards
Tie1, ] from ry while second and third quadrants would pull towards Fi_q,;

from rij' On each side of the transverse coordinate curve, a center of mass

was computed and then projected onto the appropriate segment from rij‘ De-
noting the projected distances by d, and d_ for the positive and negative 1-

directions from Fijr the new position along the curve is given by

d = — B (159)

where
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(160)

This is the same foru as given by Eqs. 34-35 in one dimension. Since the con-
atruction is centered at rlj, the sign of d gives the direction of movement:
negative is towards Fi 1,3 while positive is towards Fie1,5° In a similar
manner, a second weight w is employed for the j-direction and a similar dis-
tance is determined along that direction. The signs of the two distances then
determine the quadrant which contains the new position. That new position is
determined by interpolation.

The projected distances appearing in Eq. 159 are constructed from the

vectors

Lo P T

LT T e T T :
(191)

I =r, S

- i-1,3 ij

J =r, . -r,.

- 1,31 i]

which point from the current position ryj to the nearest neighboring points
along coordinate curves. To compute the positive projected distance d, in the
i-direction, we must first obtain the center of gravity for the side in the

direction of I,. This is given by

1
¢ = (“1A1b1 * “uAubu) (162)
+ +
and reduces to
1
cI+ -rr3 It - (w1A1J+ + quuJ_] (163)

upon employing the definition of barycenters. The projection of C

"1
along the positive i-direction comes from a dot product with I /||I || and
yields the maximum distance

1 1 I+
= — —_— . y
3||I+|| + S [w1A1J+ + quhJ—) (TTT:TT) (164)
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In the original form, Eiseman [60] considered a bilinear interpolation
that also included the diametrically opposite point to rij' In a further
study, Schwartz and Connnett [55] and Connett, Agarwal and Schwartz [56] ex-
perimentally found that the method became unstable when the weights became
sufficiently severe. While this led them to consider the earlier center of
mass form of Eq. 149, it lead Eiseman to consider barycentric interpolation in
place of the original bilinear interpolation. The intuitive reason was that
the asymmetric use of diametrically opposite peints would be more restrictive
on the stability. In subsequent tests, the intuition was confirmed: the use
of barycentric interpolation led to stable results even when the weights had
considerable severity.

With the distances along the i- and j-directions determined by Eq. 159
and denoted by di and dj respectively, it is a simple matter to state the
baryecentric interpolation. If, for example, both dy and dj are positive, then
the interpolation must be performed in the first quadrant. There, the posi-
tively-oriented vectors I, and J, from Eqg. 161 are employed and the interpola-

tion is given by

new I"’ J“‘
ev | (165)

fu T T ST S T

A substitution from Eq. 161 provides the reduction into the barycentric form

new
- 166
Tij Ty " T,y T %2, (166)
where
4
“ 7T
4
- 167
"2 T TT,TT e
and

Since the coefficients presented by Eq. 167 usually lie in the unit Interval,
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the new position from Eq. 166 usually lies within the triangle determined by
the three vectors of Eq. 166. Clearly, the same format applies to the other
quadrants.

Upon inspection of the full mean-value relaxation process, we note that
the projection was accomplished with a rather strong adherence to the indi-
vidual conrdinate curves. While this is the closest to our objective of sep-
arating the action of weights to be along the coordinate directions, a slight-
1y weaker adherence can also be considered. The intent, here, 1is to get a
simpler formulation that still retains the separation feature. The weakness
in comparison with the more thorough version is that the center point rij of
the stencil in Figure 1 is removed for the projection. The consequence is
that the algorithm may not be as robust as the stronger version; although,
from a practical point of view, experience with the weaker formulation is seen
to be fairly competitive. To state the weak form, an i-direction weight w is
first employed in the mean-value movement formula of Eq. 150 and is then pro-

jected against the i-direction secant to determine a vector increment (Ar)i.

That 1is,
new .
- - . 8
(Ar)i [[rij rij) ri]ri (168)
where
r A U
- e e (169)

N I LT

Similarly, a j-direction weight W is used to determine (Ar)j. The new posi-

tion is then determined by the simple sum

Ar = (Ar)i + (AP)J (170)
for the actual movement from the old Fij-

Upon consideration of the primary motivation to separate the action of
the weights to be along coordinate directions, we are led to a variational
statement which is a natural extension of that in Eq. 153 for triangles and
that in Eq. 36 for curves. With an impulse toward; simplicity, we might first

examine the minimization of
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where

irsa,y ™ Yisrs2, 3t 0172,

Qi,J+1/2 B wi,j+1/2A1,j+1/2 (172)
The Euler equations, however, yield the relaxation formula

r 91*1/2,Jri+1,J " 91‘1/2,Jri‘1.J i Qi-J+1/2ri,J+1 * Qi,J‘T/Zri,J‘1 (173)

c.= 3

lJ — — ~
Uiysa,3 " Yi-1s2,5 7 Myge2 T %522

which, unfortunately, provides a more modest separation for the coordinate
directions. To obtain the strong separation of Egs. 159-16U4, we then must

consider the statement

S = iij ((w,a, -wa )i, + (w4, - wd_ )z} (173)

where the constructive elements about each r;; are given in Egs. 159-164. At
equilibrium, we have a balance between the original movement forces and the
boundary conditions. As a final note, here, this separaticn can readily be
compared with the curve by curve approaches and extended into the evolutionary

format.

Direct Variational Constructions

Rather than a direct construction of a movement formula and a subsequent
implied variational statement, the process here will be reversed: the con-
struction will appear in the formlation of the variational statement and the
movement action will be the consequence. In so doing, there is the option of
directly minimizing the defining sum rather than deriving a movement formula
from the Euler equations. Kennon and Dulikravich [61-62] pursued the direct

approach by using an optimization technique. The primary motivation for their
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minimization problem came from previous variational studies [63-68] along with
the desire to place a larger constant at the center location rij than would
have come from the traditional use of central differences that would have

missed r. This then led them to consider a finite volume stencil.

ij-

The basic attractive forces come from distinct sums of squares that are
balanced against each other. Of the forces, the first one pulls towards an
equal volume distribution with terms of the form

(a.-a_)2 + (A,-A )2 (174)

17h2 oAg) e (agma)® e (ay-a

1
for each point rij- The second one pulls towards an orthogonal grid with

terms of the form
(1,-9,)2 + (9,-1)2 + (1_-9_)% + (9_-1,)2 (175)

where the local vectors about rij are defined in Eq. 161. Denoting the volume
equalization and orthogonality sums by Sv and SO respectively, Kennon and

Dulikravich minimized the linear combination

(1-cx)Sv + aSO (176)
to generate or improve a grid. The parameter 0 $ a $ 1 was chosen to balance
the two forces. The inclusion of adaptive forces comes with the inclusion of
yet another sum. This corresponds with the basic pattern of most variational
methods. The typical choice for an adaptive sum S, is the one over weighted

volumes which can be assembled with terms of the form

w(a + A, ¢ At Au) (177)
for each location rij- The overall sum then appears in the form
XS, ¢ xzso + x3sa (178)

which upon minimization provides a competition between the various effects.
As in all variational constructions, various effects can be readily in-

serted Into the formulation. Here, many such effects can be developed from
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the vectors of Eq. 161 which comprise the basic metric structure. In contrast
with the ease of formulation, the actual use of such formulations can be

complicated; thus, presenting additional issues.
VARIATIONAL METHODS

The basic pattern of developments with variational methods is to gather
the desired attributes, form a positive pointwise measure of each such at-
tribute, integrate the measures over the field, form a positive linear com-
bination of the integrals, and then minimize the resultant combination. The
minimization process typically follows the standard manipulations from the
calculus of variations [16]. This leads to a system of partial differential
equations known as Euler equations (Egs. 50, 51, 122,124) that are then to be
solved by the available numerical methods for PDE's. The main attribute in
most methods is the attraction to conformality and is given by the integral of
Eq. 121 for the Laplace system of Eq. 123. This means that other attributes
are balanced against the Laplace system for curvilinear variables that was em
ployed by Winslow [43], Thompson, Thames and Mastin [44] and others. The main
adaptive attribute typically comes in the form of a weighted Jacobian so that
the minimized integral by itself would produce an equidistribution of the
weight over volume elements or powers of them. Along with the attributes of
conformality and weighted Jacobians, Yanenko et al [67] included a Lagrangian
attraction for fluid motion while Brackbill and Saltzman [63] inlcuded an or-
thogonality attraction for an improved grid structure. The orthogonality at-
traction came from integrals of squared cross metries. In two dimensions,
these were either (512)2 or (g12)2. With the motivation from the use of or-
thogonality in Brackbill and Saltzman, Kennon and Dullkravich [61] pursued the
finite volume approach discussed earlier, Saunders [68] examined a tensor pro-
duct of B-splines, Krels, Thames and Hassan [69] considered scaling problems,
and Steinberg and Roache [15] developed a variant with reference grids.

Rather than employ the attraction to the preferred Laplace system for El-
liptic grid generation, Morice [70), Oskam and Huizing [71], and Stelnberg and
Roache [15] used attraction towards the Laplace system for locations in physi-
cal space. While this provides conformal smoothness, this 1s not as robust as
the preferred system: 1t does however offer some simplieity., The main in-

surance against grid folding then falls upon the volume control or the permis-
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sion of boundary point motion. Steinberg and Roache [15] favor volume control
while Morice [70] and Oskam and Huizing [71] rely primarily upon boundary
point motion.

The idea of reference grids employed by Steinberg and Roache [15] is the
same as that employed earlier by Steger and Chaussee [72] in their development
of hyperbolic methods. The use, however, ls more extensive in that various
properties are extracted from the reference grids. They appear essentially in
the form of multiplicative factors applied to the standard format of the other
investigators. These factors are weights that give appropriate -ratios between
the current desired grid and the known reference grid.- A note of caution to
be observed in the extraction of properties is that a desired attribute mignt
not he ohbtained whan the number of available degrees of freedom is exceeded.

A somewhat general development of the variational methods is given in the
text by Thompson, Warsi, and Mastin (46]. This was subsequently implemented
in a large program (73]. 1In one dimension, earlier studies were given by
Gough, Spiegel, and Toomre [74] and by Pierson and Kutler [(75]. Also, a study
of temporal smoothness was developed by Bell and Shubin [22]. In the multidi-
mensional context, a study for systematically dealing with the inherent com-
plaxity of variational methods was performed by Steinberg and Roache [76,77]

who proposed appropriate symbolic manipulation methods.
TEMPORAL ASPECTS

When the temporal accuracy of a simulation is to be enhanced, the evolv-
ing grid must closely follow the trajectories of the severe disturbances in
the solution. This is in contrast to the situation where a steady-state solu-
tion is sought and the grid there eventually settles down into a virtually
final configuration. The primary concern in the development of an accurate
temporal resolution is that the severe disturbances will not escape from thelr
resolution during the course of any time step in the numerical simulation.
With this concern in mind, a number of investigators have felt that the grid
équations should be formulated directly for grid point velocities rather than
positions. Then, at least, the grid velocities would follow an analytical
model for any chosen time level such as the full implieit level or the level
halfway between explicit and fully implicit. Clearly, the use of such velocli-

ties should be an improvement over using backward differences in time to esti-



mate the same velocities from a grid point movement scheme that only produces
pointwise locations from currently available data. From the viewpoint of grid
velocities, the schemes which produce only pointwise locations can be referred
fo as static rather than dynamic (e.g., note Hyman and Naughton (78]). A typ-
{cal difference is that static methods depend upon data at only one instant of
time while dynamic methods often depend upon data over an interval of time.
With the advantage of directly obtaining grid velocities, the dynamic methods
can possess the disadvantage of a more difficult control over coordinate non-
singularity. This is because grid point locations must ultimately be deter-
mined, and if some velocities are too large or change too quickly, then points
could be either overrun or artificially encircled: corresopndingly, there
would be grid overlap or excessive skewness.

Among the dynamic grid veloclty methods, there are methods proposed by
Winkler, Mihalas and Norman [24,28,41], and Bell and Shubin [22], Hindman and
Spencer [79), Rai and Anderson [23,80,81], Greenberg [82], Piva, DiCarlo,
Favini and Gui [83], Ghia, Gnia and Shin [84], and Harten and Hyman [85].
Winkler, Mihalas and Norman [24,41]) develop a scheme based upon the equidis-
tribution of weights over grid point indices. Nonsingularity in their one di-
mensional context is provided primarily by creating singularity barriers which
keep the points from interchanging positions. This comes from equidistribut-
ing the cell eccentricity as discussed earlier with Eqs. 102-105. In addi-
tion, they consider asymmetric time filtering to preserve.resolution for the
rapid reappearance of salient phenomena such as in shock wave reflections.

The chief mechanism is a diffusion coefficient arising from a constructed fac-
tor (K in Eq. 97) on the time derivative. The factor contains enough residual
memory to slow down the diffusion of the resolution just enough to allow for
the rapid reappearance of small structures. Otherwise, resolution would have
to rapidly disappear and then reappear, thus causing unnecessary numerlical er-
rors because of the temporal jerkiness. In comparison, Bell and Shubin [22]
remove temporal jerkiness by balancing the weight function equidistribution
against the mangitudes of time derivatives in the variational format given in
Egs. 89 and 90. Their balahcing coefficient was, however, only a constant and
thus did not céntain the residual memory as in the case of Winkler, Mihalas
and Norman. ‘ '

In another direction, Hindman and Spencer [79] converted the Poisson sys-

tem of Eq. 125 into a grid velocity equation by formal temporal differentia-
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tion of the original equation. In addition, they also explored the use of
equidistributed weight functions. They found the same relationship to the
forcing function in one dimension that Anderson and Steinbrenner [47,48]
eventually discovered in two dimensions.

Identifications with alternate metaphors, such as the earlier spring
analogy, have also provided the inspiratlon for several methods. In this
spirit, Rai and Anderson [23,80,81] developed an analogy to a gravitational
potential while Greenberg [82] related the grid movement to chemical reac-
tions. The gravitational forces decayed according ot an inverse power law for
distances in the space of grid point indices. Force magnitudes and directions
at each grid point came from the deviation of the error indicator from its
average value. This was discussed earlier with Egs. 91-93, In a similar
manner, the chemical reaction rates contained the adaptive data.

An even more direct use of physically based motivation occurred in the
somewhat parallel studies of Piva et al. [83] and Ghia, Ghia and Shin [84].
There, ldealized two-dimensional momentum equations for viscous flow were
transformed into diffusion equations. This was done because diffusion equa-
tions are easier to solve. The process basically amounts to a removal of the
convective terms which would appear when the equations are expressed in terms
of an arbitrary time-dependent coordinate system. The two resulting equations
are the grid movement equations which assume the Poisson format. In a sense,
this is similar to the pursuit of Hindman and Spencer [79], although there is
no consideration of equidistribution.

In addition to the static methods based upon the previous solution step
and the dynamic grid velocity methods, there are methods which impose a grid
distribution mechanism at some implicit level without the direct determination
of a grid velocity. This includes the methods such as that employed by White
[31] or Mueller and Carey [86] and that employed with the moving finite-ele-
ment method investigated by Miller and Miller [87], Miller [88], Miller [89],
Gelinas, Doss and Miller [90), Herbst, Mitchell and Schoobie [91], Baines
[92], and Baines and Wathen [93]. In the case of White [31] and others like
it, the grid equation appeafs as a time-dependent constraint which is applied
in an implicit coupled manner with the evolutionary physical equation. In the
moving finite-element method, the coupling and the grid evolution comes

directly out of the formal finite-element process when it is directly extended

to include grid point motion.
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In contrast to the dynamic or implicit temporal treatment of grid point
motion, the static methods offer a great amount of simplicity, efficiency and
spatial control at the expense of losing the accurate tracking of severe dis-
turbances. The corrective tracking measures taken are typically to elther use
a smaller time step or preferably to require a broader band of resolution.
With the broader band, the idea is that the disturbance will still appear in
the high resolution region at the end of the time step. Methods which lead to
such breadth typically come from grid smoothness forces and from curvature
clustering on the monitor surface.

The static methods also tend to offer more numerical stability for the
class of problems where the broad-banded resolution provides an adequate buf-
for far the contzinment of the disturbance. In the application, either the
grid velocities are employed with wackward differences in time or the solution
is simply interpolated onto the new grid point locations in what i{s known as
remapping step. While both are commonly used, the remapping approach is more
prevalant, particularly in cases wnere the steady-state convergence 138 a prime
element. In the steady-state cases, the movement may start with direct inter-
lacing between the PDE-solver and the grid generator and then progress to few-
ar and fewer applications of grid movement until movement is stopped altogeth-
er. An example of the interlaced approach is given by Palmerio and Dervieux
{ou}. 1In addition, they considered specified grids as in Eq. 83 and a form of
vime filtering similar to that of Winkler, Mihalas and Norman [41].

With trapezoidal finite elemeﬁts in one space dimension and-time, Davis
and Fiaherty (95] and Flaherty et al. [96] employed a static grid generation
scheme for a PDE-solver that was well-adjusted for temporal evolution. The
static grid was generated from data at the explicit time level n for use at
the implicit time level n+1. In a sense, this represents a zeroth-order for-
ward extrapolation of the grid in time. Because of the extrapolation, the
tracking possibilities are absent. In contrast, Sanz-Serna and Christie [97]
and Blom, Sanz-Serna and Verwer [98] consider a predictor step for the appli-
cation of statiec grid generation. The essence of their idea is to apply the
PDE-solver to get provisional solution values at n+1 and from those values to
generate the grid at the implicit level n+1., Then with the grid determined at
n+1, they get the actual solution at n+1. Although,their development was one~
dimensional in space, the idea of first'predicting the implicit-level adaptive

data is attractive for any application in any number of spatial dimensions.
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The extra cost only amounts to an extra application of the PDE-solver. The
penefits are the capability to accurately track rapidly moving severe dis-
turbances by using statlic adaptive grid generators which are known to produce

high quality versatile grids.
CONCLUSION

Adaptive grid generation is essential when rapidly varying solutions to
partial differential equations are to be simulated in an orderly fashion. The
fundamental character of the topic is that the necessary local resolution is
dynamically provided while the regular ordering of points is preserved. With
the preserved order, many of the best partial differential equation solvers
are available and are easily formulated. The main spirit behind the various
developments is the creation of effective grid movement strategies that can be
coupled into a wide variety of PDE-solvers.

In our discussion, we have attempted to develop the topic of adaptive
grid generation in a somewhat structured and coherent manner. The emphasis
was on the basic concepts and the interrelationship between the various con-
sequent methods. To maintain a general perspective, basic principles were
considered from various viewpoints. This started with a dozen basic ways to
view eguidistribution in one dimension. It recurred again when the use of
prescribed distributions and coefficients in the weights were explored. Upon
a foundation of concepts developed in one dimension, the various higher-di-
mensional methods were then developed. The discussion closed with a con-

sideration of the temporal coupling of PDE-solvers and grid generators.
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A general purpose adaptive grid method will be presented that has the ability to gencrate time
accurate grids for a wide variety of problems. The solution method consists of &u'ee parts: a

rid movement scheme; a PDE solver; and a temporal coupling routine that links the dynamic
grid and the PDE solver. The ability of the basic scheme to perform time accurate adaptive
computations has been previously established [1]. Here, we will present a new innovation for
grid control, address efficiency improvements in the temporal coupling and issues pertaining to
‘e transfer of solution data between successive grids, and demonstrate the adaptive solution
method on a supersonic flow problem.

The basic grid movement scheme employs a “monitor surface” formed from the solution data
to identify regions requiring further grid resolution. The grid points are repositioned on a
curve hy curve basis by requiring that a weight function be equally distributed over each
curve. Including the monitor surface gradient and normal curvature in the weight function
ensures that both the gradients and the transition regions of the solution are resolved. The
grid movement is interwoven with a smoothing operation to ensure grid smoothness and to
alleviate grid skewness. The scheme also contains a means of eliminating “outlier” values in
the adaptive data and a grid control that can enforce a prescribed minimum grid cell size.

A new grid control will be presented that can accurately track multiple solution features.
At present, most adaptive grid methods can only track a single solution feature, or at best a
linear combination of multiple features. Treating the adaptive data as a scalar function can
result in an inaccurate grid if the solution features should merge [2]. This limitation can be
overcome by combining the individual features to be tracked into a monitor surface which is a
wector function [2]. With respect to the vector monitor surface, examples of the improved grid
resolution it provides and the required modifications for computing its curvature properties
will be discussed.

A simple predictor corrector scheme is used to couple the adaptive grid to the PDE solver.
The scheme treats the time integration as a series of initial value problems in which the solution
is first advanced on the existing grid for the purposes of obtaining a new grid, the solution data
is then interpolated from the old grid to the new grid, and last, the solution is recomputed
on the new grid. This approach creates a time accurate grid because the grid does not lag
the solution in time. Furthermore, grid velocity terms are not required because the solution
is computed on a static grid. Techniques will be presented that reduce the computational
time consumed by the algorithm described in earlier work [1]. In addition, tests to determine
the effect on the solution of using a conservative data transfer method, as opposed to the
bilinear interpolation used at present, will be summarized.

The capabilities of the adaptive method will be demonstrated by computing a time accurate
colution for the inviscid unsteady flow field created by a shock vortex interaction. The shock
vortex problem consists of an initially planar shock wave marching toward and eventually over
a solid core vortex lying a short distance upstream. Here, the objective is to generate a grid
that will track the shock wave, the vortex, and the sound wave emitted by the interaction;
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these three features have substantially different magnitudes, and locations. Thus, the shock
vortex problem is a particularly good test of an adaptive method hecause it requires a grid
with locally high resolution whose location changes with time to properly capture both the
severe behavior of the shock wave and the much more gentle features of the sound wave and
the vortex. In this study we will focus on problems in which the shock wave is propagating
at'a Mach number slightly greater than 1 and thereby results in more localized behavior that
must be refined, as compared to our carlier work in which the shock wave was propagating
at Mach 3 [1,2]. A preliminary result in which the shock wave is propagating at Mach 1.1 is
contained in Fig. 1.
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. 1. For the shock vortex problem: problem definition (a), grid and pressure con
K bz;ore (b) and after (c) interaction for a grid adapted to the shock wave and the vortex

using the vector monitor surface.




